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Abstract

Gordan and Noether proved in their fundamental theorem that an hypersurface
X = V(F) € P*" with n < 3 is a cone if and only if F has vanishing hessian
(i.e. the determinant of the Hessian matrix). They also showed that the statement is
false if n > 4, by giving some counterexamples. Since their proof, several others have
been proposed in the literature. In this paper we give a new one by using a different
perspective which involves the study of standard Artinian Gorenstein K-algebras and
the Lefschetz properties. As a further application of our setting, we prove that a stan-
dard Artinian Gorenstein algebra R = K[xo, ..., x4]/J with J generated by a regular
sequence of quadrics has the strong Lefschetz property. In particular, this holds for
Jacobian rings associated to smooth cubic threefolds.

Keywords Artinian Gorenstein algebras - Cubic threefolds - Gordan—Noether -
Jacobian rings - Lefschetz properties
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1 Introduction

In a fundamental memoir of 1876, Gordan and Noether [15] fixed the statement of

Hesse ([18, 19]) by showing that a complex projective hypersurface V (F) C P" with
n < 31is a cone if and only if the determinant of the Hessian of F is zero. They also
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provided counterexamples for n > 3. We can state the relevant part of this result as
follows:

TheoremA Let X = V(F) C P" be a hypersurface defined over a field K of
characteristic 0. Let Hess(F) be the hessian matrix of F and assume hess(F) =
det(Hess(F)) = 0. Then, ifn < 3, X is a cone.

The Gordan—Noether theorem has inspired and inspires many researchers (see, for
example, the recent articles [5, 7]) and it has been revisited many times (see [6, 12,
22]) and the excellent last chapter of the book of Francesco Russo [29]. Moreover, via
Macaulay’s inverse systems theory [23], it has a surprising application to the theory
of standard Artinian Gorenstein algebras (SAGA:s, in short).

To explain it (but please see Sect.2 for details) we recall that a K-graded algebra
R = @Y R' is a SAGA if, for all i, dimg(R") < 400, R® = K, R is generated
in degree 1 and it satisfies the Poincaré duality (that is dim RY = 1 and the pairing
R' x RN~=! — RY given by the multiplication is perfect). The codimension of an
Artinian algebra R is, by definition, the dimension of the vector space R' of the
elements of R with degree 1. Roughly speaking, R has the structure of the even
cohomology ring of an oriented compact variety X of even dimension (generated
in degree 2). If X is a Kéhler variety of complex dimension m, the Hard Lefschetz
Theorem (see [30, Theorem 6.25, page 148]) states that the cup product of the r-th
power of a Kihler form induces an isomorphism between H”~"(X) and H™"" (X).
A natural question is whether analogous properties, which in the literature are called
(weak and strong) Lefschetz properties (see Definition 2.4 for details), hold for an
Artinian Gorenstein algebra R.

It turns out that Gordan—Noether Theorem is then equivalent to the following (see
[16, 29] and Sect. 4 below for details):

Theorem B For all standard Artinian Gorenstein K-algebras R of codimension at
most 4, there exists x € R" such that x¥ =2 : R' — RN~ is an isomorphism, i.e. the
strong Lefschetz property holds in degree 1.

This equivalence is well known (it is proved in Sect.4 for completeness) and it
follows from Macaulay’s theory which allows to construct any SAGA starting from
a homogeneous form in a finite number of variables (see Sect.2 for details or [16,
Theorem 2.71]).

In this paper we reverse the logical line of the proof. We first give a direct proof
of Theorem B and then we deduce Theorem A from this. To describe our approach
we first remark that the statement of Theorem B is purely algebraic, but our proof
is almost completely geometric and elementary. There are two main points that we
would like to emphasize.

The first one is the comparison between the Gorenstein duality and the projective
duality theorem. This leads us to prove Proposition 3.8 that allows to treat directly
the problem without introducing any auxiliar hypersurface (this was necessary in the
original proof).

The second point we want to highlight is the replacement of the famous Gordan—
Noether identity. We assume that the Lefschetz property fails, that is the multiplication
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by x¥~2 has non trivial kernel for x € R' general. We construct then an incidence
correspondence I'y_>» C P(R') x P(R'), where T'y_> = {([x], [y]) |x¥ 2y = 0}
and it is such that its first projection is dominant. Our aim is to show that this implies
that dimg R! > 4, i.e dimP(R") > 3.

Exploiting the differential condition that the kernel of x¥ =2 must deform (we refer
to this fact as the ker-coker principle), we obtain a collection of equations for an
irreducible component of I'y_» (see Proposition 3.4). This is equivalent to what we
call Gorenstein—-Gordan—Noether identity (see Corollary 3.5).

We recall that the Gordan—Noether identity is very important and it is the heart of
the classical treatment of the Gordan—Noether Theorem and, as well, of all the proofs
we have found in the literature. The proof of the identity involves some delicate
manipulations, and, in our opinion, as strong as it is, it appears as a cuamberstone along
the street of the proof. On the other hand, our Gorenstein—Gordan—Noether identity
has a very elementary treatment and, as the original identity, it is a key relation for
proving Theorem B. Moreover, in Sect. 4.1, we show that our identity implies the
relevant condition obtained from the Gordan—Noether identity when hess(F) = 0,
used in the classical proof.

A natural question is whether these methods have more applications and in par-
ticular if they could be applied to study problems related to higher strong or weak
Lefschetz properties for Gorenstein rings. As been observed for instance in [14, 24],
all these properties are related to the vanishing of some higher hessians. Some higher
Gorenstein—Gordan—Noether identities still hold but they give quite weaker informa-
tion.

The interest in the weak and strong Lefschetz properties for Artinian algebras
has been developed in the last twenty years with important contributions by several
authors. Just to mention some of them, the interested reader can see [1, 2, 9, 13, 17,
20, 25]. Much interest has been given to particular Artinian algebras, i.e. Jacobian
rings of smooth hypersurfaces of degree d in P" (see Example 2.2) over a field of
characteristic 0. If R is one of such algebras then it has codimensionn + 1. If n < 1
then the weak and strong Lefschetz properties hold for R as shown in the previously
cited works. In the very recent article [9] it is proved that the Jacobian ring of a quartic
curve or of a cubic surface has the strong Lefschetz property. In this article, we use
our methods to analyse one of the first open cases and we show the following:

Theorem C Let S = K(xg, - -+ , x4] and let I C S be an ideal generated by a regular
sequence of length 5 of quadrics. Then R = S/ I satisfies the strong Lefschetz property,
i.e. the general element x € R' is such that

2 R'S>R* and x :R*—> R
are both isomorphisms. In particular, the Jacobian ring of a smooth cubic 3-fold has

the strong Lefschetz property.

We stress that the injectivity of the map x- : R> — R3 in the above theorem has
been proved also in the recent article [1]. Our result also gives some evidence of the
conjecture ( [16, Conjecture 3.46 pag. 120]) which claims that, in characteristic 0,
all complete intersection standard Artinian algebras should satisfy the weak and the
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strong Lefschetz properties. This is known, in the weak case, when the codimension
is at most 3 (see [17]). It would be very interesting to know if all the Jacobian rings of
smooth cubics satisfy some Lefschetz properties. A partial answer to this problem for
the case of cubic fourfolds is given by the authors in [3], where some of the techniques
developed in this work have been exploited.

