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Bayesian optimization and deep 
learning for steering wheel angle 
prediction
Alessandro Riboni1, Nicolò Ghioldi1, Antonio Candelieri1 & Matteo Borrotti1,2*

Automated driving systems (ADS) have undergone a significant improvement in the last years. ADS 
and more precisely self-driving cars technologies will change the way we perceive and know the 
world of transportation systems in terms of user experience, mode choices and business models. The 
emerging field of Deep Learning (DL) has been successfully applied for the development of innovative 
ADS solutions. However, the attempt to single out the best deep neural network architecture and 
tuning its hyperparameters are all expensive processes, both in terms of time and computational 
resources. In this work, Bayesian optimization (BO) is used to optimize the hyperparameters of a 
Spatiotemporal-Long Short Term Memory (ST-LSTM) network with the aim to obtain an accurate model 
for the prediction of the steering angle in a ADS. BO was able to identify, within a limited number of 
trials, a model—namely BO_ST-LSTM—which resulted, on a public dataset, the most accurate when 
compared to classical end-to-end driving models.

Over the last decade, significant progress has been made in automated driving systems (ADS). Given the current 
momentum and progress, ADS can be expected to continue to advance as variety of ADS products are going 
to become commercially available in the space of a decade1. It is envisioned that automated driving technology 
will lead to a paradigm shift in transportation systems in terms of user experience, mode choices and busi-
ness models. Nowadays, a greater number of industrialists are increasing their investments in self-driving cars 
technologies and, more generally, in the automotive sector. ADS research and an increasing number of indus-
trial implementations have been catalyzed by the accumulated knowledge in vehicle dynamics in the wake of 
breakthroughs in computer vision caused by the advent of deep learning2–5 and the availability of new sensor 
modalities such as lidar6.

Deep Learning (DL) has been widely used for the implementation of ADSs. Starting from the work of Kriz-
hevsky et al.2, different DL approaches have been proposed. Bojarski et al.3 proposed a deep neural network 
(PilotNet) for predicting the steering angles thanks to a set of images captured from the car. Based on Krizhevsky 
et al.2, Kocić et al.4 proposed the so called J-net, that is a DL model suitable for end-to-end systems. All of the 
above mentioned methods follow direct supervised training strategies. A review of these methods for ADS can 
be found in Yurtsever et al.7. In this context, a ground truth is required for training, which normally consists 
in the ego-action sequence of an expert human driver, while the network learns to imitate the driver. More 
precisely, the training is performed on a set of camera images taken from the front car (input), which is a raw 
signal (i.e. pixels) and, for example, the steering angles (output) used to control the car. Previously mentioned 
methods are then trained using road images paired with the steering angles generated by a human tasked with 
driving a data-collection car. The prediction tasks are solved using Convolutional Neural Networks (CNNs)8. 
Generally, CNNs use layers that convolve the inputs with filters and compress them. As a result, CNNs can find 
features and transform them into simpler representations. This ability has made them useful in many different 
applications (e.g. arts and image classification, identification of movements)9. However, CNNs predict one frame 
at a time and generate future images recursively, which are prone to focus on spatial appearances and relatively 
weak in capturing long-term motions10. In order to capture a temporal relation, a possible solution is the use 
of Long Short Term Memory (LSTM)8 networks. The core idea behind the LSTM architecture is a memory cell 
which can maintain its state over time as non-linear gating units which regulate the information flow into and 
out of the cell11.

In order to overcome the limits of CNNs and exploit the advantages of LSTMs, Shi et al.12 proposed the 
convolutional LSTM (ConvLSTM). ConvLSTM network, which is able to model the spatiotemporal structures 
simultaneously by explicitly encoding the spatial information into tensors, thus overcoming the limitation of 
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vector-variate representations in standard LSTM where the spatial information is lost. Similar approaches have 
been also used in the context of ADS13,14. In both works, authors used 4 consecutive ConvLSTM layers as the 
first part of the deep network, then Yu et al.13 completed the network with a fully connected layer and Bai et al.14 
used a 3D convolutional (3DConv) layer15 followed by 2 fully connected layers.

DL has been successfully applied in different fields, gaining remarkable results. Nonetheless, a crucial issue 
dealing with DL remains, which is neural network architecture definition16. In fact, currently employed archi-
tectures and related hyperparameters settings have mostly been developed by human experts, a manual process 
which is both time-consuming and error-prone. For instance, in LSTM networks many parameters and variants 
can be used to solve the same problem. Performance is then influenced by the final version of the LSTM networks 
that is used. Greff et al.11 called it a “...search space odyssey...”.

