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We introduce an algorithm to piecewise dualize linear quivers into their mirror dual. The algorithm uses
two basic duality moves and the properties of the S-wall which can all be derived by iterative applications
of Seiberg-like dualities.
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I. INTRODUCTION

3d N ¼ 4 theories enjoy a mirror duality which relates
pairs of dual theories with Higgs and Coulomb branches of
the vacuum moduli space exchanged [1]. If we realize these
theories on Hanany-Witten brane setups in type IIB string
theory with D3-branes suspended between NS5 and D5-
branes, mirror symmetry can be interpreted as the action of
S-duality on the brane system [2,3].
It has been argued that S-duality can act locally on each

5-brane creating an S-duality wall on its right and an S−1

wall on its left [5,6]

NS5 → S−1D5S; D5 → S−1NS5S; ð1Þ
and the S-wall intersecting N D3-branes is known to
correspond to the T½SUðNÞ� quiver theory [5].
It is natural to wonder whether this local S-duality action

can be understood in field theory as a local action on the
quiver. In this paper we show that this is indeed possible, thus
providing a completely field theoretic and algorithmic
derivation of mirror symmetry. Specifically, for each element
in the relations (1) we can find a field theory counterpart,
allowingus to reinterpret (1) as genuine infrared (IR) dualities
in field theory. Such dualities, together with the properties of
the S-wall, can then be used to systematically dualize a given
quiver into its mirror. Crucially, all the basic dualities needed

in our algorithm can be derived using more elementary
Seiberg-like dualities, that are dualities that are analogs of
Seiberg duality [7] in 4d.
Recently in [8] a family of 4d N ¼ 1 theories called

Eσ
ρ½USpð2NÞ�, labeled by partitions ρ, σ of N, were

constructed (see Fig. 1). These theories upon compactifi-
cation to 3d and suitable RG flows reduce to the Tσ

ρ½SUðNÞ�
family of unitary gauge linear 3d N ¼ 4 quivers, first
introduced in [5,9]. The Eσ

ρ½USpð2NÞ� theories, as their 3d
relatives, enjoy mirror symmetry which relates pairs of
theories with swapped ρ and σ partitions.
One may then ask whether also 4dmirror symmetry can

be realized as a local action on the quiver. We will see that
it is indeed possible to define the same algorithm also in
4d, to locally dualize the fields by means of two basic
duality moves, which together with the properties of the 4d
S-wall allow us to go from Eσ

ρ½USpð2NÞ� to its mirror
Eρ
σ½USpð2NÞ�. As argued in [11], the 4d S-wall should be

identified with the FE½USpð2NÞ� theory [10,12], which in
3d reduces to the T½SUðNÞ� theory up to gauge singlets.
Interestingly, the basic duality moves involved in our
algorithm are IR dualities which can be in turn derived by
iterative applications of the Intriligator-Pouliot (IP) duality
[13] as shown in [11].
Although our discussion here focuses on the 4d case, by

taking the standard 3d limit combined with the suitable
Coulomb branch vacuum expectation values (VEVs) and
real mass deformations, we answer the same question in 3d,
that is we have an algorithm to locally dualize 3d N ¼ 4
quivers.
Early attempts to answer the same kind of question in the

3d set-up [6,14] reformulated the local SLð2;ZÞ action at
the level of the S3 partition function without providing
the field theory interpretation in terms of applications of
genuine IR dualities. In the Abelian case, the local S-duality
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action can be realized as a piecewise dualization of a free
hypermultiplet into SQED, which was understood as a
generalized Fourier transformation of its partition function
[15]. Our result is a generalization of the piecewise dual-
ization of the 3d Abelian mirrors in [15] to the non-
Abelian case.
One important feature of our dualization algorithm is the

propagation of certain operator VEVs along a quiver via
Higgs mechanism, which resembles Hanany-Witten tran-
sitions in brane setups. Such Higgs mechanism plays an
essential role to realize the expected gauge groups in the
mirror dual frame.