The article is divided into two parts. The first one comprises Sect. 2,3 and 4 and
it is devoted to our proof of Gordan—Noether Theorem. More precisely, in Sect.2
we fix some notations and we recall some facts we will use later on. Section 3 is the
heart of the work where we prove Gorenstein—Gordan—Noether identity and Theorem
B (see Theorem 3.15). In Sect.4, we prove the Gordan—Noether theorem (Theorem
A) by recalling some standard facts form Macaulay’s theory, which show that it is
equivalent to Theorem B. Moreover, we show that our Gorenstein—Gordan—Noether
identity implies a relevant consequence of the classical identity. We have tried to
keep this first part completely self-contained (up to Macaulay’s theory) and to avoid
using any unnecessary assumption. For instance we do not use that the vanishing
of the hessian of f € K[xp, ..., x,] does not depend on the reducedness of f, as
shown by the beautiful result of Dimca and Papadima (see [8]). The second part is
devoted to prove Theorem C (in Sect.5) and to study a classical example with our
methods. More precisely, in Sect. 6, we will analyze the intriguing components of the
incidence correspondence I"y _» of the easiest counterexample to Hesse’s claim in P*:
the Perazzo (singular) cubic 3-fold.

2 Artinian algebras and Lefschetz properties

Good references for the content of this introductory section are [16, 29, 31]. Let K be
a field of characteristic 0 which is algebraically closed. In this paper we will deal with
standard Artinian Gorenstein algebras:

Definition 2.1 Let R = @[N:O R' be an Artinian graded K-algebra. Then

e the codimension of R is the dimension of R! as K-vector space;

e R is said to be standard if it is generated, as K-algebra, by R

e R is said to have the Poincaré duality if RN ~ K and the multiplication map
R* x RN~ — RY is a perfect pairing whenever 0 < s < N.

If R is a graded Artinian algebra, having the Poincaré duality is equivalent to ask that R
is Gorenstein so the above duality is also called Gorenstein duality. If R is Gorenstein,
RY is called socle of R and R® ~ RV,

We recall two ways for constructing standard Artinian Gorenstein algebras (SAGAs
in short) which are relevant for our work. We will denote by S = Klxp, - - - , x,] the
polynomial ring in n 4+ 1 > 1 variables.

Example 2.2 1f eg, ..., e, > 1, consider a regular sequence { fy, ..., f,} in S with
fieSi.IfI =(fo,..., fn)then S/I is a standard Artinian Gorenstein algebra with
socle in degree Y 7_,(e; — 1). Particular algebras obtained via this construction are
Jacobian rings associated to smooth hypersurfaces of degree d > 2 in P". In this case,
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if X = V(F), one takes f; = F/dx; € S4 ' sothat N = (d —2)(n+1) and [ is the
ideal generated by the partial derivatives of F' (and it is called Jacobian ideal of F).

Example 2.3 Consider the ring Q of differential operators in the variables xg, ..., X,
ie. @ = K[y, -, yn], where we have defined y; = a for brevity. If G €
Klxo, - - -, x,] is any fixed homogeneous polynomial of degree d > 1, one can define

the annihilator of G in Q as the ideal
Anng(G) ={D € Q| D(G) = 0}.

It is not difficult to see that the quotient R = O/ Anng(G) is a standard Artinian
Gorenstein algebra with socle in degree d.

All standard Artinian Gorenstein algebras have a description as in Example 2.3 by
an important result of Macaulay (see [23] for a revisited reprint of originary work by
Macaulay of 1916, or also [29, pag. 189] for the statement with modern language).

Definition 2.4 Let R = EB,N: 0 R be an Artinian Gorenstein graded K-algebra. We
say that R satisfies the

e weak Lefschetz property in degree k, (W L Py in short) if there exists L € R! such
that L- : R¥ — R**1 has maximal rank;

e strong Lefschetz property at range s in degree k if there exists L € R! such that
LS. : Rk — RK*S is of maximal rank:

e strong Lefschetz property (in narrow sense) in degree k < N /2, (SL Py in short)
if there exists L € R! such that LN=2¢. : R¥ — RN~k i5 an isomorphism.

The algebra R has the weak (strong) Lefschetz property—WLP (resp. SLP) in
short—if it satisfies W L Py (resp. SL Py) for all k.

We recall a standard result concerning particular quotient Gorenstein rings that we
will use in the following. For a simple proof one can refer to [10].

Lemma 2.5 Let R = @lN:ORi be a Gorenstein ring with socle in degree N. Fix a €
R¢ \ {0} and consider the ideal

N
0:a)= @ker(w - R — R,
We have that R, = R/(0 : «) is a Gorenstein ring with socle in degree Ny = N — e.

3 SAGAs of codimension < 4 and strong Lefschetz property in degree
1

Let K be an algebraically closed field with characteristic 0. Let R = P, - R aSAGA
(i.e. a standard Artinian Gorenstein K-algebra) with socle in degree N and assume

dim R' = n + 1 withn > 1.
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For2<i<Nandje{l,---,N — 1} we define
Yi ={[yl e P(R") |y =0} and T;={(x],[y]) € P(R") x P(R)) [x/y =0}

where P(R') is the projectivization of the vector space R'. By construction we have
Yi CYiyrandI'; STy

Remark 3.1 Notice that, since R is a standard K-algebra, if i < N, we must have
Y; € P(RY). Indeed, if ¥; = P(R') we would have that all i-th powers of elements of
R! would be 0. Since R is standard, i-th powers of R! generate R’ as vector space so
R! = 0. This is clearly possible only if i > N.

From now on, we will fix an integer k such that | < k < N — 2 and, by denoting
with 71 and 7, the projections of I'y on the factors, we will assume that the following
condition holds:

(x) m Ty — P(Rl) is surjective.

After proving some general results that hold for every value of k in this range, in the
following subsection we will focus on the specific case k = N — 2, the most relevant
one for our aims (see Remark 3.2).

Remark 3.2 Notice that (%) is equivalent to asking that the multiplication map x*- :
R' — RF*1is never injective, i.e. that R does not satisfy SL P at range k in degree
1.If k = N — 2 (as we will assume from Sect. 3.1 onwards), (x) holds if and only if
R does not satisfy SLP;.

Since y : 'y — IP’(Rl) is surjective, there exists an irreducible component of 'k
that dominates P(R') via 7r;. By observing that all the fibers of 7| are irreducible (the
fiber over [x] is the projective space [x] x P(Annpi (xk ))), one can easily obtain the
following:

Lemma 3.3 Under assumption (x), there exists a unique irreducible component of T'y,
which dominates P(RY) via m;.

We will denote by I this unique component of I'; that dominates P(R') via ;. For
brevity, we will denote by 7; also the restriction of 7r; to I fori = 1, 2. Set Y = m,(I")
and, forany [y] € Y,

Fy =m(zy, "([yD NT) = {[x] € P(R") | x*y = 0 and ([x], [y]) € T'}.
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The diagram summarizes the framework we are going to focus on for the whole
article.