In the Machine Learning (ML) and DL community, Bayesian optimization (BO)17,18—sometimes also named 
Sequential Model Based Optimization (SMBO)—has recently became the standard strategy for Automated 
Machine Learning (AutoML)19 and Neural Architecture Search (NAS)16. BO is a general sample-efficient strat-
egy for global optimization of black-boxes, which are expensive and multi-extremal functions, traditionally 
constrained to a box-bounded search space. Furthermore, BO has also been extended to the case of unknown 
constraints and/or partially defined objective functions20–24, as well as to the case of weakly specified search 
spaces25,26. A recent review of automated ML techniques for DL approaches can be found in He et al.27. Specifi-
cally for NAS, a recent review is provided in28, with also evolutionary approaches have been recently proposed, 
often in combination with BO29–31.

This work proposes the application of Bayesian optimization (BO) combined with Spatiotemporal-Long Short 
Term Memory (ST-LSTM) network for the prediction of the steering angles in automated driving systems based 
on camera images (i.e. raw pixels) taken from the front car (called BO_ST-LSTM from now on). Unlike previous 
works13,14, we have added a MaxPooling layer to reduce the complexity of the final network and we have applied 
the BO to optimize the hyperparameters and obtain a more suitable model for the experiment taken into account. 
More precisely, the main contributions of this study can be summarized as follows. 

1.	 We propose a sample efficient approach, based on BO, for optimally tuning an ST-LSTM based network to 
enhance steering wheel angle prediction: we named the resulting final model BO_ST-LSTM. BO_ST-LSTM 
has demonstrated higher accuracy with respect to competitors and a better generalization performance 
between validation and test set.

2.	 We propose a general hyperparameter optimization framework for DL methods in the context of automated 
driving systems (ADS) based on BO. This hybrid approach can improve the predictive power of DL archi-
tectures by finding the most suitable configuration for the problem under study.

Our results can be adapted and used in the development of ADSs to help obtain a more precise prediction of 
steering wheel angle, leading to safer car for drivers and traffic participants.

The following sections of the paper are organized as follows. “Related work” section will discuss related works 
in the field of automated driving systems (ADS). “Proposed method” section will present our method of predic-
tion of steering angles by coupling BO and ST-LSTM, while “Experiments” section will explain the experiments 
and performances of our method. Finally, “Conclusion and future works” section will present discussions and 
conclusions of the paper.

Related work
Object recognition is an important task in different fields and it is often solved by using machine learning 
methods and large datasets. An example is the so-called AlexNet2. In this work, the authors trained a large con-
volutional neural networks on the subsets of ImageNet dataset32 used in the ILSVRC-2010 and ILSVRC-2010 
competitions33, thereby obtaining the best results ever reported on these datasets in 2012.

In the context of ADS, Deep Learning (DL) has been widely used for their implementation34. Bojarski et al.3 
proposed a neural-network-based system known as PilotNet, which outputs steering angles given images on the 
road ahead. PilotNet training data contains single images sampled from videos recorder by a front-facing camera 
in the car, the former paired with the corresponding steering command. The PilotNet network architecture con-
sists in a set of normalization layers, convolutional layers and fully connected layers. The proposed net is mainly 
tested for understanding the ability to recognize objects that can affect the steering. In the same year, Kim and 
Canny35 proposed a visual attention model to train a convolution network end-to-end from images to steering 
angle. The attention model highlights image regions that potentially influence the network’s output. Successively, 
a causal filtering step is applied to determine which input regions actually influence the output.

More recently, Kocić et al.4 developed an end-to-end deep neural network (called J-net) suitable for deploy-
ment on embedded automotive platform modifying the AlexNet2 solution, which is a convolutional neural 
network for image classification. Differently from AlexNet and PilotNet, J-Net is based on a set of convolutional 
layers and a set of max-pooling layers used to reduce the number of parameters. Compared with AlexNet and 
PilotNet, J-Net had comparable results in terms of predictive power, but with a lower complexity overall.

Motion planning is a fundamental technology for autonomous driving vehicles and, over the past years, novel 
deep learning approaches have been demonstrated to be power techniques. In Yu et al.13, two main contributions 
can be found. Firstly, the authors introduced the Baidu Driving Dataset (DBB): DBB is a new driving dataset, 
which contains a 10,000-km frontal camera image and a vehicle motion attitude data of real road-conditions. 
Secondly, the authors have proposed an end-to-end reactive control model for lateral and longitudinal controls. 
The former referring to steering angle predictions, the latter referring to means accelerating and braking com-
mands optimization. Similarly to other works3,4, a set of pre-processing layers, convolutional layers and fully 
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connected layers were used for steering angle prediction. The accelerating and braking problem was solved with 
a Convolutional Long Short Term Memory architecture (Conv-LSTM)12 using 5 frames, taken from the front 
camera car, as input. The network architecture was composed of 4 Conv-LSTM layers and a fully connected layer.

