
Department of

Matematica e Applicazioni

Joint PhD program MATEMATICA

Università degli studi di Milano-Bicocca – Università di Pavia – INdAM

Cycle XXXVI

Spline Upwind:
a novel stabilization method for
space–time Isogeometric Analysis

TESINI PAOLO

Registration number: 874709

Supervisor: Prof. Giancarlo Sangalli

Coordinator: Prof. Pierluigi Colli

ACADEMIC YEAR 2022-2023

alla mia amata famiglia

“Una famiglia felice non è che un anticipo del Paradiso.”

attribuita a George Bernard Shaw

Acknowledgements

I would like to acknowledge my thesis supervisor Prof. Giancarlo Sangalli and

Dr. Andrea Bressan, Dr. Gabriele Loli, Dr. Monica Montardini, Prof. Simone Scacchi:

our fruitful collaboration has been instrumental in my growth from a scientific and

research standpoint.

I express my appreciation to Prof. Paola Antonietti and Prof. Luca Dedè for

introducing me to the fascinating topics of cardiac electrophysiology.

I would like to convey my deepest gratitude to Prof. Alfredo Marzocchi for

his constant support and precious advice. My sincere recognition also goes to

Prof. Maurizio Paolini and Prof. Francesco Ballarin for their significant counsels.

2

Contents

Introduction 9

Preliminaries 17

1 Spline Upwind for space–time Isogeometric Analysis 21

1.1 Upwinding in one dimension . 22

1.1.1 Standard Upwind and Shock Capturing 22

1.1.2 High-order Upwind . 23

1.2 Upwinding the heat equation . 26

1.3 Numerical Results . 29

1.3.1 Advection equation . 30

1.3.2 Advection–diffusion equation 38

1.3.3 Heat equation . 38

2 Space–time Isogeometric Analysis of cardiac electrophysiology 45

2.1 Spline Upwind for cardiac electrophysiology 45

2.1.1 Nonlinear solver . 48

2.1.2 Preconditioner . 50

2.2 Numerical Results . 53

2.2.1 Test with smooth solution . 53

2.2.2 2D spatial domains . 55

2.2.3 3D spatial domains . 60

Conclusions 74

Bibliography 83

3

List of Figures

1.1 Plots of τk(t) of the SU method on a uniform mesh, depicted in blue

on horizontal axes. 25

1.2 Plot of τk(t) of the SU method on a non-uniform mesh, depicted in

blue on horizontal axis. 26

1.3 Advection equation, SU relative error plots in L2-norm (test in

Section 1.3.1, smooth solution). 31

1.4 Advection equation, exact and plain Galerkin solutions (test in

Section 1.3.1, solution with layers). 33

1.5 Advection equation, exact and SUPG solutions (test in Section 1.3.1,

solution with layers). 33

1.6 Advection equation, exact and SUPG solutions for different choices

for τSUPG (test in Section 1.3.1, solution with layers). 34

1.7 Advection equation, exact and Shock Capturing solutions (test in

Section 1.3.1, solution with layers). 34

1.8 Advection equation, exact and Shock Capturing solutions for different

choices for τSC (test in Section 1.3.1, solution with layers). 35

1.9 Advection equation, exact and NCSU solutions (test in Section 1.3.1,

solution with layers). 35

1.10 Advection equation, exact and SU solutions for p = 3 (test in

Section 1.3.1, solution with layers). 36

1.11 Advection equation, exact and SU solutions for p = 4 (test in

Section 1.3.1, solution with layers). 36

1.12 Advection equation, SU relative error plots in L2-norm, computed

where the solution is smooth (t > 0.85) (test in Section 1.3.1, solution

with layers). 37

4

1.13 Advection equation, exact and SU solutions on a non-uniform mesh,

depicted in blue on the horizontal axis (test in Section 1.3.1, solution

with layers). 37

1.14 Advection–diffusion equation, SUPG and SU solutions for p = 3, (test

in Section 1.3.2). 38

1.15 Advection–diffusion equation, SUPG and SU solutions for p = 4, (test

in Section 1.3.2). 39

1.16 Heat equation, plain Galerkin solution (test in Section 1.3.3, Ω = (0, 1)). 40

1.17 Heat equation, SUPG solution (test in Section 1.3.3, Ω = (0, 1)). . . 41

1.18 Heat equation, SU solution (test in Section 1.3.3, Ω = (0, 1)). 41

1.19 Heat equation, function θ(x, t) in the SU method (test in Section 1.3.3,

Ω = (0, 1)). 42

1.20 Spatial domain Ω, a quarter annulus, with section line s (A–B), for

second test in Section 1.3.3. 42

1.21 Heat equation, plain Galerkin solution along section line s (test in

Section 1.3.3, Ω is a quarter annulus). 43

1.22 Heat equation, SUPG solution along section line s (test in Section 1.3.3,

Ω is a quarter annulus). 44

1.23 Heat equation, SU solution along section line s (test in Section 1.3.3,

Ω is a quarter annulus). 44

2.1 Monodomain equation coupled with the Rogers–McCulloch ionic

model, SU relative error plots in L2-norm (test in Section 2.2.1, smooth

solution). 54

2.2 Monodomain equation coupled with the Rogers–McCulloch ionic

model, plain Galerkin solution for y = 0.125 (test in Section 2.2.2,

Ω is a rectangle). 56

2.3 Monodomain equation coupled with the Rogers–McCulloch ionic

model, SU solution for y = 0.125 (test in Section 2.2.2, Ω is a rectangle). 57

2.4 Monodomain equation coupled with the Rogers–McCulloch ionic

model, function θ(x, y, t) for y = 0.125, in the SU method (test

in Section 2.2.2, Ω is a rectangle). 58

5

2.5 Monodomain equation coupled with the Rogers–McCulloch ionic

model, SU solutions for various fixed times (test in Section 2.2.2,

Ω is a rectangle), the colors represent dimensionless transmembrane

potential. 59

2.6 Spatial domain Ω, an ellipse with hole, with section line s (A–B), for

the second test in Section 2.2.2. 59

2.7 Monodomain equation coupled with the Rogers–McCulloch ionic

model, plain Galerkin solution along the section line s (test in

Section 2.2.2, Ω is an ellipse with hole). 61

2.8 Monodomain equation coupled with the Rogers–McCulloch ionic

model, SU solution along the section line s (test in Section 2.2.2,

Ω is an ellipse with hole) . 62

2.9 Monodomain equation coupled with the Rogers–McCulloch ionic

model, function θ(x, y, t) along the section line s, in the SU method

(test in Section 2.2.2, Ω is an ellipse with hole). 63

2.10 Monodomain equation coupled with the Rogers–McCulloch ionic

model, SU solutions for various fixed times (test in Section 2.2.2, Ω is

an ellipse with hole), the colors represent dimensionless transmembrane

potential. 64

2.11 Monodomain equation coupled with the Rogers–McCulloch ionic

model, plain Galerkin solutions for various fixed times (test in

Section 2.2.3, Ω is a parallelepiped), the colors represent dimensionless

transmembrane potential. 65

2.12 Monodomain equation coupled with the Rogers–McCulloch ionic

model, SU solutions for various fixed times (test in Section 2.2.3, Ω is

a parallelepiped), the colors represent dimensionless transmembrane

potential. 66

2.13 Spatial domain Ω, a curved domain, for the second test in Section 2.2.3 67

2.14 Monodomain equation coupled with the Rogers–McCulloch ionic

model, plain Galerkin solutions for various fixed times (test in

Section 2.2.3, Ω is a curved spatial domain), the colors represent

dimensionless transmembrane potential. 68

6

2.15 Monodomain equation coupled with the Rogers–McCulloch ionic

model, SU solutions for various fixed times (test in Section 2.2.3,

Ω is a curved spatial domain), the colors represent dimensionless

transmembrane potential. 69

2.16 Spatial domain Ω, approximating the left ventricular geometry, for

the third test in Section 2.2.3 on the left, and its corresponding

cross-section for solution plots on the right. 70

2.17 Monodomain equation coupled with the Rogers–McCulloch ionic

model, plain Galerkin solutions for various fixed times (test in

Section 2.2.3, Ω approximates the left ventricular geometry), the

colors represent dimensionless transmembrane potential. 72

2.18 Monodomain equation coupled with the Rogers–McCulloch ionic

model, SU solutions for various fixed times (test in Section 2.2.3,

Ω approximates the left ventricular geometry), the colors represent

dimensionless transmembrane potential. 73

7

List of Tables

2.1 Monodomain equation coupled with the Rogers–McCulloch ionic

model, computational cost comparison (test in Section 2.2.2, Ω is

a rectangle). 57

2.2 Monodomain equation coupled with the Rogers–McCulloch ionic

model, computational cost comparison (test in Section 2.2.2, Ω is

an ellipse with hole). 60

2.3 Monodomain equation coupled with the Rogers–McCulloch ionic

model, computational cost comparison (test in Section 2.2.3, Ω is

a parallelepiped); GMRES, PCG iterations are averaged over each

fixed-point iteration. 63

2.4 Monodomain equation coupled with the Rogers–McCulloch ionic

model, computational cost comparison (test in Section 2.2.3, Ω is

a curved domain); GMRES, PCG iterations are averaged over each

fixed-point iteration. 68

2.5 Monodomain equation coupled with the Rogers–McCulloch ionic

model, computational cost comparison (test in Section 2.2.3,

Ω approximates the left ventricular geometry); GMRES, PCG

iterations are averaged over each fixed-point iteration. 71

8

Introduction

The idea of using finite elements in space–time domains comes from [22, 2]. The

space–time numerical paradigm is an approach to solve problems that involve

spatial and temporal variations of physical quantities. In this framework, space

and time are treated in an integrated manner, with the spatial domain and time

discretized simultaneously, rather than separately, as in traditional numerical methods.

This approach has been developed for various problems such as heat transfer [9],

advection–diffusion [40], and elastodynamics [26], while the mathematical theory of

space–time Galerkin methods has been established in recent works [51, 52].

This approach offers several advantages: it allows for a more natural handling

of phenomena that vary in both time and space, enabling the accurate capture

of transient phenomena and the analysis of their evolution over time and space.

Thanks to the computing power of modern computers and the development of new

mathematical techniques, space–time discretizations have recently gained considerable

interest.

In summary, the space–time paradigm represents an innovative and powerful

approach for simulating dynamic problems, providing more accurate and detailed

solutions, especially where spatial and temporal variations are significant.

On the other hand, Isogeometric Analysis (IgA) [25, 18] is an evolution of classical

finite elements. IgA employs spline functions, or their generalizations (Non-Uniform

Rational B-Splines – NURBS), both to represent the computational domain and to

approximate the solution of the partial differential equation modeling the problem of

interest. Consequently, IgA facilitates the interoperability between Computer-Aided

Design (CAD) and numerical simulations. Moreover, IgA benefits from the properties

of smooth splines, such as providing higher accuracy compared to C0 piecewise

polynomials (see, e.g., [21, 7]).

9

In IgA framework, it is interesting to investigate space–time formulations, due

to the additional opportunity to exploit the properties of smooth splines in time as

well, as proposed in [53], while in [30] a stable isogeometric method for parabolic

evolution equations is developed. In [38, 33] the authors propose preconditioners and

solvers regarding the heat equation, while [48] investigates a continuous space–time

IgA formulation to linear and nonlinear elastodynamics.

Space–time formulations, due to the augmented dimensionality, detrimentally

impact on conventional solvers. However, it is noteworthy that space–time

formulations hold promise for local mesh refinement [32] and parallelisation [23],

attracting interest in the field (see, e.g., [31]).

However, the use of smooth splines with respect to time poses important challenges

as well, in particular with regard to the causality principle. In fact, while the

sequentiality of Discontinuous Galerkin method in time guarantees causality, this

is not the case for Galerkin discretization with smooth spline approximation in

time. This fact leads to a lack of causality, resulting in unphysical behaviors such as

numerical instabilities and spurious oscillations, which may propagate backward in

time.

The results presented in Chapter 1 are based on our recent paper [35], which

emerged from our joint work with Prof. Giancarlo Sangalli and Dr. Gabriele Loli

(Dipartimento di Matematica “F. Casorati”, Università di Pavia). The aim

of Chapter 1 is to design the Spline Upwind (SU) formulation for the heat

equation, based on stabilization terms that promote causality. The proposed SU

formulation generalizes classical upwinding techniques, such as Streamline upwind

Petrov–Galerkin (SUPG), proposed in [8], to higher-degree splines. In particular,

the SUPG method in time, applied to the heat equation with piecewise linear finite

elements, results in a lower block-triangular linear system.

If we add artificial diffusion where the residual is high, as in Shock Capturing [54],

stability is further promoted. Indeed, high-order derivatives enable targeted damping

of spurious oscillations by selectively applying diffusion near layers while preserving

the smooth regions of the solution. In this way, the high-order terms act as

high-frequency filters, effectively attenuating higher frequency components, which

correspond to spurious oscillations, more heavily than the lower frequency components.

10

This selective behavior ensures that unwanted oscillations are suppressed near layers

without introducing excessive diffusion into smooth regions, thereby maintaining

both the stability and accuracy of numerical simulations.

In order to apply these considerations, we add diffusion terms of different high

orders to the plain Galerkin formulation, such that the resulting linear system is

lower block-triangular. Furthermore, these terms are weighted by the residual in

order to preserve the optimal convergence order where the solution is smooth.