II. THE 4D S-WALL

In this section, we review the properties of the 4d S-wall,
the FE½USpð2NÞ� theory [16]. The quiver representation of
the theory is given on the left of Fig. 2.
The IR global symmetry is

USpð2NÞx ×USpð2NÞy ×Uð1Þt ×Uð1Þc; ð2Þ

with the enhancement SUð2ÞNy → USpð2NÞy of the sym-
metries of the saw and where the charges under Uð1Þt and
Uð1Þc are as specified in Fig. 2. Notice in particular that the
only fields charged under Uð1Þc are those forming the saw
of the quiver. To demonstrate our algorithm, we will use the
supersymmetric index [20–22] of this theory, which is a
function of the fugacities for these global symmetries so we

will denote it by I ðNÞ
FE ðx⃗; y⃗; t; cÞ. Its explicit definition can

be found in Eq. (2.17) of [11].
We will also need an asymmetric S-wall which is

obtained by turning on the superpotential

δWdef ¼ Try½J · C�; J ¼ 1

2
ðJ − JTÞ;

J ¼ J2 ⊗ ðOM ⊕ JN−MÞ; M < N ð3Þ

where Try is taken over the emergent USpð2NÞy symmetry
of the theory. C is a matrix collecting the mesonic operators
constructed from the bifundamental field between the
gauge nodes and the fundamental fields in the saw, which
is in the antisymmetric representation of USpð2NÞy [8,10].
The antisymmetric matrix J is defined in terms of the
K-dimensional empty matrix OK and the K-dimensional
Jordan matrix JK . This deformation partially breaks
USpð2NÞy to USpð2MÞ × SUð2Þ and tunes the fugacities

of FE½USpð2NÞ� as yMþ1 ¼ t
N−M−1

2 v;…; yN ¼ t−
N−M−1

2 v for
M < N. We schematically represent the resulting theory as
on the right of Fig. 2.
It was shown in [11] that gluing two S-walls by gauging

a diagonal combination of one USpð2NÞ from each of
them we get the identity wall, a theory with quantum
deformed moduli space whose index behaves as a delta-
function that identifies the remaining symmetries, as
shown in Fig. 3. To gauge we add an antisymmetric chiral
coupled quadratically to one antisymmetric operator from
each block.

FIG. 2. The FE½USpð2NÞ� quiver and its compact representation displaying the manifest and emergent USpð2NÞ symmetries and the
Abelian Uð1Þc symmetry fugacity. The powers of t and c encode the charges of the fields under Uð1Þt and Uð1Þc. The crosses denote
gauge singlets flipping the diagonal mesons. On the right-hand side (rhs) the asymmetric S-wall.

FIG. 1. On the left the 3d Tρ
σ ½SUðNÞ� theory, round nodes denote gauge groups and square boxes flavor groups all of UðnÞ type. Lines

connecting them represent chiral fields. On the right the 4d Eσ
ρ½USpð2NÞ� theory (up to singlets), now all nodes denote groups of

USpð2nÞ type. The ranks Ni, Mj are given in terms of the partitions ρ, σ. As explained in [10] reducing the Eσ
ρ½USpð2NÞ� to 3d and

turning two deformations that first break the USpð2nÞ groups to UðnÞ and then give mass to the fields of the saw (the USpð2NiÞ ×
SUð2Þ bifundamentals) we flow to the Tσ

ρ½SUðNÞ� theory.
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At the level of the index the identity property corre-
sponds to

x⃗Îy⃗;vðtÞ ¼
I

dz⃗NΔNðz⃗; tÞI ðNÞ
FE ðx⃗; z⃗; t; cÞ

I ðNÞ
FE ðz⃗; y⃗; t

N−M−1
2 v;…; t−

N−M−1
2 v; t; c−1Þ; ð4Þ

where we defined the identity operator

x⃗Îy⃗;vðtÞ¼
P

σ∈SN;�
Q

N
i¼1 2πixiδðxi−y�1

σðiÞÞjyMþj¼t
N−Mþ1−2j

2 v

ΔNðx⃗;tÞ
;

ð5Þ

with the summation
P

σ∈SN

P
� spanning the Weyl group

of USpð2NÞ and j ¼ 1;…; N −M. We also defined with
dz⃗N the USpð2NÞ integration measure including the Weyl
symmetry factor and with ΔNðz⃗; tÞ the contribution of the
USpð2NÞ vector and antisymmetric chiral multiplets. For
their explicit definitions, see Eqs. (2.7)–(2.8) of [11].
This duality and various generalizations where the

S-walls are glued adding some fundamental chirals in
the middle USpð2NÞ gauge node were derived in [11]
with iterative applications of the IP duality.