The Conv-LSTM network combines image feature extraction capabilities from convolutional networks and 
the memory ability of LSTM networks. Starting from the work of Yu et al.13, Bai et al.14 proposed the so-called 
Spatiotemporal-Long Short Term Memory (ST-LSTM) network for motion planning value prediction in the 
context of autonomous vehicle. The ST-LSTM network is composed of 4 ConvLSTM layers followed by a 3-D 
convolutional (3DConv) layer15 and 2 fully connected layers. As in Yu et al.13, authors do not consider a single 
image as input but 3 continuous frames to ensure the real-time performance of motion result.

Recently, AutoML and NAS are becoming standard solutions for optimizing hyperparameters and architec-
ture of neural networks, respectively, with examples in different application domains. For instance, in Nguyen 
et al.36 an accurate and reliable multi-step ahead prediction model based on LSTM, whose hyperparameters have 
been optimized through BO, has been validated on steam generator data acquired from different French nuclear 
power plants for prognostic and health management of the plants. In Osmani et al.37, an expensive and time-
consuming design of a Deep Neural Network for human activity recognition has been addressed via BO in order 
to optimally and efficiently tune the deep neural architectures’ hyper-parameters. With respect to ADS, a recent 
and interesting application of BO is devoted to generate simulation scenarios in order to improve accuracy and 
“safety” of the ADS38–40. In Kong et al.41, authors proposed a deep Q-learning (DQL)-based energy management 
strategy (EMS) for an electric vehicle. In this work, BO is used to optimize the hyperparameter configuration of 
the DQL-based EMS. Another interesting work is Alizadeh et al.42, in which a novel attention-based LSTM cell 
has been proposed and optimized by Bayesian optimization for streamflow postprocessing which outperformed 
the simple LSTM, GRU, a machine learning algorithm, and two statistical-based models.

Proposed method
Firstly, the general architecture of the ADS for steering angle prediction is hereby presented, followed by a short 
description of the two main ADS components: BO and ST-LSTM.

Figure 1 shows the general approach of the BO_ST-LSTM system design for steering angle prediction. The 
first part, the data layer, is composed of two procedures, namely data preprocessing and separation. In the first 
procedure, several preprocessing operations are applied. In the next stage, the upper and lower sections of the 
images are cropped to eliminate unnecessary information; then, resolution reduction is applied to each frame 
for computational reasons. The size is reduced from 455 × 256 pixels to 200 × 66 pixels. This dimension is equal 
to the one used as input for the PilotNet2. Finally, three consecutive images are stacked and used as the input 
frame dimension for the deep neural network. The steering angle associated with each tensor is the one related 
to the last frame.

The second procedure, called data separation, is used to split the dataset, and a usual machine learning 
principle is applied. The dataset is divided into training, validation and test sets in order to learn, optimize and 
test the final intelligent system.

BO_ST-LSTM layer is responsible for the optimization and learning phases of the BO_ST-LSTM system. 
Training and validation sets are used to optimize the ST-LSTM network by means of Bayesian optimization17. 
This procedure is useful to develop a more robust architecture suitable for this specific task; then, during the 
optimization phase, an early stopping with patience equal to 5 is used to avoid overfitting and reduce the overall 
computation time. Given the optimized setting, the ST-LSTM is trained and its performance is measured on 
the test set.

Bayesian optimization.  Bayesian optimization is a sample-efficient strategy for global optimization of 
black-boxes, expensive and multi-extremal functions, traditionally constrained over a box-bounded search 
space �:

To solve such problem (1), BO uses two key components: a probabilistic surrogate model of the objective func-
tion g(θ) and an acquisition function (also called infill criterion or utility function) that is based on the current 
approximation of g(θ) . The optimization of the acquisition function allows to select the next promising θ ′ where 
to evaluate the objective function. The observed value, g(θ ′) (or g(θ ′)+ ε in the case that the objective function 
is also noisy), is then used to update the probabilistic model approximating g(θ) and the process is iterated until 
a given termination criteria is reached (e.g., a maximum number of function evaluations).

