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A holographic conformal field theory is dual to semiclassical general relativity in anti–de Sitter space
coupled to matter fields. If the conformal field theory (CFT) factorizes in the large-N limit, then all
couplings in its dual are suppressed by the Planck scale, making the matter fields weakly interacting. We
propose a mechanism to produce CFTs whose dual matter fields couple weakly to gravity, but interact
strongly with each other. We achieve this by turning on exactly marginal multitrace deformations, and
quantify the effect using conformal perturbation theory.
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I. INTRODUCTION

What is the space of consistent theories of quantum
gravity? How can the Standard Model be consistently
coupled to gravity? Answering these questions remains
an important challenge in understanding the laws of
physics in our Universe. For theories of gravity with a
negative cosmological constant, i.e., in anti–de Sitter (AdS)
space, much progress towards answering these questions
has been made through the AdS=CFT correspondence [1].
In AdS, the rules for obtaining a consistent theory at the
quantum level are clear. Standard observables of quantum
gravity in AdSdþ1 are conformal correlation functions of
local operators inserted at the asymptotic boundary. These
correlators must satisfy the axioms of a conformal field
theory (CFT) in d dimensions (CFTd): unitarity, causality,
and crossing symmetry.
However, not all CFTs will be dual to semiclassical

gravity minimally coupled to matter fields. CFTs that have
gravity duals of this type are known as holographic CFTs,
and they must satisfy very stringent constraints: they must
possess a large number of degrees of freedom such that the
stress-tensor two-point function hTTi ∼ N for some large
N; they should have a sparse number of operators with low

scaling dimension [2–4]; and they should have a large gap
in the scaling dimension of higher-spin operators [5–10].
Holographic CFTs also have a set of operators whose

correlation functions factorize in the large-N limit [11].
However, it is a common misconception that all operators
must factorize. This misconception may come from the fact
that the best-known holographic CFTs are large-N gauge
theories in the ’t Hooft (or planar) limit; there, all operators
indeed factorize in the large-N limit.
To explain why this does not necessarily have to be the

case, consider a holographic CFT with a stress tensor and
an additional single-trace scalar operator O that satisfies
large-N factorization. In the gravity dual, the effective
Euclidean action is of the form

Sbulk¼−
1

16πGN

Z
ddþ1x

ffiffiffi
g

p �
Rþdðd−1Þ

l2
AdS

�

þ
Z

ddþ1x
ffiffiffi
g

p �
1

2
∂μϕ∂

μϕþ g̃3
G1=2

N

l2
AdS

ϕ3þ g̃4
GN

l2
AdS

ϕ4

�
;

ð1Þ

where ϕ is the bulk field dual to O. In the semiclassical
limit where ld−1

AdS=GN ∼ N → ∞ and for g̃3;4 ∼Oð1Þ, this
action describes a theory where all interactions happen at
the Planck scale. This is manifest for gravitational inter-
actions, but is also true for interactions of the scalar field
due to the explicit GN dependence in front of its couplings.
As a result, such a holographic CFT can never describe
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gravitational theories where the matter sector is strongly
interacting, such as the Standard Model.
In this paper, we are interested in constructing holo-

graphic CFTs whose gravitational dual contains a strongly
interacting matter sector. As explained above, this means
that the dual CFT cannot satisfy large-N factorization:
correlation functions of the stress tensor will factorize, but
those of the operator O dual to ϕ will not. For example, we
want to construct theories where the three-point function of
the operator O scales as

hOOOi ∼OðN0Þ; ð2Þ

instead of scaling like N−1=2 as would be the case in a
theory that obeys large-N factorization. On the other hand,
the stress-tensor sector should still factorize at large N as
we only want the matter to be strongly interacting, and
gravitational interactions as well as their coupling to the
matter sector should still be weak. To the best of our
knowledge, not a single theory of this type has been
explicitly constructed [12].
To obtain such theories, we break large-N factorization

by deforming CFTs by exactly marginal multitrace oper-
ators. These deformations were considered in Refs. [13,14]
albeit in a regime where large-N factorization is preserved.
We deform the CFT action by