We present various numerical tests to evaluate the stability and accuracy of the

proposed SU formulation. In particular, in Chapter 1, we conduct experiments with

a concentrated source term, and the results highlight that the numerical solutions

are free from spurious oscillations.

This stabilization method for space–time IgA has several possible fields of

application. Indeed, problems that generate solutions with layers are of interest in

various engineering applications and real-world problems, ranging from laser-based

additive manufacturing (see, e.g., [28]) to electrophysiology applied to clinical settings

and human body simulations.

From this perspective, among the various possible fields of application, cardiac

electrophysiology certainly represents an interesting research area.

The heart is a muscular organ that contracts when a concentrated electrical signal

from the sinoatrial node, the heart’s natural pacemaker, is transmitted through the

His–Purkinje system to the cardiac muscle. This signal travels along the membranes

of cardiac muscle cells (cardiomyocytes) and passes between them via gap junctions.

During an action potential, these cells rapidly depolarize as positively charged ions

enter, causing the contraction of sarcomeres, the contractile units of the muscle. After

contraction, the ions are pumped out, and the cells repolarize to their resting state,

allowing the muscle to relax and be ready for the next signal after a refractory period.

For more details on cardiac activation physiology, [24] is an important reference.

Mathematical modeling plays an important role in electrophysiology for

diagnostic and predictive purposes, and it holds promise for shaping future clinical

decision-making (see, e.g., [15, 44, 46, 45, 56]).

The bidomain models, a mathematical framework that conceptually divides

tissue into intracellular and extracellular compartments, are relevant in cardiac

11

electrophysiology. These models, which abstract the cellular microstructure, result

in a system of two reaction–diffusion equations governing the intracellular and

extracellular potentials. A further simplification is made by assuming equal

anisotropic conductivities in both compartments, leading to the formulation of

the monodomain equations. These equations describe the transmembrane potential

as the difference between the intracellular and extracellular potentials, reducing

the system to a single reaction–diffusion equation. The works [15, 14] provide a

comprehensive derivation of these equations and their mathematical approximations.

The bi-/monodomain equations form the foundation of cardiac electrophysiology

models but must be coupled with a detailed representation of ionic currents

through voltage-sensitive protein structures (the ion channels). Regarding

this topic, various sophisticated ionic models for atrial electrophysiology exist,

such as the Nygren–Fiset–Firek–Clark–Lindblad–Clark–Giles model [41] and the

Courtemanche–Ramirez–Nattel model [19].

In summary, numerous ionic models of varying complexity have been developed

to describe cellular excitation, resulting in a system of ordinary differential equations

coupled with the bi-/monodomain equations. For comprehensive insights into the

derivation and analysis of these membrane models, interested readers can refer to [27].

Moreover, cardiac tissue has a highly anisotropic structure, with cardiomyocytes

organized into laminar sheets and aligned mostly in the same direction, embedded

in an extracellular matrix of collagen produced by fibroblasts. The atrial walls,

though thinner than ventricular walls, exhibit a similar yet more complex anisotropic

structure [57]. Often, for this reason, the atria are modeled as two-dimensional

surfaces to simplify the bi-/monodomain equations. For reviews on the computational

modeling of the atria, see [17].

The numerical discretization of the bi-/monodomain equations and their

associated membrane models still present numerous numerical challenges. The

traveling pulse solutions are characterized by sharp wave-fronts, particularly when

employing more realistic membrane models. Therefore, a low resolution accuracy

of these traveling fronts can lead to erroneous propagation velocity and dynamics,

resulting in incorrect predictions regarding the cardiac activation.

Among the most recent developments in investigating cardiac function and

12

pathology, a promising computational framework is developed in [10]: it offers a

three-dimensional representation of both the cardiac muscle and the hemodynamics,

integrated within a fluid–structure interaction (FSI) model. The authors, to ensure

efficiency and flexibility in the numerical solution, use time discretization with a

segregated electrophysiology–force generation–FSI method and spatial discretization

with finite elements. Simulations concentrating on the left side of the human heart

reveal that the computational framework accurately captures the heart’s physics

and reproduces essential aspects of cardiac function observed in clinical scenarios,

including the durations of all phases of the heartbeat. By integrating the heart model

with a simplified circulation model, the authors simulate the interactions between

the heart and the circulatory system, ensuring the preservation of total blood volume

over time and replicating the effects associated with traveling pressure waves.

Furthermore, several strategies have been proposed in the literature to enhance

the front approximation without resorting to excessive global refinement. These

include changing the quadrature rule for ionic currents [29], implementing mesh

adaptivity near the front [6, 13, 50], and employing high-order Spectral Element

discretizations [11]. These approaches aim to strike a balance between computational

efficiency and solution accuracy.

In this context, the employment of a sufficiently smooth function space for spatial

approximation becomes crucial. This fact helps to mitigate the effects of the numerical

grid on solution accuracy. The numerical methods of the bi-/monodomain equations

with low-order spatial approximations need highly refined uniform meshes to

accurately capture the front propagation. However, in electrophysiology simulations

of the full human heart, the use of such detailed meshes leads to systems that are

prohibitively expensive from a computational cost perspective. Regarding this issue,

the works [42, 43] show that IgA emerges as a natural framework for this purpose, as

suggested also in previous works on partial differential equations on surfaces [3, 20].

In particular, in [42] the authors explore the use of IgA to spatially approximate

models of cardiac electrophysiology, defined on NURBS surfaces. They initially

assume that the atria can be modeled as thin-walled structures, represented as

two-dimensional surfaces with anisotropy present only in the tangent plane. While

this assumption might appear to overlook the trans-mural anisotropy inherent in

13

the fiber structure of atrial walls, the studies [12, 16] demonstrate that proper

homogenization treatment allows for accurate representation of mid-wall activation

patterns. In this work, monodomain problems with the Mitchell–Schaeffer [37] and

the Aliev–Panfilov [1] models are considered. The authors focus on the comparisons

between basis functions of degree p ≥ 1, which are globally Ck-continuous, with k = 0

or p− 1, aiming to identify the most accurate approximation of propagating fronts in

relation with the number of degrees of freedom. The results indicate that spline basis

functions of degree p ≥ 1 with Cp−1 continuity, even with moderately refined meshes,

effectively allow for a more accurate description of the velocity of transmembrane

potential fronts. The authors also apply IgA to the monodomain Mitchell–Schaeffer

model of a realistic human left atrial geometry, with physiological characteristics

as anisotropic conductivity tensor. Through this application, the numerical scheme

maintains its advantageous approximation properties even in realistic contexts.

Similar results are confirmed in [43]: the Rogers–McCulloch ionic model [47],

always in IgA framework, is applied to solve the bidomain equations on surfaces.

Benchmark numerical simulations reveal that high-degree basis functions with

high-order continuity across mesh elements accurately approximate the potential

front velocity, with monotonic convergence in relation to mesh element size and the

number of degrees of freedom. In this study, the use of spline basis functions improves

the accuracy if compared to lower-degree, low-continuity functions with similar

computational costs. Realistic simulations on surface atrial geometries are performed,

using quadratic NURBS basis functions and two atria are described as separate

NURBS patches with interatrial connection hypotheses. By coupling bidomain

equations with the Courtemanche–Ramirez–Nattel ionic membrane model [19], the

authors achieve realistic action potential approximations: measurements indicate

that the electric propagation velocity aligns with physiological values and that the

shape of the action potential is preserved on the surface.

Therefore, Chapter 2 of this thesis presents the main results of our collaborative

effort with Prof. Paola Antonietti, Prof. Luca Dedè (MOX, Mathematics

Department, Politecnico di Milano), Prof. Giancarlo Sangalli, Dr. Gabriele Loli

and Dr. Monica Montardini (Dipartimento di Matematica “F. Casorati”, Università

di Pavia). The aim of Chapter 2 is to investigate the behavior of the SU stabilization

14

method, always in space–time IgA framework, within the cardiac electrophysiology

context. For this reason we modify the SU method to improve effectiveness and

computational efficiency, and we apply it to the monodomain equation coupled with

the Rogers–McCulloch ionic model [47]. This model is widely used to simulate

electrophysiological wave propagation in the heart and is based on differential

equations, allowing for the simulation of front propagation phenomena.

To assess the behavior of the SU method in cardiac electrophysiology, we perform

several numerical tests and compare the computational costs of both the plain

Galerkin method and the stabilized one, analyzing the results also from the perspective

of computational cost.

Furthermore, as detailed in Section 2.1.2, preconditioners play a crucial role

especially in IgA space–time framework on 3D spatial domains, where the complexity

and size of the resulting linear systems can significantly impact on computational

performances. The application of preconditioners accelerates the iterative solver

convergence of resulting linear system. For this reason, we propose a suitable

preconditioner, based on the arrowhead preconditioner [33] and the preconditionier

of the mass matrix as in [34].

The outline of the thesis is as follows.

� In Preliminaries we discuss the basics of space–time IgA.

� In Chapter 1, we discuss the proposed SU method, starting with a review of

some classical stabilized formulations in one dimension for advection and

advection–diffusion equations, and introducing our novel SU formulation

(Section 1.1). In Section 1.2, we apply the SU method to the heat equation. We

propose numerical tests, assessing the performance of the presented stabilization

method, in Section 1.3.

� In Chapter 2, the application of the SU method to cardiac electrophysiology is

presented. In Section 2.1, we optimize our stabilization method to better

suit this context and we study the behavior of our novel method using

the monodomain equation coupled with the Rogers–McCulloch ionic model.

Moreover, in Section 2.2, we present various numerical tests in up to 3D spatial

domains, including one approximating the geometry of the left ventricle, to

15

evaluate the performance of the stabilization method, also from a computational

cost standpoint.

� The last part (Conclusion) sums up the work and highlights some future

research directions.

16

Preliminaries

In this section, we present the notation adopted in the following and we discuss the

basics of splines and space–time IgA. For more details on splines in IgA context, we

refer to [18].

Given n and p two positive integers, we consider the open knot vector

Ξ̂ :=
{
0 = ξ̂1 = · · · = ξ̂p+1 ≤ · · · ≤ ξ̂n = · · · = ξ̂n+p+1 = 1

}
,

and the vector Ẑ :=
{
ζ̂1, . . . , ζ̂m

}
of knots without repetitions (i.e., breakpoints).

The univariate spline space is defined as:

Ŝph := span{b̂i,p}ni=1,

where b̂i,p are the univariate B-splines and h plays the role of family parameter, while

ĥ denotes the mesh-size in the parametric domain, i.e.,

ĥ := max{|ξ̂i+1 − ξ̂i| s.t. i = 1, . . . , n+ p}.

For each univariate B-spline b̂i,p, we associate a knot average, called Greville abscissa,

defined as:

γi,p :=
ξ̂i+1 + · · ·+ ξ̂i+p

p
for i = 1, . . . , n.

Multivariate B-splines are constructed as tensor products of univariate B-splines.

In our work, we focus on functions that depend on d spatial variables and the time

variable, making multivariate B-splines a natural choice for this setting.

Given positive integers nl, pl, for l = 1, . . . , d, and nt, pt, we define d + 1

univariate knot vectors Ξ̂l :=
{
ξ̂l,1 ≤ · · · ≤ ξ̂l,nl+pl+1

}
, for l = 1, . . . , d, and Ξ̂t :={

ξ̂t,1 ≤ · · · ≤ ξ̂t,nt+pt+1

}
. The d + 1 breakpoints vectors are Ẑl :=

{
ζ̂l,1, . . . , ζ̂l,ml

}
,

17

for l = 1, . . . , d, and Ẑt :=
{
ζ̂t,1, . . . , ζ̂t,mt

}
.

We denote by ĥl the mesh-size in the parametric domain, associated to the knot

vector Ξ̂l for l = 1, . . . , d, while ĥt represents the mesh-size in the parametric domain

of the time knot vector Ξ̂t.

Additionally, let p be the vector containing the degree of each univariate spline

space, i.e., p := (ps, pt), where ps := (p1, . . . , pd).

The multivariate B-splines are defined as:

B̂i,p(η, τ) := B̂is,ps
(η) b̂it,pt(τ),

where

B̂is,ps
(η) := b̂i1,p1(η1) . . . b̂id,pd(ηd),

with is := (i1, . . . , id), i := (is, it) and η = (η1, . . . , ηd).

The corresponding spline space is defined as:

Ŝp
h := span

{
B̂i,p

∣∣∣ il = 1, . . . , nl; l = 1, . . . , d; it = 1, . . . , nt

}
.

We have that Ŝp
h = Ŝps

hs
⊗ Ŝptht , where

Ŝps
hs

:= span
{
B̂is,ps

∣∣∣ il = 1, . . . , nl; l = 1, . . . , d
}

is the space of tensor-product splines on Ω̂ := (0, 1)d, and

Ŝptht := span
{
b̂it,pt

∣∣∣ it = 1, . . . , nt

}
.

We assume that p1, · · · , pd, pt ≥ 1 and Ŝps
hs

⊂ C0(Ω̂) while Ŝptht ⊂ Cpt−1 (0, 1). We

allow variable continuity in space, since it may be useful for geometry representation,

while we consider only maximum continuity with respect to time in order to benefit

from the approximation properties of smooth splines (see [21, 7]).

We denote by Ω× (0, T) the space–time computational domain, where Ω ⊂ Rd

and Ω is parametrized by F : Ω̂ → Ω, with F ∈
[
Ŝps
hs

]d
, and T > 0 is the final time.