A Gaussian Process (GP)44 is the most common choice for the probabilistic surrogate model. An alternative 
is offered by Random Forest (RF)45, an ensemble learning method which, contrary to GP, is able—by construc-
tion—to deal with a complex search spaces � , spanned by mixed, categorical and conditional components of 
( θ ). Conditional means that the value of a component of the solution vector θ[i] depends on the value of at least 
another component θ[j] , with i  = j.

Regardless its specific implementation, the aim of the probabilistic surrogate model is to provide an estimate 
(aka prediction) of g(θ),∀θ ∈ � , along with a measure of uncertainty about such estimate. These two elements 
are usually the mean and standard deviation of the prediction provided by the probabilistic surrogate model, 
denoted by µ(θ) and σ(θ) respectively.

The acquisition function is aimed at driving the selection of the next θ ′ to be evaluated on the objective func-
tion, balancing between exploitation—that is choosing θ ′ whose associated prediction is not worse than the best 
function value observed so far—and exploration—that is choosing θ ′ whose prediction is largely uncertain. While 

(1)min
θ∈�

g(θ)
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exploitation is associated to local search, exploration is associated to global search: the first is significantly driven 
by µ(θ) while the second is significantly driven by σ(θ) . Several acquisition functions have been proposed—an 
overview is provided in Frazier17 and Archetti et al.18—each one offering a different mechanism to balance the 
exploitation-exploration trade-off. The most widely used acquisition functions are lower confidence bound 
(LCB), expected improvement (EI) and maximum probability of improvement (MPI).

Lower confidence bound (LCB) is an acquisition function that manages exploration-exploitation by being 
optimistic in the face of uncertainty:

where µ(x) and σ(x) are mean value and standard deviation of the probabilistic surrogate model. ξ ≥ 0 is the 
parameter to manage the trade-off between exploration and exploitation. More precisely, ξ = 0 is for pure 
exploitation; on the contrary, higher values of ξ emphasizes exploration. In Srinivas et al.46 a schedule of ξ is 
proposed with convergence proof.

Expected improvement (EI) measures the expectation of the improvement on g(θ) with respect to the predic-
tive distribution of the probabilistic surrogate model.

g(θ+) is the best value of the objective function observed so far, ξ is used to balance between exploration-
exploitation, φ(Z) and �(Z) are the probability distribution and the cumulative distribution of the standardized 
normal, respectively, with Z defined as follows:

(2)LCB(θ) = µ(θ)− ξσ (θ),

(3)EI(θ) =

{

(g(θ+)− µ(θ)− ξ)�(Z)+ σ(θ)φ(Z) if σ(θ) > 0

0 if σ(θ) = 0

(4)Z =

{

g(θ+)−µ(θ)

σ (θ)
if σ(θ) > 0

0 if σ(θ) = 0

Figure 1.   Overview of the BO-STLSTM system. Images in the Input: camera images box come from the 
SullyChen Dataset43.
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Maximum probability of improvement (MPI) was the first acquisition function proposed in literature. As it 
is basically biased towards exploitation, it has been recently modified by including a parameter ξ to allow for a 
better exploration-exploitation trade-off:

At last, selecting θ ′ requires to solve an auxiliary optimization problem on the same search space � but com-
putationally cheaper than (1), that is minimizing LCB(θ) or maximizing EI(θ) or MPI(θ).

Denote with D1:n a set of initial solutions (i.e., initial design), for example sampled by using Latin Hypercube 
Sampling (LHS) technique. The element Di is (θi , g(θi)) , with i = 1, ..., n (i.e., we are considering the noise-free 
setting, without loss of generality). Furthermore, consider N as the maximum number of function evaluations. 
Then, the general BO algorithm is summarized as follows:

Spatiotemporal‑long short term memory network.  The ST-LSTM network14 is based on Convolu-
tional LSTM (ConvLSTM) layers, 3D Convolutional (3DConv) layers and Fully Connected (FC) layers with the 
aim to extract the spatiotemporal features of time-serial image segment. Bai et al.14 proposed architecture with 
4 ConvLSTM layers combined with a batch normalization step so as to prevent the eventuality of low training 
efficiency caused by data distribution offset in deep networks.

ConvLSTM uses multi-frame picture segments as input. In this way, spatial features can be extracted like a 
convolutional layer and the timing relationship can be obtained at the same time.