III. BASIC DUALITY MOVES

We will now introduce the two basic duality moves we
will need to perform the local dualization. These moves
can be considered as the field theory analog of the local
S-action on the 5-branes.

A. Triangle block dualization

The first move replaces a bifundamental block by a
fundamental chiral sandwiched between two S-walls, as on
the left of Fig. 4. This duality has been derived in [11] by
iterative use of the IP duality. At the level of the super-
symmetric index we have

I ðN;MÞ
▽

ðx⃗; y⃗; v; t; ctM−N
2 Þ ¼

YN−M

i¼1

Γeðt1−ic2Þ
Γeðpqt−iÞ

I
dz⃗MΔMðz⃗; tÞ

YM
i¼1

ΓeðtN−Mþ1
2 v�1z�1

i ÞI ðMÞ
FE ðz⃗; y⃗; t; ðpq=tÞ12c−1Þ

I ðNÞ
FE ðx⃗; z⃗; t

N−M−1
2 v;…; t−

N−M−1
2 ; t; cÞ; ð6Þ

where we defined the index of the triangle block as

I ðN;MÞ
▽

ðx⃗; y⃗; v; t; cÞ ¼
YN
i¼1

YM
j¼1

Γeððpq=tÞ12x�1
i y�1

j Þ

YN
i¼1

Γeðt12cv�1x�1
i Þ

YM
j¼1

ΓeððpqÞ12c−1v�1y�1
j Þ ð7Þ

where the definition of the elliptic gamma function ΓeðzÞ is
given by

ΓeðzÞ≡ Γeðz;p; qÞ ¼
Y∞

n;m¼0

1 − pnþ1qmþ1z−1

1 − pnqmz
: ð8Þ

B. Fundamental block dualization

The second basic move replaces a block of 2L funda-
mentals times the identity wall by L triangle blocks
sandwiched between two S-walls, as on the right of
Fig. 4. This can be obtained starting from the duality for
the gluing of two S-walls with 2L chirals in the middle
given in [11] by gluing two further S-walls on each side of
the duality. Using the delta property of Fig. 3 on the left-
hand side (lhs) of the duality and the flip-flip duality of
FE½USpð2NÞ� [23] on the rhs, we arrive at our basic move.
At the level of the supersymmetric index, this reads

FIG. 3. Gluing two S-walls yields the identity wall.

FIG. 4. On the left, the basic move for the dualization of a bifundamental block including the SUð2Þv fundamental chirals. On the right,
the basic move for the dualization of a block of 2L fundamentals including an Identity wall. For chiral fields the powers of fugacities
represent the charges under the corresponding Abelian symmetries and the R-charges are encoded in ðpqÞR2 .
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x⃗Îy⃗ðtÞ
YN
i¼1

YL
j¼1

Γeððpq=tÞ12v�1
j x�1

i Þ ¼
I YL

k¼0

dwðkÞ
N ΔNðw⃗ð0ÞÞ

I ðNÞ
FE ðx⃗; w⃗ð0Þ; t; c−1Þ

YL
i¼1

I ðN;MÞ
▽

ðw⃗ði−1Þ; w⃗ðiÞ; vi;pq=t; ct
1−i
2 Þ

YL−1
k¼1

ΔNðw⃗ðkÞ;pq=tÞI ðNÞ
FE ðw⃗ðLÞ; y⃗; t; t−L

2cÞΔNðw⃗ðLÞÞ; ð9Þ

where x⃗Îy⃗ is the identity operator x⃗Îy⃗;v of (5) for M ¼ N, in
which case it is independent of v, and ΔNðw⃗Þ is the
USpð2NÞ vector multiplet contribution, whose definition
can be found in (2.19) of [11].