The space–time domain is parametrized by G : Ω̂× (0, 1) → Ω× (0, T), such that

G(η, τ) := (F (η), T τ) = (x, t).

18

The spline space with zero initial and Dirichlet conditions, in parametric

coordinates, is

X̂h,0 :=
{
v̂h ∈ Ŝp

h

∣∣∣ v̂h = 0 on ∂Ω̂× (0, 1) and v̂h = 0 on Ω̂× {0}
}
.

We also have that X̂h,0 = X̂s,hs,0 ⊗ X̂t,ht , where

X̂s,hs,0 :=
{
ŵh ∈ Ŝps

hs

∣∣∣ ŵh = 0 on ∂Ω̂
}

= span
{
b̂i1,p1 . . . b̂id,pd

∣∣∣ il = 2, . . . , nl − 1; l = 1, . . . , d
}
,

X̂t,ht :=
{
ŵh ∈ Ŝptht

∣∣∣ ŵh(0) = 0
}

= span
{
b̂it,pt

∣∣∣ it = 2, . . . , nt

}
.

With colexicographical re-orderings of the basis functions, we write

X̂s,hs,0 = span
{
b̂i1,p1 . . . b̂id,pd

∣∣∣ il = 1, . . . , ns,l; l = 1, . . . , d
}

= span
{
B̂i,ps

∣∣∣ i = 1, . . . , Ns,0

}
,

X̂t,ht = span
{
b̂i,pt

∣∣∣ i = 1, . . . , Nt

}
,

and

X̂h,0 = span
{
B̂i,p

∣∣∣ i = 1, . . . , Ndof,0

}
, (1)

where Ndof,0 := Ns,0Nt, and Ns,0 :=
∏d

l=1 ns,l with ns,l := nl − 2, for l = 1, . . . , d,

while Nt := nt − 1.

Our isogeometric space is the isoparametric push-forward of (1) through the geometric

map G, i.e.,

Xh,0 := span
{
Bi,p := B̂i,p ◦G−1

∣∣∣ i = 1, . . . , Ndof,0

}
,

where again Xh,0 = Xs,hs,0 ⊗Xt,ht , with

Xs,hs,0 := span
{
Bi,ps

:= B̂i,ps
◦ F−1

∣∣∣ i = 1, . . . , Ns,0

}
and

Xt,ht := span
{
bi,pt(·) := b̂i,pt

(·
T

) ∣∣∣ i = 1, . . . , Nt

}
.

19

On the other hand, the spline space with only initial condition, in parametric

coordinates, is

X̂h :=
{
v̂h ∈ Ŝp

h

∣∣∣ v̂h = 0 on Ω̂× {0}
}
.

We also have that X̂h = Ŝps
hs

⊗ X̂t,ht .

With a colexicographical re-orderings of the basis functions, we write

X̂h = span
{
B̂i,p

∣∣∣ i = 1, . . . , Ndof

}
, (2)

where Ndof := NsNt, and Ns :=
∏d

l=1 nl, with l = 1, . . . , d.

Our isogeometric space is the isoparametric push-forward of (2) through the geometric

map G, i.e.,

Xh := span
{
Bi,p := B̂i,p ◦G−1

∣∣∣ i = 1, . . . , Ndof

}
, (3)

where again Xh = Xs,hs ⊗Xt,ht , with

Xs,hs := span
{
Bi,ps

:= B̂i,ps
◦ F−1

∣∣∣ i = 1, . . . , Ns

}
.

Moreover we define the breakpoints in the time interval as:

ζt,i := T ζ̂t,i for i = 1, · · · ,mt,

and the time steps as:

ht,i := ζt,i+1 − ζt,i for i = 1, · · · ,mt − 1.

Finally, following [5], we define the support extension, for is := (i1, . . . , id), with

il = 1, . . . , nl, l = 1, . . . , d and it = 1, . . . , nt, as:

Ĩis,it :=
(
ξ̂1,i1−p1 , ξ̂1,i1+p1+1

)
×· · ·×

(
ξ̂d,id−pd , ξ̂d,id+pd+1

)
×
(
ξ̂t,it−pt , ξ̂t,it+pt+1

)
. (4)

20

Chapter 1

Spline Upwind for space–time

Isogeometric Analysis

The aim of the present chapter is to design the Spline Upwind (SU) formulation of the

heat equation, incorporating stabilization terms that promote causality. The proposed

SU generalizes classical upwinding, such as Streamline Upwind Petrov–Galerkin

(SUPG) [8], to higher-degree splines. It is worth recalling that the SUPG method,

applied to the heat equation in time and using piecewise linear finite elements,

results in a lower block-triangular linear system. Stability is further enhanced by

adding artificial diffusion when the residual is larger, as done in Shock Capturing

techniques [54].

The use of high-order derivatives allows for targeted damping of spurious

oscillations by selectively applying diffusion near layers, due to their ability to

act as high-frequency filters, effectively attenuating the higher frequency components

associated with spurious oscillations.

These techniques promote causality and stability, thereby enhancing overall

computational robustness. The proposed SU formulation extends these concepts

to higher-degree splines: we enrich the plain Galerkin formulation by adding

diffusion terms of varying orders, ensuring that the resulting linear system remains

block-triangular. Furthermore, these terms are weighted by the residual to preserve

the optimal convergence order where the solution is smooth.

We present several numerical tests, ranging from one-dimensional problems to the

heat equation on 2D spatial domain, to evaluate the expected behavior of the proposed

21

SU formulation. In particular, we conduct experiments with a concentrated source

term, evidencing that the numerical solutions are free from spurious oscillations.

It is important to emphasize that the main focus of this chapter is not on

computational costs. As such, we do not discuss or analyze the efficiency of the

proposed method; these aspects are addressed in Chapter 2.

1.1 Upwinding in one dimension

Our first model problem is the one-dimensional advection: we look for a function u

such that:  u′ = f in (0, T),

u(0) = 0.
(1.1)

We assume f ∈ L2(0, T) and we consider the following Galerkin method:

find uh ∈ Xt,ht such that:

A(uh; vh) = F(vh) ∀vh ∈ Xt,ht ,

where

A(uh; vh) :=

∫ T

0

u′h vh dt and F(v) :=

∫ T

0

f vh dt.

1.1.1 Standard Upwind and Shock Capturing

The Streamline Upwind Petrov–Galerkin (SUPG) method, reads:

find uh ∈ Xt,ht such that:

A(uh; vh) + SSUPG(uh, f ; vh) = F(vh) ∀vh ∈ Xt,ht , (1.2)

where

SSUPG(uh, f ; vh) :=
mt−1∑
i=1

τSUPG,i

∫ ζt,i+1

ζt,i

(u′h − f)v′h dt,

In order to enhance the stability of SUPG, following [54], we can further add a

Shock Capturing term leading to

22

find uh ∈ Xt,ht such that:

A(uh; vh) + SSUPG(uh, f ; vh) + SSC(uh; vh) = F(vh) ∀vh ∈ Xt,ht ,

where, in accordance with [4],

SSC(uh; vh) :=
mt−1∑
i=1

∫ ζt,i+1

ζt,i

κSC,iu
′
hv

′
h dt and κSC,i := τSC,i

|u′h − f |
uref

,

with τSC,i :=
h2t,i
4
, and uref is a reference magnitude for uh.

1.1.2 High-order Upwind

With the choice τSUPG,i =
ht,i
2

and when pt = 1, formulation (1.2) leads to a lower

triangular linear system. However, for higher degree splines, the matrix does not

exhibit a lower triangular structure regardless of the τSUPG,i value chosen. This

motivates the design of a new stabilizing formulation for splines with maximum

continuity Cpt−1, that we call Non Consistent Spline Upwind (NCSU), i.e.,

find uh ∈ Xt,ht such that:

A(uh; vh) + SNCSU(uh; vh) = F(vh) ∀vh ∈ Xt,ht , (1.3)

where the new stabilizing term fulfills:

SNCSU(uh; vh) :=

pt∑
k=1

mt−1∑
i=1

ht,i
2k−1

∫ ζt,i+1

ζt,i

τk(t)u
(k)
h v

(k)
h dt,

where each τk(T ·) ∈ Ŝpt−kht
⊂ Cpt−k−1 is a spline with maximum continuity that is

selected in order to make the linear system matrix lower triangular, that is

∫ T

0

b′ℓ+i,ptbi,pt dt +

pt∑
k=1

mt−1∑
j=1

ht,j
2k−1

∫ ζt,j+1

ζt,j

τk(t) b
(k)
ℓ+i,pt

b
(k)
i,pt

dt = 0, (1.4)

for i = 1, . . . , Nt − 1 and ℓ = 1, . . . , r, with r = min(pt, Nt − i).

In Figure 1.1 we present τk(t) for different degrees (pt = 2, 3, 4) on a uniform mesh

(ht = 1/50), while in Figure 1.2 we have plotted τk(t) for pt = 3 on a non-uniform

23

mesh: in all our numerical tests we have observed that (1.4) is well posed, the τk are

bounded and positive in most of the domain and where they are negative, they are

much smaller in magnitude.

However, the formulation (1.3) lacks optimal convergence. To overcome this

limitation we introduce a nonlinear weighting based on residual, denoted Spline

Upwind (SU) method, and defined as:

find uh ∈ Xt,ht such that:

A(uh; vh) + SSU,1(uh, f ; vh) + SSU,2(uh; vh) = F(vh) ∀vh ∈ Xt,ht , (1.5)

with

SSU,1(uh, f ; vh) :=
mt−1∑
i=1

ht,i

∫ ζt,i+1

ζt,i

τ1(t)
(
u′h − (1− θ(t)) f

)
v′h dt,

and

SSU,2(uh; vh) :=

pt∑
k=2

mt−1∑
i=1

h2k−1
t,i

∫ ζt,i+1

ζt,i

τk(t) θ(t)u
(k)
h v

(k)
h dt,

where θ(t) is a piecewise linear interpolation of Θi computed in the breakpoints ζt,i,

for i = 1, . . . ,mt, as:

Θi := min(resi, 1),

with the relative residual resi defined as:

resi :=
∥u′h − f∥L∞([ζt,max(1,i−1),ζt,min(i+1,mt)

])

T−1 ∥uh∥L∞([0,T]) + ∥u′h∥L∞([0,T])

.

In this way, the function θ(t) ensures that, when the residual is high, such as within

layers, θ ≈ 1 and the SU stabilization locally reduces to the NCSU formulation

(1.3).

For advection–diffusion problem

 −εu′′ + u′ = f in (0, T),

u(0) = u(T) = 0,
(1.6)

where ε > 0, the SU stabilization is extended straightforwardly by redefining SSU,1

24

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

= k

pt = 2

=1(t)
=2(t)
Knots abscissae

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

= k

pt = 3

=1(t)
=2(t)
=3(t)
Knots abscissae

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t

0

0.2

0.4

0.6

0.8

= k

pt = 4

=1(t)
=2(t)
=3(t)
=4(t)
Knots abscissae

Figure 1.1: Plots of τk(t) of the SU method on a uniform mesh, depicted in blue on
horizontal axes.

25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t

0

0.2

0.4

0.6

0.8

1

= k

pt = 3

=1(t)
=2(t)

=3(t)
Knots abscissae

Figure 1.2: Plot of τk(t) of the SU method on a non-uniform mesh, depicted in blue
on horizontal axis.

in (1.5) as follows:

SSU,1(uh, f ; vh) :=
mt−1∑
i=1

ht,i

∫ ζt,i+1

ζt,i

τ1(t)
(
u′h − (1− θ(t))(−εu′′h − f)

)
v′h dt,

and

Θi := min(resi, 1),

with

resi :=
∥−εu′′h + u′h − f∥L∞([ζt,max(1,i−1),ζt,min(i+1,mt)

])

T−1 ∥uh∥L∞([0,T]) + ∥u′h∥L∞([0,T])

.

1.2 Upwinding the heat equation

The heat equation with homogeneous boundary and initial condition reads


∂tu−∆u = f in Ω× (0, T),

u = 0 on ∂Ω× [0, T],

u = 0 in Ω×{0},

(1.7)

and we assume that f ∈ L2
(
Ω × (0, T)

)
.

26

Introducing the bilinear form A(·; ·) and the linear form F(·) as:

A(w; v) :=

∫ T

0

∫
Ω

(
∂tw v +∇w · ∇v

)
dΩdt and F(v) :=

∫ T

0

∫
Ω

f v dΩdt,

we consider the Galerkin method

find uh ∈ Xh,0 such that:

A(uh; vh) = F(vh) ∀vh ∈ Xh,0.

The matrix of the linear system has the following Kronecker product structure:

Wt ⊗Ms +Mt ⊗Ks, (1.8)

where, for i, j = 1, . . . , Nt,

[Wt]i,j =

∫ T

0

b′j,pt(t) bi,pt(t) dt and [Mt]i,j =

∫ T

0

bj,pt(t) bi,pt(t) dt,

while, for i, j = 1, . . . , Ns,0,

[Ks]i,j =

∫
Ω

∇Bj,ps
(x) · ∇Bi,ps

(x) dΩ and [Ms]i,j =

∫
Ω

Bj,ps
(x) Bi,ps

(x) dΩ.