The four ConvLSTM layers are then used to extract the temporal hidden feature information and help the 
model learn more effectively from the data. Following the definition of Shi et al.12, all the inputs X1, . . . ,Xt , cell 
outputs C1, . . . , Ct , hidden states H1, . . . ,Ht , and input and forget and output gates ( it , ft , ot ) are 3D tensors 
whose last two coordinates are spatial dimensions. The key equations of ConvLSTM are shown in Eq. (6), where 
∗ denotes the convolution operator and ◦ denotes the Hadamard product:

where σ is the activation function (i.e. sigmoid function), bi , bf , bc and b0 are the biases related to it , ft , Ct and ot.
If we view the states as the hidden representations of moving objects, a ConvLSTM with a larger transitional 

kernel should be able to capture faster motions while one with a smaller kernel can capture slower motions12.
3DConv is used to better capture the temporal and spatial characteristics of videos. In fact, the traditional 

2D convolutional layer operates on time-serial images using a simple convolutional layer to identify each frame 
of the video. Nevertheless, this method does not take into account the inter-frame motion information in the 
time dimension.

The convolution operation in 3DConv has a time dimension of three, meaning that the input is composed 
of three consecutive frames of images, compliantly with the data pre-processing adopted in Bai et al.14. In this 
structure, each feature map in the convolutional layer is connected to multiple adjacent successive frames in the 
previous layer, thus capturing motion information.

Experiments
The proposed methodology is evaluated and compared with the classical end-to-end driving models on the public 
dataset SullyChen Dataset43. The data were recorded around Rancho Palos Verdes and San Pedro, California, 
using a 2014 Honda Civic. The temporal resolution of images is 0.05 seconds. A first version of the dataset has 
been used by Qian et al.47 on their work. Figure 2 shows some examples. The dataset contains both straight and 

(5)MPI(θ) = P(g(θ) ≤ g(θ+)+ ξ) = �

(

g(θ+)+ µ(θ)+ ξ

σ (θ)

)

(6)

it = σ(Wxi ∗ Xt +Whi ∗Ht−1 +Wci ◦ Ct−1 + bi)

ft = σ(Wxf ∗ Xt +Whf ∗Ht−1 +Wcf ◦ Ct−1 + bf )

Ct = ft ◦ Ct−1 + it ◦ tanh(Wxc ∗ X⊔ +Whc ∗Ht−1 + bc)

ot = σ(Wxo ∗ Xt +Who ∗Ht−1 +Wco ◦ Ct−1 + bo)

Ht = ot ◦ tanh(Ct)
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mixed roads. Furthermore, pictures are taken on junctions, primary and secondary roads. For more examples, 
see also Qian et al.47.

In this work, we used the updated version which includes 63,000 images of the frontal road as well as the 
steering angles; for computational reasons, we decided to use around the 62% (39,000) of the total number of 
images. The considered dataset is then split in 80% (31,200 images) and 20% (7800). The first subset is again 
divided following the same percentage (80–20% ) in order to get training and validation set. Images are shuffled 
during the training phase. Originally, images come with a dimension of 455× 256 pixels; in this study, however, 
the size has been reduced to 200× 66 pixels.

To ensure reproducibility of experiments, we shared both data and our code as a public GitLab project, at the 
following link: https://​gitlab.​com/​ub-​dems-​public/​cs-​labs/​user-​aribo​ni/​csp-​drive-​dl.

Methodology.  Three different architectures were implemented and trained for 15 epochs, with batch size 
equal to 50 and validated with different setting according to their definitions: PilotNet3, J-net4 and modified ver-
sion of the ST-LSTM proposed by Bai et al.14. Table 1 summarizes settings for all networks.

PilotNet is a deep learning network mainly based on convolutional layers. More precisely, the network consists 
of 9 layers, including a normalization layer, 5 convolutional layers and 3 fully connected layers. The convolutional 
layers were designed to perform feature extraction and were chosen empirically through a series of experiments 
that varied layer configurations (see Bojarski et al.3 for more details). Strided convolutions were used in the first 
three convolutional layers with a 2 × 2 stride and a 5 × 5 kernel and a non-strided convolution with a 3 × 3 kernel 
size in the last two convolutional layers. The five convolutional layers are followed by three fully connected layers 
leading to an output control value (the steering angle).

As the previous network, J-Net is basically a convolutional neural network. In this case, the network consists 
of 5 layers, including a normalization layer, 3 convolutional layers and one fully connected layer. In order to 
reduce the size of the deep neural network layers, the authors applied three max-pooling operators, one after each 
convolutional layer. The size of all max-pooling operators is 2 × 2. Eventually, the last layer of the J-net is a fully-
connected layer composed of ten nodes and followed by a simple output layer for the steering angle prediction.