Fy x [y] [y]
) J\
r Y
- ¢
Iy —2 = P(RY
7T] ¥7Tl
F\C P(RY)

The following proposition gives a collection of equations which are satisfied by the
points of T.

Proposition 3.4 [Ker-Coker principle] If p = ([x], [y]) € T then
xiyj =0,
foralli > 0and j > 1 suchthati + j = k + 1.

Proof Let us consider a general point p = ([x], [y]) € T, so xk y = 0 by definition.
We claim that p satisfies also x¥~1y2 = 0.

For any v € R'andr € K, let us take x’ = x +rv € R!. Since 7 : ' — ]P’(Rl)
is surjective by assumption (), we have that there exists y’ in R' \ {0} such that
(x")¥y" = 0. Then we can define B(r) such that 8(0) = y and (x")*B(¢) = 0 for all
t € K. We can consider the expansion of 8 and write this relation as

0= (x4 )y + 1w +2(¢--)) = x*y + kv y + wxk) + 12 ).
If we multiply by y we get that
kvxkily2 =0 VveR.

Since the multiplication map R' x R*t! — RK+2 is non degenerate we have that
x¥=1y2 = 0 as claimed. This proves that all the points of I' satisfy also the relation
k=12
x* Ty =0.
In the same way one shows that if all the points of I satisfy the relation xtyl =0
withi + j = k4 1 and j > 1, then they also satisfy the relation x'~!y/*! = 0. This
concludes the proof. O

As an easy but fundamental consequence of Proposition 3.4, we obtain the follow-
ing:

Corollary 3.5 (Gorenstein—-Gordan—Noether identity) Let ([x], [y]) € I". Then the fol-
lowing relations hold for all t € K and () : p) € P':

(x +ty)k+1 =xk+1 = Rk+1, [(}\,x +My)k+1] — [xk+1] I= ]P)(Rk+1) (l:ka+1 ;é 0) (])

) Birkhauser
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The second equality is simply the projective version of the first one. The origin of
the name we have given to these equalities lies in the classical Gordan—Noether identity
as explained in the introduction. In Sect. 4, by using the above relation, we will prove
Eq. (5) that is one of the key identities used in the original proof of Gordan—Noether
Theorem.

Proposition 3.6 The following properties hold:

(@) Y S Yy = {yl € P2 y*+! = 0} C P(RY);

(b) If [yl € Y is general, then Fy is a cone with vertex [y]. Moreover, the general F),
is connected;

(c) dim Fy +dimY > dim(I") > n;

(d) 1 <dmFy<n—1landl <dimY <n— 1.

Proof By Proposition 3.4 we have that all the points of I satisfy y**! = 0. Then, by
definition, we have m(I") = ¥ C Yj41. By Remark 3.1 we have Y341 # P(RY) so
we have proved claim (a).

Before proving (b), notice the following properties. For brevity, denote by I'¢
the union of all the irreducible components of 'y different from I'. For any p =
([x], [y]) € T one can consider the curve y,, : P! — P(R') x P(R') defined by

Yp((h ) = ([Ax + pyl, [yD.

Since x’y/ = 0 wheneveri + j =k + 1 and j > 1 we have (Ax + uy)*y = 0so0 Vp
has image in I'y. Whenever p = ([x], [y]) € I \ I'°, we have that the curve y, has
image in I'. In this case, the line parametrized by mj o y,, is contained in Fy and it is
spanned by [x] and [y].

Now we will prove (b). If [y] € Y is general, we have that 71{1 (yhN(@\T°)is
an open dense subset of Fy x [y]. Let C be a connected component of Fy and consider
any p = ([x], [y]) € (C x [y]) N(I'\I'°), then the image of the curve y,, is contained
in I" and pass through ([y¥], [y]). So [y] € C and the line in ]P’(Rl) passing through [x]
and [y] is contained in C. Since [x] is general, we have that C is a cone with vertex
[v]. Moreover, if C’ is another connected component of Fy we have [y] € C N C’ so
C = C’ = Fy and F) is connected.

In order to prove (c) recall that I" and Y are irreducible and 7, : ' — Y is surjective.
Then, for all [y] € Y we have

dim (5 ' ([y]) = dim(I') — dim(Y).

Since dim(rr{1 ([y)) = dimF, by definition of F, and since dim(I') >
dimP(R")) =n by hypothesis we get claim (c).

For the last point (d), fix [y] € Y. Assume, by contradiction, that dim(Fy) = n, i.e.
Fy = ]P’(Rl). Then, for all x € R', we have xky = 0. Since k-th powers of elements
in R! generates R¥ (since R is a standard algebra) we have that y - R¥ = 0. But this
is impossible since R is Gorenstein and R' x R — RF*! is non-degenerate. This
proves that dim(Fy) < n — 1. Using (c¢) we also get that dim(Y) > 1. By (a) we
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have dim(Y) < dim(Yx+1) < n sodim(Y) < n — 1. Then, using again (c), we obtain
dim(Fy) > 1 as claimed. |

In the next subsections our aim will be to improve the inequalities in point (d) of

Proposition 3.6 about the dimensions of ¥ and of F, for y general.

3.1 Thecasek =N —2

From now on, we will assume k = N — 2. Under this assumption, in this subsection,
we prove a key result by constructing the dual variety of Y. As consequences, we will
show that Y is not linear and that its dimension is at most n — 2.

Consider the maps

¢:R' > RV x5 X1 and ¢ :P(RY\Yy_1 — P(RY Y k] NI

Set Z := Y (P(R!) \ Yy_1): this subvariety of P(RN-1) is irreducible and non-
degenerate (since R is a standard algebra). For all [x] € IP’(RI), let us define K, as
the kernel of the differential

diay - Tpry g = Tz pv-11 w > @) (w) = (N — DV 2w

ie. Ky = ker(di¥). Set A to be the diagonal of IP’(RI) x P(R'). Whenever p =
([x]1, [yD ¢ A we set

Ly ={[x +puyl € P(R") | (1 : ) € P} )

We have the following:

Lemma3.7 For p = ([x], [y]) € I" general, the line L, is contracted by r. Moreover,
we have dim(Z) = n —dim(K,) <n — 1.

Proof Let p = ([x],[y]) € I be general so we can assume that xN-1 # 0, ie.
[x] ¢ Yny—_1 (in particular, we have also p ¢ A). Indeed, if we had xN=1 = 0 for
p € I' general, then" € Yy_1; xY andthus Yy_; = ]P’(Rl) by (%). This is impossible
by Proposition 3.6(a).

By using the Gorenstein—Gordan—Noether identity (see Corollary 3.5) we have

Y (x4 pyl) = [0x + )" =DV = VT = g (i)
so the line L, is contracted by v (more precisely, L, \ Yy_; is contracted to a
point by ). If we assume that [z] := ¥ ([x]) = (XN € Zgnoon, then we have
dim(Z) = dim(77z,[;) so
dim(Z) = dim(P(RV™1)) — dim(K,) = n — dim(Ky). (3)

Since L is contracted by ¥ and [x] € L, is not in ¥y_; we have that T, =
(y) € Ky sodim(K,) > | and we have the claim. O
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Recall that via Gorenstein duality we have a linear isomorphism R! ~ (RN~1)*
which induces an isomorphism P(RV~1)* ~ P(RN-1H)*) ~ P(RY). If H €
P(RY—1)* and & € P(RV~1H*) correspond under the first isomorphism, we have
that the hyperplane H contains a linear variety P(W) € P(RVY~!) if and only if o, a
linear form on RN ~!, annihilates all the vectors in W, i.e. @ € P(Ann r1(W)).