The SUPG method reads

find uh ∈ Xh,0 such that:

A(uh; vh) + SSUPG(uh, f ; vh) = F(vh) ∀vh ∈ Xh,0, (1.9)

where

SSUPG(uh, f ; vh) :=
mt−1∑
i=1

τSUPG,i

∫ ζt,i+1

ζt,i

∫
Ω

(
∂tuh −∆uh − f

)
∂tvh dΩdt.

With the choice τSUPG,i =
ht,i
2

and when pt = 1, formulation (1.9) leads to a lower

block-triangular time derivative matrix.

The novel space–time formulation for the heat equation is based, as in the SU

one-dimensional formulation, on the idea of modifying (1.8) in order to obtain lower

27

triangular time matrices. This is accomplished by introducing numerical diffusion in

the time direction. The proposed method reads

find uh ∈ Xh,0 such that:

A(uh; vh) + SSU,1(uh, f ; vh) + SSU,2(uh; vh) + SSU,3(uh; vh) = F(vh) ∀vh ∈ Xh,0,

(1.10)

where

SSU,1(uh, f ; vh) :=
mt−1∑
i=1

ht,i

∫ ζt,i+1

ζt,i

τ1(t)

∫
Ω

(
∂tuh + (1− θ(x, t))(−∆uh − f)

)
∂tvh dΩ dt,

and

SSU,2(uh; vh) :=

pt∑
k=2

mt−1∑
i=1

h2k−1
t,i

∫ ζt,i+1

ζt,i

τk(t)

∫
Ω

θ(x, t) ∂kt uh ∂
k
t vh dΩ dt,

while

SSU,3(uh; vh) :=

pt∑
k=1

mt−1∑
i=1

h2kt,i

∫ ζt,i+1

ζt,i

σk(t)

∫
Ω

θ(x, t)
(
∇(∂kt uh) · ∇(∂kt vh)

)
dΩ dt.

As in Section 1.1.2, τk(T ·) ∈ Ŝpt−kht
⊂ Cpt−k−1, are selected such that:

∫ T

0

b′ℓ+i,ptbi,pt dt +

pt∑
k=1

mt−1∑
j=1

h2k−1
t,j

∫ ζt,j+1

ζt,j

τk(t) b
(k)
ℓ+i,pt

b
(k)
i,pt

dt = 0,

for i = 1, . . . , Nt − 1 and ℓ = 1, . . . , r, with r = min(pt, Nt − i).

Moreover, σk(T ·) ∈ Ŝpt−kht
⊂ Cpt−k−1, are selected in order to make the time mass

matrix lower triangular

∫ T

0

bℓ+i,ptbi,pt dt +

pt∑
k=1

mt−1∑
j=1

h2kt,j

∫ ζt,j+1

ζt,j

σk(t) b
(k)
ℓ+i,pt

b
(k)
i,pt

dt = 0,

for i = 1, . . . , Nt − 1 and ℓ = 1, . . . , r, with r = min(pt, Nt − i).

The function θ(x, t) ranges from 0 to 1. If we set θ as a fixed parameter equal

to 1, (1.10) yields a lower block-triangular global system matrix. However, in

order to achieve optimal convergence order, similar to the one-dimensional case (see

Section 1.1.2). In detail, θ(x, t) denotes the function defined in the physical domain,

28

which is associated with the (d+ 1)-linear interpolation in the parametric domain

of the values corresponding to the breakpoints, for il = 1, . . . ,ml, l = 1, . . . , d, and

j = 1, . . . ,mt. The calculation of these values is as follows:

Θi,j := min(resi,j, 1),

with

resi,j :=
∥∂tuh −∆uh − f∥L∞(ψs,i×ψt,j)

T−1 ∥uh∥L∞(Ω×[0,T]) + ∥∂tuh∥L∞(Ω×[0,T])

,

where

ψs,i := [ζ̂1,max(1,i1−1), ζ̂1,min(i1+1,m1)]× . . .× [ζ̂d,max(1,id−1), ζ̂d,min(id+1,md)],

and

ψt,j := [ζ̂t,max(1,j−1), ζ̂t,min(j+1,mt)].

1.3 Numerical Results

All numerical tests in this chapter are conducted using MATLAB and GeoPDEs [55].

Just for the sake of simplicity, in all our tests, we consider splines of the same

polynomial degree in all parametric directions for space and time. Specifically, we

set p1 = · · · = pd = pt := p. Additionally, although the proposed methods are

designed for maximum regularity only with respect to time, we adopt splines of

global maximum continuity Cp−1 also with respect to space. Numerical tests with

different degrees and regularities (in space) indeed yield results entirely analogous to

those reported below.

Nonlinearities in the equations are addressed through fixed-point iterations, and

the resulting linear systems are solved using the direct solver provided by MATLAB

(backslash operator ”\”).

In the numerical experiments, χ[0.3,0.6](t) refers to the characteristic function,

defined as:

χ[0.3,0.6](t) :=

 1 for t ∈ [0.3, 0.6],

0 otherwise.

29

1.3.1 Advection equation

We consider the advection equation (1.1) on (0, T) with T = 1 and uniform meshes.

Test with smooth solution

We deal with a smooth solution on the whole domain, to analyze the convergence

order of our method. We are interested in error estimates with respect to the

L2-norm, under h-refinement. To obtain this mesh refinement it is necessary to insert

additional knots in the original knot vector, without changing the multiplicity of

each knot.

We consider uex ∈ Hp+1(0, T) the exact solution of problem (1.1), with p ≥ 1

and ΠXt,ht
uex is the application of a quasi-interpolation operator (defined, e.g., in [5,

Section 2.1.5]) to the function uex, that yields to an approximation of uex within

a discrete space Xt,ht . Therefore, we can write the following error estimate under

h–refinement in L2-norm:∥∥uex − ΠXt,ht
uex
∥∥
L2(0,T)

∥uex∥Hp+1(0,T)

≤ C hp+1
t ,

where C is a suitable constant independent of ht.

To assess the convergence order of the L2-norm of error, a numerical validation is

conducted. This involves a detailed graphical examination to analyze the dependency

of error behavior on grid refinement and polynomial degree, thereby facilitating a

comprehensive assessment of the method convergence properties.

The methodology begins with the generation of approximate solutions, utilizing

varying discretization parameters ht and polynomial degrees p. The discrepancy

between the exact and approximated solutions is subsequently quantified using

L2-norm of error. The analysis entails plotting the relative errors on a base-10

logarithmic scale, with ht on the x-axis and relative error in L2-norm on the y-axis.

Each curve on this plot represents the error behavior for specific combinations of ht

and p. A meticulous examination of these curves reveals the error convergence trend

with respect to ht and p. If the linear relationship in the log-log plot is characterized

by a slope approaching p+ 1, we have a numerical scheme with optimal convergence

order in L2-norm.

30

In this test we consider f = 50 cos(50t), that leads to the exact solution

uex(t) = sin(50t).

In Figure 1.3, we plot the x- and y-coordinates using logarithmic scale on the x-axis

and the y-axis. We present the error plot for the SU formulation on uniform meshes

with degree p = 1, . . . , 6. The method exhibits optimal convergence, as evidenced

by the slopes of the lines representing the error trends with mesh refinement, which

align p+ 1 slopes.

2 4 6 8 10 12 14

ht #10-3

10-12

10-10

10-8

10-6

10-4

10-2

100

L
2

R
el
.
E
rr

.

p = 1
p = 2
p = 3
p = 4
p = 5
p = 6

O(h2
t)

O(h3
t)

O(h4
t)

O(h5
t)

O(h6
t)

O(h7
t)

Figure 1.3: Advection equation, SU relative error plots in L2-norm (test in
Section 1.3.1, smooth solution).

Solution with layers

In these tests we chose a reasonably coarse uniform mesh (ht = 2−6) and we take

into account solutions characterized by sharp layers. Our aim is therefore to analyze

the presence of spurious oscillations due to strong gradients in the solutions and to

examine how the stabilization method we proposed improves the solutions from a

numerical stability perspective.

We select f such that the exact solution is

uex(t) = sin(50t) + 10
1 + tanh(t−t0

δ
)

2
− 5

1 + tanh(t−t1
δ
)

2
− 5

1 + tanh(t−t2
δ
)

2
,

with t0 = 0.3, t1 = 0.5, t2 = 0.7 and δ = 10−3.

31

Due to the presence of internal layers, the plain Galerkin method is unstable as

we expect: the numerical solution differs considerably from the exact solution, with

high numerical instabilities (see Figure 1.4, for p = 3).

Figure 1.5 shows that, for p = 3, the SUPG method improves the numerical

approximation compared to the plain Galerkin approach but still exhibits numerical

instabilities near the layers. By tuning the parameter τSUPG, as presented in Figure 1.6,

for p = 3, it is evident that spurious oscillations persist in all cases. However,

τSUPG = ht
2
can be considered the suitable value not only for p = 1 (as discussed in

Section 1.1.1) but also for higher-degree splines.

Adding Shock Capturing with τSC = h2t (Figure 1.7), spurious oscillations are

further reduced if compared to previous methods but some spurious oscillations

can still be noticed in the vicinity of the layers. Also in this case a tuning on τSC

(Figure 1.8, for p = 3) shows that the numerical instabilities are not completely

removed.

With the NCSU method (Figure 1.9, for p = 3) spurious oscillations disappear

near the layers but the numerical approximation is not satisfactory: significant

numerical and phase errors can be noticed in particular where the solution is smooth.

Figures 1.10 and 1.11 present numerical results for p = 3 and p = 4 (similar results

are obtained for other spline degrees), assessing the behavior of the SU formulation

on uniform meshes. The solutions exhibit no numerical instabilities near the layers,

and from a qualitative perspective, they provide a good numerical approximation of

the exact solution in the smooth regions. To deepen the analysis, we examine the

convergence order in the L2-norm where the solution is smooth, i.e., after the three

layers, for t > 0.85. The relative error plots in Figure 1.12, corresponding to splines

of different degrees, indicate optimal convergence of the relative error.

Since our stabilization method is designed for application to non-uniform meshes

as well, similar stable and accurate behavior is observed in this case, as shown in

Figure 1.13, for p = 3. Indeed, numerical instabilities near the layers are completely

removed, similarly to the case of using uniform meshes.

32

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t

-10

-5

0

5

10

15
so

lu
ti
on

uGal

uex

Figure 1.4: Advection equation, exact and plain Galerkin solutions (test in
Section 1.3.1, solution with layers).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t

-2

0

2

4

6

8

10

12

so
lu

ti
on

uSUPG (=SUPG = ht

2)
uex

Figure 1.5: Advection equation, exact and SUPG solutions (test in Section 1.3.1,
solution with layers).

33

0.25 0.3 0.35 0.4 0.45 0.5 0.55

t

-4

-2

0

2

4

6

8

10

12
so

lu
ti
on

uSUPG (=SUPG = 0:1ht

2)

uSUPG (=SUPG = 0:3ht

2)

uSUPG (=SUPG = ht

2)

uSUPG (=SUPG = 3ht

2)

uSUPG (=SUPG = 10ht

2)
uex

Figure 1.6: Advection equation, exact and SUPG solutions for different choices for
τSUPG (test in Section 1.3.1, solution with layers).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t

-2

0

2

4

6

8

10

12

so
lu

ti
on

uSC (=SC = h2
t)

uex

Figure 1.7: Advection equation, exact and Shock Capturing solutions (test in
Section 1.3.1, solution with layers).

34

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t

-2

0

2

4

6

8

10

12
so

lu
ti
on

uSC (=SC =
h2

t

4)

uSC (=SC =
h2

t

2)
uSC (=SC = h2

t)
uSC (=SC = 2h2

t)
uSC (=SC = 4h2

t)
uex

Figure 1.8: Advection equation, exact and Shock Capturing solutions for different
choices for τSC (test in Section 1.3.1, solution with layers).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t

-2

0

2

4

6

8

10

12

so
lu

ti
on

uNCSU

uex

Figure 1.9: Advection equation, exact and NCSU solutions (test in Section 1.3.1,
solution with layers).

35

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t

-2

0

2

4

6

8

10

12
so

lu
ti
on

uSU

uex

Figure 1.10: Advection equation, exact and SU solutions for p = 3 (test in
Section 1.3.1, solution with layers).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t

-2

0

2

4

6

8

10

12

so
lu

ti
on

uSU

uex

Figure 1.11: Advection equation, exact and SU solutions for p = 4 (test in
Section 1.3.1, solution with layers).

36

2 4 6 8 10 12 14
ht #10-3

10-10

10-8

10-6

10-4

10-2
L

2
R

el
.
E
rr

.

p = 2
p = 3
p = 4

O(h3
t)

O(h4
t)

O(h5
t)

Figure 1.12: Advection equation, SU relative error plots in L2-norm, computed where
the solution is smooth (t > 0.85) (test in Section 1.3.1, solution with layers).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t

-2

0

2

4

6

8

10

12

so
lu

ti
on

uSU

uex

Knots abscissae

Figure 1.13: Advection equation, exact and SU solutions on a non-uniform mesh,
depicted in blue on the horizontal axis (test in Section 1.3.1, solution with layers).

37

1.3.2 Advection–diffusion equation

We consider the advection–diffusion equation (1.6) on (0, T) with T = 1, f = 1,

ε = 10−6 and uniform mesh with ht = 2−6.

Our objective is to analyze the behavior of the SU stabilization method by

comparing its numerical approximation to that of the SUPG method.