SCFT ↦ SCFT þ λN
β
2

Z
ddxOkðxÞ: ð3Þ

Here Ok is an exactly marginal k-trace operator such that
ΔOk ¼ d independently of λ. Crucially, we can scale the
deformation in an N-dependent way (λ will always be
independent of N in our conventions). The precise form of
this scaling determines the large-N properties of the
deformed theory. To preserve large-N factorization, we
must have β ≤ 2 − k [13,15]. From the bulk perspective,
the upper bound β ¼ 2 − k can induce shifts in the bulk
couplings of the form g̃3;4 ↦ g̃3;4 þ λ.
In this paper, we take a different N scaling for the

deformation, namely one where β ¼ 0. The deformed CFT
no longer factorizes, and has a bulk dual where the matter
fields are coupled at the AdS scale rather than at the Planck
scale. Our deformation can continuously interpolate
between holographic CFTs that factorize and theories that
admit a strongly coupled matter sector.
The mechanism is quite general and can be applied to

any theory that contains an exactly marginal multitrace
operator. As an example of such theories, we consider
the two-dimensional CFTs with N ¼ 2 supersymmetry
discussed in Ref. [15].

II. LARGE-N CFTs

Our objective is to realize a CFT that has a well-defined
large-N limit, but does not obey large-N factorization. To

achieve this, we start with a theory that does satisfy large-N
factorization and deform it by a multitrace deformation that
breaks the factorization property in a controlled manner. In
particular, we will be able to track the effect of the
deformation order by order in the 1=N expansion using
large-N factorization of the undeformed theory. We start by
reviewing salient features of large-N CFTs and large-N
factorization (see Ref. [11] for details).
We define a CFT with a large-N limit as follows: it

contains a dimensionless parameter N controlling the
stress-tensor two-point function as hTTi ∼ N, which is
taken to be large. Its operators fall into two categories [16]:
light operators with scaling dimension Δ ∼ N0, whose
degeneracy is independent of N; and heavy operators,
whose dimension grows with N [17]. In the following, we
will always normalize operators such that they have unit
two-point functions. Moreover, all correlation functions of
light operators must converge as N → ∞.
We say a theory factorizes in the large-N limit if the light

spectrum satisfies the following rules: there is a set of
single-trace operators that behave as generalized free fields
as N → ∞. More precisely, their connected correlation
functions scale as

hO1ðx1Þ � � �OnðxnÞic ∼ N−ðn−2Þ=2: ð4Þ

The leading-order contribution to a correlation function of
single-trace operators thus comes from the disconnected
part where as many operators as possible are Wick
contracted.
There are also sectors of multitrace operatorsOk of trace

k, defined by the fact that there exist single-trace operators
O1;…;Ok, such that

hOkðxÞO1ðx1Þ � � �OkðxkÞic ∼ N0: ð5Þ

k-trace operators are thus normal-ordered products of k
single-trace operatorsOk≕O1 � � �Ok∶ , possibly including
derivatives. A correlation function of multitrace operators
can be computed as a sum over products of connected
correlation functions of their component single-trace oper-
ators. From Eq. (4), each single-trace correlator contributes
a factor of N−1=2 for each operator in excess of two, so that
the leading contribution to the correlation function is given
by the terms with minimal excess operators. In particular, in
many cases there are OðN0Þ connected contributions
achieved solely from Wick contractions of the single-trace
components. This behavior is very different than the scaling
of single-trace correlators, and will be crucial to break
factorization.
If single and multitrace operators fully span the Hilbert

space of light states, then the CFT satisfies large-N
factorization. Examples of such CFTs are large-N vector
models and large-N gauge theories with adjoint matter, and,
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in two dimensions, symmetric product orbifolds and certain
permutation orbifolds [18–21].
Now we want to deform such large-N CFTs by an

exactly marginal operator. A general deformation is of the
form

SCFT ↦ SCFT þ λkNβ=2

Z
ddxOkðxÞ; ð6Þ

where λk ∼ N0 and Ok is a normalized exactly marginal
k-trace operator. The interplay between the parameters β
and k leads to various effects in the deformed theory:

Existence of the large-N limit. All quantities in the
perturbed CFT need to converge as N → ∞. This is
automatically the case if we choose a nonpositive β,
since all correlators of the perturbed theory are given
by higher-point functions in the undeformed theory,
which we know converge. However, sometimes it is
also possible to choose β positive; for instance, β ¼ 1
for single-trace deformations still leads to a conver-
gent large-N limit, because the effect of the deforma-
tion comes from the connected components of
correlation functions only, which scale with negative
powers of N.