Let X be a proper projective subvariety of P" and assume that [x] € Xu00h-
We will denote with (P")* the dual projective space of P" (i.e. the projective variety
parametrizing the hyperplanes of P*) and with 7, (X) the projective tangent space to
[x]in X. If X C K"t is the affine cone associated to X we have T (X) =P(Ts ).
We recall that the dual variety of X (as subvariety of P") is ’

X*={H e (P")* | 3[x] € Xsmoorn such that Tj,j(X) € H}.

One of the key results of this subsection is the following:
Proposition 3.8 We have Y = Z*.

Proof First of all, notice that if [z] = [xV 1] = Y ([x]) € Zsmoorn, we have that the
tangent (projective) space to Z in [z] is described as

T (Z) = PGV 2. RY) = P ({wa—2 lw e R1}> .

Assume that [y] € Y is a general point. We claim that y € Z*. Since [y] € Y is
general, we can take ([x], [y]) € I" such that xN-1 #0and[z] = [xV—1is a smooth
point of Z. In particular x¥ =2y = 0so [y] € Anngi (xV=2- R!). Hence, by the above
considerations, the hyperplane H of P(RV~!) corresponding to [y] contains Ti11(2)
so [y] € Z*. Since [y] was general in Y, we have proved Y C Z*.

For the other inclusion, let H be a general element in Z*. Let [y] € P(R l) be
its corresponding point. Since H € Z* (and H is general) we have that there exists
[z] = [xN¥~1] € Zsmoorn such that H contains the tangent (projective) space 7{;](Z).
Then, equivalently, y annihilates x¥ =2 . R!. On the other hand, since the product
R' x RN=! — RN is a perfect pairing, having xV">wy = 0 for all w € R' implies
thath_zy = 0so ([x], [y]) € Tn—>. Since H was generic in Z* and, by Lemma 3.3,
I" is the only component of I"y_» which dominates P(RY) via 771, we can assume that
[x]1is outside 1 (I"'y—2 \ I'). Then, we have that ([x], [y]) € T" so[y] € Y as claimed.

O

Corollary 3.9 The variety Y C P(R') cannot be linear.

Proof Let us suppose by contradiction that Y is a proper linear subvariety of P(R!).
Since K is a field of characteristic 0, Z is reflexive (see [21, 32]) so Z = Z**. From
Proposition 3.8, we have that Y = Z* and so Y* = Z. Since we are assuming that Y
is linear, we have that also Y* is linear: namely, it is the linear subspace of IE”(RI) of
the hyperplanes containing Y, which is proper. Then Z is linear and thus degenerate,
against the hypothesis. O
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We are now going to improve the inequalities (d) in Proposition 3.6, by showing
that ¥ cannot be an hypersurface of P(R') (see Corollary 3.11).

Let p = ([x], [y]) € " with x # y. As above, we will denote by L, the line in
P(R') joining the points x and y, i.e. the line L, = {Ax + uy | (A : p) € P'}.

Lemma3.10 Ler p = ([x], [y]) € T such that xNV =1 # 0. Then

(a) LY =[yl;
(b) if p is general, L, is not tangent to Y at [y].

Proof Let p = ([x], [y]) be as in the hypothesis and let us consider the line L,. By
Proposition 3.4 we have that points in Y satisfy y¥~! = 0. Then

Y1€L,NY S L,NYy_y={lx+puyl | (i ePl, Gx+uy)V~' =0}

On the other hand, the Gorenstein—Gordan—Noether identity (see Corollary 3.5) yields
(Ax + ,uy)N_l = AN=IxN=1 This is zero if and onlyif A =0,s0 L, NY = [y] as
claimed.

Take p = ([x], [¥]) € I" general. Then, we can assume that xN # 0 (since R is
a standard K-algebra - see Remark 3.1), that p is a smooth point for I" and that the
differential d,m, : Tt , — Ty [y i surjective.

Assume by contradiction that L, meets Y non-transversely. Since the tangent in
[y] to L, is spanned by x and since d,m is surjective, we have that there exists a
tangent vector of the form (v, x) in Tt ,. Hence, there is a curve y (¢) in I, that we
can write as y (t) = («(¢), B(t)), passing at = 0 through the point p = ([x], [y])
and such that @’(0) = v and B'(0) = x. As y has image in ", we have that « and B8
satisfy the relation a()N2 B(t) = 0. By considering the expansion of this relation as
in Proposition 3.4 we obtain the equation

(N —2)xN vy + XN =o.

If we multiply by x we get xV = 0 which is impossible since we are assuming x™ # 0.
Then L), and Y meet transversely. O

Corollary 3.11 We have
I <dim()<n-2 and 2<dim(Fy)<n-1

forany p = ([x],[y]) €T.

Proof Assume by contradiction that dim(Y) = n — 1, so Y is an irreducible hyper-
surface in P(R'). By Lemma 3.10 there is a line which meets Y transversely in one
point, so Y is an hyperplane. On the other hand, by Corollary 3.9, Y cannot be linear
so we have a contradiction. O
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3.2 Proof of Theorem B

Our aim is now to prove the following:
Proposition 3.12 Jfdim(Y) = 1 then n > 4.
Before doing so, we will need two technical results.

Proposition 3.13 Assume that Fy has dimensionn — 1 forall y € Y. Then

(a) Y g ﬂer F)’;
(b) Sec(Y) C Yn_1.

Proof Recall that I'¢ denotes the union of all the irreducible components of I'y_»
different from I'. Let us take an element [y] € Y and fix [x] € P(R 1) general,
satisfying the following assumptions:

Ny £0, lem@\T9 and xV £0.

This can be done since R is a standard algebra and since I" is the only component
dominating P(R') via 7.

Since 1 is dominant, there exists [y1] € Y (which can be assumed general as for
[x]), such that p; = ([x], [y1]) € T'\I'“. In particular, we have x¥~?y; = 0 and
[y1] # [y] since, otherwise, we would have that xN_zy = xN_2y1 = 0 which gives
a contradiction.

Let us now consider the line L, , joining the points [x] and [y1], i.e.

Ly ={lyi+px] | (o:p) €P').

As in point (b) of Proposition 3.6, we have L, C Fy, by the assumptions on [x].

We claim now that L, N Fy = [y1].

Since, by assumption, F), has dimension n — 1, the intersection L, N Fy, cannot
be empty. We will show now that (L, \ [y1]) N F) is empty.

Notice that L, \ [y1]is the affine line parametrized by x (t) = x +ty; with t € K.
Suppose that the intersection between Fy and this affine line is not empty, i.e. there
exists 7 € K such that x + 7y; € F). This means that

(x+fyp)V 2y =0  and multiplyingby x  x(x + 7y;)V 2y = 0.

By construction, we have that [x] € F), (equivalently, ([x], [y1]) € I'), and so by

Proposition 3.4 we know that x'y{ = 0for j > l andi 4+ j = N — 1. Then we get
x(x + 1‘~y1)N_2 = xV1and finally, by the above, xN_ly = 0, that is impossible by
our assumptions. In conclusion, L ,, and F) meet each other at a single point, namely
[y1].