Figures 1.14 and 1.15 illustrate the comparison between SUPG and SU solutions

for p = 3 and p = 4, respectively. The SU method shows higher accuracy, though at

an increased computational cost. Specifically, SU solutions are sharper than those

obtained with SUPG and provide a better approximation of the layer near T = 1.

In our implementation, the increased cost arises from the need to evaluate the

residual at each fixed-point iteration. However, a thorough exploration of the

computational cost and efficient implementation is beyond the scope of the present

chapter.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

so
lu

ti
on

uSUPG

uSU

Figure 1.14: Advection–diffusion equation, SUPG and SU solutions for p = 3, (test
in Section 1.3.2).

1.3.3 Heat equation

We consider the heat equation (1.7) on Ω× (0, T) with T = 1, within the space–time

framework, and different space domains Ω, focusing on solutions characterized by

sharp layers arising from concentrated source terms. We want to analyze the presence

38

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

so
lu

ti
on

uSUPG

uSU

Figure 1.15: Advection–diffusion equation, SUPG and SU solutions for p = 4, (test
in Section 1.3.2).

of spurious oscillations caused by strong gradients in the solutions and to evaluate how

the SU method enhances the solutions from the perspective of numerical stability.

In these tests, we chose relatively coarse uniform meshes, p = 3 and we denote

with x and y the spatial Cartesian coordinates and with t the time coordinate.

1D spatial domain

For the first test, we take into account Ω = (0, 1) and we set h1 = ht =: h = 2−6.

The function f is given by

f(x, t) = C1D exp

(
−
(
x− 1

4
(sin (10πt) + 2)

δ

)2
)

χ[0.3,0.6](t),

where we set C1D = 1/δ2 and δ = 10−3.

In Figures 1.16, 1.17, and 1.18, we present the numerical solutions obtained

using the plain Galerkin, the SUPG and the SU methods, respectively. Notably,

spurious oscillations are observed, particularly with the plain Galerkin method, where

significant oscillations are present even for t < 0.3 before the source is activated,

where zero solution is expected. Additionally, both the plain Galerkin and the SUPG

methods exhibit numerical instabilities at the peak of the solution generated by the

source activation, within the time interval t ∈ [0.3, 0.6].

39

On the other hand, the numerical results of the SU method (Figure 1.18) show

that spurious oscillations are eliminated. The SU stabilization method effectively

removes spurious oscillations across the entire domain, both before and during the

activation of the source term.

Figure 1.19 presents the function θ(x, t), which activates the high-order Upwind

stabilization near sharp layers. Indeed, the function θ(x, t) acts as an indicator,

guiding the activation of the stabilization technique to address sharp layers in the

solution, reaching a value of 1 where the residual is high.

Figure 1.16: Heat equation, plain Galerkin solution (test in Section 1.3.3, Ω = (0, 1)).

2D spatial domain

For the second test, Ω is a quarter annulus (Figure 1.20, with depicted also the

section line s for solution plots) and we set ĥ1 = ĥ2 = ĥt =: ĥ = 2−5, while

f(x, y, t) = C2D exp

−1

2

(x− 3
2
cos
(
π
2
t
)

δ

)2

+

(
y − 3

2
sin
(
π
2
t
)

δ

)2
 χ[0.3,0.6](t),

where C2D = 103/(2πδ2) and δ = 10−1.

In Figures 1.21 and 1.22, we present the numerical results that assess the behavior

of the plain Galerkin approximation and the SUPG method. Spurious oscillations

40

Figure 1.17: Heat equation, SUPG solution (test in Section 1.3.3, Ω = (0, 1)).

Figure 1.18: Heat equation, SU solution (test in Section 1.3.3, Ω = (0, 1)).

41

Figure 1.19: Heat equation, function θ(x, t) in the SU method (test in Section 1.3.3,
Ω = (0, 1)).

0.5 1 1.5 2
0

0.5

1

1.5

2

A

B

Figure 1.20: Spatial domain Ω, a quarter annulus, with section line s (A–B), for
second test in Section 1.3.3.

42

are observed, particularly in the case of the plain Galerkin method, where significant

oscillations are present even for t < 0.3, before the source activation. Both methods

exhibit numerical instabilities for t ∈ [0.3, 0.6] at the solution peak generated by the

source activation.

In contrast, the numerical results for the SU method, shown in Figure 1.23, reveal

that this method effectively removes spurious oscillations across the entire domain.

Figure 1.21: Heat equation, plain Galerkin solution along section line s (test in
Section 1.3.3, Ω is a quarter annulus).

43

Figure 1.22: Heat equation, SUPG solution along section line s (test in Section 1.3.3,
Ω is a quarter annulus).

Figure 1.23: Heat equation, SU solution along section line s (test in Section 1.3.3, Ω
is a quarter annulus).

44

Chapter 2

Space–time Isogeometric Analysis

of cardiac electrophysiology

The purpose of this chapter is to study the behavior of the SU stabilization method

in the context of cardiac electrophysiology, using space–time IgA discretization. We

modify the SU method to enhance its effectiveness and computational efficiency,

applying it to the monodomain equation coupled with the Rogers–McCulloch ionic

model [47], a widely used model for simulating electrophysiological wave propagation

in the heart. It is based on a differential problem governed by differential equations,

allowing for the simulation of front propagation phenomena.

We perform several numerical tests and we compare the computational costs of

both the plain Galerkin method and the SU method.

2.1 Spline Upwind for cardiac electrophysiology

The dimensionless unknowns, in the monodomain equation coupled with the

Rogers–McCulloch ionic model, are the transmembrane potential u (the main

unknown) and the recovery variable w.

45

The governing differential problem is



Cm∂tu−D∆u+ c1u(u− a)(u− 1) + c2uw = f in Ω× (0, T),

∂tw − b(u− dew) = 0 in Ω× (0, T),

∂u
∂n

= 0 on ∂Ω× [0, T],

u = 0 in Ω×{0},

w = 0 in Ω×{0},

where n is the exterior normal; a, b, c1, c2 and de are dimensionless parameters,

specific of the Rogers–McCulloch model. The dimensionless constants Cm and D are

the local membrane capacitance and the conductivity, respectively. In particular,

the conductivity is very small with respect to the membrane capacitance (as in [42]).

We assume that f ∈ L2
(
Ω × (0, T)

)
.

We consider the plain Galerkin method

find uh,wh ∈ Xh such that: A(uh, wh; vh) = F(vh) ∀vh ∈ Xh,

L(wh, uh; zh) = 0 ∀zh ∈ Xh,
(2.1)

where

A(uh, wh; vh) :=

∫ T

0

∫
Ω

(
Cm∂tuh vh+D∇uh·∇vh+(c1(uh − a)(uh − 1) + c2wh) uh vh

)
dΩdt,

F(vh) :=

∫ T

0

∫
Ω

f vh dΩdt, (2.2)

and

L(wh, uh; zh) :=
∫ T

0

∫
Ω

(
∂twh zh − b(uh − dewh) zh

)
dΩdt.

To enhance stability within the Galerkin framework, we consider the SU method,

introduced in Chapter 1, and we adapt our stabilization method to be more suitable

for this context. In detail, we consider the plain Galerkin formulation where the

solution is smooth, and we introduce the stabilization only regarding the time

derivative term of A(uh, wh; vh), where the residual is high. Following these ideas,

the SU method for cardiac electrophysiology reads:

46

find uh,wh ∈ Xh such that: A(uh, wh; vh) + SSU(uh; vh) = F(vh) ∀vh ∈ Xh,

L(wh, uh; zh) = 0 ∀zh ∈ Xh,
(2.3)

where for the stabilization terms SSU(uh; vh), we extend the definitions presented in

Chapter 1. In particular, the term SSU(uh; vh) reads as follows:

SSU(uh; vh) := Cm

p∑
k=1

∫ T

0

τk(t)

∫
Ω

θ(x, t) ∂kt uh ∂
k
t vh dΩ dt, (2.4)

where, for k = 1, · · · , pt, τk(T ·) ∈ Ŝpt−kht
⊂ Cpt−k−1, are selected such that:

∫ T

0

b′ℓ+i,ptbi,pt dt +

pt∑
k=1

∫ T

0

τk(t) b
(k)
ℓ+i,pt

b
(k)
i,pt

dt = 0, (2.5)

for i = 1, . . . , Nt − 1 and ℓ = 1, . . . , r, with r = min(pt, Nt − i).

For simplicity, in (2.5), we incorporate the temporal scaling term, unlike in Chapter 1,

where it is stated explicitly.

Furthermore, θ(x, t) denotes the function defined in the physical domain, which is

associated with the (d+1)-linear interpolation in the parametric domain of the values

corresponding to the Greville abscissae, for is := (i1, . . . , id), with il = 1, . . . , nl,

l = 1, . . . , d and it = 1, . . . , Nt. The calculation of these values is as follows:

Θis,it := min

(∥Cm∂tuh −D∆uh + c1uh(uh − a)(uh − 1) + c2uhwh − f∥L∞(Ĩis,it)

Cm(T−1 ∥uh∥L∞(Ω×[0,T]) + ∥∂tuh∥L∞(Ω×[0,T]))
, 1

)
,

(2.6)

where Ĩis,it is defined in (4).

Finally, in order to speed up the computation of the stabilizing term, we consider

the low-rank matrix approximation technique (see, e.g., [36]).

Given a relative tolerance ε > 0, using the algorithm in [58], we find R ∈ N

such that 0 < R ≤ min(Nt, Ns), U ∈ RNt×R, V ∈ RNs×R and R ∈ RR×R a diagonal

matrix such that: ∥∥∥Θ̂−URVT
∥∥∥
F∥∥∥Θ̂∥∥∥

F

≤ ε, (2.7)

where Θ̂ ∈ RNt×Ns is obtained by reshaping the tensor (2.6) and ∥·∥F is the Frobenius

47

norm.

In this way, we can write the function θ(x, t) as:

θ(x, t) ≈
R∑
r=1

[R]r,rθt,r(t) θs,r(x),

where θt,r(t) is a linear interpolation of the r-th column of U, on the Greville

abscissae in the time direction and θs,r(x) is a d-linear interpolation of the reshaping

of r-th column of V, on the Greville abscissae in the space directions.

Therefore, we have the following approximation:

SSU(uh; vh) ≈ S̃SU(uh; vh) := Cm

R∑
r=1

[R]r,r

p∑
k=1

∫ T

0

τk(t) θt,r(t)

∫
Ω

θs,r(x) ∂
k
t uh ∂

k
t vh dΩdt.

(2.8)

2.1.1 Nonlinear solver

We solve (2.1) and (2.3) by the following fixed-point scheme:

given u0h, w
0
h ∈ Xh, the k+1-th iteration consists in finding ũk+1

h , w̃k+1
h ∈ Xh such

that:  A(ũk+1
h , ukh, w

k
h; vh) + S̃SU(ũ

k+1
h ; vh) = F(vh) ∀vh ∈ Xh,

L(w̃k+1
h ; zh) = G(ukh; zh) ∀zh ∈ Xh,

(2.9)

where, with abuse of notation, in (2.9) we used

A(ũk+1
h , ukh, w

k
h; vh) :=

∫ T

0

∫
Ω

(
Cm ∂tũ

k+1
h vh +D∇ũk+1

h · ∇vh + Cr(u
k
h, w

k
h)ũ

k+1
h vh

)
dΩdt,

with

Cr(u
k
h, w

k
h) := c1(u

k
h − a)(ukh − 1) + c2w

k
h, (2.10)

L(w̃k+1
h ; zh) :=

∫ T

0

∫
Ω

(
∂tw̃

k+1
h + b de w̃

k+1
h

)
zh dΩdt,

and

G(ukh; zh) :=
∫ T

0

∫
Ω

b ukh zh dΩdt,

while F and S̃SU are defined in (2.2) and (2.8), respectively. System (2.9) consists of

48

two decoupled equations, each of which can be solved independently.

Moreover, in order to promote the convergence of fixed-point iterations, we

introduce relaxations

uk+1
h = αũk+1

h + (1− α)ukh and wk+1
h = αw̃k+1

h + (1− α)wkh,

where we set α = 0.5.

Discrete linear system

The linear systems resulting from (2.9) are

Aũk+1 = f , (2.11)

Lw̃k+1 = g, (2.12)

where

[A]i,j := A(Bj,p, u
k
h, w

k
h;Bi,p), [L]i,j := (Bj,p;Bi,p),

[f]i := F(Bi,p) and [g]i := G(ukh;Bi,p).

Exploiting the tensor-product structure of the isogeometric space Xh defined in (3),

we have

A := CmWt ⊗Ms +DMt ⊗Ks +MR + Cm

R∑
r=1

[R]r,r

p∑
k=1

StSUr,k ⊗ SsSUr,k,

L := (Wt + b deMt)⊗Ms,

where, using the definition (2.10), for i, j = 1, . . . , Ndof, we have

[MR]i,j =

∫ T

0

∫
Ω

Cr(u
k
h, w

k
h) Bi,p(x, t) Bj,p(x, t) dΩdt,

while, for i, j = 1, . . . , Nt,

[StSUr,k]i,j =

∫ T

0

τk(t) θt,r(t) ∂
k
t bi,pt(t) ∂

k
t bj,pt dt,

[Wt]i,j =

∫ T

0

b′j,pt(t) bi,pt(t) dt and [Mt]i,j =

∫ T

0

bi,pt(t) bj,pt(t) dt,

49

and, for i, j = 1, . . . , Ns,

[SsSUr,k]i,j =

∫
Ω

θs,r(x)Bi,ps
(x)Bj,ps

(x)dΩ,

[Ks]i,j =

∫
Ω

∇Bi,ps
(x) · ∇Bj,ps

(x) and [Ms]i,j =

∫
Ω

Bi,ps
(x) Bj,ps

(x) dΩ.

