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Introduction

This thesis consists of two independent essays that empirically explore different research ques-

tions at the intersection of energy economics and climate change. The energy sector is re-

sponsible for about three quarters of human greenhouse gas emissions. 1 It is therefore not

surprising that numerous policies have been adopted around the world to promote a safe and

equitable transition to a net-zero emissions energy system. 2 The underlying idea that con-

nects the following essays is that applied econometric studies and policy evaluation studies

can play a key role in shedding light on the realised effects of these policies and thus provide

a valuable tool to guide the decarbonisation of the energy sector.

The first chapter examines the relationship between electricity liberalisation and the direc-

tion of technological change in the electricity sector. Technological change has long been iden-

tified as a necessary condition for transitioning to a net-zero emissions energy system while

maintaining or improving current living standards. In this chapter, I show that electricity liber-

alisation can play an important role in steering innovation away from ”dirty” technologies for

electricity generation, transmission and distribution and towards ”cleaner” alternatives. Using

patent-level quality indicators, I also find that ”clean” energy patents developed in liberalised

energy markets tend to be more exploratory (i.e. less incremental), while the same effect is

not observed for ”dirty patents”.

In the second chapter, a join work with Anna Cretı̀ and Marzia Sesini, we examine the

impact of bioethanol support in France on wheat consumption and wheat prices and assess its

implications for food security. A clear understanding of the relationship between conventional

biofuels and food security is important to determine the extent to which these fuels can play

a role in decarbonising the transport sector. To date, however, there are few empirical studies

examining the relationship between biofuel support policies and food security in European

countries. On the one hand, we find that biofuel support in France in the early 2000s led

to a significant increase in the amount of wheat used outside the food sector, resulting in a

significant decrease in the share of wheat used in the food sector. On the other hand, we find

no evidence of an increase in wheat prices. If, as economic theory predicts, higher demand for

wheat in the fuel sector puts upward pressure on wheat prices, in our analysis this effect was

likely overshadowed by the high volatility of wheat prices worldwide due to the global food

crisis of 2007/2008.

1https://ourworldindata.org/ghg-emissions-by-sector
2(IEA (2022), World Energy Outlook 2022, IEA, Paris https://www.iea.org/reports/world-energy-outlook-

2022, License: CC BY 4.0 (report); CC BY NC SA 4.0 (Annex A))
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Chapter 1

Clean Sweep: Electricity Liberalisation
and the Direction of Technological
Change in the Electricity Sector

Abstract

This paper examines the impact of electricity liberalisation on the direction of technological

change in the electricity sector. To this end, I use data on patents filed over the period 1990-

2017 related to electricity generation, transmission and distribution in combination with a set

of patent-level quality indicators and an instrumental variable approach. The results show that

electricity liberalisation leads to the development of less dirty patents and more clean energy

technologies. Clean energy innovations developed in more competitive electricity markets

also tend to be more exploratory in nature, as they rely more on knowledge spillovers from

other technological fields. The same is not true for dirty technologies. Of the clean energy

technologies considered in the analysis, innovation in energy storage technologies appears to

benefit most from increased competition in the electricity sector.

Keywords: Clean-energy Technologies, Electricity Liberalisation, Climate Change, Patent

Data. Jel Codes: L94, 031, Q42, Q55, Q01
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1.1 Introduction

Technological change and innovation are key to achieve a secure and just transition to a net-

zero emissions energy system (IEA, 2022). In light of this, economists have long been in-

terested in understanding what factors can reduce path dependence in polluting technologies

and steer technological change towards cleaner alternatives (Aghion et al., 2023; Aghion et

al., 2016; Acemoglu et al., 2012). In this paper, I investigate whether electricity liberalisation

can have this effect for technologies related to electricity generation, transmission and distri-

bution. To this end, I examine the impact of increased competition in the electricity sector

on the number of clean and dirty patents developed in the industry and on the exploratory or

exploitative nature of these patents.

The question of whether and how electricity liberalisation affects the direction of techno-

logical change in the electricity sector is particularly important given the lively debate on the

regulation and design of the electricity market in recent years. In the European Union, this de-

bate was recently reignited by the Russian invasion of Ukraine and the subsequent electricity

price crisis (ACER, 2022). In the United States, the Texas blackout in 2021 triggered a similar

discussion, focusing in particular on the role of electricity liberalisation in the failure of the

power system (e.g., Mays et al., 2022).

The main data sources for the analysis are the European Patent Office’s Patent Statisti-

cal database (PATSTAT) and the OECD Patent Quality Indicators Database. The PATSTAT

database contains a wealth of information on worldwide patents, including but not limited

to the country of origin of the inventor(s), the year in which the patent was first filed and

the technological fields to which the patent is assigned. This information is used to create

a country-level panel dataset for clean and dirty innovations related to electricity generation,

transmission and distribution filed between 1990 and 2017. Clean energy innovations are iden-

tified using the Cooperative Patent Classification code Y02E (”Reduction of Greenhouse Gas

Emissions, Related to Energy Generation, Transmission or Distribution”). Dirty innovations

are identified as those that belong to class H02 (Generation; Conversion or Distribution of

Electric Power) but are not assigned to class Y02E (Popp et al., 2022).

The list of all technologies included in technology class Y02E can be found in Appendix

A.1. Part of the contribution of this paper is that it focuses on a broader range of clean energy

technologies than is typically the case in the literature on liberalisation and green innovation

in the electricity sector. This literature focuses mainly on renewable energy innovations, while

the Y02E class also includes other technologies that can contribute to the decarbonisation of

the energy sector, such as those related to energy storage or combustion technologies with

1



mitigation potential. However, it is important to note that two of the technological fields

categorised under the Y02E code are likely to have a relationship with electricity liberalization

that is distinctly different from the others These are nuclear energy (Y02E 30) and hydrogen-

related technologies (Y02E 60/30 and Y02E 60/50).

Nuclear energy is likely to suffer from the liberalisation of the electricity market (Markard

et al., 2020, Newbary 2010). According to IEA (2019a): ”The biggest barrier to new nuclear

construction is mobilising investment. Plans to build new nuclear plants face concerns about

competitiveness with other power generation technologies and the very large size of nuclear

projects that require billions of dollars in upfront investment. Those doubts are especially

strong in countries that have introduced competitive wholesale markets.” [IEA, 2019a, pag 4].

As for hydrogen-related technologies, it seems difficult to imagine that changes in electricity

market regulation during the period of under analysis (1990-2017) could have played a sig-

nificant role in their development. The hydrogen market is still considered nascent today, and

despite growing interest in the use of hydrogen in the power sector, its deployment remains

negligible to date (IEA, 2022a, IEA 2019b). Data on hydrogen demand paint a similar picture.

Demand for hydrogen continues to be driven by traditional refining and industrial applications.

New applications such as transport, high-temperature industrial heating, energy and buildings

account for less than 0.1% of global demand, with road transport being the largest contribu-

tor to hydrogen demand among these new applications 1. Due to these considerations, I do

not include in the main analysis patents related to nuclear power and hydrogen technologies.

Throughout the remainder of this paper, the term ”clean energy technologies” refers to all

Y02E technologies except those in these technological fields. For the sake of completeness,

Appendix A.8 shows and discusses the results when these patent applications are also included

in the sample.

The OECD Patent Quality Indicators Database contains a wide range of indicators calcu-

lated at the patent level that capture various important characteristics of the underlying tech-

nologies (Squicciari et al., 2013). A subset of these indicators is used in the following analysis

to proxy the exploratory or exploitative nature of patents related to electricity generation,

transmission or distribution. This allows me to investigate whether electricity liberalisation

has led to the development of more exploratory innovations; a pattern that would suggest less

path dependence in the development of new technologies in the electricity market.

The use of patent-level indicators to investigate these types of questions is now well es-

tablished in the literature (see e.g. Acemoglu et al., 2022; Popp et al., 2022; De Noni et al.,

1Source: https://www.iea.org/energy-system/low-emission-fuels/hydrogen
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2021; Barbieri et al., 2020). However, Higham et al. (2021) show that results obtained with

different patent indicators can be inconsistent and therefore stress the importance of carefully

selecting the best indicators in relation to the research question of the analysis. To measure

the exploratory nature of the patents in the sample, I follow the literature and choose two

widely used indicators that focus on the breath, complexity and diversity of the search space

of these patents: the radicalness index (Shane, 2001) and the originality index (Trajtenberg et

al., 1997). These indicators are described in detail in Section 1.3.

The search space of a patent can be defined as the totality of the knowledge inputs on

which the invention is based, i.e. the set of sources used to develop the invention. A nar-

row search space is characterised by knowledge inputs from few technological fields and is

generally associated with the development of incremental or exploitative innovations (Squic-

ciarini et al., 2013, Quintana-Garcı́a et al., 2008; Shane, 2001; March, 1991). A diverse

search space, on the other hand, uses knowledge from a variety of fields and is thus evidence

that the patent builds on many strands of knowledge. An established body of literature in

innovation theory relies on the radicalness index and/or the originality index to measure the

breadth and diversity of a patent’s search space and to identify radical and exploratory inno-

vations (Acemoglu et al., 2022, De Noni et al., 2021, Barbieri et al., 2020; Squicciarini et al.,

2013; Quintana-Garcı́a et al., 2008; Shane, 2001; Trajtenberg et al., 1997). The underlying

assumption is that exploratory innovation requires the combination of diverse ideas. Further-

more, the characteristics measured by the radicalness and originality indices are not only good

indicators for capturing the exploratory nature of a patent, but also have relevant policy im-

plications themselves. A diverse search space has been shown to be particularly important for

the development of green innovations, as these often require more diverse knowledge inputs

(Barbieri et al., 2020; De Marchi, 2012). Moreover, the use of ”knowledge accumulated in

other technological fields is an often overlooked factor that is of vital importance to technol-

ogy policy, because the benefits of spillovers can be harnessed at relatively low cost and can

avoid or reduce the need for additional R&D” (IEA, 2020, p. 338). For example, knowledge

spillovers from the production of silicon for microprocessors played an important role in the

development of solar PV panels, and the carbon anode used in Li-ion batteries today was first

developed by petrochemical companies (IEA, 2020). 2

To uncover the causal effect of interest, I rely on an Instrumental Variable (IV) approach.

The proposed strategy follows Nicolli and Vona (2019) and uses regulation in telecommuni-

cations as an instrument for electricity regulation. The intuition behind this approach is that

2Another example cited in the IEA report is the development of the first gas turbine jet engine in 1939, based
on government-funded military R&D in the United Kingdom.
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the liberalisation of the telecommunications sector preceded that of the electricity market and

is generally considered as instrumental in giving momentum to the latter (Nicolli and Vona,

2019; Pollitt 2012; Joskow, 2008). Høj et al. (2006) provide evidence of this kind of spillover

effects between product market reforms in different sectors and Nicolli and Vona (2019) argue

that widespread liberalisation signals greater commitment to this reform and greater efforts on

the part of policymakers and public authorities. Consequently, extensive liberalization across

various sectors is expected to correlate with more effective product market reforms. At the

same time, the liberalisation of the telecommunications sector can be considered as indepen-

dent of the direct lobbying power of actors in the energy sector (Nicolli and Vona, 2019) and

technological developments in energy supply technologies.

The results of the empirical analysis show that electricity liberalization increases the num-

ber of clean energy patents in electricity generation, transmission and distribution, while the

number of dirty patents in these fields decreases. This reform also makes clean energy patents

more exploratory, as they rely more on the use of knowledge spillovers from other techno-

logical fields. The same pattern is not observed for dirty patents. Among the Y02E tech-

nological fields included in the analysis, energy storage technologies appear to benefit most

from increased competition in the electricity market. These results suggest that electricity

liberalisation can play an important role in changing the direction of technological change in

the electricity sector, steering it away from dirty technologies and towards more and more

exploratory clean energy technologies.

The remainder of the chapter is organised as follows. Section 1.2 reviews the relevant

literature and presents the research hypotheses. Section 1.3 describes the data used and Section

1.4 discusses the empirical strategy. Section 1.5 presents the results and Section 1.6 concludes.

1.2 Liberalisation and Innovation in the Electricity Sector

Previous empirical studies on the relationship between electricity liberalisation and innovation

have mainly focused on the impact of this reform on the amount of new technologies devel-

oped in the market (e.g. the number of patents) or the inputs used in the research process (e.g.

investment in R&D). A useful way to categorise this literature is to distinguish between stud-

ies that focus on clean energy technologies and those that look at all innovations developed in

the electricity sector.

When focusing on all innovations developed in the market, the results are mixed. A first

strand of literature suggests that overall R&D spending and patent activity decline after elec-
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tricity liberalisation, e.g. Sanyal and Gosh (2013), Sterlacchini (2012), Jamasb and Pollitt

(2008) and Dooley (1998). A more recent study by Cambini et al. (2016) finds a positive

effect of electricity market reform on both R&D spending and patenting. According to their

results, these effects are driven by the vertical unbundling of large firms in the electricity

sector. Wang and Mogi (2017) find that Japanese electric utilities filed more patents after lib-

eralisation, but in conjunction with a decrease in R&D spending. Finally, Marino et al. (2019)

find an inverted-U relationship between electricity liberalisation and the number of patents

filed in the electricity sector.

In contrast, the literature focusing specifically on clean-energy innovation consistently

shows a positive effect of electricity liberalisation on clean energy innovation (Popp, 2019).

Nesta et al. (2014) show that electricity liberalisation has a positive impact on renewable en-

ergy innovation, which is driven by the reduction of barriers to entry. Nicolli and Vona (2016)

extend this result and show that the effect of electricity liberalisation is heterogeneous across

different renewable energy technologies and is particularly significant for solar, wind and, to a

lesser extent, waste technologies. Jamasb and Pollitt (2011) find that electricity-related patents

in non-nuclear and renewable technologies increased after electricity liberalisation, but also

observe a permanent decline in R&D in the post-liberalisation period, which they suggest

may have a long-term negative impact on technological progress in the sector. Jacobsson and

Bergek (2004) provide anecdotal evidence of the role that new entrants have played in the

development of the German wind energy sector. Finally, in reviewing of the literature on the

diffusion of renewable energy technologies, Negro et al. (2012) conclude that incumbents’

preference for incremental and near-to-market innovation is a significant barrier to innovation

in renewable energy technologies and to their diffusion.

This paper contributes to the above literature by explicitly categorising technologies re-

lated to electricity generation, transmission or distribution into dirty and clean innovations and

comparing the impact of electricity liberalisation on both categories. The analysis is therefore

not only related to the literature on electricity liberalisation and innovation, but also to the

literature on directed technological change and the environment (Aghion et al., 2023; Aghion

et al., 2016; Calel and Dechezleprêtre, 2016; Acemoglu et al., 2012; Popp et al., 2002). This

literature has shown how the direction of technological change can change from dirty to clean

technologies in response to public policies such as taxes or subsidies (Acemoglu et al., 2012).

For example, Aghion et al. (2016) find that in response to higher tax-adjusted fuel prices,

clean innovations in the automotive sector increase while dirty innovation decreases. Calel and

Dechezleprêtre (2016) find that the EU Emission Trading System has increased low-carbon

innovation in regulated firms. Particularly relevant in this context is the work of Aghion et al.
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(2023), which finds that firms in the automotive sector innovate more in clean technologies

when they are exposed to pro-environmental attitudes and that this effect is particularly strong

for higher levels of product market competition.

In studying the effect of liberalisation on the direction of technological change in the elec-

tricity sector, it is important to underline that this sector is one of the best examples of a large

technical system (Hughes, 1987). Joerges (1998) defines large technical systems as complex

systems of physical structures and machineries, integrated over space and time and supporting

other technical systems. The strong interactions between the different components of a large

technical system, as well as the interactions between the system itself and the other technical

systems it supports, mean that innovation in these environments is often path-dependent and

characterised by incremental improvements that rely heavily on knowledge already available

in the field (Negro et al. 2012; Markard and Truffer 2006; Hughes, 1987).