We have proved that for general [y;] € Y we have [y;] € F,. Then, by the irre-
ducibility of Y, we get Y C F),. Since, this is true for every choice of y € Y, we obtain
claim (a).
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For (b), let us consider two distinct points [y1], [y2] € Y. From (a) we have that
[y2] € Fy, and then p = ([y2], [y1]) € I'". Let us now consider the projective line

Ly = {[Ay1 +uyll (h:p) e P

so we have L, C Sec(Y). By Proposition 3.4 we know that yéy{ = 0 for every
i,jwith j > landi + j = N — 1. On the other hand, we have that y, € Fy, so
0= yév -2 Yo = yév - By the above equations we get

Oy + )V =0
so L, C Yy—1. Since every secant line is contained in Yy 1, we have claim (b). O

If we assume that Fy has dimensionn — 1 forall y € ¥ we can strengthen the result
of Corollary 3.11:

Proposition 3.14 Assume that Fy has dimension n — 1 for all y € Y. Then
1 <dim(Y) <n-3.

Proof For all [x] € IED(R]), recall that [x] x P(K) is the fiber of x with respect to
71 : T = P(RY). Denote by r — 1 the dimension of the general fiber P(K).

[x] x P(K)© PFy x [y]

NN

[x]C P(RY) Y o[yl

Being P(R'), I' and Y irreducible and 7| and 75 in the above diagram surjective
by assumption, we have

dim(I') = dim(P(RY)) + dim(P(Ky)) =n +r — 1
dim(I") = dim(Y) 4 dim(Fy) = dim(Y) +n — 1

so dim(Y) = r. By Corollary 3.11 we have
1 <dm(Y)<n-2

so it is enough to prove that dim(Y) cannot be equal to n — 2. This is clearly true if
n = 2 so we can assume n > 3. By contradiction, assume that dim(Y) =r =n — 2.
Denote by s the dimension of Sec(Y'). By Proposition 3.13 we have that Y C Sec(Y) C
Yn_1 C ]P’(Rl) sowehaven —2 <s <n-—1.

Notice, first of all, that s cannot be n —2. Indeed, if dim(Sec(Y)) = dim(Y) = n—2,
we would have that Y is linear. This is impossible by Corollary 3.9. Hence we can
assume s =n — 1.
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Assume first that Y is non-degenerate. We have that Y and Sec(Y') have codimension
2 and 1 respectively in the smallest projective space that contains Y (and Sec(Y)).
By considering the general hyperplane section Y’ and its secant variety Sec(Y’) =
Sec(Y) N H, we preserve the above properties and Y’ is as well non-degenerate. We
can then cut with n — 3 general hyperplanes in order to obtain a curve C in P and its
secant variety which is a surface in 3. This is impossible since, in this case, C would
be a plane curve.

The only remaining case to analyse is when Y is degenerate of dimension n — 2,
dim(Sec(Y)) = n — 1 and the smallest projective subspace H containing Y is an
hyperplane in P(R'). In particular, Y is an hypersurface in H = Sec(Y) and its degree
is at least 2 (otherwise Y would be linear).

First of all, we will prove that H C F) for [y] € Y general. Let [y] € Y be a
general point. The general line L through [y] in A cuts Y in at least another point
[y1]. By Proposition 3.13 (a), we have that [y], [y1] € Fy and then, by point (b) of
Proposition 3.6, L is contained in F),. Since such lines cover a dense open subset of
H we have that H C F\,. Then H x [y] C Fy x [y] andthen H x Y C I'. Since they
have the same dimension and they are both irreducible we have H x Y = T'. This
is impossible by (x): if H x ¥ = I" we would have 71(I') = H # P(R'). Hence
dim(Y) < n — 3 as claimed. O

We can now prove Proposition 3.12:

Proof Assume, by contradiction, that n < 3. Since we are assuming dim(Y) = 1 we
have that dim(F) = n — 1 by Proposition 3.6. Then, by Proposition 3.14, we have
1 <dim(Y) < n — 3 <0, which is clearly impossible. O

Let us now restate and prove our main result (Theorem B):

Theorem 3.15 For all standard Artinian Gorenstein K-algebras of codimension at
most 4 there exists x € R such that xN=2: Rl — RN Visan isomorphism, i.e. the
strong Lefschetz property holds in degree 1.

Proof Assume, by contradiction, that for all x € R' the map xV=2. : Rl — RN-!
is not an isomorphism. Then, the projection 7; : 'y_y — P(RY) is surjective, i.e.
assumption (x) holds for k = N — 2. Under these assumptions we have | < dim(Y) <
n — 2 by Corollary 3.11. Hence n is equal to 3 and dim(Y) = 1. This is impossible
by Proposition 3.12. O

4 Gordan-Noether and strong Lefschetz property

In this section we recall a well known result which shows that Theorem 3.15 and the
following one are equivalent.

Theorem 4.1 (Theorem A - Gordan—Noether) Let X = V (F) C P" be a hypersurface

with vanishing hessian (i.e. hess(F) = det(Hess(F)) = 0). Then, ifn < 3, X isa
cone.
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As a byproduct of this equivalence, our proof of Theorem 3.15 gives a new proof
of Gordan—Noether Theorem.

Let K be a field and consider the polynomial ring in m + 1 > 1 variables
S = Klxg,:--,xy] and the ring Q of differential operators in such variables
Q = Klyo, -, ym] with y; = a—‘l_ as in Example 2.3. Let A = Q/Anng(G)
with G € §¢ so that A is a standard Artinian Gorenstein algebra with socle in degree
d. Notice that the codimension of A, i.e. the dimension of A!, is at most m + 1 and
equality holds as long as (Anng(G)); = {0}. This is equivalent to ask that the partial
derivatives of G are linearly independent. Equivalently, X = V(G) C P is not a
cone.

Lemma 4.2 Fix G € S9\ {0} and consider the SAGA A = Q/ Anng(G). Then A has
the strong Lefschetz property in degree 1 if and only if hess(G) # 0.

Proof For any fixed L = ) 7 k; % € A! we can consider the symmetric bilinear
map

<pL:.A1x.A1—>.Ad:K

given by @7 (1,&) = (LY"2n&)(G). Let B = {y0,..., ym} be a basis of Al
Denote with My the matrix associated to ¢y with respect to B. Then we have
My = [a;jlo<i,j<m With

aij = (LY7%y;y)(G) = LY72(3;y;(G)) = L7 (Hess(G);))

where Hess(G) is the Hessian matrix of G. Since Hess(G);; is either O or has degree
d — 2, one can apply the differential Euler Identity (see [29, Lemma 7.2.19]) in order
to obtain

My = (d — 2)!Hess(G) (ko, - . . , k). )

Hence, having hess(G) = 0 is equivalent to ask that ¢; is degenerate, i.e. for all
L,z € Al there exists y € A"\ {0} such that L~2yz = 0. By Gorenstein duality, this
is equivalent to L?~2y = 0, i.e. A does not satisfy the SLP in degree 1. o

Proposition 4.3 Gordan—Noether Theorem (Theorem 4.1) is equivalent to Theo-
rem 3.15.