2.1.2 Preconditioner

Preconditioners are crucial for improving the efficiency of iterative algorithms used

to solve linear systems. They modify the original system into an equivalent form

that is easier to solve, thereby speeding up convergence for iterative methods such

as the conjugate gradient (CG) and generalized minimal residual (GMRES).

A good preconditioner significantly reduces the number of iterations required by

iterative methods, enhancing the conditioning properties of the system. Indeed, an

effective preconditioner approximates the inverse of the original matrix, creating a

more balanced and manageable system, which makes it possible to solve large-scale

problems.

In this section we present the preconditioner applied to our numerical simulations

on 3D space domains, presented in Section 2.2.3.

We consider for the linear system (2.11) the following preconditioner:

[Â]i,j = Â(B̂j,p, B̂i,p),

where

Â(u; v) :=

∫ T

0

∫
Ω̂

(Cm ∂tu v +D∇u · ∇v + a c1 u v) dΩdt.

We have that

Â = CmWt ⊗ M̂s +Mt ⊗ (D K̂s + a c1 M̂s), (2.13)

where, for i, j = 1, . . . , Ns,

[K̂s]i,j =

∫
Ω̂

∇B̂i,ps
(x) · ∇B̂j,ps

(x) and [M̂s]i,j =

∫
Ω̂

B̂i,ps
(x) B̂j,ps

(x) dΩ̂

are the stiffness and mass matrices in the parametric domain, respectively. It also

50

holds

K̂s =
d∑
i=1

M̂d ⊗ . . . M̂i+1 ⊗ K̂i ⊗ M̂i ⊗ · · · ⊗ M̂1 and M̂s = M̂d ⊗ · · · ⊗ M̂1,

where K̂l and M̂l are the univariate stiffness and mass matrices, respectively. To

apply the preconditioner (2.13), we generalize the technique proposed in [33]. Thus,

following [33], we consider the generalized eigendecomposition of the pencils (K̂l, M̂l)

for l = 1, . . . , d, which gives the matrices Ul for l = 1, . . . , d for l = 1, . . . , d, that

contain in each column the M̂l-orthonormal generalized eigenvectors and Λl that are

diagonal matrices whose entries contain the corresponding generalized eigenvalues.

Moreover, we define

[w]i = [Wt]i,Nt
and [m]i = [Mt]i,Nt

for i = 1, . . . , Nt − 1,

[
◦
Wt]i,j = [Wt]i,j and [

◦
Mt]i,j = [Mt]i,j for i, j = 1, . . . , Nt − 1,

and we consider the matrices
◦
Ut and Λt, that are the matrix whose columns contain

the
◦

Mt-orthogonal generalized eigenvectors of the pencil (
◦
Wt,

◦
Mt) and the matrix

of the corresponding eigenvalues, respectively. We then define the matrix Ut as:

Ut :=

 ◦
Ut t

0T ρ

 ,
where 0 ∈ RNt−1 denotes the null vector, while

t
ρ

 :=

v
1


[v∗ 1]Mt

v
1


1
2

,

and v ∈ CNt−1 such that:
◦
Mtv = −m.

Finally, we set ∆t := U∗
tWtUt. The matrix ∆t has an arrowhead structure (we

refer to [33] for details).

51

Then, factorizing the common terms, we get that Â can be written as:

Â =
(
U∗
t ⊗UT

s

)−1
(Cm ∆t ⊗ INs +D INt ⊗Λs + a c1 INt ⊗ INs) (Ut ⊗Us)

−1 ,

(2.14)

where Λs :=
∑d

l=1 Ind
⊗· · ·⊗Inl+1

⊗Λl⊗Inl−1
⊗· · ·⊗In1 , Us := Ud⊗· · ·⊗U1, and In

denotes the identity of dimension n×n. Note that the second term of (2.14) exhibits

a block-arrowhead structure, allowing for a straightforward and computationally

efficient LU decomposition (i.e., a method of factorizing a matrix into a product of a

lower triangular matrix and an upper triangular matrix)

Cm ∆t ⊗ INs +D INt ⊗Λs + a c1 INt ⊗ INs =



H1 B1

. . .
...

HNt−1 BNt−1

−B∗
1 . . . −B∗

Nt−1 HNt


,

where Hi and Bi are diagonal matrices defined as:

Hi := Cm [Λt]i,iINs +DΛs+ a c1 INs and Bi := Cm [g]iINs for i = 1, . . . , Nt− 1,

HNt := Cm σINs +D Λs + a c1 INs ,

while g :=
◦
U

∗

t

[
◦
Wt w

]t
ρ

 and σ := [t∗ρ∗]Wt

t
ρ

. This property is used

in the application of the preconditioner (2.14), that we perform with [33,

Algorithm 1 Extended FD]. Additionally, parallelization presents a further

opportunity for enhancing computational efficiency, but it is not considered in

the present work.

We now focus on the solution of (2.12). First, we note that, exploiting the

properties of the Kronecker product, the solution can be obtained as:

w = vec
(
M−1

s G (Wt + b deMt)
−⊤
)
,

where the “vec” operator applied to a matrix stacks its columns into a vector, and

G is the Ns ×Nt matrix such that g = vec(G). Therefore, w can be computed by

52

solving Ns independent systems associated with the Nt×Nt matrix (Wt + b deMt)
⊤

and Nt independent systems associated with the Ns ×Ns spatial mass matrix Ms,

for which we can efficiently leverage the preconditioner proposed in [34].

2.2 Numerical Results

All numerical tests are performed usingMATLAB with GeoPDEs [55] and Tensorlab [49]

on Intel(R) Xeon(R) Gold 6130 CPU processor, running at 2.10 GHz and with 128 GB

of RAM.

Following [47], we set the dimensionless parameters a = 0.13, b = 0.013, c1 = 0.26,

c2 = 0.1 and de = 1.

Just for the sake of simplicity, in the following, we consider uniform meshes for

each parametric direction and splines of the same polynomial degree in all parametric

directions for space and time. Specifically, we set p1 = · · · = pd = pt := p, with

global spline continuity Cp−1.

Numerical tests with different degrees, regularities (in space) and non-uniform

meshes yield results analogous to those reported below.

For the low-rank approximation (2.7), we use svdsketch MATLAB function with

ε = 10−1 and the fixed-point scheme, presented in Section 2.1.1, is used to solve

nonlinearities in the equations, with the stopping criterion
∥∥uk+1

h − ukh
∥∥
∞ ≤ δ, where

δ = 10−4.

In the numerical experiments, χ[ψ1,ψ2]
(ψ) refers to the characteristic function,

defined as:

χ[ψ1,ψ2]
(ψ) :=

 1 for ψ ∈ [ψ1, ψ2],

0 otherwise,

and the coordinates x, y and z refer to the spatial Cartesian coordinates, while t

is the time coordinate. Finally, with η1, η2, η3 we denote the coordinates in the

parametric spatial domain Ω̂.

2.2.1 Test with smooth solution

We deal with a smooth solution on all the space–time domain Ω × (0, T), with

Ω = (0, 1) and T = 1, to analyze the convergence order of the SU method. We set

53

the dimensionless parameters Cm = 1 and D = 10−4.

In this test with smooth solution, we neglect, in the monodomain equation coupled

with the Rogers–McCulloch ionic model, the action of the recovery variable, i.e., we

set a zero value for w, and, regarding the unknownwn u, we do not consider the

relaxation presented in Section 2.1.1.

Moreover, we compute the function f in order to have the exact solution

uex = 10 sin(πx) sin(πt)(1− exp(−x))(1− exp(x− 1))(1− exp(t− 1)).

The resulting linear systems are solved by direct solver provided by MATLAB

(backslash operator ”\”).

Figure 2.1 shows the log-log error plot in L2-norm for the SU method with uniform

meshes in space and time, i.e., ĥ1 = ĥt =: h and spline degrees p = 2, 3. The slopes

of the lines, representing the error trends with mesh refinement, which align p+ 1

slopes, highlight the optimal convergence order. Indeed, the presence of θ in (2.4)

deactivates the stabilization terms if the residual is low: since no sharp layers are

present in the domain, the stabilization is correctly not activated.

0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

h

10-7

10-6

10-5

10-4

10-3

ku
ex
!

u
h
k L

2
(+
#

(0
;T

))

ku
ex

k L
2
(+
#

(0
;T

))

p = 2
p = 3
O(h3)
O(h4)

Figure 2.1: Monodomain equation coupled with the Rogers–McCulloch ionic model,
SU relative error plots in L2-norm (test in Section 2.2.1, smooth solution).

54

2.2.2 2D spatial domains

In this section we want to analyze the numerical behavior of the stabilized formulation,

for the monodomain equation coupled with the Rogers–McCulloch ionic model, on

different 2D spatial domains Ω. The interval (0, T), with T = 300, is the time domain.

In particular, our aim is to analyze the presence of spurious oscillations caused by

concentrated source terms and to evaluate how the proposed stabilization method

enhances the solutions in terms of numerical stability.

In these tests we consider ĥ1 = 2−6, ĥ2 = 2−3, ĥt = 2−5 and p = 3, while we set

the dimensionless parameters Cm = 1 and D = 10−4.

The resulting linear systems are solved by direct solver provided by MATLAB

(backslash operator ”\”).

A rectangle

For this test we consider a rectangular spatial domain Ω = (0, L1) × (0, L2) with

L1 = 1.5, L2 = 0.25. The concentrated source term f is as follows:

f(x, y, t) =
1

4
exp

(
−

(
5 · 102

((
y − L2

2

)2

+

(
x− 8L1

5T
t

)2
)))

χ[90,100](t).

Figures 2.2 and 2.3 show the numerical solutions of the plain Galerkin method

(i.e., with the stabilization term set to zero) and the SU method, respectively, plotted

for a fixed value of y, specifically y = 0.125.

In detail, in the numerical solutions of the standard Galerkin method (Figure 2.2),

for t < 90, spurious oscillations propagating backward in time are generated due to

the activation of the concentrated source.

On the other hand, with the SU method (Figure 2.3), these significant spurious

oscillations are eliminated throughout almost the entire domain, and no numerical

instabilities propagate backward in time. Indeed, for t < 90, the numerical solution

is consistent with the expected zero transmembrane potential. The function θ(x, y, t),

shown in Figure 2.4, regulates the activation of stabilization in the SU method, which

is active only in the vicinity of the layer.

The numerical solutions at specific fixed times (Figure 2.5) show that, beginning

with zero potential, the stimulus generated by the concentrated impulse gradually

55

spreads across the spatial domain.

Figure 2.2: Monodomain equation coupled with the Rogers–McCulloch ionic model,
plain Galerkin solution for y = 0.125 (test in Section 2.2.2, Ω is a rectangle).

Finally, Table 2.1 summarizes the computational cost: the total time needed to

solve the problem numerically of the SU method is very close to the time of the plain

Galerkin method, with a similar number of fixed-point iterations to achieve the set

convergence.

56

Figure 2.3: Monodomain equation coupled with the Rogers–McCulloch ionic model,
SU solution for y = 0.125 (test in Section 2.2.2, Ω is a rectangle).

Method Fixed-point iterations Time (s)
Plain Galerkin method 33 2.4 · 103
SU method 36 2.8 · 103

Table 2.1: Monodomain equation coupled with the Rogers–McCulloch ionic model,
computational cost comparison (test in Section 2.2.2, Ω is a rectangle).

57

Figure 2.4: Monodomain equation coupled with the Rogers–McCulloch ionic model,
function θ(x, y, t) for y = 0.125, in the SU method (test in Section 2.2.2, Ω is a
rectangle).

An ellipse with hole

We use an ellipse (semi-major axis: ao = 0.75; semi-minor axis: bo = 0.125) with an

elliptic hole (semi-major axis: ai = 0.375; semi-minor axis: bi = 0.0625) as spatial

domain Ω (Figure 2.6). The source term f is as follows:

f(x, y, t) =
1

4
exp

(
−

(
5 · 102

((
y − L2

2

)2

+

(
x− 8L1

15T
t

)2
)))

χ[90,100](t).

Figures 2.7 and 2.8 present the numerical solutions along the section line

s (depicted in Figure 2.6), for the plain Galerkin method and the SU method,

respectively. The function θ(x, y, t), which regulates the activation of high-order

stabilization terms in the SU method, is shown in Figure 2.9.

The plain Galerkin method (Figure 2.7) exhibits numerical instabilities that

propagate backward in time (i.e., for t < 90).

On the other hand, the SU method (Figure 2.8) reveals negligible spurious

oscillations throughout the domain. Notably, the numerical instabilities that

propagate backward in time, observed in the plain Galerkin method, are absent.

The numerical solutions for specific fixed times (Figure 2.10) indicate that, starting

58

Figure 2.5: Monodomain equation coupled with the Rogers–McCulloch ionic model,
SU solutions for various fixed times (test in Section 2.2.2, Ω is a rectangle), the colors
represent dimensionless transmembrane potential.