In such an environment, liberalisation can be expected not only to affect the number of

clean and dirty technologies developed in the electricity market, but also to change the nature

of these technologies making them less exploitative and more exploratory or, in other words,

less incremental and more radical. As discussed in Section 1.1, I follow much of the existing

literature on this topic and proxy the exploratory nature of an innovation with the breath and

complexity of its knowledge base (De Noni et al., 2021, Barbieri et al., 2020; Squicciarini et

al., 2013; Quintana-Garcı́a et al., 2008; Shane, 2001; Trajtenberg et al., 1997).

Markard and Truffer (2006) present evidence that electricity liberalisation leads to the

development of more radical clean-energy innovations by analysing a series of 44 interviews

conducted in more than 30 utilities from Germany, the Netherlands and Switzerland. Their

study concludes that the liberalisation of the electricity sector may be one of these external

drivers which increases the diversity of clean-energy technologies’ search space and therefore

leads to more exploratory clean-energy innovations. 3

A first channel through which electricity liberalisation can lead to more exploratory in-

novation is the lowering of barriers to entry, which allows new entrants in the market. The

importance of new entrants in developing radical innovations is widely recognised in the eco-

nomics literature (Akcigit and Kerr, 2018; Klepper 1996; Winter, 1984). The model proposed

by Klepper (1996) predicts that low competition reduces the diversity of product R&D and

could therefore lead to a narrower search space in the innovation process. In contrast, the en-

try of new players is expected to lead to a broader approach to R&D and a wider search space,

3It is worth noting that their case study is based on fuel cell innovation strategy, a technology that is excluded
from the main sample used in this analysis. See Appendix A.8 for the results using a sample which includes also
hydrogen related technologies.
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especially in the case of the electricity sector, as these players are not tied to the traditional

large-scale plants and technologies of incumbents (Nicolli and Vona, 2016; Nesta et al., 2014).

A second channel through which electricity liberalisation may lead to less incremental

innovation in the electricity sector is by triggering a shift in the actors responsible for the

innovation activity. Dolphin and Pollitt (2020) use patent data from the UK and show that

innovation activity shifted from regulated monopolists to electric equipment manufacturers

after the reform of the electricity market. As electric equipment manufacturers are less tied to

traditional generation technologies, we can expect them to be less affected by path dependence

in dirty technologies. Furthermore, new entrants will change the demand faced by electric

equipment manufacturer as they are likely to demand new types of technologies (Sanyal and

Gosh, 2013). This will provide a further incentive for electric equipment manufacturers to

make their innovations less path-dependent and to widen their search space.

Finally, more competition in the electricity market may also have an impact on the kind

of innovations developed by former monopolists. Incumbents’ preference for incremental

innovation has been identified as a potential barrier to the development and diffusion of ex-

ploratory clean energy technologies (Negro et al., 2012). The literature on the relationship

between innovation and product cannibalisation is relevant to this point, as radical clean en-

ergy technologies are often competence-destroying for incumbents in the electricity market

and have the potential to threaten their existing asset base (Nesta et al., 2014). When canni-

balisation is an issue, competitive pressure is essential to create incentives for incumbents to

develop radical innovations (Conner, 1988; Reinganum, 1983). Therefore, technologies de-

veloped by electric utilities can be expected to become less incremental and more exploratory

as competition in the electricity market increases. Privatisation may also have a similar ef-

fect by changing the strategy of incumbents so that their innovations become less incremental.

An example in this direction is the empirical evidence suggesting that investor-owned electric

utilities respond more to renewable energy policies than state-owned utilities (Nicolini and

Tavoni 2017; Delmas and Montes-Sancho 2011; Carley 2009).

Drawing from the discussion in this section, the research hypothesis of this study is that

electricity liberalization reduces path dependence in dirty technologies for electricity gener-

ation, transition and distribution and redirects innovation towards cleaner alternatives. More

competition in the electricity market is also expected to foster the development of more ex-

ploratory energy technologies.
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1.3 Data and Descriptive Statistics

Using the PATSTAT database, I collected data on patent applications related to the generation,

transmission or distribution of electricity, developed in OECD countries and filed at the Euro-

pean Patent Office (EPO) between 1990 and 2017.4 5 I follow an approach commonly used

in the literature and identify clean energy technologies using the Cooperative Patent Classi-

fication code Y02E.6 As discussed in detail in Section 1.1, patents on nuclear and hydrogen

technologies are not included in the sample. For completeness, results including these tech-

nologies are presented in Appendix A.8. Dirty patents are identified as those belonging to

class H02 and not also assigned to class Y02E.

The resulting patent-level dataset was merged with the OECD Patent Quality Indicators

database (February 2022) (Squicciarini et al., 2013), which contains information on a variety

of patent quality indicators calculated at the application level. Section 1.3.1 explains in detail

each patent indicator used in the analysis.

To avoid double counting of the same invention, only one application from each patent

family was selected.7. In other words, the following analysis is based on patent families rather

than individual patent applications. A well-known issue with this approach when using patent-

level quality indicators is that patent applications belonging to the same family often have

different values for the same indicator. To address this problem, I follow Barbieri et al. (2020)

and Verhoeven et al. (2016) and select only the application with the highest value of the

indicator of interest from each patent family. In Appendix A.4, I test the robustness of the

results using the application with the lowest value.

4Selecting patents from a single patent office is particularly important because part of the analysis uses patent-
level indicators as dependent variables. When working with patent-level quality indicators, considering data from
several offices at the same time could lead to biased indicators, which capture differences in office practices and
regulations rather than differences in the characteristics of the underline patents (Squicciarini, 2013). On the
other hand, this leads to the so called home bias effect. This is a common and well know problem in studies
based on patents from a unique patent office, but luckily can be fully dealt with in the estimation process (see for
instance Conti et al., 2018). The specification proposed in model 1.3 does this by including country fixed effects
and the patent family stock of the country in dirty and clean patents. An alternative strategy would be to use the
share of clean patents, as this measure clearly abstract from the total number of patents filed at the EPO by each
country in the sample. I do this in Appendix A.10.

5Due to the small number of Y02E patent families filed during the study period, Greece, Portugal and Turkey
are excluded from the sample.

6The list of technologies included in class Y02E can be found in Appendix A.1.
7A patent family is defined by the EPO as ”a collection of patent applications covering

the same or similar technical content”, see https://www.epo.org/searching-for-patents/

helpful-resources/first-time-here/patent-families.html
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Each patent is assigned to a country based on the address of the inventor(s). This strat-

egy is often used in the literature because the use of the country of the inventor(s) links the

document to the environment and territory in which it was developed (Baudry and Dumont,

2006). More than 60% of the families in the sample come from Germany and Japan com-

bined, two well-known leaders in the development of clean energy technologies. This high

share is also explained by the fact that patents from the United States and South Korea could

not be included in the sample due to missing values in the OECD Product Market Regulation

Database (Vitale et al., OECD, 2020). This database contains the variable I use as a measure

of electricity regulation in different countries, which is discussed in more detail at the end of

this section. The countries included in the final sample can be see in Appendix A.2, along

with the evolution of electricity regulation in each of these countries.

Figure 1.1 shows the number of patents in dirty and clean energy technologies in the sam-

ple from 1990 to 2017. To get a clearer picture of the development of the different tech-

nologies under class Y02E, the number of clean energy patents is divided into seven different

categories, each representing a different technological field.

The name of the applicant(s) for each patent application was obtained using the OECD

HAN (February 2022).8 The total number of applicants in the final data set is 16,352. Of

these, 1,660 filed at least one patent family in both clean and dirty technologies, 9,900 filed

at least one patent in clean energy technologies, and 8,112 filed at least one patent in dirty

technologies. The number of patent families filed by these applicants is very heterogeneous.

More than 50% of the applicants in the sample have filed only one patent family, while the ap-

plicants in the 99th percentile have filed more than 87 patent families and the top 5 applicants

in this respect all filed more than 2,000 patent families. Appendix A.6 shows no evidence of

an heterogeneous effect of of electricity liberalisation when comparing applicants in the 99th

percentile with the others.

Using the information on the applicant, I calculate the cumulative stock of patent families

at the applicant level. To do this, I apply the perpetual inventory method with a depreciation

rate of 15%, as is common in the literature (Kafouros et al., 2021, Hussinger and Pacher,

2019; Hall, 2005).9 The same method is also used to calculate the cumulative stock of patent

8For applications with more than one applicant, I focus on the applicant who filed the highest number of
patent families in the period of interest. Note, however, that more than 90% of the applications in the sample are
associated with only one applicant and more than 99% are associated with at most two applicants

9According to the perpetual inventory method, the stock of patent families for firm i at time t (Kit) can be
calculated as KitPit(1-δ)Ki,t−1, where Pit is the number of patent families developed by firm i in year t and δ

is the depreciation rate. Note that when computing the patent family stock in clean energy technologies I include

9



Figure 1.1: Number of Clean and Dirty patent families

Notes: Clean and Dirty patent families for countries in the regression sample. Dirty patent families are defined as those assigned to the
H02 class but not to class Y02E. The codes used to identify the technological field of clean energy patents are the following: Y02E/10
for Renewable energy technologies (renewables); Y02E/20 for Combustion technologies with mitigation potential (mitigation); Y02E/30
for Energy generation of nuclear origin (nuclear); Y02E/40 for Technologies for an efficient electrical power generation, transmission or
distribution (efficiency); Y02E/50 Technologies for the production of fuel of non-fossil origin (fuel, non-fossil); Y02E 60/10 trough Y02E
60/16 for energy storage technologies (storage) and Y02E 60/30 trough Y02E 60/60 for hydrogen related technologies (hydrogen). In case a
patent is assigned to more than one technological fields among the ones presented in the graph, the count is fictionalized.

families at the country level.

Finally, the resulting data set is enriched with a variety of country-level control variables.

These include the PMR index for the electricity sector (hereafter PMRelec), i.e. the main

independent variable of interest in this study. The OECD PMR database (2018) contains a

set of time-varying sector-specific indicators calculated to measure the degree of liberalisa-

tion in different sectors of the economy (Vitale et al., 2020). The PMR index is a ”de jure”

index. This allows for greater comparability among countries and helps the OECD to verify

the reliability and accuracy of the index (Vitale et al., 2020). Potential drawbacks of the ”de

jure” nature of the index are discussed in Section 1.4.3, along with a discussion of how these

all patents allocated to the Y02E class in order to fully capture the stock of knowledge of the applicant in this
field.
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potential limitations are addressed in the proposed analysis. The use of the PMRelec index is

widespread in the literature on electricity liberalisation, see e.g. Marino et al. (2019), Nicolli

and Vona (2019), Nicolli and Vona (2016), Cambini et al. (2016), Nesta et al. (2014). In

its latest version, the index covers the period 1975-2018 and ranges from 6 to 0, with higher

values signalling a more regulated electricity market. Appendix A.2 shows the evolution of

the PMRelec index by country over the period considered in the study.

Descriptive statistics for the variables discussed in this section, as well as for other vari-

ables used in the analysis, can be found in Table 1.1.

Table 1.1: Descriptive Statistics
Variable Variable Description Observations Mean Std. Deviation Min Max Source

Country-level alanlysis

CountClean
c,t Count of clean patent families 464 96.74 200.34 0 1407.47 Author’s calculations, data from PATSTAT

CountDirty
c,t Count of dirty patent families 464 114.21 203.27 0 1117.5 Author’s calculations, data from PATSTAT

Lag PMRelec Regulation in the Electricity Sector 464 2.45 1.60 0.14 6.28 OECD PMR database (2018)

Lag EPStech Stringency of policies supporting green technologies 464 1.95 1.18 0.5 6 OECD EPS database (2022)

Lag GDPpc GDP per capita PPP (Thousands of Current $) 464 37.19 16.30 11.53 103.55 World Bank

Lag Oil price (imports) Crude oil import prices (100$/barrel) 464 0.48 0.34 0.12 1.18 OECD Data

Lag Knowledge Stock (country), Y02E Cumulative discounted nbr of country’s Y02E families, thousands of patents 464 0.39 0.86 0 5.32 Author’s calculations, data from PATSTAT

Lag Knowledge Stock (country), Dirty Cumulative discounted nbr of country’s Dirty families, thousands of patents 464 0.36 0.67 0 3.61 Author’s calculations, data from PATSTAT

Patent-level Analysis, Clean patents

Radicalness Radicalness Index (Squicciarini 2013, Shane 2001) 42,834 0.33 0.26 0 1 OECD Patent Quality database (Feb. 2022)

Originality Originality Index (Squicciarini 2013, Trajtenberg et al.,1997) 42,797 0.71 0.19 0 0.98 OECD Patent Quality database (Feb. 2022)

Many applicants Equal to one if more than one applicant, zero otherwise 42,834 0.07 0.25 0 1 OECD Han database (Feb. 2022)

Lag of Knowledge Stockclean Cumulative discounted nbr of applicant’s Y02E families, thousands of patents 42,834 0.07 0.13 0 0.78 Author’s calculations, data from PATSTAT

Lag PMRelec Regulation in the Electricity Sector 42,834 1.37 0.99 0.14 6.28 OECD PMR database (2018)

Lag EPStech Stringency of policies supporting green technologies 42,834 3.07 1.26 0.5 6 OECD EPS database (2022)

Lag GDPpc GDP per capita PPP (Thousands of Current $) 42,834 41.39 10.16 11.53 103.55 World Bank

Lag Oil price (imports) Crude oil import prices (100$/barrel) 42,834 0.68 0.33 0.12 1.18 OECD Data

Patent-level Analysis, Dirty patents

Radicalness Radicalness Index (Squicciarini 2013, Shane 2001) 51,143 0.32 0.26 0 1 OECD Patent Quality database (Feb. 2022)

Originality Originality Index (Squicciarini 2013, Trajtenberg et al.,1997) 50,265 0.70 0.21 0 0.98 OECD Patent Quality database (Feb. 2022)

Many applicants Equal to one if more than one applicant, zero otherwise 51,143 0.04 0.20 0 1 OECD Han database (Feb. 2022)

Lag of Knowledge Stockdirty Cumulative discounted nbr of applicant’s dirty families, thousands of patents 51,143 0.09 0.18 0 1.06 Author’s calculations, data from PATSTAT

Lag PMRelec Regulation in the Electricity Sector 51,143 1.73 1.38 Min 0.14 6.28 PMR database (2018)

Lag EPStech Stringency of policies supporting green technologies 51,143 2.81 1.32 0.5 6 OECD EPS database (2022)

Lag GDPpc GDP per capita PPP (Thousands of Current $) 51,143 38.50 11.03 11.53 103.55 World Bank

Lag Oil price (imports) Crude oil import prices (100$/barrel) 51,143 0.58 0.35 0.12 1.18 OECD Data

Notes: Descriptive statistics for the regression datasets used in Section 1.5 (Tables 1.2, 1.4 and 1.5).

1.3.1 Measuring the exploratory nature of energy patents

To test the hypothesis that electricity liberalisation leads to more exploratory energy innova-

tions, I rely on two well-established patent quality indicators from the OECD Patent Quality

Indicators database (February 2022) (Squicciarini et al., 2013). These are the radicalness in-

dex (a là Shane 2001) and the originality index (a là Trajtenberg et al., 1997). The decision to

focus on these two indicators as proxies for the exploratory nature of a patent follows a broad

literature that argues that exploratory innovations are often based on a diverse search space
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and rely on the recombination of different ideas (De Noni et al., 2021; Barbieri et al., 2020;

Squicciarini et al., 2013; Quintana-Garcı́a et al., 2008; Shane, 2001; Trajtenberg et al., 1997).