Lifting unprotected operators. Deformations with β ≤ 0

give OðN−1Þ effects to the anomalous dimensions of
most operators [22]. To obtain a lifting that affects
most operators but still leads to a convergent large-N
limit, one must necessarily use single-trace deforma-
tions (with β ¼ 1). In particular, this shows that to
deform away from a free point of the conformal
manifold, where there are infinite towers of conserved
currents, and reach a holographic point, one must use
single-trace deformations. This has been explicitly
checked for two-dimensional CFTs in Refs. [23–28],
and could also be studied in the gravitational dual, at
least close to the tensionless string theory point; see
Refs. [29–32].

Large-N factorization. If β ≤ 2 − k, then the deformed
theory still complies with large-N factorization (see
Appendix D of Ref. [15]). To break factorization, we
therefore want to consider a k-trace deformation with
βk satisfying 2 − k < βk ≤ 0. In particular, for defor-
mations that are at least triple-trace (k > 2), we can set
βk ¼ 0 and break large-N factorization while preserv-
ing the convergence of the large-N limit.

We thus find that there is an important difference between
single-trace and multitrace deformations. Single-trace
deformations can lift the unprotected operators, for example
breaking higher-spin symmetries; they are thus needed to
reach a holographic point in moduli space. However, they
always preserve large-N factorization. Multitrace deforma-
tions on the other hand, can break factorization, allowing us
to explore strong interactions in the bulk, but they cannot lift
the majority of operators. To obtain a holographic CFTwith

strongly coupled matter, a two-step process is needed: first,
lift unprotected operators using a large single-trace defor-
mation, preserving factorization; second, starting from that
point on the conformal manifold, break factorization using a
multitrace deformation.

III. BREAKING LARGE-N FACTORIZATION

In this section, we perform an explicit computation to
show how multitrace marginal deformations break large-N
factorization in two-dimensional CFTs with N ¼ 2 super-
symmetry. We use a triple-trace deformation, which will
affect operator product expansion (OPE) coefficients of
single-trace operators at OðN0Þ [33].
To ensure that the deformation is exactly marginal, i.e.,

that its dimension does not receive corrections, we use
supersymmetry. In a two-dimensional CFT with N ¼ 2
supersymmetry, we can obtain exactly marginal operators
from the superpartnerG−

−1=2Ḡ
−
−1=2O

k of a chiral primaryOk

of weight 1=2 and Uð1Þ charge 1. Exactly marginal
multitrace deformations of this type appear for instance
in symmetric product orbifolds of N ¼ 2 minimal
models [15]. In our case, we consider a triple-trace defor-
mation

O3ðzÞ ≔ 1

4
ffiffiffi
3

p ðG−
−1=2Ḡ

−
−1=2∶ OOO∶ðzÞ þ H:c:Þ; ð7Þ

where OðzÞ is a single-trace chiral primary of conformal
weight 1=6 and Uð1Þ charge 1=3 [34].
The triple-trace deformation (7) changes the three-point

function of single-trace operators Oi as

∇λ3COiOjOk
≔

Z
d2xhO3ðxÞOið∞ÞOjð1ÞOkð0Þic

���
reg
; ð8Þ

where COiOjOk
is the OPE coefficient between the operators

Oi, Oj, and Ok, ∇λ3 denotes the covariant derivative on the
conformal manifold, and reg indicates that we have
regularized the integral as discussed in the Appendix.
Note that the covariant derivative takes into account the
fact that the conformal manifold is generically curved,
although this cannot be seen at leading order in perturbation
theory [35].
Specifically, we consider the OPE coefficient COOχ