0 0.5 1 1.5
x

0.05

0.1

0.15

0.2

0.25

y

A

B

Figure 2.6: Spatial domain Ω, an ellipse with hole, with section line s (A–B), for the
second test in Section 2.2.2.

59

from zero potential, the stimulus generated by a concentrated impulse gradually

propagates through the spatial domain.

The total time needed to solve the problem numerically of the plain Galerkin

method is considerably higher than the time of the stabilized method (Table 2.2).

This interesting result is due to the significant numerical instabilities that affect

the number of iterations required by the plain Galerkin method to reach the set

convergence in the fixed-point scheme, as highlighted in Table 2.2.

Method Fixed-point iterations Time (s)
Plain Galerkin method 145 1.0 · 104
SU method 31 2.7 · 103

Table 2.2: Monodomain equation coupled with the Rogers–McCulloch ionic model,
computational cost comparison (test in Section 2.2.2, Ω is an ellipse with hole).

2.2.3 3D spatial domains

In this section we deal with different 3D spatial domains Ω, while the interval (0, T),

is the time domain. Indeed, we aim to analyze the numerical behavior of the proposed

stabilization method with a concentrated source term using these 3D spatial domains.

In these tests we consider p = 2.

The linear systems (2.11) are solved using the generalized minimal residual

method (GMRES) preconditioned as presented in Section 2.1.2. Concerning (2.12),

we exploit the technique presented Section 2.1.2 and we solve Ns independent systems

associated with the Nt×Nt matrix with direct solver provided by MATLAB (backslash

operator ”\”), while Nt independent systems associated with the Ns×Ns mass matrix

are solved by using the preconditioned conjugate gradient method (PCG).

A parallelepiped

For this test we use a parallelepiped as spatial domain Ω = (0, L1)× (0, L2)× (0, L3),

with L1 = 0.5, L2 = 0.5, L3 = 0.3 and ĥ1 = 2−4, ĥ2 = 2−4, ĥ3 = 2−3, ĥt = 2−4, while

T = 150.

We set the dimensionless parameters Cm = 1 and D = 10−4.

60

Figure 2.7: Monodomain equation coupled with the Rogers–McCulloch ionic model,
plain Galerkin solution along the section line s (test in Section 2.2.2, Ω is an ellipse
with hole).

61

Figure 2.8: Monodomain equation coupled with the Rogers–McCulloch ionic model,
SU solution along the section line s (test in Section 2.2.2, Ω is an ellipse with hole)

62

Figure 2.9: Monodomain equation coupled with the Rogers–McCulloch ionic model,
function θ(x, y, t) along the section line s, in the SU method (test in Section 2.2.2,
Ω is an ellipse with hole).

The concentrated source term f is as follows:

f(x, y, z, t) =
1

5
χ[0,0.15](x) χ[0,0.15](y) χ[0.15,0.3](z) χ[30.0,40.5](t).

Figures 2.11 and 2.12 show the numerical solutions of the plain Galerkin method

and the SU method, respectively, for various fixed times. We observe that the plain

Galerkin solutions exhibit non-physical solutions for t < 30, even in the absence of

the activation of the source term (Figure 2.11). However, these numerical instabilities

are not present in the SU method (Figure 2.12), where the solutions correctly remain

zero in the spatial domain for t < 30, as expected.

The total computational time of the SU method is approximately 1.6 times that

of the plain Galerkin method and a reasonably low number of iterations is required

by the preconditioned solvers, for each fixed-point iteration (Table 2.3).

Method GMRES, PCG iterations Fixed-point iterations Time (s)
Plain Galerkin method 19, 1 26 7.4 · 102
SU method 33, 1 27 1.2 · 103

Table 2.3: Monodomain equation coupled with the Rogers–McCulloch ionic model,
computational cost comparison (test in Section 2.2.3, Ω is a parallelepiped); GMRES,
PCG iterations are averaged over each fixed-point iteration.

63

Figure 2.10: Monodomain equation coupled with the Rogers–McCulloch ionic model,
SU solutions for various fixed times (test in Section 2.2.2, Ω is an ellipse with hole),
the colors represent dimensionless transmembrane potential.

64

Figure 2.11: Monodomain equation coupled with the Rogers–McCulloch ionic
model, plain Galerkin solutions for various fixed times (test in Section 2.2.3, Ω is a
parallelepiped), the colors represent dimensionless transmembrane potential.

65

Figure 2.12: Monodomain equation coupled with the Rogers–McCulloch ionic model,
SU solutions for various fixed times (test in Section 2.2.3, Ω is a parallelepiped), the
colors represent dimensionless transmembrane potential.

66

A curved spatial domain

For this test we use the spatial domain Ω shown in Figure 2.13, with ĥ1 = 2−4,

ĥ2 = 2−3, ĥ3 = 2−4 and ĥt = 2−4, while T = 150.

We set the dimensionless parameters Cm = 1 and D = 10−4.

The source term f is as follows:

f(η1, η2, η3, t) =
1

5
χ[0,0.3](η1) χ[0,0.3](η2) χ[0.3,1](η3) χ[30.0,40.5](t).

Figure 2.13: Spatial domain Ω, a curved domain, for the second test in Section 2.2.3
.

Figures 2.14 and 2.15 present the numerical solutions obtained using the plain

Galerkin method and the SU method for various fixed times, respectively. Before

the activation of the source term (i.e., for t < 30), Figure 2.14 shows the presence

of numerical instabilities in the plain Galerkin solutions. These non-physical values

disappear in the solutions of the SU method, as shown in Figure 2.15, where the

solutions for t < 30 are correctly zero in the spatial domain, as expected.

Table 2.4 illustrates the total computation time needed to solve the problem

numerically. The time required for the SU method is less than two and a half times

that of the plain Galerkin method, and a reasonable number of iterations is needed

by the preconditioned solvers for each fixed-point iteration.

67

Figure 2.14: Monodomain equation coupled with the Rogers–McCulloch ionic model,
plain Galerkin solutions for various fixed times (test in Section 2.2.3, Ω is a curved
spatial domain), the colors represent dimensionless transmembrane potential.

Method GMRES, PCG iterations Fixed-point iterations Time (s)
Plain Galerkin method 24, 3 27 4.7 · 102
SU method 42, 3 34 1.1 · 103

Table 2.4: Monodomain equation coupled with the Rogers–McCulloch ionic model,
computational cost comparison (test in Section 2.2.3, Ω is a curved domain); GMRES,
PCG iterations are averaged over each fixed-point iteration.

68

Figure 2.15: Monodomain equation coupled with the Rogers–McCulloch ionic model,
SU solutions for various fixed times (test in Section 2.2.3, Ω is a curved spatial
domain), the colors represent dimensionless transmembrane potential.

69

Spatial domain approximating the left ventricular geometry

For this test we use the spatial domain Ω shown in Figure 2.16, with ĥ1 = ĥ2 = ĥ3 =

2−4 and ĥt = 2−6, while T = 300.

We set the dimensionless parameters Cm = 1 and D = 10−3, to simulate the

propagation of the impulse under ventricular physiological conditions.

The source term f is as follows:

f(η1, η2, η3, t) =
1

10
χ[0.9,1](η3) χ[45.0,60.0](t).

Figure 2.16: Spatial domain Ω, approximating the left ventricular geometry, for the
third test in Section 2.2.3 on the left, and its corresponding cross-section for solution
plots on the right.

Figures 2.17 and 2.18 compare the numerical solutions obtained with the plain

Galerkin method and the SU method at various time steps. Before the activation of

the source term (i.e., for t < 45), where zero transmembrane potential is expected,

Figure 2.17 shows non-physical solutions in the plain Galerkin solutions, indicating

numerical instabilities. In contrast, Figure 2.18 suggests that the SU method

effectively suppresses these non-physical values, with the solution correctly remaining

70

zero in the spatial domain. This comparison highlights the robustness of the SU

method in providing stable solutions, especially in phases where no source term is

present.

Table 2.5 shows the total computation time for numerically solving the problem,

including the iterations performed by the preconditioned solvers during each

fixed-point iteration. In particular, the SU method requires one and a half times the

total computation time of the plain Galerkin method.

Method GMRES, PCG iterations Fixed-point iterations Time (s)
Plain Galerkin method 115, 4 41 8.7 · 103
SU method 132, 4 39 1.3 · 104

Table 2.5: Monodomain equation coupled with the Rogers–McCulloch ionic model,
computational cost comparison (test in Section 2.2.3, Ω approximates the left
ventricular geometry); GMRES, PCG iterations are averaged over each fixed-point
iteration.

71

Figure 2.17: Monodomain equation coupled with the Rogers–McCulloch ionic model,
plain Galerkin solutions for various fixed times (test in Section 2.2.3, Ω approximates
the left ventricular geometry), the colors represent dimensionless transmembrane
potential.

72

Figure 2.18: Monodomain equation coupled with the Rogers–McCulloch ionic model,
SU solutions for various fixed times (test in Section 2.2.3, Ω approximates the left
ventricular geometry), the colors represent dimensionless transmembrane potential.

73

Conclusions

In this thesis, we have first introduced a novel stable space–time method for the

heat equation within the Isogeometric Analysis (IgA) framework. We named this

method Spline Upwind (SU), and it is based on stabilizing terms that extend the

Streamline upwind Petrov–Galerkin (SUPG) stabilization mechanism to high-degree

and high-continuity splines, promoting causality with respect to time.

Additionally, we presented a modification of the SU method to make it more

suitable for cardiac electrophysiology. In particular, we developed a formulation that

is both simple and highly effective, designed to minimize spurious oscillations while

ensuring optimal computational efficiency.

The results provide numerical evidence of optimal convergence order of the SU

method, when dealing with smooth solutions.

Moreover, the behavior remains stable in the presence of sharp layers, both in

one-dimensional cases and for the heat equation, as well as for the monodomain

equation coupled with the Rogers–McCulloch ionic model. In particular, for the

monodomain equation, we also investigated 3D spatial domains, which lead to

4D space–time domains. These problems present a challenging aspect from a

computational cost perspective, particularly when dealing with the ventricular

approximation. Therefore, we employed efficient solver based on preconditioner.

To complete the analysis, we quantified the increase in computational cost

observed in our tests when transitioning from the standard Galerkin method to the

SU method in the context of cardiac electrophysiology. From this perspective, we

emphasize that the computational times of the SU method are generally close to

those of the Galerkin method, making SU stabilization appealing not only from the

standpoint of solution stability but also in terms of computational cost.

Finally, we acknowledge the importance of efficient and fast solvers in

74

the space–time framework. The higher dimensionality poses computational

challenges when investigating three-dimensional spatial domains, with geometrical

representations closely approximating reality, such as the entire heart. To address

these challenges, it is important to employ advanced techniques, such as local mesh

refinement (see, e.g., [32]), in order to reduce the number of degrees of freedom, or

low-rank tensor techniques to approximate the unknown solutions (see, e.g., [39]).

These research directions offer promising fields for further explorations.

75

Bibliography

[1] R.R. Aliev and A.V. Panfilov. A simple two-variable model of

cardiac excitation. Chaos, Solitons & Fractals, 7(3):293–301, 1996.

doi:10.1016/0960-0779(95)00089-5.

[2] J.H. Argyris and D.W. Scharpf. Finite Elements in Time and Space. The

Aeronautical Journal, 73(708):1041–1044, 1969. doi:10.1017/S0001924000051198.

[3] A. Bartezzaghi, L. Dedè, and A. Quarteroni. Isogeometric Analysis of high

order Partial Differential Equations on surfaces. Computer Methods in Applied

Mechanics and Engineering, 295:446–469, 2015. doi:10.1016/j.cma.2015.07.018.

[4] Y. Bazilevs, V.M. Calo, T.E. Tezduyar, and T.J.R. Hughes. YZβ discontinuity

capturing for advection-dominated processes with application to arterial drug

delivery. International Journal for Numerical Methods in Fluids, 54(6-8):593–608,

2007. doi:10.1002/fld.1484.

[5] L. Beirão da Veiga, A. Buffa, G. Sangalli, and R. Vázquez. Mathematical

analysis of variational isogeometric methods. Acta Numerica, 23:157–287, 2014.

doi:10.1017/S096249291400004X.

[6] M. Bendahmane, R. Bürger, and R. Ruiz-Baier. A multiresolution

space-time adaptive scheme for the bidomain model in electrocardiology.

Numerical Methods for Partial Differential Equations, 26(6):1377–1404, 2010.

doi:10.1002/num.20495.

[7] A. Bressan and E. Sande. Approximation in FEM, DG and IGA: a

theoretical comparison. Numerische Mathematik, 143(4):923–942, 2019.

doi:10.1007/s00211-019-01063-5.

76

[8] A.N. Brooks and T.J.R. Hughes. Streamline upwind/Petrov-Galerkin

formulations for convection dominated flows with particular

emphasis on the incompressible Navier-Stokes equations. Computer

Methods in Applied Mechanics and Engineering, 32(1):199–259, 1982.

doi:10.1016/0045-7825(82)90071-8.

[9] J.C. Bruch Jr and G. Zyvoloski. Transient two-dimensional heat

conduction problems solved by the finite element method. International

Journal for Numerical Methods in Engineering, 8(3):481–494, 1974.

doi:10.1002/nme.1620080304.

[10] M. Bucelli, A. Zingaro, P.C. Africa, I. Fumagalli, L. Dedè, and A. Quarteroni.