IV. DUALISATION ALGORITHM

Given the identity property of the S-wall and the basic
duality moves, we can use them to derive the 4d mirror of
any of the Eσ

ρ½USpð2NÞ� theories of [8].
The algorithm works as follows:
(1) Chop the quiver by ungauging the gauge nodes into

either triangle or fundamental blocks.
(2) Dualize each block using the basic duality moves

in Fig. 4.
(3) Glue back the dualized blocks producing identity

walls to arrive at a quiver with no S-walls left. At this
stage some operators can acquire a VEV.

(4) If some operators acquired a VEV, follow the RG
flow to the IR final configuration, which coincides
with the expected mirror of the original theory.

Let us exemplify this procedure in the case of ρ ¼
½N − 2; 12� and σ ¼ ½1N �. This is summarized in Fig. 5. We
start from the quiver of E½N−2;12�½USpð2NÞ� represented on
the top left corner of Fig. 5. The crosses represent gauge
singlets flipping the corresponding diagonal mesons, while
the blue lines denote singlets charged under some of the
non-Abelian global symmetries. For simplicity we omit
drawing singlets that do not transform under the non-
Abelian symmetries in the intermediate steps. One can keep
track of them with the index and check that they work out
as expected.
In step 1 we split the quiver into triangle and funda-

mental blocks. Notice that the fundamental block includes
the identity operator. We can add such operator in the
quiver by introducing an auxiliary gauge node labeled by
the fugacity z⃗ð3Þ in the drawing. We have also completed the
first and third triangle adding trivial fields.
In step 2 we dualize each block using the basic moves.
In step 3 we glue back the dualized blocks by restoring

the gauging of the original nodes. These three gaugings
glue together S-walls with the correct charges to yield
identity walls as in Fig. 3.
In this way we remove all the S-walls from the quiver

(the S-walls connecting zero nodes are trivial and can be
dropped) and we arrive at step 4, producing also new

singlets charged under the non-Abelian symmetries which
we draw in green. Notice that one set of them gives mass to
some of the original blue singlets.
We now have a quiver with no S-walls and with fixed

charges for the chiral fields. In particular, the orange line
denotes a pair of chirals in the bifundamental of the
USpð4Þ gauge and the SUð2Þ flavor node. One of
them has charge 1 under Uð1Þt only, while the other is
uncharged under every Abelian symmetry including the
R-symmetry. Such vanishing charges for the latter chiral
signal that some operator is acquiring a VEV. Indeed, we
note that there is a set of gauge singlets, originating from
ΔNðx⃗; tÞ of (5), that couple to the mesons constructed from
the bifundamental chirals denoted by the orange line. The
superpotential (3) of the deformed FE½USpð2NÞ� is yields
a linear superpotential for one of those extra singlets,
whose equation of motion leads to a nonzero VEVof one
of the mesons, specifically the one constructed from the
bifundamental chirals with no Abelian charges.
We can efficiently study the VEV through the super-

symmetric index with the technique described in [24].
Specifically, the index contribution of the aforementioned
chirals is

Q
2
i¼1 Γeðy�1

3 u�1
i Þ, where ui are theUSpð4Þ gauge

fugacities. From these gamma functions we have two sets
of poles that pinch the integration contour at, say, u2 ¼ y�1

3 .
Taking these residues we obtain the index of the theory
after the Higgsing induced by the VEV. In this case, the last
USpð4Þ node is Higgsed down to USpð2Þ and the two
chirals move to the USpð4Þ node on its left. Hence, we end
up with the quiver on the bottom right of Fig. 5, where we
are now drawing all the singlets and the charges to show
that this indeed coincides with the E½N−2;12�½USpð2NÞ�
according to the conventions of [8]. We recovered in this
way the mirror duality between E½N−2;12�½USpð2NÞ�
and E½N−2;12�½USpð2NÞ�.