The two proposed indicators both assess the breath and diversity of a patent search space,

but in different ways. The radicalness index measures the extent to which a patent draws on

knowledge from outside technological fields, i.e. how much a patent relies on knowledge

spillovers from other technologies. The originality index can be interpreted as a measure of

the interdisciplinarity of a patent, with interdisciplinary patents being defined as those that

cite many technological fields and also belong to many technological fields (Higham et al.,

2021). If electricity liberalisation reduces path dependence in the electricity sector, innovation

is expected to become less linked with the traditional technologies used by incumbents. New

technologies and approaches are likely to emerge in more competitive markets, and the litera-

ture suggests that these will be developed, at least to some extent, thanks to the recombination

of more diverse knowledge (Squicciarini et al., 2013; Quintana-Garcı́a et al., 2008; Shane,

2001; Trajtenberg et al., 1997). The remainder of this section describes the radicalness and

originality indices in detail.

Radicalness Index

The radicalness index measures how different a patent is from the patents it cites (Shane,

2001). The intuition behind this indicator is that ”when a patent cites previous patents in

classes other than the ones it is in, that pattern suggests that the invention builds upon different

technical paradigms from the one in which it is applied” (Shane, 2001, p. 210. See also

Barbieri et al., 2020; Verhoeven et al. 2016; Squicciarini et al. 2013; Rosenkopf and Nerkar

2001). This indicator is therefore linked to the notion of knowledge spillovers, as it measures

how much knowledge the patent takes from outside technological fields. Following Shane

(2001), the index for a focal patent, p, is defined by Squicciarini et al. (2013) as follows:

Radicalnessp = Σ
np

j CTj/np; IPCpj ̸= IPCp (1.1)

Where CTj is the number of 4-digit IPC codes (IPCpj) of patent j cited by patent p that

are not assigned to the focal patent p. The denominator, np, is the number of total IPC classes

in the backward citations of patents cited by patent p, counted at the most disaggregated level

available.10 The indicator is therefore normalised and its value ranges between zero and one.

High values of the radicalness index signify that the patent takes knowledge from outside

10Backward citations are defined as the citations that the focal patent makes to older patents to disclose the
prior knowledge on which it is based (Squicciarini et al., 2013)
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technological fields and applies it to its own field(s). Thus, the higher the index, the more the

patent relies on technological spillovers from outside technological fields.

If electricity liberalisation reduces path dependency in the electricity sector, we could ex-

pect energy technologies to explore more outside technological fields and borrow more knowl-

edge from them. This kind of behaviour would be reflected in an increase in the radicalness

index of these patents.

Originality Index

The originality index measures how much the backward citations of a patent are distributed

across different technological fields (Trajtenberg et al., 1997). The intuition behind this indi-

cator is that knowledge recombination processes that rely on a diversified set of knowledge

sources are expected to lead to more original results (Barbieri et al., 2020, Dechezleprêtre et

al., 2017; Verhoeven et al,. 2016, Squicciarini et al. 2013, Trajtenberg et al.,1997). More gen-

erally, the indicator is closely linked to the notion of interdisciplinarity. (Higham et al., 2021).

Higham et al. (2021) define interdisciplinary patents as those that cite and are simultaneously

associated with many technological fields.

Building on Hall at al. (2001), Squicciarini et al. (2013) calculate the originality index as

follows:

Originalityp = 1− Σ
np

j s2pj (1.2)

Where spj is the percentage of citations of patent p to the 4-digit IPC patent class j with

respect to the total number of 4-digit IPC patent classes cited by patent p (np). Note that the

indicator is based on a Hirschman-Herfindahl index, which measures the extent to which the

backward citations of the focal patent are concentrated in different technological fields (i.e.

Σ
np

j s2pj). The originality index ranges from zero to one, and higher values of the index signal

patents with backward citations distributed across many different fields.

If electricity liberalisation reduces path dependence in the electricity sector, we could ex-

pect to see energy technologies that become more interdisciplinary. The originality index

allows us to measure whether this is the case by assessing whether energy patents cite more

technological fields while also increasing the number of technology classes to which they

belong.
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1.4 Methodology and Identification Strategy

The analysis is divided into two parts. The first part, discussed in Section 1.4.1, examines the

impact of electricity liberalisation on the direction of technological change in the electricity

sector. For this purpose, I use a country-level panel data set and focus on the number of

clean and dirty patent families filed in country c and year t. The second part is discussed in

Section 1.4.2 and uses the radicalness and originality indices as dependent variables to test

whether electricity liberalisation leads to more exploratory innovations. In this case, the unit

of observation is the patent family. In both cases, the analysis covers the period between 1990

and 2017.

1.4.1 The direction of technological change in the electricity sector

Equation (3) is used to estimate the effect of electricity liberalisation on the direction of tech-

nological change in the electricity sector.

E[Countkct|Xc,t] = exp(β1PMRelec,c,t−1 + β2EPStech,c,t−1 + β3GDPpc,c,t−1+

β4OilPriceImpc,t−1 + β5KStockclean
c,t−1 + β6KStockdirty

c,t−1 + τt)
(1.3)

Where Countkct is number of patents related to electricity generation, transmission or dis-

tribution in country c and year t for technology type k. Given the nature of the dependent

variable, equation (3) is estimated using Poisson regression. Following the standard approach

in similar empirical setting, the count of patents is fictionalized in the case of inventors resid-

ing in different countries. The main coefficient of interest is β1, which quantifies the effect of

a change in the degree of electricity liberalisation on the dependent variables of interest. The

variables on the right-hand side of the equation are lagged by one year to account for the lag

in the effect of policy variables.

As control variables, I include the sub-index of the OECD Environmental Policy Strin-

gency Database (2022) which measures the use of policies to support clean-energy innovation

(Kruse et al., 2022), GDP per capita11, the price of crude oil imports 12 (Calel and Deche-

zleprêtre, 2016) and the country’s knowledge stocks in clean and dirty energy technologies,

11Source: World Bank ttps://data.worldbank.org/indicator/NY.GDP.PCAP.CD. Retrived
27 Sept 2023

12Source: OECD (2022), Crude oil import prices (indicator). doi: 10.1787/9ee0e3ab-en (Retrieved 22 June
2022)
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computed using the perpetual inventory method as described in Section 1.3 (Aghion et al 2016;

Nesta et al., 2014; Nicolli and Vona, 2016; Popp 2002).

Standard errors are clustered at the country level (Abadie et al., 2023).

1.4.2 Exploratory Innovation in the Electricity Sector

I now turn to the question of whether electricity liberalisation makes innovation in the elec-

tricity market more exploratory. To estimate the relationship between electricity liberalisa-

tion and exploratory innovation, I rely on model (4), which I estimate separately for clean

and dirty patents. As already discussed, I use the radicalness and originality indices from

the OECD Patent Quality Indicators Database (February 2022) as indicators for exploratory

patents. Since these indicators are computed at the application level, in this case the unit of

observation is the patent. Note that in this specification dealing with patent families that have

inventors in more than one country is less straightforward with respect to the framework dis-

cussed in the previous section. Since joint applications are relatively rare (about 8% of the

applications in the sample), the following analysis focuses only on patents that can be unam-

biguously assign to a single country based on the address of the inventors. In Appendix A.5 I

test the robustness of the results to the inclusion of patent families with inventors in different

countries by assigning them to the country with the most liberalised electricity market among

inventor’s countries.

PatIndi = β1LagPMRelec,i+β2LagXi+β3Ai+Appi+Techi+Countryi+Y eari+εi (1.4)

PatIndi represents one of the patent indicators discussed in Section 1.3, calculated for

patent i. The variable PMRelec and the control variables in the matrix X are lagged by one

year to account for the lag in the effect of policy variables.

The coefficient β1 quantifies the effect of a change in the degree of electricity liberalisation

on PatIndi.

The matrix X includes the sub-index of the OECD Environmental Policy Stringency Database

(2022) that measures support for clean-energy innovation (Kruse et al., 2022), GDP per capita13

and the price of crude oil imports 14.

13Source: World Bank ttps://data.worldbank.org/indicator/NY.GDP.PCAP.CD. Retrived
27 Sept 2023

14Source: OECD (2022), Crude oil import prices (indicator). doi: 10.1787/9ee0e3ab-en (Retrieved 22 June
2022)
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A is a matrix of applicant-level control variables. To proxy the resources and knowledge

available at the applicant level, I include in the regression the stock of clean or dirty patent

families calculated for each applicant. In particular, I use the stock of clean-energy patent

family when considering clean energy patents and the stock of dirty patent families when

estimating the model for dirty patents. These are calculated using the perpetual inventory

method with a discount rate of 15% as described in Section 1.3. The relationship between

PatIndi and these knowledge stocks is unlikely to be linear. On the one hand, new entrants

are expected to develop more exploratory inventions, which would suggest a negative effect of

the patent family stock on PatIndi. On the other hand, this negative effect could be weaker

(or become positive) for applicants who file many patents, as these applicants have access to

more resources and can build on a larger body of knowledge. To capture these dynamics, I also

include the squared value of the applicant’s patent family stock as control variable. Finally,

I control for patents with multiple applicants using a dummy variable that is equal to one for

patent families with more than one applicant and zero otherwise. I do this because more than

one applicant working on the same invention could lead to more resources for its development.
15

The specification is then augmented with fixed effects for the applicant of the patent

(Appi), its technology class (Techi)16, and the country (Countryi) and year (Y eari) in which

it was filed. The inclusion of applicant fixed effects in the model allows me to control for

time-invariant heterogeneity across applicants. However, it also prevents patent families of

applicants with only one family from being included in the regression (Correia, 2015). For

this reason, I present the results both with and without the inclusion of applicant fixed effects

in the model.

In the literature, the use of the radicalness and originality indices as dependent variables

in patent-level specifications is sometimes accompanied by application-level control variables

selected on the basis of how these indices are constructed. In particular, since these indicators

use information on the citations made by the patent, previous work controls for the number

of backward citations of the patent (see for example Barieri et al., 2020; Hall et al., 2001).

In addition, the scope of the patent, i.e. the number of full-digit IPC codes to which the

invention is assigned, is often used as control variable for the radicalness index (Barieri et al.,

15Note that more than 90% of the applications in our sample have only one applicant, see Table 1.1.
16In the OECD Patent Quality Database, the information on the technological fields of the patent is based on

the WIPO taxonomy (Schmoch, 2008). For patents assigned to more than one technological field, only the one
with the most IPC codes is retained. If a patent has the same number of IPC codes for different technological
fields, it is randomly assigned to one of these fields (Schmoch, 2008
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2020; Sapsalis et al., 2006). The reason for this is that a higher scope is usually associated

with lower values of the radicalness index, as it is more difficult for a broader patent to cite

technological fields to which it is not assigned. In the proposed framework, I cannot control

for these variables without running into the problem of ”bad controls” (Cinelli et al., 2022).

Both the number of backward citations and the scope of the patent can be though as alternative

outcome variables and/or channels through which the effect we want to investigate could be

expected to unfold. This being the case, I do not include these variables in the specification

presented in model (4). In Appendix A.7, I conduct a sensitivity analysis and show that the

results for the estimation of model (4) are not affected in magnitude or statistical significance

by the inclusion of these potentially problematic variables.

Since the ”treatment variable” (i.e. PMRelec) is at the country level, I cluster the standard

errors at this level (Abadie et al., 2023). This results in clusters that are heterogeneous in

size, as there are large differences in the number of patents filed across countries. In similar

contexts, wild cluster bootstrapping has been shown to perform better than inference relying

on clustered standard errors based on large-sample theory (Roodman et al., 2019; Cameron

and Miller, 2015). For this reason, when presenting the results of the estimation of model

(4), I report p-values and confidence intervals obtained implementing a wild cluster bootstrap

using the STATA command ’boottest’ (Roodman et al., 2019).

To estimate model (4), I rely on linear regression analysis using the reghdfe command

in STATA (Correia, 2016). Although the radicalness and originality indices are bounded be-

tween zero and one, I opt for a linear model instead of a fractional model for several reasons.

First, a linear model allows to easily include high-dimensional fixed effects, thus allowing the

inclusion of applicant fixed effects in the regression. Second, this allows me to rely on wild

bootstrap-based inference, as opposed to the alternative score bootstrap used with the max-

imum likelihood estimator. This is an advantage as the former has been shown to be more

reliable compared to the latter (Roodman et al., 2019). Similar choices are not uncommon in

the literature, see for example Porter and Serra (2019). As a robustness check, Appendix A.3

presents the results of a fractional probit model with inference based on score bootstrap and

without including applicant fixed effects. The results obtained with this alternative specifica-

tion are very similar in magnitude and statistical significance to the ones obtained relying on

linear regression and wild bootstrap.
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1.4.3 Instrumental Variable strategy

The proposed estimation strategy might suffer from endogeneity stemming from different

sources.

First, while the PMRelec index is widely used in the literature (e.g. Marino et al., 2019;

Nicolli and Vona, 2019; Nicolli and Vona, 2016; Nesta et al., 2014), it is at best an imperfect

proxy of incumbents’ effective market power. In particular, one might worry that the PMR

index, being a “de jure” index, underestimates the ability of incumbents to retain market power

after the reform in a highly concentrated industry such as the energy sector (Vitale et al.,

OECD, 2020, Nicolli and Vona, 2019). To explain why this is the case, let us take a concrete

example and look at Japan’s electricity reform. The PMRelec index for Japan in 2009 is

0.93. This means that, according to the PMR index, Japan had made significant progress in

liberalising the electricity market. In practise, however, the market share of independent power

producers in that year was only 2.8% (Jones and Kim 2013). This suggests that, although the

regulation of the electricity sector was pro-competition on paper, incumbents were able to

retain much of their market power. To make matters worse, this kind of measurement error is

likely correlated with the PMR index itself. For while one can imagine incumbents retaining a

high degree of market power in a liberalised electricity sector, a scenario in which incumbents’

market power decreases without a change in electricity regulation seems unlikely at best.

Second, the development of more scalable technologies for electricity generation in the

1990s was a key factor that enabled the liberalisation of the electricity sector in the first place

(e.g. gas-fired power plants and RETs) (Batlle and Ocaña, 2013). Given this, one might worry

about a possible reverse causality issue.

Third, countries that develop more radical clean-energy innovations might also be the ones

that reform the electricity market first or more. This could be the case, for example, if ”green

lobbies” have the ability to influence both the development of radical clean-energy technolo-

gies and the regulation of the electricity sector (Nicolli and Vona 2019).

The empirical framework described in the previous section already mitigates some of these

concerns, e.g. by controlling for a country support to clean-energy technologies and by using

applicant and country fixed effects. However, to account for these potential sources of endo-

geneity more fully, I follow Nicolli and Vona (2019) and use an instrumental variable strategy

where regulation in the telecommunication sector is used as instrument for regulation in the

electricity sector. Regulation in the telecommunication sector is measured by the OECD PMR

index for this particular industry.

The liberalisation of telecommunications took place before the liberalisation of the elec-
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tricity sector and played a crucial role in getting the latter off the ground (Nicolli and Vona,

2019; Pollitt, 2012; Joskow, 2008). At the same time, this reform can be considered indepen-

dent from the lobbying power of actors in the electricity sector and from technological devel-

opments in energy supply technologies. This helps to address the second and third sources of

potential endogeneity described at the beginning of this section. In addition, electricity liber-

alisation is more likely to reduce the market power of incumbents in countries where public

authorities and policy makers invest greater effort in the liberalisation process and are more

committed to this reform. A widespread change in the regulation of different sectors can be

interpreted as a signal of effort and commitment in this sense and is therefore likely to cor-

relate with the implementation of a successful liberalisation process in the electricity sector

(Nicolli and Vona 2019). This being the case, the proposed strategy also mitigates the problem

of measurement error discussed above.

The country-level regression for the estimation of model (3) relies on a fixed-effect Pois-

son model. To account for the possible endogeneity of PMRelec in this non-linear setting,

I apply the Control Function (CF) Approach (Wooldridge, 2015). The CF approach relies

on the availability of one or more instrumental variables to run a first-stage regression and

uses the generalised residuals from this first-stage regression as control function. This con-

trol function is then added to the second-stage regression and this allow us to estimate the

effect of the endogenous regressor appropriately (Wooldridge, 2015). A particularly inter-

esting feature of the CF approach is that the estimated coefficient on the control function

in the second-stage regression is a regression-based Hausman (1978) test that can easily be

made robust to heteroskedasticity and cluster correlation (Wooldridge, 2015). A statistically

significant coefficient on the control function is evidence that the regressor we suspect to be

endogenous is indeed endogenous. A non-significant coefficient indicates that this regressor is

exogenous and there is no reason to prefer the IV estimates over the simple Poisson estimates

(Wooldridge, 2015). Note that if the control function is statistically significant in the sec-

ond stage, it is important to adjust the standard errors to account for the two-stage estimation

procedure (Wooldridge, 2015). Following Wooldridge (2015), I do this using bootstrap.