between two OðzÞ operators and

χðzÞ ≔ 3

2
G−

−1=2Ḡ
−
−1=2OðzÞ: ð9Þ

The reason for this is that, at λ3 ¼ 0 and in the large-N
limit, the triple-trace deformation can only affect OPE
coefficients of the constituents of the modulus. This follows
from the fact that only fully Wick-contracted terms con-
tribute to correlation functions at order OðN0Þ.
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We now show that Eq. (8) for COOχ is nonvanishing at
the point λ3 ¼ 0. Note that, unlike for N ¼ 4 super-
conformal field theories [36,37], there is no nonrenormal-
ization theorem that forces Eq. (8) to vanish here. We
thus need to evaluate the following connected four-point
function:

IðxÞ ≔ hO3ðxÞOð∞ÞOð1Þχð0Þic: ð10Þ

As mentioned above, this four-point function is determined
by Wick contractions of pairs of OðzÞ and pairs of χðzÞ
fields such that

IðxÞ ¼ 1

2
ffiffiffi
3

p h∶χ†O†O†∶ðxÞOð∞ÞOð1Þχð0Þic ð11Þ

ð12Þ

¼ 1ffiffiffi
3

p 1

jxj8=3jx − 1j2=3 þOðN−1Þ; ð13Þ

where in the first line we only kept the nonvanishing
contributions of O3ðxÞ, and in the second line we
omitted terms suppressed by factors of N−1 as well
as another set of Wick contractions that accounts for
the extra factor of 2 in the third line [38].

Therefore, to leading order in perturbation theory we
have

∇λ3COOχjλ3¼0 ¼
1ffiffiffi
3

p
Z

d2x
1

jxj8=3jx − 1j2=3
����
reg

þOðN−1Þ:

ð14Þ

This integral can be regularized to yield a finite result, as
discussed in the Appendix, and it evaluates to

∇λ3COOχjλ3¼0 ¼ −
8π4

Γð1=3Þ6 þOðN−1Þ: ð15Þ

As explained there, there is no operator mixing between
Bogomol’nyi-Prasad-Sommerfield (BPS) states at first
order in the large-N limit. The shift in the three-point
function is thus a genuine effect, and not the result of a
mixing between single-trace and multitrace operators.
The upshot is the following: the three-point function

COOχ, which in the large-N limit vanishes at λ3 ¼ 0 due to
factorization, receives a nonvanishing correction. Turning
on the deformation thus breaks large-N factorization for the
operators χ and O.

The implications for the AdS theory are interesting.
From Eq. (15) we would generally infer that there is a three-
point interaction among the bulk fields ϕ and ψ (dual to χ)
which is controlled by the AdS scale, and independent of
GN . This can be viewed as a signal of strong coupling
among matter fields, albeit the calculation presented above
is in conformal perturbation theory and the bulk theory
would only be strongly coupled at finite λ. It is therefore
tempting to write an effective action in AdS of the form

Smatter ¼
Z

ddþ1x
ffiffiffi
g

p �
1

2
∂μϕ∂

μϕþ 1

2
∂μψ∂

μψ

þ g3l
d−5
2

AdSϕ
2ψ þ � � �

�
; ð16Þ

where g3 ∼OðG0
NÞ. This action would indeed describe a

strongly interacting matter sector at the AdS scale.
However, the effect we observe in Eq. (15) cannot in

fact correspond to a local interaction in AdS: since
ΔO þ ΔO þ Δχ ¼ d, the interaction will most likely
be captured by a total derivative or a boundary term
instead [39], but its precise bulk interpretation needs further
study. We discuss this in more detail below.