A mathematical model that integrates cardiac electrophysiology, mechanics,

and fluid dynamics: Application to the human left heart. International

Journal for Numerical Methods in Biomedical Engineering, 39(3):e3678, 2023.

doi:doi.org/10.1002/cnm.3678.

[11] C.D. Cantwell, S. Yakovlev, R.M. Kirby, N.S. Peters, and S.J. Sherwin.

High-order spectral/hp element discretisation for reaction–diffusion problems

on surfaces: Application to cardiac electrophysiology. Journal of Computational

Physics, 257:813–829, 2014. doi:10.1016/j.jcp.2013.10.019.

[12] D. Chapelle, A. Collin, and J.F. Gerbeau. A surface-based electrophysiology

model relying on asymptotic analysis and motivated by cardiac atria modeling.

Mathematical Models and Methods in Applied Sciences, 23(14):2749–2776, 2013.

doi:10.1142/S0218202513500450.

[13] P. Colli Franzone, P. Deuflhard, B. Erdmann, J. Lang, and L.F.

Pavarino. Adaptivity in Space and Time for Reaction-Diffusion Systems in

Electrocardiology. SIAM Journal on Scientific Computing, 28(3):942–962, 2006.

doi:10.1137/050634785.

[14] P. Colli Franzone, L.F. Pavarino, and S. Scacchi. Mathematical and numerical

methods for reaction-diffusion models in electrocardiology. In D. Ambrosi,

A. Quarteroni, and G. Rozza, editors, Modeling of Physiological Flows, pages

107–141, Milano, 2012. Springer Milan. doi:10.1007/978-88-470-1935-5 5.

77

[15] P. Colli Franzone, L.F. Pavarino, and S. Scacchi. Mathematical cardiac

electrophysiology, volume 13. Springer, 2014. doi:10.1007/978-3-319-04801-7.

[16] A. Collin, J.F. Gerbeau, M. Hocini, M. Häıssaguerre, and D. Chapelle.

Surface-Based Electrophysiology Modeling and Assessment of Physiological

Simulations in Atria. In S. Ourselin, D. Rueckert, and N. Smith, editors,

Functional Imaging and Modeling of the Heart, pages 352–359, Berlin, Heidelberg,

2013. Springer Berlin Heidelberg. doi:10.1007/978-3-642-38899-6 42.

[17] M.A. Colman, S.J. Castro, E.A. Perez Alday, J.C. Hancox, C. Garratt,

and H. Zhang. Recent progress in multi-scale models of the human

atria. Drug Discovery Today: Disease Models, 14:23–32, 2014.

doi:10.1016/j.ddmod.2014.04.003.

[18] J.A. Cottrell, T.J.R. Hughes, and Y. Bazilevs. Isogeometric analysis: toward

integration of CAD and FEA. John Wiley & Sons, 2009.

[19] M. Courtemanche, R.J. Ramirez, and S. Nattel. Ionic mechanisms underlying

human atrial action potential properties: insights from a mathematical

model. American Journal of Physiology-Heart and Circulatory Physiology,

275(1):H301–H321, 1998. doi:10.1152/ajpheart.1998.275.1.H301.

[20] L. Dedè and A. Quarteroni. Isogeometric Analysis for second order Partial

Differential Equations on surfaces. Computer Methods in Applied Mechanics

and Engineering, 284:807–834, 2015. doi:10.1016/j.cma.2014.11.008.

[21] J.A. Evans, Y. Bazilevs, I. Babuška, and T.J.R. Hughes. n-Widths, sup-infs,

and optimality ratios for the k-version of the isogeometic finite element method.

Computer Methods in Applied Mechanics and Engineering, 198:1726–1741, 2009.

doi:10.1016/j.cma.2009.01.021.

[22] I. Fried. Finite-element analysis of time-dependent phenomena. AIAA Journal,

7(6):1170–1173, 1969. doi: 10.2514/3.5299.

[23] M.J. Gander. 50 years of time parallel time integration. In T. Carraro, M. Geiger,

S. Körkel, and R Rannacher, editors, Multiple Shooting and Time Domain

78

Decomposition Methods, pages 69–113, Cham, 2015. Springer International

Publishing. doi:10.1007/978-3-319-23321-5.

[24] J.E. Hall and M.E. Hall. Guyton and Hall Textbook of Medical Physiology, 14th

Edition. Elsevier, 2021.

[25] T.J.R. Hughes, J.A. Cottrell, and Y. Bazilevs. Isogeometric analysis: CAD,

finite elements, NURBS, exact geometry and mesh refinement. Computer

Methods in Applied Mechanics and Engineering, 194(39):4135–4195, 2005.

doi:10.1016/j.cma.2004.10.008.

[26] T.J.R. Hughes and G.M.H Hulbert. Space-time finite element methods

for elastodynamics: Formulations and error estimates. Computer

Methods in Applied Mechanics and Engineering, 66(3):339–363, 1988.

doi:10.1016/0045-7825(88)90006-0.

[27] J. Keener and J. Sneyd. Calcium Dynamics. In J. Keener and J. Sneyd, editors,

Mathematical Physiology: I: Cellular Physiology, pages 273–346. Springer New

York, 2009. doi:10.1007/978-0-387-75847-3 7.

[28] P. Kopp, V. Calo, E. Rank, and S. Kollmannsberger. Space-time

hp-finite elements for heat evolution in laser powder bed fusion additive

manufacturing. Engineering with Computers, 38(6):4879–4893, 2022.

doi:10.1007/s00366-022-01719-1.

[29] S. Krishnamoorthi, M. Sarkar, and W.S. Klug. Numerical quadrature and

operator splitting in finite element methods for cardiac electrophysiology.

International Journal for Numerical Methods in Biomedical Engineering,

29(11):1243–1266, 2013. doi:10.1002/cnm.2573.

[30] U. Langer, S.E. Moore, and M. Neumüller. Space-time isogeometric analysis

of parabolic evolution problems. Computer Methods in Applied Mechanics and

Engineering, 306:342 – 363, 2016. doi:10.1016/j.cma.2016.03.042.

[31] U. Langer and O. Steinbach. Space-Time Methods: Applications to Partial

Differential Equations, volume 25. Walter de Gruyter GmbH & Co KG, 2019.

doi:10.1515/9783110548488.

79

[32] U. Langer, O. Steinbach, F. Troltzsch, and H. Yang. Unstructured space-time

finite element methods for optimal control of parabolic equations. SIAM Journal

on Scientific Computing, 43(2):A744–A771, 2021. doi:10.1137/20M1330452.

[33] G. Loli, M. Montardini, G. Sangalli, and M. Tani. An efficient solver

for space-time isogeometric Galerkin methods for parabolic problems.

Computers and Mathematics with Applications, 80(11):2586–2603, 2020.

doi:10.1016/j.camwa.2020.09.014.

[34] G. Loli, G. Sangalli, and M. Tani. Easy and efficient preconditioning of

the isogeometric mass matrix. Computers & Mathematics with Applications,

116:245–264, 2022. doi:10.1016/j.camwa.2020.12.009.

[35] G. Loli, G. Sangalli, and P. Tesini. High-order spline upwind for space–time

Isogeometric Analysis. Computer Methods in Applied Mechanics and Engineering,

417(11):116408, 2023. doi:10.1016/j.cma.2023.116408.

[36] A. Mantzaflaris, B. Jüttler, B.N. Khoromskij, and U. Langer. Low

rank tensor methods in Galerkin-based isogeometric analysis. Computer

Methods in Applied Mechanics and Engineering, 316:1062–1085, 2017.

doi:10.1016/j.cma.2016.11.013.

[37] C.C. Mitchell and D.G. Schaeffer. A two-current model for the dynamics of

cardiac membrane. Bulletin of Mathematical Biology, 65(5):767–793, September

2003. doi:10.1016/S0092-8240(03)00041-7.

[38] M. Montardini, M. Negri, G. Sangalli, and M. Tani. Space-time least-squares

isogeometric method and efficient solver for parabolic problems. Mathematics

of Computation, 89(323):1193–1227, 2020. doi:10.1090/mcom/3471.

[39] M. Montardini, G. Sangalli, and M. Tani. A low-rank isogeometric solver based

on Tucker tensors. Computer Methods in Applied Mechanics and Engineering,

417:116472, 2023. doi:10.1016/j.cma.2023.116472.

[40] H. Nguyen and J. Reynen. A space-time least-square finite element scheme for

advection-diffusion equations. Computer Methods in Applied Mechanics and

Engineering, 42(3):331–342, 1984. doi:10.1016/0045-7825(84)90012-4.

80

[41] A. Nygren, C. Fiset, L. Firek, J.W. Clark, D.S. Lindblad, R.B. Clark, and

W.R. Giles. Mathematical Model of an Adult Human Atrial Cell. Circulation

Research, 82(1):63–81, 1998. doi:10.1161/01.RES.82.1.63.

[42] A.S. Patelli, L. Dedè, T. Lassila, A. Bartezzaghi, and A. Quarteroni. Isogeometric

approximation of cardiac electrophysiology models on surfaces: An accuracy

study with application to the human left atrium. Computer Methods in Applied

Mechanics and Engineering, 317:248–273, 2017. doi:10.1016/j.cma.2016.12.022.

[43] L. Pegolotti, L. Dedè, and A. Quarteroni. Isogeometric Analysis of the

electrophysiology in the human heart: Numerical simulation of the bidomain

equations on the atria. Computer Methods in Applied Mechanics and Engineering,

343:52–73, 2019. doi:10.1016/j.cma.2018.08.032.

[44] G. Plank, L. Zhou, J.L. Greenstein, S. Cortassa, R.L. Winslow, B. O’Rourke, and

N.A. Trayanova. From mitochondrial ion channels to arrhythmias in the heart:

computational techniques to bridge the spatio-temporal scales. Philosophical

Transactions of the Royal Society A: Mathematical, Physical and Engineering

Sciences, 366(1879):3381–3409, 2008. doi:10.1098/rsta.2008.0112.

[45] A. Quarteroni, L. Dedè, A. Manzoni, and C. Vergara. Mathematical Modelling

of the Human Cardiovascular System: Data, Numerical Approximation,

Clinical Applications. Cambridge Monographs on Applied and Computational

Mathematics. Cambridge University Press, 2019.

[46] A. Quarteroni, T. Lassila, S. Rossi, and R. Ruiz-Baier. Integrated

Heart—Coupling multiscale and multiphysics models for the simulation of

the cardiac function. Computer Methods in Applied Mechanics and Engineering,

314:345–407, 2017. doi:10.1016/j.cma.2016.05.031.

[47] J.M. Rogers and A.D. McCulloch. A collocation-Galerkin finite element model

of cardiac action potential propagation. IEEE Transactions on Biomedical

Engineering, 41(8):743–757, 1994. doi:10.1109/10.310090.

[48] C. Saadé, S. Lejeunes, D. Eyheramendy, and R. Saad. Space-Time Isogeometric

Analysis for linear and non-linear elastodynamics. Computers & Structures,

254:106594, 2021. doi:10.1016/j.compstruc.2021.106594.

81

[49] L. Sorber, M. Van Barel, and L. De Lathauwer. Tensorlab v2.0. Available online,

2014.

[50] J. Southern, G.J. Gorman, M.D. Piggott, and P.E. Farrell. Parallel

anisotropic mesh adaptivity with dynamic load balancing for cardiac

electrophysiology. Journal of Computational Science, 3(1):8–16, 2012.

doi:10.1016/j.jocs.2011.11.002.

[51] O. Steinbach. Space-Time Finite Element Methods for Parabolic Problems.

Computational Methods in Applied Mathematics, 15(4):551–566, 2015.

doi:10.1515/cmam-2015-0026.

[52] R. Stevenson and J. Westerdiep. Stability of Galerkin discretizations of a

mixed space–time variational formulation of parabolic evolution equations. IMA

Journal of Numerical Analysis, 41(1):28–47, 2021. doi:10.1093/imanum/drz069.

[53] K. Takizawa and T.E. Tezduyar. Space-time computation techniques

with continuous representation in time (ST-C). Computational Mechanics,

53(1):91–99, 2014. doi:10.1007/s00466-013-0895-y.

[54] T.E. Tezduyar and M. Senga. Stabilization and shock-capturing

parameters in SUPG formulation of compressible flows. Computer

Methods in Applied Mechanics and Engineering, 195(13):1621–1632, 2006.

doi:10.1016/j.cma.2005.05.032.

[55] R. Vázquez. A new design for the implementation of isogeometric analysis in

Octave and Matlab: GeoPDEs 3.0. Computers & Mathematics with Applications,

72(3):523–554, 2016. doi:10.1016/j.camwa.2016.05.010.

[56] E. Vigmond, F. Vadakkumpadan, V. Gurev, H. Arevalo, M. Deo,

G. Plank, and N. Trayanova. Towards predictive modelling of the

electrophysiology of the heart. Experimental physiology, 94(5):563–577, 2009.

doi:10.1113/expphysiol.2008.044073.

[57] K. Wang, S.Y. Ho, D.G. Gibson, and R.H. Anderson. Architecture of atrial

musculature in humans. Heart, 73(6):559–565, 1995.

82

[58] Y. Wenjian, G. Yu, and L. Yaohang. Efficient Randomized Algorithms for the

Fixed-Precision Low-Rank Matrix Approximation. SIAM Journal on Matrix

Analysis and Applications, 39(3):1339–1359, 2018. doi:10.1137/17M1141977.

83