The patent-level analysis is carried out relying on linear regression analysis, making the

IV estimation relatively straightforward. In recent years, the literature on inference for two

stage least squares estimates has been very active. Many papers that have recently addressed

this issue recommend the use of Anderson-Rubin confidence intervals in single instrument

applications (Kean and Neal, 2023; Lee et al., 2022; Lal et al., 2021; Andrews et al., 2019;

Anderson and Rubin, 1949). The main advantage of these confidence intervals is that they are

efficient in the presence of weak instruments, but because of their desirable properties, their
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use is now often recommended regardless of the value of the first-stage F-statistic (Keane and

Neal, 2022; Andrews et al., 2019). In light of these recent developments, and as recommended

by Keane and Neal (2022), the inference in the IV estimates of model (3) is based on the

Anderson-Rubin test rather than the t-test. To also address the problem of having clusters

that are heterogeneous in size, discussed in Section 1.4.2, I rely on a bootstrap version of

the Anderson-Rubin test based on wild bootstrap. This is done in STATA using the same

’boottest’ command discussed in the previous section (Roodman et al., 2019). Since the first-

stage estimates are also likely to suffer from this problem, I follow Young (2022) and report

the p-value of the first-stage regression based on wild bootstrap inference in addition to the

first-stage F-statistic, and ensure that this p-value is less than 0.01.

1.5 Results

In this section, I present the results of the empirical analysis. Section 1.5.1 shows the effect of

electricity liberalisation on the number of patents filed in dirty and clean technologies. Section

1.5.2 looks at the impact of electricity liberalisation on the exploratory or exploitative nature

of innovations in clean and dirty technologies. The significance of the results is discussed in

more detail in Section 1.6. The result tables in Section 1.5 focus on the main coefficient of

interest, i.e. the estimated coefficient for PMRelec. See Appendix A.9 for the complete result

tables.

1.5.1 Electricity liberalisation and the direction of technological change
in the electricity sector

In this section I examine the impact of electricity liberalisation on the number of clean and

dirty patents filed for technologies related to the generation, transmission and distribution of

electricity. Table 1.2 shows that electricity liberalisation affects the direction of technological

change in the electricity sector by reducing the number of dirty technologies and increasing

the number of clean energy patents. The results presented in Panel B are obtained using the CF

approach and confirm what we see in Panel A. The control function in the regression for dirty

and clean technologies is significant, which is evidence that PMRelec,t−1 is endogenous. This

being the case, standard errors in columns (1) and (2) are adjusted using a bootstrap procedure

(Wooldridge, 2015). The coefficients estimated using the CF approach are larger compared to

what we observe in Panel A. The best explanation for this pattern is endogeneity in the results
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from Panel A coming from the measurement error problem discussed in Section 1.4.3. If

incumbents can retain high market power even after changes in the laws regulating competition

in the electricity sector, we would expect the coefficients in Panel A to be downward biased.

The proposed instrumental variable strategy seems better suited to capture the actual degree of

competition in a country’s electricity market, leveraging the fact that widespread liberalisation

in various sectors signals greater effort and commitment on the part of policy makers and

market authorities (Nicolli and Vona, 2019).

According to the results in Panel B, a one unit decrease in PMRelec,t−1 leads on average

to about 47 fewer dirty patents and about 33 more clean patents. To put these values in per-

spective, a one unit change in PMRelec,t−1 amounts to 62% of the standard deviation of this

variable, while the changes triggered in the number of dirty and clean energy patents amount

to 23% and 16% of the standard deviations of these counts, respectively. 17

Table 1.3 breaks down the analysis for different technological fields belonging to class

Y02E. Note that the same patent can be assigned to more than one of the codes in class

Y02E. If this happens, I deal with it by using fractional counts, e.g. a patent assigned to two

technological fields is attributed to both but counted as half a patent. 18

According to the results in Panel A of Table 1.3, the effect of electricity liberalisation is

positive and significant for 3 out of 5 classes, namely renewable energies, combustion tech-

nologies with mitigation potential and storage technologies. In the estimates obtained with

the CF approach (Panel B of Table 1.3), the coefficient remains significant only for electricity

storage and renewables, albeit only at the 90% level for the latter. However, for both renew-

ables and combustion technologies with mitigation potential, we find that the control function

is not significant, with p-values of 0.299 and 0.289, respectively. In these cases, we should

reject the null hypothesis of the Hausman test built into the CF regression and conclude that

17The incidence ratio associated with PMRelec,t−1 for the estimates in column (1) is 1.41. The average
number of dirty patents per country in the sample used for the regression is 114.21. Thus a one unit decrease
in PMRelec,t−1 leads on average to 46.79 fewer dirty patents (1.41*114.21 - 114.21 = 46.79). For the variable
PMRelec,t−1 , a one unit change is equal to 62% of its standard deviation and for the number of dirty patents,
a 46.79 change is equal to 23% of the standard deviation of this variable (46.79/203.27). For the estimates in
column (2), the incidence ratio associated with PMRelec,t−1 is 0.66 and the average number of clean patents
in the sample is 96.74. Thus, on average, a one unit decrease in electricity liberalisation leads to almost 33
additional clean patents (0.66*96.74 - 96.74 - 32.89), a change equivalent to 16.4% of the standard deviation of
the outcome variable in column (2) (32.89/200.34).

18However, these patents represents less than 8% of the patents in the sample and using alternative methods to
deal with this issue does not affect the results. For example, the results are robust if each patent is assigned fully
to all Y02E technology classes listed in the document or if patents assigned to multiple codes are excluded from
the sample
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PMRelec,t−1 is not actually endogenous and there is no reason to reject the Poisson estimates

in Panel A (Wooldridge, 2015). Again, the estimated coefficients using the CF approach are

larger than for our base Poisson estimates, suggesting endogeneity stemming from measure-

ment error in the PMR index. This is especially true for storage technologies, which is to

be expected as this is the only case where the control function is significant. This pattern

suggests that the ability of incumbents to retain market power after electricity liberalisation

is particularly detrimental to the development of energy storage technologies. This result can

be explained by noticing that energy storage technologies play a key role in the development

of a decentralised generation paradigm, while incumbents’ skills and expertise are generally

tied to large-scale plants in a highly centralised generation paradigm (Defeuilley, 2019; Nesta

et al., 2014). Overall, these findings support the idea that electricity liberalisation can reduce

the electricity sector’s dependence on dirty technologies and steer innovation towards clean

energy technologies.
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Table 1.2: Poisson fixed effect estimates of Model (3)

(1) (2)

Panel A CountDirty
ct CountClean

ct

PMRelec,c,t−1, 0.1469*** -0.0999***

(0.0439) (0.0336)

Controls Yes Yes

Country FE Yes Yes

Year FE Yes Yes

Observations 464 464

Panel B CountDirty
ct CountClean

ct

PMRelec,c,t−1, 0.3469*** -0.4144***

[0.0872] [0.0898]

Control Function -0.2435*** 0.3830***

[0.0928] [0.1014]

Controls Yes Yes

Country FE Yes Yes

Year FE Yes Yes

F-stat first stage 14.70 14.70

First Stage Bootstrap p-value 0.0024 0.0024

Observations 464 464

Notes: All specifications also control for the use of policies to promote clean energy innovation, GDP per capita, the price of crude oil
imports, and the country’s knowledge stocks in dirty and clean energy technologies. In Panel B regulation in the telecommunications sector
is used as instrument for regulation in the electricity sector using a CF approach. Standard errors are clustered at the country level and
reported in parentheses (18 clusters). In Panel B, if the control function is significant in the first-stage regression, I adjust the standard errors
based on 999 bootstrap replications and report them in italics and in square brackets.
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1.5.2 Electricity liberalisation and exploratory innovations in the elec-
tricity sector

Table 1.4 and 1.5 show the results of OLS estimation of model (4) for clean and dirty energy

patents, respectively. The wild cluster bootstrap does not assume normality and therefore does

not compute standard errors (Roodman et al., 2019). I therefore follow Porter and Serra (2019)

and report the obtained p-values and 95% confidence intervals in the results tables. Appendix

A.3 shows the results when using a fractional model and inference based on score bootstrap.

In Table 1.4, when the dependent variable is the radicalness index (columns 1 and 2) the co-

efficient associated with PMRelec has the expected sign and is always statistically significant,

at least at the 95% level. Instead, I find no effect of electricity liberalisation on the originality

index. This pattern is confirmed by the various robustness checks presented in Appendix A.

Panel B shows the results for the IV strategy discussed in Section 1.4.3. These results confirm

the conclusions from Panel A and the magnitude of the estimated effect is similar. The effect

of electricity liberalisation on the radicalness index appears not only statistically significant

but also economically meaningful. Comparing the coefficients estimated in columns (1) and

(2) of Panel B with the standard deviation of the radicalness index in the estimation sample,

i.e. 0.25, we see that the estimated effect amounts to 10% and 6% of this value, respectively.

The standard deviation of PMRelec in the estimation samples used in Table 1.4 is roughly one

(see Table 1.1), which means that the coefficient can be naturally interpreted as the effect of a

one standard deviation change in PMRelec on the dependent variable.

In Table 1.5 we see that the effect of electricity liberalisation on the exploratory nature of

dirty patents is never significant. Interestingly, the estimated coefficients in columns (1) and

(2) of Table 5 are much closer to zero than their counterparts in Table 1.4.

Table 1.6 examines whether the impact of electricity liberalisation on the radicalness index

is heterogeneous among the different technological fields were are considering. 19 As can

be seen in Figure 1.1, splitting the sample in this specification can be difficult due to the

relatively small number of patent families in most Y02E technological fields which leads to a

low number of observations. For this reason, I have divide the sample into only three groups:

renewable energy technologies, energy storage technologies, and other technologies (which

includes combustion technologies with mitigation potential, higher efficiency technologies,

and fuels of non-fossil origin). Since one patent family can be allocated to more than one

technological fields, here I assign each patent to all the fields listed in the document.

19Similar results for the originality index are not presented as they confirm the lack of a robust relationship
with electricity liberalisation.
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Two patterns emerge clearly from the results in Table 1.6. The radicalness index of re-

newable energy technologies is not affected by electricity liberalisation, as the coefficient

associated with PMRelec is never significant and sometimes even positive. On the other hand,

it is again storage technologies that seem to benefit most from electricity liberalisation. The

coefficient of PMRelec is always of the expected sign and significant in 3 of the 4 specifica-

tions presented. The only exception is column (1) in Panel A, where I present the estimates of

the OLS regression and with applicant fixed effect. Even in this case, however, the magnitude

of the coefficient is relatively high, and the lack of significance can be explained by the com-

bination of lower precision of the estimates due to fewer observations and the downward bias

of the coefficient in the specifications that do not account for endogeneity. Indeed, despite

the very different empirical framework. we once again find that in the 2SLS estimates the

estimated effect of electricity liberalisation on energy storage patents increases in magnitude.

This is consistent with the results presented in Table 1.3. Finally, the coefficient for other tech-

nologies is always negative, but significant only in Panel A. However, the very small number

of observations for this group makes it difficult to draw any conclusions.

In summary, the results of this section suggests that clean energy technologies developed

in more competitive electricity markets use more knowledge spillovers from outside techno-

logical fields. Following the literature, I interpret this as a sign of exploratory behaviour. This

pattern is particularly strong for energy storage technologies, which is consistent with the re-

sults presented in Section 1.5.1. At the same time, citations of clean energy patents remain

concentrated in the same number of technological fields, as shown by the non-significant effect

on the originality index. This suggests that while electricity liberalisation increases the use of

knowledge spillovers in the development of clean energy technologies, it does not make these

technologies more interdisciplinary. The search space of dirty patents is neither positively nor

negatively affected by electricity liberalisation.
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Table 1.4: OLS and 2SLS estimates of Model (4) - Clean patents

(1) (2) (3) (4)

Clean Clean Clean Clean

Panel A: OLS Rad Rad Ori Ori

Lag PMRelec -0.0171 -0.0181 -0.0021 -0.0018

( 0.0167) (0.0005) (0.2938) (0.2118)

[-0.0316, -0.0043] [-0.0285, -0.0124] [-0.0110, 0.0020] [-0.0058, 0.0011]

Controls Yes Yes Yes Yes

Applicant FE Yes No Yes No

Technology FE Yes Yes Yes Yes

Country FE Yes Yes Yes Yes

Year FE Yes Yes Yes Yes

Observations 37,371 42,834 37,333 42,797

Panel B: 2SLS Rad Rad Ori Ori

Lag PMRelec -0.0252 -0.0161 -0.0016 0.0030

(0.0000) (0.0074) (0.7574) (0.3468)

[-0.0431, -0.0173] [-0.0235, -0.0062] [-0.0275, 0.0073] [-0.0025, 0.0107]

Controls Yes Yes Yes Yes

Applicant FE Yes No Yes No

Technology FE Yes Yes Yes Yes

Country FE Yes Yes Yes Yes

Year FE Yes Yes Yes Yes

F-stat first stage 41.77 53.72 41.73 53.75

First Stage Bootstrap p-value 0.0006 0.0014 0.0006 0.0014

Observations 37,371 42,834 37,333 42,797

Notes: All specifications also control for the use of policies to promote clean energy innovation, GDP per capita, the price of crude oil
imports, the number of applicant, the knowledge stock computed at the applicant level and its squared value. In Panel A, I report wild
bootstrap p-values in parentheses and wild bootstrap 95% confidence intervals in square brackets, generated using boottest command in Stata
(Roodman et al., 2019) for standard errors clustered at the country level (18 clusters). In Panel B, regulation in telecommunication is used
as instrument for regulation in the electricity sector and inference is based on a wild bootstrapped version of the Anderson-Rubin obtained
using the boottest command in Stata (Roodman et al., 2019) for standard errors clustered at the country level (18 clusters).
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Table 1.5: OLS and 2SLS estimates of Model (4) - Dirty patents

(1) (2) (3) (4)

Dirty Dirty Dirty Dirty

Panel A: OLS Rad Rad Ori Ori

Lag PMRelec -0.0022 -0.0036 0.0010 -0.0041

(0.6384) (0.5276) (0.8675) (0.3356)

[-0.0145, 0.0092] [-0.0180, 0.0104] [-0.0113, 0.0106] [-0.0163, 0.0050]

Controls Yes Yes Yes Yes

Applicant FE Yes No Yes No

Technology FE Yes Yes Yes Yes

Country FE Yes Yes Yes Yes

Year FE Yes Yes Yes Yes

Observations 46,434 51,143 45,621 50,265

Panel B: 2SLS Rad Rad Ori Ori

Lag PMRelec -0.0004 -0.0011 0.0069 0.0038

(0.9417) (0.8730) (0.5841) (0.6320)

[-0.0081, 0.0203] [-0.0128, 0.0270] [-0.0155, 0.0321] [-0.0185, 0.0211]

Controls Yes Yes Yes Yes

Applicant FE Yes No Yes No

Technology FE Yes Yes Yes Yes

Country FE Yes Yes Yes Yes

Year FE Yes Yes Yes Yes

F-stat first stage 49.07 58.33 49.07 58.35

First Stage Bootstrap p-value 0.0047 0.0045 0.0047 0.0045

Observations 46434 51,143 45621 50,265

Notes: All specifications also control for the use of policies to promote clean energy innovation, GDP per capita, the price of crude oil
imports, the number of applicant, the knowledge stock computed at the applicant level and its squared value. In Panel A, I report wild
bootstrap p-values in parentheses and wild bootstrap 95% confidence intervals in square brackets, generated using boottest command in Stata
(Roodman et al., 2019) for standard errors clustered at the country level (18 clusters). In Panel B, regulation in telecommunication is used
as instrument for regulation in the electricity sector and inference is based on a wild bootstrapped version of the Anderson-Rubin obtained
using the boottest command in Stata (Roodman et al., 2019) for standard errors clustered at the country level (18 clusters).
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1.6 Discussion and conclusions

Clean energy technologies are expected to play a vital role in enabling us to achieve the three

key objectives of energy security, economic development and environmental sustainability

(IEA, 2023). It is therefore particularly important today to understand what factors can con-

tribute to reduce path dependence in polluting technologies and steer technological change

towards cleaner alternatives in the electricity sector. The challenge of significantly increas-

ing energy supply while reducing greenhouse gas emissions will require profound changes in

electricity supply, which in turn will require substantial R&D spending and the development

of new technological solutions (IEA, 2023, 2020). As a result of the recent energy price crisis,

changes to the design and regulation of the electricity sector have been discussed in many

countries around the world, and some of the ideas on the table have the potential to signifi-

cantly disrupt market competition (ACER, 2022). The findings presented in this paper shed

light on the role that competition in the electricity sector can play in reducing path dependence

on dirty technologies and promoting the development of clean-energy innovation.