IV. DISCUSSION

In this paper, we have presented a mechanism to obtain
holographic CFTs whose matter sector is strongly coupled.
The mechanism works by deforming a holographic CFT by
an exactly marginal multitrace deformation. The deforma-
tion preserves a convergent large-N limit, but destroys
large-N factorization; it allows to continuously interpolate
between a holographic CFT with large-N factorization and
a theory whose bulk matter sector is strongly coupled. We
conclude with some open questions and future directions.
The most important question remains what the proper

AdSdþ1 interpretation of our result is. As we have discussed
in Eq. (16), a cubic coupling cannot be written in the
effective AdSdþ1 Lagrangian as it leads to an IR divergence
in the Witten diagram. Note that this phenomenon is
already true in the undeformed CFT that complies with
large-N factorization, namely the action (1) is not the right
effective theory for the bulk fields. It is likely that local bulk
interactions are replaced by boundary terms (a similar
effect was found forΔ ¼ 1 operators in Aharony-Bergman-
Jafferis-Maldacena theory [41]), and for our deformations,
the bulk matter is made strongly coupled by a strong
boundary interaction rather than a strong bulk coupling. It
remains to be understood whether there is any physical
significance in the difference between the two types of
interactions at the level of CFT correlation functions, which
are the physical observables. We hope to return to this
question in the future.
Multitrace deformations with k > 3 should correspond

to changing higher-point couplings in the bulk. It would be
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interesting to study this further. Note that in the theories of
Ref. [15], exactly marginal operators of arbitrary trace were
explicitly identified; other examples include the theories
studied in Ref. [28].
On a related front, it would also be interesting to study

the effects of the triple-trace deformation to higher orders in
conformal perturbation theory. At second order, the defor-
mation we considered in this paper would affect four-point
functions. This is natural since two operators O can fuse
into the operator χ, so this will induce a change in the four-
point function hOOOOi at second order in λ. It is possible
that the triple-trace deformation also introduces a quartic
coupling in the bulk effective Lagrangian. This could be
investigated by directly computing the deformed four-point
function to second order in conformal perturbation theory,
and we hope to return to this question in the future.
To obtain strongly coupled bulk matter, we must go

beyond conformal perturbation theory and make the
coupling finite. It appears challenging to tackle this
problem head-on. After all, by construction we are studying
a strongly coupled field theory in AdS. Nevertheless, the
goal of this paper was to introduce the mechanism that
makes this situation possible. It is worthwhile to mention
what we see as the only potential loophole in our
construction. It is possible that the conformal manifold
is actually periodic in the direction of the triple-trace
deformation. In fact, conjectures in the swampland program
state that most directions on a conformal manifold should
be compact (see Ref. [42] in the context of AdS=CFT).
From our point of view, the crucial question is to under-
stand the compactification radius. If it isOð1Þ in units of λ3
with β ¼ 0 as given in Eq. (6), the mechanism we propose
holds. If it scales as N−m for some positive m, our
construction would break down. We do not expect this
to be the case, because the exactly marginal deformation
exists as long as N > 3, and therefore one would expect its
compactification radius to be typically Oð1Þ, if it is
compact at all. It would be very interesting to study this
question further, as very little is known about global
properties of conformal manifolds.
It would also be interesting to find more top-down

constructions where multitrace exactly marginal operators
exist. An exactly marginal double-trace operator in the
Klebanov-Witten CFT which has N ¼ 1 in d ¼ 4 was
discussed in Ref. [13]. To the best of our knowledge, the
exactly marginal operators with k > 2 described in
Ref. [15] are currently the only known examples (along
with symmetric orbifolds of tensor products of minimal
models [28]). It is however likely that many more can be
found. Note that for a triple-trace exactly marginal operator
to exist, we must have d < 6, and the restriction becomes
stronger as we increase the number of traces. For six-trace
operators and beyond, we must be in d ¼ 2. It is also
important to mention that the theories in Ref. [15] have not
yet been shown to be holographic, even though there is

evidence both from BPS quantities and in conformal
perturbation theory [27]. It would thus be particularly
interesting to find triple-trace marginal operators in known
holographic theories.
It is also worth discussing the fate of bulk locality. In