Differently from PilotNet and J-Net, ST-LSTM network is composed of a series of ConvLSTM layers and a 
3DConv layer. The deep network proposed in Bai et al.14 consists of 6 layers, including 4 ConvLSTM layers, one 
3DConv layer and one fully connected layer followed by the final output layer. Each ConvLSTM layer is followed 
by a batch normalization step. In order to reduce dimensionality, we introduced in this work a max-pooling layer 
operating of size 2 × 2 × 2 on 3D input. Furthermore, we added a dropout regularization technique before the 
output prediction to avoid overfitting. This latter architecture is improved by means of Optimization17 to propose 
a more robust solution. This procedure is performed with three different acquisition functions and, in order to 
limit the impact of the random component, we executed 10 runs for each function. Details of this process are 
provided in the next sections.

Figure 2.   Images from the SullyChen Dataset43: (a) straight road with trees and shadow, (b) road with left curve 
with obstacle (car), (c) road with right curve (d) road with a gradual curve to the left with traffic island.

https://gitlab.com/ub-dems-public/cs-labs/user-ariboni/csp-drive-dl
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The developed architectures are trained using stochastic gradient descent. The algorithm seeks to update the 
weights of the model to reduce the error between actual and estimated values. In order to compute this error, 
it is necessary to choose a suitable loss function; as such, having to handle a regression problem, we resolved to 
use the mean squared error (MSE). As reported in Eq. (7), this measure is given by the average of the square of 
the difference between actual yi and estimated values ŷi.

BO_LT‑STM: optimizing the hyperparameters of an ST‑LSTM.  As described in “Proposed method” 
section, Bayesian optimization is a sample-efficient strategy for global optimization of black-boxes. BO uses 
probability to find a minimum of an objective function in order to obtain better performance in the testing phase 
and reduce the optimization time. For this specific task, we have used the mean squared error on the validation 
set as the objective function to be minimized. Also, this procedure is executed on eight different hyper-param-
eters of the ST-LSTM architecture. Table 2 shows the parameters considered with the relative domain spaces.

The BO process is performed through the Python suite named GPyOpt and by using the Gaussian Process 
(GP) as a probabilistic surrogate model and through three different acquisition functions: lower confidence 
bound (LCB), expected improvement (EI), and maximum probability of improvement (MPI). As far as the 
acquisition functions’ hyperparameter is concerned (i.e., ξ ), we have adopted default values suggested by the 
GPyOpt library.

We compared the obtained results in order to identify the most suitable acquisition function for the optimiza-
tion process. A set of initial random solutions composed of five configurations is defined to update the surrogate 
model at each execution. The optimization process starts from these configurations and lasts 20 iterations. The 
acquisition function selects the new configuration to be evaluated at each run by managing the trade-off between 
exploration and exploitation. Therefore, in order to limit the randomness’s impact in the choice of initial solu-
tions, we have performed each optimization process with the relative acquisition function for ten times, with 
different seeds.

Figure 3 shows the evolution of the so-called best seen, that is the minimum validation error value observed 
during the BO iterations in this study. Solid lines represent the average, while shaded areas are standard deviation 

(7)MSE =
1

n

n
∑

t=1

(yi − ŷi)
2

Table 1.   Setting for all networks.

PilotNet J-Net ST-LSTM

Normalization layer Normalization layer Normalization layer

Conv2D Conv2D ConvLSTM2D

Conv2D MaxPooling2D BatchNormalization

Conv2D Conv2D ConvLSTM2D

Conv2D MaxPooling2D BatchNormalization

Conv2D Conv2D ConvLSTM2D

Flatten MaxPooling2D BatchNormalization

Dense Flatten ConvLSTM2D

Dense Dense BatchNormalization

Dense

Conv3D

MaxPooling3D

Flatten

Dense

Output value Output value Output value

Table 2.   Parameters of the ST-LSTM architecture for Bayesian optimization.

Parameters name Domain space Domain type

ConvLSTM1  : Num. feature maps {4, 8, 10, 16} Discrete

ConvLSTM2 : Num. feature maps {4, 8, 10, 16} Discrete

ConvLSTM3 : Num. feature maps {4, 8, 10, 16} Discrete

ConvLSTM4 : Num. feature maps {4, 8, 10, 16} Discrete

Conv3D: Num. feature maps {1, 2, 3} Discrete

FC: Num. of neurons {5, 10, 25, 50} Discrete

Dropout {0.0, 0.5} Continuous

Learning rate (Adam optimizer) {0.01, 0.001, 0.0001, 0.00001} Discrete
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over the ten experiments. At the first iteration, the best seen is the minimum validation error observed on the 
initial random configurations; then, the best seen of the successive 20 evaluated configurations is reported at a 
later stage.