After the reform of the electricity market, we see a decrease in dirty patents accompanied

by an increase in clean energy patents. This increase is driven by patents in electricity storage,

renewable energy and combustion technologies with mitigation potential. In addition, clean

energy patents developed in a more competitive electricity market rely more on knowledge

spillovers from other technological fields. The use of knowledge coming from outside tech-

nological fields is expected to benefit the development of clean energy innovations as green

patents have been shown to require more diverse knowledge inputs and to rely more heavily

on knowledge spillovers (Barbieri et al., 2023, Barbieri et al., 2020; De Marchi, 2012). Fur-

thermore, these kind of spillovers can signal the development of more radical and exploratory

innovations (Shane, 2001; Trajtenberg et al., 1997) and can reduce the need for R&D expen-

ditures (IEA, 2020).

The analysis has some limitations that could be addressed in further research. The United

States, which is a major developer of clean-energy technologies, could not be included in the

sample. This was partly because the latest version of the OECD PMR database (2018) did not

include data for the US at the time of writing (Vitale et al., OECD, 2020). More importantly

however, a similar analysis for the US would need to be conducted at the state level rather than

the federal level, and would therefore require a state-varying indicator to measure electricity

regulation. Using an indicator calculated at the federal level would hide the heterogeneous

regulatory environment faced by inventors in the different states of the US. This heterogene-

ity is significant because the US has never enacted a binding federal law to restructure the
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electricity market, leaving these decisions to the individual states (Joskow, 2008). A similar

analysis for the US at the state level is therefore left to future research. Finally, no ex-post in-

dicator of patent quality was included in the analysis. In future research, I plan to investigate

whether and how electricity liberalisation changes the ex-post characteristics of clean-energy

patents, such as the number of citations they receive or how these citations are distributed

across different technological fields. This will allow for a more comprehensive picture of the

impact of electricity liberalisation on the characteristics of clean-energy innovation.
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1.7 Appendix A

A.1 Y02E technologies

Y02E / 10: Energy generation through renewable energy sources:
• Geothermal energy

• Hydro energy

• Energy from the sea, e.g. using wave energy or salinity gradient

• Solar thermal energy, e.g. solar towers

• Photovoltaic [PV] energy

• Thermal-PV hybrids

• Wind energy

Y02E / 20: Combustion technologies with mitigation potential:
• Heat utilisation in combustion or incineration of waste

• Combined heat and power generation [CHP]

• Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

• Technologies for a more efficient combustion or heat usage

• Direct CO2 mitigation

• Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process,

e.g. pre-heating or heat recovery

Y02E / 30: Energy generation of nuclear origin:
• Nuclear fusion reactors

• Nuclear fission reactors

Y02E / 40: Technologies for an efficient electrical power generation,transmission or dis-
tribution:
• Flexible AC transmission systems [FACTS]

• Active power filtering [APF]

• Reactive power compensation

• Arrangements for reducing harmonics

• Arrangements for eliminating or reducing asymmetry in polyphase networks

• Superconducting electric elements or equipment; Power systems integrating superconduct-

ing elements or equipment

• Smart grids as climate change mitigation technology in the energy generation sector

Y02E / 50: Technologies for the production of fuel of non-fossil origin:
• Biofuels, e.g. bio-diesel
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• Fuel from waste, e.g. synthetic alcohol or diesel

Y02E / 60: Enabling technologies; Technologies with a potential or indirect contribution
to GHG emissions mitigation
• Energy storage using batteries

• Energy storage using capacitors

• Thermal energy storage

• Mechanical energy storage, e.g. flywheels or pressurised fluids

• Hydrogen technology

• Smart grids in the energy sector

Y02E / 70 :Other energy conversion or management systems reducing GHG emission
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A.2 Evolution of the PMRelec index by Country

45



46



A.3 Fractional Probit Model

Table A.1 presents the results for the estimation of model (4) using a fractional probit model

with no applicant fixed effects and relying on the score bootstrap for inference. These results

confirm what we see in Table 1.4 in terms of sign, magnitude and statistical significance. In

particular, the marginal effects in column (1) and (2) are -0.017 and -0.0022 respectively, both

of which are very similar to the estimated coefficient in columns (2) and (4) of Table 1.4.

Similarly, the marginal effects in columns (3) and (4) are -0.0031 and -0.0021 respectively.

Once again these values are similar to what we see in columns (2) and (4) of Table 1.5.

Table A.1: Fractional Probit estimates of model (4)

(1) (2) (3) (4)

Clean Clean Dirty Dirty

Rad Ori Rad Ori

Lag PMRelec -0.0482 -0.0065 -0.0088 -0.0061

(0.0011) (0.1183) (0.4871) (0.6306)

Controls Yes Yes Yes Yes

Applicant FE No No No No

Technology FE Yes Yes Yes Yes

Country FE Yes Yes Yes Yes

Year FE Yes Yes Yes Yes

Observations 42,834 42,797 51,143 50,305

Notes: Fractional probit regressions. Score bootstrap cluster p-values in parentheses are generated using boottest command in Stata (Rood-
man et al., 2019) for standard errors clustered at the country level (18 clusters).
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A.4 Alternative patent family correction

As discussed in Section 1.3, different patent applications belonging to the same family may

have different values for the same patent level indicator. Since we want to focus on patent

families rather than patent applications in order to avoid double counting, this poses a problem.

I deal with this problem by selecting only the patent with the highest value for the indicator

of interest from each patent family (Barbieri et al., 2020; Verhoeven et al., 2016). Table

A.2 shows that the results are robust to selecting the application with the lowest value of the

indicator of interest from each family.

Table A.2: Patent Family correction based on the lowest value of the indicator of interest

(1) (2) (3) (4)

Clean Clean Clean Clean

Panel A: OLS estimates Rad Rad Ori Ori

Lag PMRelec -0.0170 -0.0171 -0.0007 -0.0006

(0.0079) (0.0002) (0.7606) (0.7435)

[-0.0313, -0.0049] [-0.0290, -0.0111] [-0.0102, 0.0036] [-0.0060, 0.0025]

Controls Yes Yes Yes Yes

Applicant FE Yes No Yes No

Technology FE Yes Yes Yes Yes

Country FE Yes Yes Yes Yes

Year FE Yes Yes Yes Yes

Observations 37,371 42,834 37,365 42,828

Panel B: 2SLS estimates (telecom) Rad Rad Ori Ori

Lag PMRelec -0.0210 -0.0125 0.0025 0.0059

(0.0000) (0.0409) (0.6642) (0.1005)

[-0.0367, -0.0130] [-0.0210, -0.0005] [-0.0198, 0.0112] [-0.0007, 0.0145]

Controls Yes Yes Yes Yes

Applicant FE Yes No Yes No

Other FEs Yes Yes Yes Yes

F-stat first stage 41.85 53.78 41.71 53.72

First Stage Bootstrap p-value 0.0006 0.0014 0.0006 0.0014

Observations 37,371 42,834 37,365 42,828

Notes: All specifications also control for the use of policies to promote clean energy innovation, GDP per capita, the price of crude oil
imports, the number of applicant, the knowledge stock computed at the applicant level and its squared value. In Panel A, I report wild
bootstrap p-values in parentheses and wild bootstrap 95% confidence intervals in square brackets, generated using boottest command in Stata
(Roodman et al., 2019) for standard errors clustered at the country level (18 clusters). In Panel B, regulation in telecommunication is used
as instrument for regulation in the electricity sector and inference is based on a wild bootstrapped version of the Anderson-Rubin obtained
using the boottest command in Stata (Roodman et al., 2019) for standard errors clustered at the country level (18 clusters).
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A.5 ”International” Applications

As discussed in Section 1.3, I exclude patents with inventors in more than one country from

the patent-level analysis. The reason is that these patents are relatively rare and there is no

obvious way to deal with them in this framework (as opposed, for example, to using the

fractional count when we study the number of patents filed by country). Table A.3 shows the

results when these ”international” patents are included and assigned to the most liberalised

country among the countries of inventors. This allows to test whether the highest degree of

electricity liberalisation to which a patent is exposed has an impact on its exploratory nature.

The results are robust to this exercise.

Table A.3: ”International” patent applications

(1) (2) (3) (4)

Clean Clean Clean Clean

Panel A: OLS estimates Rad Rad Ori Ori

Lag PMRelec -0.0171 -0.0173 -0.0025 -0.0021

(0.0430) (0.0015) (0.3209) (0.1351)

[-0.0329, -0.0010] [-0.0280, -0.0115] [-0.0125, 0.0037] [-0.0062, 0.0009]

Controls Yes Yes Yes Yes

Applicant FE Yes No Yes No

Technology FE Yes Yes Yes Yes

Country FE Yes Yes Yes Yes

Year FE Yes Yes Yes Yes

Observations 38,676 44,228 38,302 43,850

Panel B: 2SLS estimates (telecom) Rad Rad Ori Ori

Lag PMRelec -0.0252 -0.0142 -0.0028 0.0020

(0.0000) (0.0338) (0.6528) (0.5193)

[-0.0470, -0.0147] [-0.0230, -0.0018] [-0.0359, 0.0075] [-0.0038, 0.0079]

Controls Yes Yes Yes Yes

Applicant FE Yes No Yes No

Other FEs Yes Yes Yes Yes

F-stat first stage 38.01 48.68 37.25 48.26

First Stage Bootstrap p-value 0.0006 0.0017 0.0008 0.0017

Observations 38,676 44,228 38,302 43,850

Notes: All specifications also control for the use of policies to promote clean energy innovation, GDP per capita, the price of crude oil
imports, the number of applicant, the knowledge stock computed at the applicant level and its squared value. In Panel A, I report wild
bootstrap p-values in parentheses and wild bootstrap 95% confidence intervals in square brackets, generated using boottest command in Stata
(Roodman et al., 2019) for standard errors clustered at the country level (18 clusters). In Panel B, regulation in telecommunication is used
as instrument for regulation in the electricity sector and inference is based on a wild bootstrapped version of the Anderson-Rubin obtained
using the boottest command in Stata (Roodman et al., 2019) for standard errors clustered at the country level (18 clusters).
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A.6 Heterogeneity of the top 1% applicants for patent families filed

The top 1% of applicants in terms of patents filed account for about 50% of all patent families

in the sample. Table A.4 tests whether the effect of electricity liberalisation is driven by

these applicants and finds no evidence of this pattern. This test is performed by interacting the

variable PMRelec with a variable equal to one for applicants in the top 1% and zero otherwise.

The coefficient on the interaction term is not significant in all specifications, indicating that

the effect for the top 1% of highly innovative applicants is not significantly different from that

for other applicants.

Table A.4: Results without the top 1% applicants for patent families filed

(1) (2) (3) (4)

Clean Clean Clean Clean

Panel A: OLS estimates of model (3) Rad Rad Ori Ori

Lag PMRelec -0.0184 -0.01816 -0.0020 -0.0003

(0.0470) (0.0020) ( 0.4945) (0.8258)

[-0.0365, -0.0004] [-0.0285, -0.0116] [-0.0159, 0.0028] [-0.0045, 0.0021]

Lag PMRelec # Big 0.0024 -0.0008 -0.0002 -0.006

(0.5506) (0.8799) (0.9099) (0.2372)

[-0.0082, 0.0115] [-0.0170, 0.0127] [-0.0038, 0.0112] [-0.0179, 0.0109]

Controls Yes Yes Yes Yes

Applicant FE Yes No Yes No

Other FEs Yes Yes Yes Yes

Observations 37,371 42,834 37,333 42,797

Panel B: OLS estimates of model (3) Rad Rad Ori Ori

Lag PMRelec -0.0287 -0.0168 -0.0024 0.0041

(0.0060) (0.0200) (0.6917) (0.2142)

[-0.0539, -0.0151] [-0.0306, -0.0054] [-0.0301, 0.0069] [-0.0052, 0.0146]

Lag PMRelec # Big 0.007 -0.0017 0.0014 -0.0118

(0.1421) (0.7808) (0.7678) (0.3634)

[-0.0050, 0.0208] [-0.0174, 0.0216] [-0.0069, 0.0186] [-0.0344, 0.0192]

Controls Yes Yes Yes Yes

Applicant FE Yes No Yes No

Other FEs Yes Yes Yes Yes

Observations 37,371 42,834 37,333 42,797

Notes: All specifications also control for the use of policies to promote clean energy innovation, GDP per capita, the price of crude oil
imports, the number of applicant, the knowledge stock computed at the applicant level and its squared value. In Panel A, I report wild
bootstrap p-values in parentheses and wild bootstrap 95% confidence intervals in square brackets, generated using boottest command in Stata
(Roodman et al., 2019) for standard errors clustered at the country level (18 clusters). In Panel B, regulation in telecommunication is used
as instrument for regulation in the electricity sector and inference is based on a wild bootstrapped version of the Anderson-Rubin obtained
using the boottest command in Stata (Roodman et al., 2019) for standard errors clustered at the country level (18 clusters).
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A.7 Sensitivity analysis: controlling for patent characteristics

Previous literature using the radicalness and originality indices as dependent variables often

controls for patent characteristics that are intimately related to how these indicators are built.

In particular, for the radicalness index these characteristics are the number of technological

fields to which the patent is allocated (patent scope) and the number of backward citations

(Barbieri et al. 2020; Sapsalis et al., 2006; Hall et al., 2001). Similarly, for the originality

index the number of backward citations is often included as control variable (Barbieri et al.

2020; Hall et al., 2001).

In this setting the inclusion of these variables as control variables is potentially problematic

as they are likely to be ”bad controls” (Cinelli et al., 2022). That being said, in this section I

test the sensitivity of the main results presented in the paper to the inclusion of this variables

in order to gauge how much their inclusion would change the results obtained with the main

specification. I do this by adding the number of backward citations among control variables in

model (4) when the dependent variable is the originality index, and by adding both the number

of backward citations and the patent scope when the dependent variable is the radicalness

index. Figures A.1 and A.2 show the estimated effect of electricity liberalisation in model (4)

both with and without controlling for these patent-level variables. The specifications used in

these figures are the following:

• Specification 1: OLS estimates of Model (4), with applicant fixed effect, as reported in

Table 1.4

• Specification 2: OLS estimates of Model (4), with applicant fixed effect and with patent-

level control variables

• Specification 3: OLS estimates of Model (4), without applicant fixed effect, as reported

in Table 1.4

• Specification 4: OLS estimates of Model (4) without applicant fixed effects and with

patent-level control variables

• Specification 5: 2SLS estimates of Model (4), with applicant fixed effect, as reported in

Table 1.5

• Specification 6: 2SLS estimates of Model (4), with applicant fixed effect and with

patent-level control variables
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• Specification 7: 2SLS estimates of Model (4), without applicant fixed effect, as reported

in Table 1.5

• Specification 8: 2SLS estimates of Model (4), without applicant fixed effect and with

patent-level control variables

When included in the regressions, patent-level control variables are always significant and

of the expected sign. However, their inclusion does not change meaningfully the estimated

coefficient for PMRelec and its significance level. The only exception is the coefficient on

Specification 4 for the originality index, which becomes significant at the 5% level with the in-

clusion of backward citations among the control variables. That being said, this section shows

that the results and conclusions of the analysis would not change even including patent-level

control variables among the regressors.