Proof Assume first that Theorem 3.15 holds. Let X = V (F) be an hypersurface of
degree d > 2 in P" with n < 3 and we assume that X is not a cone. We have to
show that hess(F) # 0. Since X is not a cone, the partial derivatives of F' are linearly
independent. Hence, if we consider the SAGA A = Q/ Anng(F) as above, we have
that A has codimention n + 1 < 4 and socle in degree d. By Theorem 3.15 A has the
strong Lefschetz property in degree 1 so, by Lemma 4.2, hess(F) # 0 as claimed.
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Assume now that Theorem 4.1 holds. Let us consider a standard Artinian Gorenstein
K-algebra A of codimension n + 1, with n < 3. This algebra can be described as

_ Q
~ Anng(F)’

for ahomogeneous polynomial F of degree d in the variables xo, . . ., x, by Macaulay’s
Theorem. We can suppose that F is such that (Anng(F)); = 0, i.e. its partial deriva-
tives are linearly independent. Let us now assume by contradiction that .4 does not
satisfy the SL P in degree 1. Then, by Lemma 4.2, we would have hess(F) = 0. This
is impossible since, by Theorem 4.1 we would have that V (F) is a cone: indeed, this
would imply that the partial derivatives of F are linearly dependent, which is against
our assumptions. O

4.1 The Gordan—-Noether identity

We conclude this section by proving, using our framework and, in particular, the
Gorenstein—Gordan—Noether identity (1), an identity obtained by Gordan and Noether
which is one of the key arguments in the original proof of Gordan—Noether Theorem.
For brevity we called it Gordan—Noether identity. The original one is given in [29,
7.3.4].

First of all, let us introduce the formula (i.e. Eq. (5)) in its original setting. For
any h € § = Klxo, ..., x,] homogeneous, let V;, : P" --» (P")* be the polar map
associated to h. Take f € S4 with d > 1 without multiple factors. The closure Z’ of
the image of V in (P")* is easily seen to be a proper subvariety of (P")* if and only
if hess(f) = 0. In this case, for any hypersurface W = V (g) containing Z’, we can
consider the Gordan—Noether map associated to g which is

=V,oV,:P"-——5 P",
g g f

One of the key steps in the classical proof of Gordan—Noether Theorem is the following
claim: if f has vanishing hessian, then the Gordan—Noether identity

Vg (x + A (%)) =Yg (x) )

holds for all A € K.

Let us now express the map ¥, using the framework introduced in Sect.3. Let R
be a standard Artinian Gorenstein algebra with socle in degree N and assume that the
SL Py does not hold. By Macaulay Theorem we have R = Q/ Anng(F) for some
suitable I’ € K[xo, - - - , x,] with Anng(F); = (0) and hess(F') = 0. By [16, Lemma
3.74], F can be taken to be the function x — x? via the isomorphism RN ~ K.

By considering this function, one can observe that Vg is exactly the map ¢ :
P(R") --» P(RN~!) introduced in Sect. 3, i.e. the map such that ¥ ([x]) = [x¥~!]
for [x] € P(R") \ {Yn_1}, so our variety Z coincides with the variety Z’ introduced
above. If W = V (g) is an hypersurface containing Z, then the Gordan—Noether map
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V¢ defined above is the composition V, o Vi = V, o ¢ Since the image of V, lives
in P(RV=1)* ~ P(R') we interpret /, as a (rational) map from P(R') to P(R).

Observe that the image of ¥/, = V, o 9 is contained in Y. Indeed, if [x] € P(RY)
is general, we can assume that ¥ ([x]) = [z] = [xN=1] is smooth in Z (and so for
W = V(g)). By definition, and since W is an hypersurface, V,([z]) is the point on
P(R") corresponding to Ti;1(W). Since Tj;1(Z) € Ti;)(W) we have that Vi ([z]) € Y
as claimed.

Proposition 4.4 The Gordan—Noether identity—Eq. (5)—follows from the Gorenstein—
Gordan—Noether identity—Eq. (1).

Proof Let [x] € P(R') be a general point. We can assume then, that ¥ ([x]) =
[xV=1] = [z] is a smooth point for Z. Set [y] = v¥¢([x]) and notice that [y] € Y as
we have seen that the image of v/, lies in Y. We claim that ([x], [y]) € I". Indeed,
I eY C P(RY) corresponds to an hyperplane H, of P(RN-1) tangent to V(g)
containing the (projective) tangent space 7j;;(Z) = P(xV =2 . R") by construction.
This implies that y annihilates the vector space x¥V =2 R!. Since (xN=2y)-R! = 0, by
Gorenstein duality we have xN ’zy = 0so ([x], [y]) € I'ny—2. Since [x] was general
and since T is the only component of I'y_» dominating P(RY) via 71, we have that
([x1, [y]D) € T. Then, by the Gorenstein—Gordan—Noether identity (i.e. Eq. (1)) we
have

Yo ([x] +A¢g ([xD) = Ve ([x + Ay]D) = Vo (Y ([x + Ay]D) = Vo (¥ ([x]) = ¥ ([x])
as claimed. O

If Z is a hypersurface we have a really simple description for the unique Gordan—
Noether map in our framework.

Remark 4.5 Assume that Z is an hypersurface. In this case there is only one Gordan—
Noether map, i.e. the one associated to a generator g for the ideal of Z, and one can
see that it can be described as the dominant rational map « : P(RY) --> Y such that,
for [x] in a suitable dense open subset U, a([x]) = IP’(Anan(xN_2)) = [y], i.e.
a([x]) = [y] where ([x], [y]) is the only point over [x].

r—— ™= oy

AN a -7 A
T \ //‘//g | Vg

/- |

P(R") - ST Z=VE— PRV
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5 Lefschetz properties for complete intersection SAGAs presented by
quadrics

SetS = K[xg, ..., xy] = Zi Standletd > 3. Assume that / is an ideal of S generated
by {fo. ..., fu} with fi € 1971 = I 1 8971 for all i and such that {fo, ..., f,} is
a regular sequence. In this case R = S§/I is a SAGA with socle in degree N =
(d—2)(n+1). In particular, 191 is a vector space of dimension n + 1 and, by Bertini,
the general form in /9~! is smooth and irreducible. Examples of such rings are the
Jacobian rings of smooth hypersurfaces of degree d in P".

For any [n] € P(R") we set

K = ker (R" A Rl’“’).

Proposition 5.1 Assume that 1 < h < N — 1. The following properties hold:

(a) Ifn € R"\ {0}, then h > (d — 2) dim(K));

(b) Letn, ¢ € R"\ {0} and assume h = (d — 2) dim(K}) = (d — 2) dim(Kg). Then
K, = K} ifand only if [n] = [¢] in P(R").