All of the three acquisition functions allow, on average, to reduce the error by about two percentage points 
during the BO process. All of them, in fact, lead to identifying configurations with a similar error value. Since 
the average results obtained are similar, the standard deviation of the various best seen values at the end of BO 
was considered to identify the most performing acquisition function. As shown in Fig. 4, the best seen value 
determined by LCB has a lower standard deviation compared to the other two acquisition functions. For this 
reason, ST-LSTM has been re-trained while considering the best configuration obtained through BO with the 
LCB acquisition function.

Figure 5 displays a graphical representation of the final ST-LSTM optimized architecture.

Results.  This section summarizes the most relevant results of the study. The predictive performance indica-
tors selected to compare the developed architectures are the MSE (Eq. 7), the mean absolute error (MAE) and 
the standard deviation of absolute error (St. AE).

(8)AE =
∣

∣

∣
ŷi − yi

∣

∣

∣
, i = 1, . . . , n

(9)MAE =
1

n

n
∑

i=1

AEi ,

Figure 3.   Comparison among GP-based BO processes using three different acquisition functions.

Figure 4.   Comparison between the distribution of the best seen obtained from the different acquisition 
function.
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where ŷi is the i th predicted value of the response system, yi is the i th actual steering wheel angle and n is the 
number of observations in the evaluated set (validation or test set). Table 3 summarizes the overall results on 
training and validation sets. BO_ST-LSTM is the best approach in mainly all the indicators on the validation set. 
All approaches show a possible problem related to overfitting, indeed all of them obtained really good results 
on the training set that are not confirmed on the validation set. For this reason, the bias-variance trade-off is 
investigated in what follows.

Table 4 separately reports the MSE on training and validation, for each one of the four Deep Neural Network 
(DNN) models considered. Then, we have decomposed the MSE into bias and variance in order to investigate 
possible differences in the balance offered by the four models. More precisely, bias and variance are estimated as 
follows, under the noise-free assumption (i.e., if xi = xj then yi = yj):

with err = 1
N

∑N
i=1(yi − ŷi) . Finally, MSE = Bias2 + Variance.

A DNN model should simultaneously achieves low variance and low bias in order to minimize the MSE. Gen-
erally speaking, if we assume f as an unknown real function and f̂  as the estimated function on a training sample 
then we can define the meaning of variance and bias. Variance refers to the amount by which f̂  would change 
considering a different training set. Bias is related to the error that is introduced by approximating f by using a 
simpler model. The considered DNN models share a common pattern looking at bias and variance: all of them 

(10)St. AE =

√

√

√

√

1

n− 1

n
∑

i=1

(

AEi −MAE
)2

(11)Bias2 =

(

1

N

N
∑

i=1

ŷi −
1

N

N
∑

i=1

yi

)2

(12)Variance =
1

N

N
∑

i=1

(

(yi − ŷi)− err
)2

Figure 5.   Structure of BO_ST-LSTM architecture. Images used at the beginning of the structure come from the 
SullyChen Dataset43.

Table 3.   Average values of the prediction performance indicators on the training and validation sets for the 
four architectures. In bold the best value for each indicator.

PilotNet J-Net ST-LSTM BO_ST-LSTM

Training

MSE 0.0209 0.0114 0.0405 0.1831

MAE 0.0870 0.0697 0.1181 0.1971

St. AE 0.1155 0.0810 0.1630 0.3798

Validation

MSE 0.6814 0.5842 0.6139 0.5019

MAE 0.4409 0.4262 0.4710 0.4042

St. AE 0.6979 0.6345 0.6263 0.5820

Table 4.   Bias-variance tradeoff decomposition.

Training Validation

MSE Bias2 Variance MSE Bias2 Variance

PilotNet 0.0209 0.0004 0.0205 0.6814 0.0350 0.6464

J-Net 0.0114 0.0002 0.0112 0.5842 0.0440 0.5402

ST-LSTM 0.0405 0.0001 0.0404 0.6139 0.0755 0.5384

BO_ST-LSTM 0.1831 0.0002 0.1829 0.5019 0.0130 0.4881
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have low bias and high variance. This is an evidence that we are considering a set of models that tend to overes-
timate the training set. As a consequence, small changes in the training set can result in significant changes in f̂ .