Figure A.1: Sensitivity to patent-level control variables

Notes: Coefficient and confidence interval for PMRelec in the estimates of specification 1 through 8 (see text). All specifications control
for the use of policies to promote clean energy innovation, GDP per capita, the price of crude oil imports, the number of applicant, the
knowledge stock computed at the applicant level and its squared value. Specifications 2,4,5 and 8 also control for patent-level characteristics.
For specifications 1 through 4 inference is based on wild bootstrap (Roodman et al., 2019), standard errors are obtained using the boottest
command in Stata (Roodman et al., 2019) and clustered at the country level (18 clusters). For specifications 5 through 8 inference, regulation
in telecommunication is used as instrument for regulation in the electricity sector and inference is based on a wild bootstrapped version of
the Anderson-Rubin obtained using the boottest command in Stata (Roodman et al., 2019) for standard errors clustered at the country level
(18 clusters).
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Figure A.2: Sensitivity to patent-level control variables

Notes: Coefficient and confidence interval for PMRelec in the estimate of specification 1 through 8 (see text). All specifications control
for the use of policies to promote clean energy innovation, GDP per capita, the price of crude oil imports, the number of applicant, the
knowledge stock computed at the applicant level and its squared value. Specifications 2,4,5 and 8 also control for patent-level characteristics.
For specifications 1 through 4 inference is based on wild bootstrap (Roodman et al., 2019), standard errors are obtained using the boottest
command in Stata (Roodman et al., 2019) and clustered at the country level (18 clusters). For specifications 5 through 8 inference, regulation
in telecommunication is used as instrument for regulation in the electricity sector and inference is based on a wild bootstrapped version of
the Anderson-Rubin obtained using the boottest command in Stata (Roodman et al., 2019) for standard errors clustered at the country level
(18 clusters).
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A.8 Results with Patents in Hydrogen and Nuclear related technologies

Tables A.5 and A.6 shows the results when hydrogen and nuclear patents are included in the

sample. In column (1) of Table A.5 we see that the effect of electricity liberalisation has

the expected sign, but is no longer significant. The results in column (2) and (3) focus only

on nuclear and hydrogen patents and shed light on why this is so. The relationship between

electricity liberalisation and the number of patents filed in these technological fields is far from

being statistically significant and the estimated coefficient has the opposite sign compared to

the results of Tables 1.3 and 1.4. Note that the number of observations in column (2) is lower

because in the estimation countries with no patents in nuclear energy technologies for all the

time span of the analysis are dropped.

On the contrary, the results shown in Table A.6 are remarkably similar to those presented

in Table 1.4. Finally, Table A.7 presents the results when focusing on hydrogen related tech-

nologies. Results focusing only on nuclear patents are not reported due to the low number of

patents in this technologies and thus the low number of observations for running the regres-

sion.
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Table A.5: Results with Patents in Hydrogen and Nuclear related technologies - model (3)

(1) (2) (3)

Panel A CountAllY 02E
ct CountNuclear

ct CountHydrogen
ct

PMRelec,c,t−1, -0.0568 0.1342 0.0469

(0.0412) (0.0933) (0.1077)

Controls Yes Yes Yes

Country FE Yes Yes Yes

Year FE Yes Yes Yes

Observations 464 428 464

Panel B CountAllY 02E
ct CountNuclear

ct CountHydrogen
ct

PMRelec,c,t−1, -0.2045 0.3141 0.1999

(0.1484) (0.4089) (0.4915)

Control Function 0.1782 -0.2223 -0.2223

(0.1532) (0.4220 ) (0.4220)

Controls Yes Yes Yes

Country FE Yes Yes Yes

Year FE Yes Yes Yes

F-stat first stage 14.70 10.38 14.70

First Stage Bootstrap p-value 0.0024 0.0092 0.0024

Observations 464 428 464

Notes: Notes: All specifications also control for the use of policies to promote clean energy innovation, GDP per capita, the price of crude
oil imports, and the country’s knowledge stocks in dirty and clean energy technologies. In Panel B regulation in the telecommunications
sector is used as instrument for regulation in the electricity sector using a CF approach. Standard errors are clustered at the country level and
reported in parentheses (18 clusters). In Panel B, if the control function is significant in the first-stage regression, I adjust the standard errors
based on 999 bootstrap replications and report them in italics and in square brackets
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Table A.6: Results with Patents in Hydrogen and Nuclear related technologies - model (4)

(1) (2) (3) (4)

All Y02E All Y02E All Y02E All Y02E

Panel A: OLS Rad Rad Ori Ori

Lag PMRelec -0.0172 -0.0170 -0.0008 -0.0020

(0.0004) (0.0001) (0.6568) (0.4006)

[-0.0280, -0.0104] [-0.0226, -0.0142] [-0.0083, 0.0023] [-0.0064, 0.0047]

Controls Yes Yes Yes Yes

Applicant FE Yes No Yes No

Technology FE Yes Yes Yes Yes

Country FE Yes Yes Yes Yes

Year FE Yes Yes Yes Yes

Observations 49,669 55,747 49,628 55,705

Panel B: 2SLS All Y02E All Y02E All Y02E All Y02E

Lag PMRelec -0.0225 -0.0139 0.0014 0.0039

(0.0258) (0.0000) (0.3613) (0.4610)

[-0.0317, -0.0081] [-0.0180, -0.0075] [0.7092] [-0.0053, 0.0250]

Controls Yes Yes Yes Yes

Applicant FE Yes No Yes No

Technology FE Yes Yes Yes Yes

Country FE Yes Yes Yes Yes

Year FE Yes Yes Yes Yes

F-stat first stage 37.98 46.08 37.97 46.09

First Stage Bootstrap p-value 0.0028 0.0026 0.0028 0.0026

Observations 49,669 55,747 49,628 55,705

Notes: All specifications also control for the use of policies to promote clean energy innovation, GDP per capita, the price of crude oil
imports, the number of applicant, the knowledge stock computed at the applicant level and its squared value. In Panel A, I report wild
bootstrap p-values in parentheses and wild bootstrap 95% confidence intervals in square brackets, generated using boottest command in Stata
(Roodman et al., 2019) for standard errors clustered at the country level (18 clusters). In Panel B, regulation in telecommunication is used
as instrument for regulation in the electricity sector and inference is based on a wild bootstrapped version of the Anderson-Rubin obtained
using the boottest command in Stata (Roodman et al., 2019) for standard errors clustered at the country level (18 clusters).
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Table A.7: Results for Patents in Hydrogen related technologies - model (4), by technological

field

(1) (2) (3) (4)

Hydrogen Hydrogen Hydeogen Hydeogen

Panel A Rad Rad Ori Ori

PMRelec,c,t−1, -0.0066 -0.0118 0.0061 -0.0001

(0.2645) (0.0028) (0.4263) (0.9644)

[-0.0393, 0.0033] [-0.0248, -0.0068] [-0.0203, 0.0140] [-0.0189, 0.0099]

Controls Yes Yes Yes Yes

Applicant FE Yes Yes No No

Country FE Yes Yes Yes Yes

Year FE Yes Yes Yes Yes

Observations 10,004 11,016 10,000 11,012

Panel B Rad Rad Ori Ori

Lag PMRelec -0.0023 -0.0082 0.0231 0.0178

(0.8321) (0.1280) (0.0219) (0.1010)

[-0.0313, 0.0112] [-0.0655, 0.00186] [0.0043, 0.0428] [-0.0035, 0.0603]

Controls Yes Yes Yes Yes

Applicant FE Yes No Yes No

Technology FE Yes Yes Yes Yes

Country FE Yes Yes Yes Yes

Year FE Yes Yes Yes Yes

F-stat first stage 30.18 24.96 30.16 24.96

First Stage Bootstrap p-value 0.0138 0.0109 0.0138 0.0109

Observations 10,004 11,016 10,004 11,016

Notes: All specifications also control for the use of policies to promote clean energy innovation, GDP per capita, the price of crude oil
imports, the number of applicant, the knowledge stock computed at the applicant level and its squared value. In Panel A, I report wild
bootstrap p-values in parentheses and wild bootstrap 95% confidence intervals in square brackets, generated using boottest command in Stata
(Roodman et al., 2019) for standard errors clustered at the country level (18 clusters). In Panel B, regulation in telecommunication is used
as instrument for regulation in the electricity sector and inference is based on a wild bootstrapped version of the Anderson-Rubin obtained
using the boottest command in Stata (Roodman et al., 2019) for standard errors clustered at the country level (18 clusters).
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A.9 Complete Result Tables for main results

Table A.8 shows all estimated coefficients omitted from Panel A in Table 1.2. The results when

using the CF approach are similar to those in Table A.8 and are therefore not reported. Simi-

larly, Table A.9 shows all estimated coefficients omitted from Panel A in Table 1.4. Again, the

results in the 2SLS estimates are very similar to those presented here, so they are not reported.

In Table A.8, EPStech is negatively correlated with the number of dirty patents and positively

correlated with the number of clean patents, as expected. The estimated effect of GDP per

capita is not significant in either regression, while the price of crude oil imports is negatively

correlated with the number of dirty innovations. Finally, the country’s knowledge stocks in

clean energy patents is positively correlated with the number of clean energy patents, while

the opposite is true for the knowledge stock in dirty energy patents. In Table A.9 we see that

country-level control variables other than PMRelec are not significantly correlated with the

radicalness or the originality of clean energy technologies. In two specification out of four

(columns 2 an 3) we see the inverted-U relationship between the applicant knowledge stock

and the indicators of interested hypothesised in Section 1.4.2.
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Table A.8: Complete result table for Table 1.2

(1) (2)

Panel A CountDirty
ct CountClean

ct

PMRelec,c,t−1, 0.1469*** -0.0999***

(0.0439) (0.0336)

EPStech,c,t−1, -0.0588*** 0.08199**

(0.0219) (0.0336)

GDPpc;c,t−1, 0.0006 -0.0029

(0.0039) (0.0050)

Oil Price Importsc,t−1, -1.55* -0.43

(0.82) (0.84)

Knowledge Stockclean
;c,t−1, -0.0038 0.014**

(0.013) (0.0063)

Knowledge Stockdirty
;c,t−1, 0.0045 -0.036***

(0.0148) (0.0097)

Controls Yes Yes

Country FE Yes Yes

Year FE Yes Yes

Observations 464 464

Notes: Full result table from Table 1.2, Panel A. Standard errors are clustered at the country level and reported in parentheses (18 clusters).
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Table A.9: Complete result table for Table 1.4

(1) (2) (3) (4)

Rad Rad Ori Ori

Lag PMRelec -0.0171 -0.0181 -0.0021 -0.0018

(0.0167) (0.0005) (0.2938) (0.2118)

[-0.0316, -0.0043] [-0.0285, -0.0124] [-0.0120, 0.0020] [-0.0058, 0.0011]

Lag EPStech -0.0014 -0.0004 -0.0017 -0.0010

(0.6271) (0.9041) (0.7135) (0.6685)

[-0.0070, 0.0049] [-0.0075, 0.0064] [-0.0072, 0.0072] [-0.0057, 0.0061]

Lag GDPpc 0.0006 0.0005 0.0002 0.0002

(0.4414) (0.4420) (0.7134) (0.5691)

[-0.0009, 0.0017] [-0.0007, 0.0013] [-0.0010, 0.0013] [-0.0006, 0.0008]

Lag Oil price (imports) 0.1896 0.1742 0.0286 0.0233

(0.1049) (0.2556) (0.7431) (0.8595)

[-0.0516, 0.3528] [-0.0996, 0.4794] [-0.259, 0.1617] [-0.3173, 0.2724]

Number Applicants -0.0036 -0.0026 0.00002 0.0019

(0.6836) (0.7420) (0.9988) (0.6077)

[-0.0619, 0.0345] [-0.0232, 0.0361] [-0.1107, 0.0307 [-0.0052, 0.0169]

Lag of Knowledge Stockclean -0.0230 -0.2068 -0.0639 -0.1871

(0.7590) (0.0173) ( 0.0953) (0.1141)

[-0.3225, 0.2619] [-0.3062, -0.0647] [-0.1899, 0.0557] [-0.3374, 0.1115]

Lag of Knowledge Stock2
clean -0.0103 0.2795 0.0703 0.2399

(0.8315) (0.0522) (0.0775) (0.1165)

[-0.1525, 0.2179] [-0.0064, 0.5011] [-0.0482, 0.2038] [-0.3689, 0.5881]

Applicant FE Yes No Yes No

Technology FE Yes Yes Yes Yes

Country FE Yes Yes Yes Yes

Year FE Yes Yes Yes Yes

Observations 37,371 42,834 37,333 42,797

Notes: Full result table from Table 1.4, Panel A. I report wild bootstrap p-values in parentheses and wild bootstrap 95% confidence intervals
in square brackets, generated using boottest command in Stata (Roodman et al., 2019) for standard errors clustered at the country level (18
clusters).
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A.10 Share of Clean vs Dirty Patents

The home bias effect is a well known issue that affects studies based on patents from a unique

patent office. This issue arise because inventors in some of the countries in the sample are

generally more likely to file patent applications in the office considered. For instance, in the

case at hand we can imagine that inventors in European countries will be more likely to file

patents at the EPO than inventors in Japan or Canada. Luckily this issue can be fully dealt

with in the estimation process (see for instance Conti et al., 2018). In model 1.3, I dealt with

the home bias effect by including country fixed effects and by controlling for the country-level

patent stock in clean and dirty technologies. By doing this, the proposed specification controls

for the fact that inventors in some countries will tend prioritize filing patents at the EPO. This

being the case, the relatively high number of patent applications in the sample from European

countries does not affect the estimates. An even more direct way to address this issue is by

using the the share of green patents as dependent variable, as this measure clearly abstract

even more from the total number of applications by a country at the EPO (Conti et al., 2018).

As expected, the results using the share of clean patents as dependent variable fully confirm

the ones from the main analysis (see table A.10).

Table A.10: Share of Clean vs Dirty patents

(1) (2)

Panel A ShareClean
ct ShareClean

ct

PMRelec,c,t−1, -0.0346** -0.0829**

(0.0138) (0.0345)

Control Function 0.0595

(0.0374)

Controls Yes Yes

Country FE Yes Yes

Year FE Yes Yes

F-stat first stage 14.70

First Stage Bootstrap p-value 0.001

Observations 462 462

Notes: OLS regression. All specifications also control for the use of policies to promote clean energy innovation, GDP per capita and the
price of crude oil imports. In Panel B regulation in the telecommunications sector is used as instrument for regulation in the electricity sector
using a CF approach. Standard errors are clustered at the country level and reported in parentheses (18 clusters). In the first stage regressions
of Panel B the control function is never significant, hence standard errors are not further corrected using a bootstrap procedure (Wooldridge,
2015)
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A.11 Higher Lags of Policy Variables

Table A.11 and A.12 show the result of the base estimates when I use the third lag of the policy

variables (PMRelec, the use of policies to promote clean energy innovation, GDP per capita

and the price of crude oil imports). The main difference is the change in the coefficient in the

specification where the radicalness index is the dependent variable and we include applicants

fixed effects (column 1 in table A.12). This coefficient is now significant only at the 10%

level. However, the other results and the overall conclusions of the paper are robust to this

exercise.