Proof Assume that dim(K ;) = k and chose yy . . . yx—1 linearly independent elements
in K,; We can find gi, ..., gn € 19V suchthat I = (yo...Ye—1, Qks - - .. gn) is the

irrelevant ideal (i.e. {yo ... Yk—1, &k, - - - » g} is aregular sequence). Then R=S/Iis
a standard Gorenstein Artinian algebra with socle in degree N = (d —2)(n + 1 — k).
In particular, any element of S of degree at least N + 1 belongs to /. We claim that

n- RN+ — 0. Indeed, if g € SN+1 \we have

k—1 n
n-g=n- (Z/\iyi +ngi) el
i=0 i=k

since y; € K,; and g; € I. This is possible, by Gorenstein duality, if and only if
N+h+1>N,ie. ifand only if & > (d — 2)k as claimed by (a).

For (b) assume that, { € R"\{0} are such that K,; = K; andh = (d—2) dim(Ké).
Then we can proceed as before and construct the ideal I and the ring R with socle in
degree N = N — h. We claim that Kf]V “h =K év ~h Leté bea representant of the
socle ofﬁ. Then we can write SN~/ = (o, I N ). One can easily check that n - I clI
and ¢ - I C I.On the other hand, 7, ¢ are not zero so n - RV =" and ¢ - RV ~" are not
0,i.e.n-6,¢ -0 # 0in R. Hence, we have that K,; = K; = IV and then nand ¢ are
multiples. o

As an application, we have the following bound for the dimension of ¥, = {[y] €
P(R") | y* = 0}.

Corollary 5.2 We have

—1
dim(y,) < £~ 1
d—2
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In particular, if d = 3, we have dim(Y,) < a — 2.

Proof Take the general point [y] of any irreducible component C of Y, of maximal
dimension which is not contained in Y,_;. If such a component does not exist, set
€ > 0 to be the biggest integer such that ¥, = Y,_.. The bound for dim(Y,_.)
implies the one for the dimension of ¥,,.

Let C be the associated affine cone. We claim that Téy y = K! Indeed if v is a

yafl'
tangent vector to C in y, we have a curve y (f) = y +tv +12(- - - ) which is contained
in Y,,. Then, by expanding the relation y ()¢ = 0, one has vy*~! = 0sov € T y if
and only if v € Kyla,l. Then, by Proposition 5.1, we have

~ _ dim(@) — 1 =dim(k! 1< %=1 _
dim(Y,) = dim(C) 1—d1m(Kya,l) 15d—2 1

as claimed. O

As a consequence, we have a new proof of the following result of Migliore and
Nagel ( [25, Proposition 4.3]).

Corollary 5.3 Let R = S/1 be a standard Artinian Gorenstein algebra with 1 gener-
ated by a regular sequence of polynomials of degree e with e > 2. Then R has the
weak Lefschetz property in degree 1.

Proof The result is clear if ¢ > 3 since, in this case, R! = S! and R? = S2. Ife =2
one can consider the incidence variety I'y = {([x], [y]) € P(R") x P(RY) |xy = 0}
introduced in Sect.3 and its projection 77; on P(R'). By contradiction, assume that
the weak Lefschetz property does not hold in degree 1. This is equivalent to ask that
71 is surjective. Proceeding as in Sect. 3 one has that there exists a unique irreducible
component I" of I'; that dominates P(R!) via 7. Moreover we have Y = (') C Y»
and dim(Y) > 1 (proceeding as in Proposition 3.6) so dim(Y2) > 1. On the other
hand, by Corollary 5.2 we have dim(Y>) < 0, which gives a contradiction. O

5.1 Proof of Theorem C

In this subsection we will focus on the case n = 4 and d = 3, i.e. we will deal with
standard Artinian Gorenstein algebras which are quotients of S = K[xg, - - - , x4] by
ideals generated by regular sequences of length 5 whose elements have degree 2. We
will prove that they always satisfy the strong Lefschetz property (in any degree). Under
these assumptions we have I = (/ 2), N = 5and

R=S/I=R°®R'" ®R°P®R*®R* @ R’
with (dim(R"))?:O = (1, 5,10, 10, 5, 1). For simplicity, if « € R¢, we will define
by i (@) to be the multiplication map by « from R’ to R'*¢. In particular we have

Kl = ker(ui(a)).
We will need the following technical result:
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Proposition 5.4 Let [x] € P(R") and [q] € P(R?) such that qx = 0. Let W C K7 be
a subspace with dim(W) > 4. Then W N (x - RY # {0}.

Proof Consider the quotient R, = R/(0 : g), i.e. the quotient of R by the ideal J
such that J* = K. This is a SAGA with socle in degree N; = N — deg(q) = 3 by

Lemma?2.5. Since xqg = 0 by hypothesis, we have K ‘} # 0. By Proposition 5.1 we have
dim(K;) < 2 and so dim(R;) € {3, 4}. Since dim(Kg) = dim(R?) — dim(Rg) =
10 — dim(R(}) we have that dim(Kg) € {6, 7}. In particular, dim(Kg) < 7. Consider
W C K 5 of dimension 4 and the subspace V = x - R'. By Proposition 5.1 we have

that V has dimension at least 5 — 1 = 4 and, by construction, is a subspace of K 5.
Then W N V has dimension at least 1 as claimed. m|

We can now prove the main result of this section.

Theorem 5.5 Let R be as above. Then R satisfies the strong Lefschetz property, i.e.
the general element x € R" is such that

SLP; ui(x>)=x3:R' - R*

SLP>, pr(x)=x-: R? > R3

are both isomorphisms.

Proof The proof is organized in two steps: first of all we will prove that SL P implies
SL P> and then that SL P; holds.

Step 1: SL Py = SL P>. We will proceed by contradiction by assuming that SL P>
is false, i.e. that for all x € R' we have K f # {0}. We can consider the incidence
variety

2 = {([x]. [q]) € P(R") x P(R*) | xg = 0}

and its projections 7r; and . Since SL P> does not hold we have that 1 is dominant.
If [¢] € P(R?), we have rrz_l([q]) = IP’(qu) X [q] so its dimension is at most 1 by
Proposition 5.1. As in Sect. 3 one has that there exists a unique irreducible component
[ of I'12 that dominates IP’(R]) via 1. Let Y be the image of ' via m>. Since 7} is
dominant we have that I" has dimension at least 4. Then, for [¢] € Y general,

dim(Y) = dim(T") — dim(" N7, ' ([g])) > 4 — 1 = 3.

We claim that Y C Y2(2) = {lq] € P(R?)|¢* = 0}. Let ([x], [¢]) be a generic
point in I'. Proceeding as in Proposition 3.4, since 7y : ' — P(R') is dominant,
for any v € R!, we can find B = qg+tw+ 2---)eY C IP’(RZ) such that
(x + tv)B(t) = 0. Then, by considering the expansion of this relation modulo 2 we
obtain

xw+qv:0f0rallveR1. (6)

Then, by multiplying by ¢, one gets ¢g>v = 0 for all v € R'. By Gorenstein duality
we have q2 =0soY C Y2(2) as claimed.
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Since p = ([x], [¢g]) was general we can also assume that [¢g] is smooth for Y
and Y2(2) and that the differential d,m; : Tr,, — Ty 4 is surjective. Then, as in
Corollary 5.2, one can show that the Zarisky tangent space to the affine cone 172(2) of
Y 2(2) atq is Tiz(z).q ~ K qz. Since dim(Y) > 3and Y C y2(2) we can find three tangent

vectors wi, wy, w3 such that W = (w1, wa, w3, ¢g) is a 4-dimensional subspace of

T; g S K;. Here Y is the affine cone of Y. Then, by Proposition 5.4, we have

W N (x-RY # {0} so we can find n € R'\{0} such that xn € W. Notice that xn
cannot be equal to g since, otherwise, we would have that for [x] € ]P’(Rl) general
0 = xg = x?7n and then x37 = 0: this is impossible since we are assuming SL P;.
Then x7 is not 0 as tangent vector in Ty 4. By the surjectivity of the differential map
dpy, there exists v € R! such that

(v, xn) € Tr,p € Tpg1y, 2] X Tpr2),19]

so there is a curve («(¢), B(t)) € I' passing through p with tangent vector (v, xn). By
expanding at the first order one gets a relation as the one in Eq. (6): x2n + qv = 0. If
we multiply by x we have x35 = 0. However, this is only possible for x special since
we are assuming SL Py and so it leads to a contradiction.