Refs. [13,43], possible issues with bulk locality were
raised. In the Klebanov-Witten theory, this can be seen
from the fact that the multitrace operator is built out of
particular Kaluza-Klein modes on T1;1. This would render
the deformation nonlocal on T1;1 and in Ref. [43], it was
argued that the theory should also be nonlocal on the AdS
space. In our construction, we do not see an explicit
manifestation of nonlocality; our interactions are likely
captured by boundary terms, but this does not necessarily
imply that there are nonlocal effects. Nonlocality would
appear in the bulk effective theory of the fields ϕ and ψ (the
bulk field dual to χ) through higher-derivative couplings. In
our case, while some quartic couplings may be generated,
only a finite number of higher-derivative terms are allowed
to appear. This follows from the fact that there are only
exchanges of fields of finite spin; see for example Ref. [44].
Therefore, we do not seem to find any issue with locality, at
least in conformal perturbation theory. It would never-
theless be interesting to study this question further.
Finally, we would like to comment on the possibility that

making the matter strongly coupled could in turn make the
gravitational sector (i.e. the stress-tensor sector) strongly
coupled. In the d ¼ 2 case, this never happens because the
strength of gravitational interactions is universally deter-
mined by the central charge of the CFT, which is
unchanged by the deformation. For d > 2, the situation
is less clear. It is an open problem to show that gravitational
interactions are weak in the dual of any CFT with large N.
In any case, for the mechanism described in this article, we
are assured that gravitational interactions remain weak as
long as the stress tensor is not used as a component of the
multitrace deformation.
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APPENDIX: REGULARIZATION OF COOχ

In this appendix we evaluate the integral

I ¼
Z

d2x
1

jxj8=3jx − 1j2=3 ; ðA1Þ

which determines the covariant derivative of the OPE
coefficient COOχ on the conformal manifold (14). To
regularize the integral, we use a hard-sphere cutoff with
a minimal subtraction scheme [35]. That is, we cut out ϵ
discs around divergent points, subtract only terms divergent
in ϵ, and send ϵ → 0. We note that in this scheme the
first derivative of the Zamolodchikov metric vanishes at
λ3 ¼ 0 [45,46]. Similarly, at first order two operators that
do not get lifted do not mix, because in that case their three-
point function with the modulus vanishes, and we do not
add or subtract any constant terms.
The statements above are general properties for con-

formal perturbation theory in any CFT2. In our case, the
situation is even simpler due to the large-N limit. Mixing
with higher-trace operators or with other single-trace
operators that share the same quantum numbers involves
relative factors of OðN−αÞ for some α > 0, which follows
from large-N factorization at λ3 ¼ 0. Therefore, mixing
between operators is absent in any regularization scheme to

leading order in the large-N limit. Subleading OðN−1Þ
corrections to Eq. (15) coming from mixing are possible,
and expected [47,48].
We can evaluate the integral using radial coordinates

x ¼ reiθ by performing first the integration over θ

I ¼
Z

∞

0

dr
Z

2π

0

dθ
1

r5=3ð1þ r2 − 2r cosðθÞÞ1=3

¼ 2π

Z
∞

0

dr
2F1

�
1
3
; 1
2
; 1; 4

αþ2

�

ðαþ 2Þ1=3r2 ; α ≔ rþ 1

r
: ðA2Þ

By exploiting the invariance of α under r ↦ 1
r and using

properties of the hypergeometric functions we find that
Eq. (A2) can be simplified to

I ¼ 2π

Z
1

0

dr
ðr2 þ 1Þ2F1

�
1
3
; 1
3
; 1; r2

�

r5=3
: ðA3Þ

The integral (A3) can be evaluated analytically but diverges
at r ¼ 0. Following our regularization scheme, we intro-
duce a cutoff ϵ to obtain

I ¼ 3π

ϵ2=3
−

8
ffiffiffi
3

p
π4

Γð1=3Þ6 þOðϵ4=3Þ: ðA4Þ

We then use minimal substraction to eliminate the first
term. As a result, the renormalized value of the integral
(A1) is finite and given by

Ireg ¼ −
8

ffiffiffi
3

p
π4

Γð1=3Þ6 : ðA5Þ
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