Table A.11: Results Using the third lag of policy variables - Patent Level Analysis

(1) (2)

Panel A CountDirty
ct CountClean

ct

PMRelec,c,t−3, 0.1303*** -0.1262757***

(0.0316) (0.0373)

Controls Yes Yes

Country FE Yes Yes

Year FE Yes Yes

Observations 421 421

Notes: All specifications also control for the use of policies to promote clean energy innovation, GDP per capita, the price of crude oil
imports, and the country’s knowledge stocks in dirty and clean energy technologies. For the first three of these variables, as well as for the
PMR index, in these estimates I use the third lag. Standard errors are clustered at the country level and reported in parentheses (18 clusters).
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Table A.12: Results Using the third lag of policy variables - Patent Level Analysis

(1) (2) (3) (4)

Clean Clean Clean Clean

Panel A: OLS Rad Rad Ori Ori

Third Lag PMRelec -0.0144 -0.0144 -0.003 -0.0016

(0.0941) (0.0097) (0.1158) (0.2672)

[-0.0250 0.0044] [-0.0246, -0.0064] [-0.0060, 0.0017] [-0.0064, 0.0010]

Controls Yes Yes Yes Yes

Applicant FE Yes No Yes No

Technology FE Yes Yes Yes Yes

Country FE Yes Yes Yes Yes

Year FE Yes Yes Yes Yes

Observations 36,849 42,180 36,811 41,142

Notes: All specifications also control for the use of policies to promote clean energy innovation, GDP per capita, the price of crude oil
imports, the number of applicant, the knowledge stock computed at the applicant level and its squared value. For the first three of these
variables, as well as for the PMR index, in these estimates I use third lag. I report wild bootstrap p-values in parentheses and wild bootstrap
95% confidence intervals in square brackets, generated using boottest command in Stata (Roodman et al., 2019) for standard errors clustered
at the country level (18 clusters).
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Chapter 2

Fighting for Feedstock: Food-Fuel
competition in France

Abstract

To date, there have been few empirical studies examining the relationship between biofuel

support policies and food security in European countries. In this paper, we study the impact

of bioethanol support in France on wheat usage and prices. To this end, we leverage a sudden

and substantial shock to French bioethanol production capacity in 2003 and apply the synthetic

control method. On the one hand, we find that the shock led to a significant increase in the

amount of wheat used outside the food sector, resulting in a significant decrease in the share of

wheat used in the food sector. On the other hand, we find no evidence of higher wheat prices

in the post-treatment period. If, as economic theory predicts, higher demand for wheat in the

fuel sector had an upward effect on wheat prices, this effect was likely overshadowed by the

high volatility of wheat prices worldwide due to the global food crisis in 2007/2008.

Keywords: Biofuels, Food security,Climate Change, Energy markets. Jel Codes: Q16,

Q42, Q18, Q01
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2.1 Introduction

The World Energy Outlook (2022) reports that 90% of today’s liquid biofuels come from food

crops such as corn, wheat and soybeans (i.e., “conventional biofuels”). This creates a ”food-

fuel competition” where biofuel production competes with food production for agricultural

feedstock, impacting food security (Austin et al., 2022; Muscat et al., 2020; Popp et al., 2016;

Koizumi, 2015; Searchinger et al., 2015). This competition occurs when increased demand

for agricultural commodities triggered by biofuel support policies leads to higher food prices

and to the diversion of crops from food to biofuel production.

The debate around conventional biofuels in Europe has intensified with the ”Fit for 55”

plan and the Russian invasion of Ukraine (USDA, 2022). 1 Historically, NGOs have opposed

the production of conventional biofuels due to their impact on food security and land use

(Pilgrim et al., 2010; IFEU, 2023), while advocates argue for their environmental benefits

(E-pure, 2022; E3-modelling, 2021).

To address the potential problems of conventional biofuels, Europe is shifting towards ad-

vanced biofuels (e.g, biofuels from non-food crops or waste) 2, aiming for a 14% share of

renewable energy in transport by 2030, with advanced biofuels accounting for at least 3.5%

of transport energy (WOE, 2022; EU Renewable Energy Directive, 2018). However, the de-

velopment of advanced biofuels requires long-term policies, as they are not yet mature and

face technological challenges to compete with conventional biodiesel and bioethanol (Cadillo-

Benalcazar et al, 2021, Millinger at al, 2017).

Our analysis sheds light on the European debate on conventional biofuels. The existing

literature that studies the effect of biofuel support polices focuses on the projection of ex-

pected effects obtained through simulation approaches, general or partial equilibrium models

and biophysical models (Lark et al., 2022, Khanna et al., 2021, Muscat et al., 2020, Garde-

broek et al., 2017, Efroymson et al., 2016). Econometric studies can therefore be a valuable

addition to this literature as they help us understand the realized impact of past biofuel support

1Examples of this debate can often also be found in popular newspapers, see for example:
1)https://www.lemonde.fr/en/economy/article/2022/07/24/
biofuel-mania-takes-hold-of-france_5991250_19.html; 2)https://www.nytimes.
com/2023/06/25/opinion/letters/biofuels-environment.html; 3)https://www.
argusmedia.com/en/news/2332243-germany-suggests-phase-out-of-crop-biofuels-by-2030

4)https://www.theguardian.com/environment/2022/jul/13/
halt-use-of-biofuels-to-ease-food-crisis-says-green-group

2See also: https://energy.ec.europa.eu/topics/renewable-energy/bioenergy/

biofuels_en
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policies on variables such as cropland or feedstock prices (Austin, 2022; Lark et al., 2022,

Newes et al 2022). Several recent works attempt to address this gap in the literature, some

examples are Boly and Sanou, 2022; Lark et al., 2022; Sant’Anna, 2021; Ifft et al., 2019; Li,

et al., 2019 ; Gardebroek et al., 2017; Wright et al., 2017. However, econometric evidence

for European countries is lacking (Gardebroek et al 2017). This paper fills this gap in the

literature by examining the impact of higher bioethanol production capacity on cereal use and

prices in a European country using a method well suited for estimating a causal relationship

(Abadie 2021, Abadie et al 2010). In particular, we investigate how the support for bioethanol

in France has affected wheat use and prices by examining the causal effect of the sudden in-

crease in bioethanol production capacity in France in 2003 on these variables. To this end,

we use the synthetic control method (SCM) to estimate what would have happened to the

outcome variables of interest if this shock had not occurred (Abadie et al., 2010; Abadie and

Gardeazabal, 2003).

We selected France and wheat as our study’s focal points for several reasons. Firstly,

France has emerged as the largest bioethanol producer in Europe since the 2003 shock to

bioethanol production capacity, a position it maintains today (USDAb 2022, Sorda et al 2010).

This makes it an ideal case study to investigate the impact of bioethanol production support

on cereal usage and prices in Europe.

Moreover, France is the largest wheat producer among EU Member States and the Euro-

pean Union is the world’s top wheat producer (Mohanty and Swaine et al. 2019). Conse-

quently, factors that affect wheat supply in France can have significant implications for food

security at both the European and global levels.

Finally, according to FAOSTAT data, wheat dominates cereal production in France with

36,559.45 thousand tonnes produced in 2021. In the decade before the shock in bioethanol

production capacity (1992-2002), wheat accounted for 74% of all cereals used outside the

food sector use in France, 46% of all cereal consumption for animal feed and 84% of cereals

consumed directly by humans. 3 These figures suggests that if the shock to bioethanol pro-

duction capacity had an effect on the use of agricultural feedstock in France, we expect this

effect to be particularly visible for wheat. Note also that focusing on one cereal allows us

to establish a more direct link between a change in use and the expected change in price, as

we do not need to rely on a price index built as an average of prices for different cereals. In

Appendix B.3 we show that while, as expected, the effect of the shock is particularly visible

when we focus on wheat, the main conclusions we draw from the analysis remain valid when

3Source: https://www.fao.org/faostat/en/#home
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we examine the use of cereals as a broader category.

On the one hand, our findings show a significant shift in wheat usage in France after 2003,

driven by the increase in bioethanol production capacity. By 2012, 28kg per capita more wheat

was used outside the food sector, causing a 11.5% drop in the share of domestic wheat supply

used in the food sector food. On the other hand, we see no notable impact on wheat prices

compared to the counterfactual scenario. These findings are consistent with Gardebroek et

al. (2017), who study the effect of biodiesel support on rapeseed prices in Germany and

France from 2000 to 2015. According to economic theory, all else being equal, one would

expect the additional demand for wheat in the fuel sector to put upward pressure on wheat

prices (Gardebroek et al. 2017, Baffes and Haniotis, 2016; Koizumi, 2015, De Gorter et al.,

2015 Busse et al., 2012). However, in Section 2.6 we propose that the effect of the shock

on wheat prices may have been relatively small compared to the post-treatment volatility of

wheat prices, making it difficult to discern using the SCM (Abadie, 2021). In particular, if

there was an effect on wheat prices, it was likely overshadowed by the high volatility of cereal

prices worldwide as a result of the 2007/2008 global food crisis (Tadasse 2016, Mittal 2009).

Refer to Section 6 for a more comprehensive discussion of this matter.

From these results, we conclude that support for bioethanol in France was not a significant

driver of wheat prices during the time span of the analysis. Any impact that the 2003 shock to

bioethanol production capacity may have had on wheat prices was relatively small compared

to other factors that influenced wheat prices over the same period. However, the substantial

change in wheat usage in the post-treatment period suggests that the expansion of conventional

biofuels could eventually exert significant upward pressure on agricultural commodity prices

if future biofuel policies do not prioritise food security. In the following section, Section 2.2,

the paper discusses the background and the relevant literature. Section 2.3 describes the data

and the empirical strategy. Section 2.4 presents the main results, while Section 2.5 assesses

their robustness. Finally, Section 2.6 discusses the results and concludes.

2.2 Background

Conventional biofuels compete directly with food production for agricultural feestock, land

use and solar radiation (Amigues and Moreaux, 2019). Hence, economic theory predicts a

positive effect of biofuel support policies on crop prices and land use (Gardebroek et al. 2017,

Baffes and Haniotis, 2016; Koizumi, 2015, De Gorter et al., 2015 Busse et al., 2012). These

policies are expected to lead to an increase in the demand for agricultural feedstock, which will

68



put upward pressure on the prices of agricultural products, thus providing an incentive for pro-

ducers to increase agricultural production (Austin et al., 2022, Popp et al., 2016, Searchinger

et al., 2015). The new equilibrium of the market, and thus the answer to the question of how

much agricultural prices and supply will ultimately change, depends on the elasticity of supply

with respect to prices (Koizumi, 2015).

The literature studying the effects of biofuel support policies on agricultural prices, land

use and agricultural production mainly relies on simulation approaches, general or partial

equilibrium models and biophysical models (Lark et al. 2022, Khanna et al. 2021, Muscat

et al. 2020, Gardebroek et al. 2017, Efroymson et al., 2016). Complementing this literature,

there is a growing body of work that focuses on the realised effects of previous biofuel policies

implemented in the early 2000s. These studies attempt to isolate a causal relationship between

an observed effect and a treatment, controlling for confounding factors (Austin 2022). Sec-

tion 2.2.1 discusses this literature, focusing on empirical studies that address the relationship

between biofuel production, land-use and food security. Section 2.2.2 describes in more detail

the European and French context during the period of analysis.

2.2.1 Empirical Studies on Biofuel, Land Use, and Food Security

Most of the recent literature that empirically examines the realized impact of biofuel support

policies is focused on the Renewable Fuel Standard (RFS) in the US (some examples are Lark

et al. 2022; Ifft et al 2019; Li et al 2019; Wright et al. 2017; Carter et al., 2016). This

policy was introduced in 2005 and significantly tightened in 2007 to require the blending of

an increasing share of biofuels with transportation fuels.

Lark et al. (2022) examine the effects of the RFS through a combination of econometric

analysis and biophysical modelling and conclude that it increased US corn prices by 30% and

prices of other crops by 20%. As a result, the area used to grow corn in the US increased

by 8.7% and the total cropland area increased by 2.4% between 2008 and 2016, leading to

a substantial increase in annual nationwide fertiliser use and significant land-use changes.

Because of these changes, they estimate that the carbon intensity of corn bioethanol produced

under the RFS is no less than that of gasoline and likely at least 24% higher. A different

conclusion is reached by Newes et al. (2022), who suggest that the role usually attributed to

RFS in supporting US biofuel production may be overstated and bioethanol competitiveness

alone can explain much of the increase in US production between 2002 and 2019.

Wright et al. (2017) use the implementation of the RFS to study the relationship between

land-use and biofuels in more detail. They find that nearly 4.2 million acres of arable non-

69



cropland have been converted to crops within 100 miles of bioethanol refineries, with the rate

of conversion of grassland to cropland being positively correlated with proximity to a refin-

ery. On the other hand, Li, Miao, and Khanna (2019) examine the determinants of changes

in corn acreage and total acreage in the United States between 2003 and 2014, and their re-

sults suggest that both corn acreage and total acreage are relatively inelastic to changes in

bioethanol capacity at nearby locations and crop prices. Similarly, Ifft et al. (2019) use data

from 10 Midwestern states (Illinois, Indiana, Iowa, Kansas, Minnesota, Missouri, Nebraska,

North Dakota, South Dakota, and Wisconsin) between 1999 and 2014 and find that proximity

to an bioethanol plant is not a significant predictor of land exiting from the U.S. Federal Con-

servation Reserve programme. Their results contrast with Secchi et al. 2011, who estimated

that a 1% increase in corn price leads to a 0.7% to 1.5% decrease in land enrolment in the U.S.

Federal Conservation Reserve Programme.

The meta-analysis by Austin et al. (2022) summarises the various papers that attempt to

estimate the impact of the RFS on land-use. According to this review, the empirical estimates

of the impact of biofuel production on cropland in the US ranges from 0.38 to 0.66 million

acres per billion-gallon of increase in biofuel.

Empirical analyses of the effects of biofuel support policies outside the US are less com-

mon. Sant’Anna (2021) examines the effect of biofuel production on land use and deforesta-

tion in Brazil from 2004 to 2013 and finds that 92% of new bioethanol came from expanding

cropland and only 8% from increased yields.

Boly and Sanou (2022) use the synthetic control method to estimate the impact of biofuel

production on food security in Mexico and Indonesia over the period 2000-2013. They find

that biofuel production had a negative impact on food security in Mexico, while this was not

the case in Indonesia. The authors suggest that this difference might be explained by the

different feedstocks used to produce biofuels in the two countries. Indonesia primarily uses

palm oil and jatropha, which are not directly used for food, while Mexico relies mainly on

maize. Their findings confirm the importance of taking a country-specific approach when

studying the effect of biofuel support policies, as country-level heterogeneity can result in

similar policies having different different outcomes in different countries (Muscat et al., 2020).

In light of this, in Section 2.6 we discuss some trends specific to France, particularly in relation

to the production of livestock products, which may have played a role in determining the

outcomes we observe. Looking at the European Union, Gardebroek et al. (2017) show that,

contrary to what economic theory suggests, the increase in biodiesel production in France

and Germany in the period 2000-2015 was not correlated with higher rapeseed prices and

acreage. In the same paper, the authors also point to the need for more econometric studies
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that empirically examine the impact of past biofuel policies in the EU, a need that to the best

of our knowledge has not been met yet.

2.2.2 The European and French legislative background

When discussing the EU approach to promoting biofuels, it is important to distinguish between

policies implemented at EU level and those implemented at country level. The former are

meant to establish a general legislative framework and set general targets (Gardebroek et al

2017). These targets are usually expressed as a percentage of biofuels to be blended with

conventional road transport fuels (Sorda et al 2010), i.e. they refer to biofuel consumption

rather than production. Within the framework set by the EU, individual countries have the

autonomy to decide how to achieve the targets and this has led to significant differences in the

extent to which different EU Member States support biofuel production (Gardebroek et al.,

2017; Sorda et al., 2010; Guide and Jacquet, 2008). In this section, we focus on the policies

implemented by the European Union and France in the early 2000s; the period of interest for

this study.

In 2003, the EU implemented a new reform of the Common Agricultural Policy (hereafter

CAP) and two directives aimed at promoting the production and consumption of biofuels.