Step 2: SL P; holds. Assume, by contradiction, that SL P; does not hold. Then, as in
Sect.3we can construct 'y_» = I'3 = {([x], [¥]) € P(R") x P(RY) |x3y = 0} which
dominates P(R!) via its projection 1. Let us consider I' C I's, the unique irreducible
component that dominates P(RY) via 7y, and Y = m»(I). By Corollary 3.11 we have
that dim(Y) € {1, 2}.

By Macaulay’s Theorem we have that R ~ Q/Anng(G) where Q =
Klyo, ..., yal, with y; = 3/3x;, G € S¥ = $° and (Anngp(G)); = (0). Since
dim(R') = 5, R has codimension 5 and, by assumption, V(G) C P* is not a cone.
Moreover, by Lemma 4.2, hess(G) = 0. Then, by [29, Lemma 7.4.13], we have that
dim(Y) cannot be 2.

Assume then that dim(Y) = 1. By Proposition 3.6 we have that for all [y] € Y,
Fy = n{l ([yD NT has dimension 3. Let p = ([x], [y]) be a general point of I". We
may assume that [x] is a smooth point of Fy. Then, if I:"y is the affine cone associated
to Fy, we have Tﬁ‘_’ L EK ;Zy' This can be proved by considering a curve in F. y passing
through x with tangent v as we have done before.

We claim that x>y = 0. Assume by contradiction that x?y # 0. Since F y
has dimension 4, we can find independent vectors x, 71, 22,23 € T~’y, such that

(x, 21, 22, z3) is a 4-dimensional subspace of K ;Zy' On the other hand since x2 y #0,
by Proposition 5.1, we have that K ;Zy has dimension at most 3. Hence, we get

x2y = 0 as claimed. In particular, all the points of I" satisfy the relation x>y = 0:
I ¢ Ty = {(Ix],[y]) € P(RY) x P(R")|x?y = 0} C I's. We have then that
71 : Ty — P(RY) is dominant and T is also an irreducible component of [', (which
dominates P(R!) via 7). Then Fy x [y] C Iz is the fiber over [y] € ]P’(Rl) of
72 : T € Ty — P(RY). Then we have that for p = ([x], [y]) € T, T . S K}, .By
proceeding as before one can prove that also the relation xy = 0 holds for the points of
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I'. Then, since the weak Lefschetz property holds in degree 1 for R by Corollary 5.3,
x is not general and we have a contradiction. O

We have the following important consequence:

Corollary 5.6 The Jacobian ring of a smooth cubic threefold has the strong Lefschetz
property.

6 The Perazzo cubic

In this section we briefly study, from the point of view of our setting, the Perazzo
cubic V(f) C P* and, in particular, the standard Artinian Gorenstein algebra R =
Q/ Anng(f). For this section we will set K = C.

The Perazzo cubic (introduced by Perazzo in [26]) is the cubic threefold X = V (f)
with

f = x0%3 + 2x1x3%4 + x2x7 € S = Klxo, x1, X2, X3, X4]

and it is the "simplest" counterexample to Hesse’s conjecture: up to projective trans-
formations, it is the only cubic threefold with vanishing hessian in P* which is not a
cone. This follows from the work of several authors which obtain a classification of
the hypersurfaces in P* with vanishing hessian that are not cones. A comprehensive
treatment of this problem can be found in [29, Chapter 7.4] whereas the original arti-
cles dealing with this classification problem (also in higher dimension) are [4, 11, 12,
15, 22, 26-28].

Fix the notations as in Example 2.3 with n = 4 and let f be the above cubic form.
Then

R=0/Amg(f) =R &R © B2 @ R®

is a SAGA with socle in degree N = 3. As recalled in Sect. 4, since X is not a cone
and its hessian vanishes, R has codimension 5 and does not satisfy SLP (and WL P

as well).
One has

(Anng (F))2 = (¥3, YoV1, Y0¥2, Y0¥4, ¥+ Y132, Y3, Y23, Yo¥3 — Y14, Y13 — yaya) = KI°

and that {yo y%, Y1Y3Y4, V2 yf} are the only monomials of degree 3 which are not 0 in
Q. More precisely, using the above relations, one has RY = (o) where o = yj y32 =
V1Y3V4 = Y2 yf. From these relations, one has that

By = {bi}_; = {y0. y1.y2.y3. ¥4} and By = {c;};_; = (3. ¥3¥4. ¥3. Y0y3. y2y4}
are basis for R! and R? respectively. Moreover, it is easy to check that b; - ¢ j = 0jjo

so that B is the dual basis of B (by choosing the isomorphism K — RY such that
1 +— o). Denote by {w,-}f:1 and by {z,-}f:1 the coordinates induced by Bj and B,
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on R! and R? respectively and by t the involution t([x], [y]) = ([y], [x]). With
these notations, we have that 'y_» = 'y = {([x], [¥]) | xy = 0} has 3 irreducible
components, I', 7(I") and A, all of dimension 4 (one can show that we always have
at least 3 components under these assumption). Using coordinates wy; and wy; on the
two factors of P(R!) x P(R'), we have

2
I' = V(wizwzo + wigwzi, wizwzy + wiswon, way — waow22, W23, w24) and
A =V (w3, wig, w3z, wa4)

soY = V(w% — wowz, w3, Wy) is a conic. In particular, for [y] € Y general, we have
dim(Fy)) = 3. The morphism ¢(x) = x2 can be written in coordinates as

72 =¢(w) = (w3, 2wzwy, w3, 2(wows + wiws), 2(w w3 + wywy))

so Yy = V(wsz, wy) =~ P2 is the plane containing the conic Y - here we have taken the
reduced structure - and Z = V (4zpzp — z%) is a cone over a conic with vertex the line
V (2o, z1, z2). The polar map Vz associate to Z is

Vz [zl = [w] = [4z2 : =221 1420 : 0: 0]

and has image Y. The Gordan—Noether map 1/, associated to g = 4zpz2 — z% can be
written in coordinates as

Ye(w) = [Zuﬁ —2wiwy : 2w§ :0:0],

it is defined outside Y> and it defines a rational map from P* to Y, as observed in
Remark 4.5. Finally, one can check that ' N 7(I") = Y x Y (this is, again, something
that holds more generally), and

A=Y, xYs TNA=Y,xY tMNA=YxY,

soTNT(MNA=Y x7.
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