Focusing on MSE indicator, BO_ST-LSTM is the most promising model, as it provides the lowest MSE 
value on validation. This was quite expected because the goal of BO was to minimize this indicator. Moreover, 
BO_ST-LSTM resulted in the highest MSE on the training set (one order of magnitude greater than the other 
three DNN models), making it less prone to overfitting. Finally, as already pointed out, MSE is basically made 
up of the variance component for all the DNN models, both in training and validation. However, BO_ST-LSTM 
has the lowest variance MSE component in the validation set. In addition, both bias and variance are reduced 
using the BO strategy with respect to the other approaches.

Assuming that we can select only one DNN model to be deployed in a real-life application, our choice 
would be BO_ST-LSTM. This conclusion is also motivated by a pairwise Mann-Whitney U test performed on 
the prediction errors of the four models on the validation set. More specifically, prediction error for BO_ST-
LSTM is significantly lower than the other three models ( p-value < 0.001 ); ST-LSTM and PilotNet are signifi-
cantly similar in terms of prediction error on the validation set ( p-value = 0.866 ), as well as PilotNet and J-Net 
( p-value = 0.054 ). Finally, ST-LSTM and J-Net resulted significantly different in terms of prediction error on 
the validation set ( p-value = 0.004).

All the approaches were then re-trained on the dataset consisting of both the training and validation data, 
setting 15 learning epochs. Results are summarized in Table 5: the inclusion of validation data leads to models 
with small values of MSE on test, lower than MSE on validation (i.e., a reduction of around 50%). Results on the 
test set confirm that BO_ST-LSTM is the most performing model, providing the smallest MSE again. Thus, if we 
could select only one DNN model, depending on the MSE on the validation set, choosing BO_ST-LSTM would 
be fine. It is important to remark that, although BO_ST-LSTM, ST-LSTM and PilotNet resulted in really close 
values of MSE on test set, ST-LSTM and PilotNet would be our third and fourth choice respectively.

Conclusion and future works
This paper is meant to address the prediction of the steering wheel angle in a self-driving system via Deep Learn-
ing. We started from an ST-LSTM, which can be considered the most suitable model for the specific application 
targeted, as resulted from the empirical comparison against PilotNet and J-Net. Moreover, the hyperparameters 
tuning of the ST-LSTM, performed via BO, allowed to decrease further prediction error of this specific DNN 
architecture, both on the validation and test set. More specifically, GP-based BO with LCB acquisition function 
proved to be the best hyperparameters optimization strategy.

Nevertheless, some limitations ought to be considered. Although BO is a sample efficient global optimization 
strategy, running a single hyperparameter optimization process has required—in our experimental setting—
to train and evaluate 25 different ST-LSTM models (5 sampled via LHS plus 20 via BO). While this “cost” is 
compensated by an MSE on validation which is significantly lower than the other DNN models, the difference 
between the MSE of BO_ST-LSTM and ST-LSTM, on the test set, is quite negligible. Unfortunately, a principled 
comparison, in terms of computational costs, is not possible because this information is not reported in the 
papers related to the other DL models considered in the study. Reproducing all the experiments of the other 
research groups is for sure expensive and—potentially—unfair. This is the reason why the comparison is not 
possible and, in any case, it is out of the scope of this paper.

Moreover, it is important to remark that results do not indicate ST-LSTM is better than J-Net or PilotNet 
necessarily, as these two latter models have not been optimized meaning that their optimized model might 
outperform the BO-ST-LSTM model.

Future works will address (a) the possibility to also optimize the architecture of the ST-LSTM, moving from 
hyperparameters optimization towards Neural Architecture Search (NAS)—and (b) its formulation as a multi-
objective or constrained optimization problem by considering not only MSE but also other requirements, such as 
jointly minimizing the inference time (multi-objective) or keeping it lower than a fixed threshold (constrained). 
Furthermore, comparison of other models such as 2D-CNN-LSTM or 3D U-Net along with ST-LSTM models 
could also provide better insights on which model provides better performance. Besides, the usefulness of the 
application of other useful modules such as the Spatiotemporal attention module could be assessed.

Received: 24 November 2021; Accepted: 10 May 2022

Table 5.   Average values of the prediction performance indicators on the training and test sets.

PilotNet J-Net ST-LSTM BO_ST-LSTM

Training

MSE 0.2917 0.0159 0.0442 0.0204

MAE 0.2464 0.0793 0.1187 0.0888

St. AE 0.4806 0.0982 0.1734 0.1117

Test

MSE 0.2810 0.3204 0.2758 0.2700

MAE 0.3781 0.3918 0.3866 0.3848

St. AE 0.3715 0.4086 0.3555 0.3492
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