V. COMMENTS AND OUTLOOK

Our algorithm dualizes the Eσ
ρ½USpð2NÞ� theory into its

mirror dual by acting with two basic duality moves and the
properties of the S-wall. As shown in [11], when we
consider gluings involving gauging manifest symmetries,
everything can be derived from the Intriligator-Pouliot
duality.
However, to actually glue back all the dualized blocks,

we need the basic moves and the S-wall properties with
gauging of both manifest and emergent symmetries. These
equivalent relations can be trivially obtained using the self-
duality property of the FE½USpð2NÞ� theory, which fol-
lows from the self-mirror property of E½USpð2NÞ�. So it
would seem that our algorithm to construct mirrors has to
assume mirror symmetry at some point.
Nevertheless, to derive the mirror of Eσ

ρ½USpð2NÞ�,
we only need to assume the self-mirror property of
E½USpð2KÞ� with K < N. Since E½USpð2Þ� is simply a
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Wess-Zumino model which is manifestly self-mirror, by
mathematical induction we can prove that all the mirror
dualities of the Eσ

ρ½USpð2NÞ� family can be derived by the
iterative use of the IP duality alone.
One can obtain an analogous algorithm for the local

dualization of 3d linear quivers, by either taking the 3d
limit, combined with Coulomb branch VEVs and real
masses, of our 4d results or re-deriving all the basic moves
directly in 3d by iterative applications of the Aharony
duality [25], to which the IP duality reduces.
The basic moves in this case can be directly interpreted

as the transformations of the NS5 and D5-branes in the
brane setups of the 3d theories under the S element of
SLð2;ZÞ. After dualizing the 5-branes in the brane setup,
one usually needs to move D5 across NS5-branes using

Hanany–Witten moves to reach a configuration where one
can read off the 3d gauge theory. Interestingly, in our
procedure we do not have to implement the HWmoves, but
we need to study RG flows initiated by VEVs which have
the effect of moving the matter fields and changing the
ranks so to arrive at the final mirror theory.
One should note that our algorithm is not just a

prescription to generate integral identities for the super-
symmetric index on S3 × S1; while we have provided the
supersymmetric index as one concrete example of observ-
ables realizing our dualization algorithm, other partition
functions can also be manipulated in the sameway to derive
mirror symmetry from the IP duality. In fact, as we already
emphasized, our algorithm should be regarded as a pro-
cedure at the level of field theories.

FIG. 5. An example of the dualization algorithm. Dashed lines denote singlets transforming under the non-Abelian global symmetry
that are present from the beginning, while dotted lines denote singlets that are produced during the dualization. The alternating dashed-
dotted line at step 4 denotes a pair of chirals with charges respectively 0 and 1 underUð1Þt only. We also specify the fugacities of the ith
gauge node as z⃗ðiÞ to facilitate the comprehension of how the block decomposition is performed. We don’t draw singlets uncharged
under the non-Abelian symmetries except for the initial and final frame, where they are represented by crosses.
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Indeed the basic duality moves and the identity wall
property used in our algorithm can be proven as in [11] by
iterations of the IP duality, with a procedure which can be
implemented on the UV Lagrangian.
A key ingredient of our algorithm is the possibility

gauging emergent symmetries, which actually allows us to
piecewise dualize and glue black the triangle or funda-
mental blocks. These manipulations are then implemented
in the IR.
Furthermore, as mentioned in the Introduction, our

algorithm is the generalization of the piecewise dualization
of Abelian mirror symmetry. For the latter, notably, the
same idea has also been used to derive some nonsuper-
symmetric Abelian dualities from simpler building blocks
[26–28]. We thus expect that our result will provide a new
approach to understanding non-Abelian dualities with less
supersymmetry.
The results of this paper can be generalized in many

directions. For example, the same technique can be used to

derive the mirror dualities of circular quivers and of the 3d
S-fold SCFTs [29–37] and their 4d counterpart.
Moreover, one can also try to find the basic duality

moves corresponding to the local action of other SLð2;ZÞ
elements, including the action of the T generator, which in
3d corresponds to the introduction of a Chern-Simons
coupling. This will allow us to generate more general pairs
of 4d dual theories. We plan to investigate this in a
future work.
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