The reform of the CAP led to the introduction of the Energy Crop Scheme, a subsidy of C45

per hectare devoted to the cultivation of energy crops (Cadillo-Benalcazar et al., 2021; Coun-

cil Regulation (EC) No 1782/2003). The first of the two directives, the so-called Biofuels

Directive (2003/30/ EC), set a target of 2% biofuel blending with road transport fuels to be

achieved by 2005, followed by a higher target of 5.75% for 2010 (Cadillo-Benalcazar et al.,

2021; Gardebroek et al., 2017; Berti and Levidov, 2010; Sorda et al., 2010; Directive 2003/30/

EC). However, it is worth noting that these targets were not binding and are generally consid-

ered as an ineffective measure (Cadillo-Benalcazar et al., 2021, Cansino et al. 2012; Sorda et

al., 2010; Kutas et al., 2007). The second directive was the Energy Tax Directive (2003/96/

EC), which allowed individual Member States to introduce tax reductions or exemptions for

biofuels in order to meet the targets set in the 2003 Biofuels Directive (Cadillo-Benalcazar et

al., 2021, Cansino et al. 2012, Sorda et al., 2010; Directive 2003/96/ EC).

Taking advantage of this framework, France and Germany took the strongest stance in the

support of biofuels production and became the two leading biofuel producers in the European

Union (Sorda et al., 2010, Kutas et al., 2007). In particular, France quickly became, and

still is, the first country in the European Union for bioethanol production. By 2010, French

bioethanol production capacity was about 1092 thousand tonnes per year; 37% higher than that
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of Germany (797 tonnes per year) and 235% higher than that of Spain (464 tonnes per year),

respectively the second and third countries for bioethanol production according to EUROSTAT

data. 4

In 2005, France moved the European target of 5.75% set by the Biofuels Directive from

2010 to 2008. At the same time, a more ambitious target of 7% was set for 2010 (Garde-

broek et al. 2017, Guide and Jacquet 2008, Kutas et al., 2007). To achieve this more am-

bitious target, the French government also introduced two instruments that provided strong

economic incentives for biofuel production and greatly reduced business risks for biofuel pro-

ducers (Gardebroek et al. 2017, Wiesenthal et al., 2009, Guide and Jacquet 2008, Kutas et al.,

2007).

First, an amendment to the Taxe Générale sur les Activités Polluantes (TGAP, General Tax

on Polluting Activities) introduced an incentive tax on biofuel blending. Under this policy, fuel

traders had to pay a surcharge in addition to the excise tax (Gardebroek et al 2017, Guide and

Jacquet 2008). This surcharge was relatively expensive, but could be avoided by blending

biofuels with conventional fuels (Gardebroek et al 2017, Kutas et al, 2007). Second, the

French government introduced a system of production quotas. These quotas were allocated

through public tenders and biofuels produced under this system benefited from tax reductions,

which were gradually reduced until 2010 to meet targets set at the national level (Sorda et al.,

2010, Kutas et al., 2007). In 2005, the reduction for bioethanol was C0.38/l, while in 2009

it was C0.15/l (Sorda et al. 2010). Given these measures, while the targets set by the French

government were not binding, they are generally considered as akin to a biofuel mandate

(Gardenbroek et al., 2017; Kutas et al., 2007; Wiesenthal et al., 2009).). These measures led

to a sharp increase in French bioethanol production capacity in the early 2000s, see Figure 2.1.

Charles et al (2013) also estimates a strong increase in bioethanol investment and production

capacity in France after 2005.

2.3 Empirical Strategy

2.3.1 The Synthetic Control Method

We use the synthetic control method (SCM) developed in Abadie and Gardeazabal (2003)

and Abadie et al. (2010, 2015) to estimate the causal impact of the 2003 shock to biofuel

production capacity in France on wheat use and price. The SCM creates a counterfactual

4https://ec.europa.eu/eurostat/cache/metadata/en/nrg_inf_lbpc_esms.htm
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Figure 2.1: Bioethanol Production Capacity - France

Notes:Bioethanol production capacity in France, measured in 1000 of tonnes per year. Source: EUROSTAT, https://ec.europa.eu/
eurostat/cache/metadata/en/nrg_inf_lbpc_esms.htm

for the treated unit (the so-called ”synthetic control”) using a weighted average of untreated

units or units whose treatment exposure differs significantly from the treated unit (Abadie et

al., 2010). This group is often referred to as the ”donor pool”. This method is particularly

attractive when we observe only a few aggregated units, as an optimally chosen combination

of units from the donor pool can often reproduce the characteristics of the treated unit much

better than any of the untreated units on their own (Abadie et al 2021, Cunningham, 2021).

The formalisation of the SCM briefly discussed in the remainder of this section follows Abadie

et al (2021) and Cunningham (2021).

Let J + 1 be the number of countries we observe over a time span of T periods, where

T0 indicates the year of the intervention. Without loss of generality, we assume that the index

for the treated unit is j = 1. The countries in the donor pool are therefore indexed by j =

2, ..., J + 1. In this particular application, the treated country is France, the treatment is the

shock to bioethanol production capacity, T0 is equal to 2003, the time span of the analysis

starts in 1970 and ends in 2012 and the countries in the donor pool are those discussed in
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Section 2.3.6. For each country, we observe the outcome of interest Yjt and a set of other

variables that help predict this outcome (X1j ,...,Xkj). These variables, called predictors or

matching variables, are discussed in detail in Section 2.3.5. Following standard notation, we

can define X1j ,...,Xkj as the k x 1 vectors of predictors for units j = 1, ..., J + 1 and X0

= [X2,...,XJ+1] as the kxj matrix that collects the predictors for the units in the donor pool.

Since we observe Y1t, the problem of estimating the effect of the treatment boils down to

estimating what Y1t would have been without the shock; following standard notation, we call

this counterfactual Y N
1t . The SCM estimates Y N

1t using a weighted average of the units in the

donor pool, as described in equation (1).

Ŷ N
it = ΣJ+1

j=2wjYjt (2.1)

Where wj = w2 , ... , wJ+1 is a J1 vector of weights. We then use Y N
1t to estimate the effect

of the treatment on the treated unit (Πit) as Πit = Y1t - Y N
1t . To select the optimal set of weights

W ∗j, Abadie and Gardeazabal (2003) and Abadie, Diamond and Hainmueller (2010) propose

to choose w2 , ... , wJ+1 such that the synthetic control best resembles the pre-intervention

values of Y1t and X11,...,Xk1. In other words: W ∗ j is chosen to be the set of weights that

minimizes equation 2.2.

∥X1 −X0W∥ = (Σk
h=1vh(Xh1 − w2Xh2 − .....− wjXhj)

2)1/2 (2.2)

Subject to the constraints that the weights are non-negative and sum to one. The positive

constant vh reflects the importance of each of the different matching variables. As a general

rule, v1, . . . ,vk should reflect the predictive values of covariates and, in practice, the set of v1,

. . . ,vk that minimizes the mean squared error is often the choice (Abadie 2021, Cunningham

2021). Cunningham (2021) defines the SCM as a picture-intensive estimator because both

the results of the analysis and its robustness are often presented using images and graphs. In

particular, the results of the analysis are presented in the form of a graph in which we compare

the evolution of the outcome of interest for the treated unit and the synthetic control. If the

shock had a significant effect on the outcome variable, we expect to see two lines that closely

follow each other in the pre-treatment period and diverge after the treatment.

2.3.2 Inference and Robustness Checks in the SCM

The use of the SCM in empirical research is usually accompanied by a series of tests that

provide inference for the results and assess their robustness. The remainder of this section
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briefly introduces these tests. See Abadie (2021) for a more comprehensive discussion about

these tests and their interpretation.

2.3.2.1 In-Space Placebo Test (Permutation test)

The in-space placebo test is performed by iteratively applying the synthetic control method

to each unit in the donor pool. If the treatment is effective, we should expect the estimated

effect for the treated unit to be extreme compared to what we estimate for other countries in

the donor pool (Cunningham 2021, Abadie et al 2010). To carry out this comparison Abadie,

Diamond, and Hainmueller (2010) propose to compare for each unit the ratio between the post-

and pre-intervention fit, i.e. post- and pre-intervention root mean squared error. If this ratio is

particularly high for the treated unit compared to the units in the donor pool, this is evidence

that the estimated effect for the treated unit is indeed extreme (Abadie, 2021; Cunningham,

2021).

2.3.2.2 In-Time Placebo (Backdating)

The idea of the in-time placebo test is to artificially anticipate the treatment by backdating it.

The aim of this test is twofold: 1) we want to assess whether the synthetic control estimator

is able to closely track the trajectory of the outcome variable for the treated unit in the years

between the fake and the actual intervention and 2) we want to see if the estimates still show

an effect around the year of the actual intervention. The emergence of these patterns lends

credibility to the results (Abadie 2021, Abadie, Diamond and Hainmueller 2015).

2.3.2.3 Leave-one-out Test

The leave-one-out test iteratively removes units in the donor pool that received a positive

weight and that were therefore used to build the synthetic control, re-running the estimation

each time (Abadie et al. 2010). This allows us to test whether the estimated effect depends on

the inclusion of a particular unit in the donor pool (Abadie, 2021).

2.3.4 Data

In the analysis that follows we focus on three outcome variables: 1) the amount of wheat

used for non-food purposes, measured in kilogrammes per person, 2) the share of domestic

wheat supply used in the food sector and 3) wheat prices, measured in US Dollars per tonnes.
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Data on the production, domestic supply, use and price of wheat by country and year come

from FAOSTAT database.5 Domestic supply is defined as wheat production minus exports

plus imports and stocks. It therefore measures the amount of an agricultural commodity that

remains in the country after adjusting for trade and stock fluctuations. The possible uses

of the domestic supply of each agricultural commodity are categorized into three categories:

human consumption, animal feed and non-food-related uses. The per capita amount of wheat

allocated to the last of these categories is our first outcome variable of interest. The second

outcome variable of interest, i.e. the share of domestic wheat supply used in the food sector,

is calculated as the sum of wheat used for human consumption and animal feed divided by

the total domestic wheat supply in a given country and year. Table 2.1 presents descriptive

statistics for each of these variables. Wheat domestic supply and its uses are observed for the

whole period under study, i.e. from 1980 to 2012 6 while for wheat prices we have data only

from 1993 onwards.7

2.3.5 Predictors

Following common practice in SCM applications, in all our specifications we include as pre-

dictors pre-treatment lags of the outcome variable, as this has been shown to help control for

unobserved confounding factors (Abadie 2021, Chunningham 2021, Ferman, Pinto and Posse-

bom 2020, Abadie, Diamond and Hainmueller 2010). The specific pre-treatment lags included

are shown in Tables 2.3, 2.5 and 2.7. When the outcome variable is the amount of wheat used

outside the food sector, we also use the share of wheat used in the food sector as matching

variable, and vice versa. We do this under the assumption that how wheat is used before the

shock can affect how wheat use will change in response to the increase in bioethanol produc-

tion capacity. Following the smae rationale, when the outcome variable is the price of wheat

we again include as predictor the share of wheat used in the food sector. It is important to

acknowledge that our current model specifications are just one approach among several pos-

sible alternatives. Recent developments in the literature have drawn attention to the issue of

specification searching in empirical applications employing the SCM. This problem can arise

when the researcher has some control over the results through the selection of the predictors

5https://www.fao.org/faostat/en/#home
6The analysis stops in 2012 because in 2013 the FAO changed the methodology used to compute Food Bal-

ances. See https://www.fao.org/faostat/en/#data/FBSH/metadata
7FAOSTAT data for wheat usage start in 1960. We decided to restrict our sample and start from 1980 as 23

years of pre-treatment period seems an appropriate number. Indeed, adding also the years between 1960 and
1980 does not change the results of the analysis.

76

https://www.fao.org/faostat/en/#home 
https://www.fao.org/faostat/en/#data/FBSH/metadata


used for matching (Ferman et al., 2020). The minimisation algorithm used by the SCM makes

specification searching more difficult, but the problem remains (Ferman et al., 2020; Cunning-

ham 2021). As suggested by Ferman et al. (2020) we address this issue in Appendix B.1 by

showing that our results are robust across a wide number of different specifications.

Table 2.1: Descriptive Statistics

Variable Observations Mean Std. Deviation Min Max

Wheat, non-food uses, Kg per capita 330 8.77 12.28 0 46.40

Share of wheat used in the food sector 330 0.957 0.056 0.793 1

Wheat producer prices, USD per tonnes 168 193.91 73 91.7 440.7

Notes: Descriptive statistics for the main variables in the analysis

2.3.6 Countries in the Donor Pool

Countries in the Donor Pool are selected starting from those in the European Union. However,

as is common in the literature, we exclude from the donor pool countries that have experienced

a shock in bioethanol production capacity that, although smaller compared to what we observe

in France, can still be considered significant (either in absolute terms or relative to their size),

see Abadie 2021 and Abadie et al 2010. The reason for doing this is that a comparative analysis

can only be carried out when the treatment only applies to a subset of the units under study or if

the exposure to such a treatment differs significantly between the units in the analysis (Abadie

et al., 2010). In particular, we romove from the donor pool Austria, Hungary, Germany,

Poland, Spain and Sweden. However, in Appendix B.2 we show that our robust to the use of a

larger donor pool, which includes all these countries. The remaining EU countries for which

we have complete data over the period of interest are those included in the donor pool. For our

first two outcome variables these countries are: Bulgaria, Denmark, Finland, Greece, Ireland,

Italy, Netherland, Portugal and Romania. Since we do not have data about wheat prices for

Bulgaria and Romania we can not include them in the donor pool when the outcome variable

is the price of wheat. Figure 2.2 compares the shock to bioethanol production capacity per

million inhabitants in France and in countries in the donor pool, showing that this shock was

substantially higher for our treated unit. 8

8Since France is the country with the highest population among all of these, the difference in the shock is
even bigger when we do not measure it in per capita terms.
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Figure 2.2: Bioethanol Production Capacity - France and countries in the Donor Pool

Notes: Biothanol production capacity is measured in thousands of tonnes per year per million inhabitants. The blue line represents France.
Other countries included in the graph are Bulgaria, Denmark, Finland, Greece, Ireland, Italy, Netherlands, Portugal and Romania. Source:
EUROSTAT, https://ec.europa.eu/eurostat/cache/metadata/en/nrg_inf_lbpc_esms.htm

2.4 Empirical Analysis

2.4.1 Wheat used for non-food-related purposes and share of wheat do-
mestic supply going to the food sector

Figure 2.3 shows the results of our analysis when the outcome variable is the amount of wheat

used outside the food sector, measured in kilograms per capita. Table 2.2 and 2.3 show the

countries used to generate synthetic France and compare the pre-treatment value of the match-

ing variables for France, synthetic France and the simple average of the countries in the donor

pool. Synthetic France follows France well throughout the pre-treatment period and approxi-

mates the pre-treatment values of the matching variables much better than the average of the

other countries in the donor pool. After 2003, the amount of wheat used for non-food pur-

poses in France starts to increase significantly, while this is not the case in the counterfactual

scenario. Note that the outcome variable in France follows a very similar pattern to bioethanol

production capacity in Figure 2.1: it increases from 2003 to 2009 and then stabilises. This re-
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sult is evidence that the shock to bioethanol production capacity led to more wheat being used

outside the food sector. To be more precise, an additional 28 kg of wheat per capita was used

outside the food sector in 2012 compared to the counterfactual scenario. To better understand

the magnitude of this effect in relation to France wheat domestic supply, we examine the ef-

fect of the shock on the share of wheat used in the food sector. The results of this exercise are

shown in Figure 2.4, while tables 2.4 and 2.5 show how synthetic France is built and compare

the pre-treatment value of the matching variables for France, Synthetic France and a simple

average of the units in the donor pool. Again, France and synthetic France move together until

2003 and then start to diverge as the share of wheat used in the food declines in France but

remains stable in the counterfactual scenario. In 2012, due to the shock in bioethanol produc-

tion, the share of domestic wheat supply used in the food sector was 11.5 percentage points

lower that it would have been otherwise. In the next section we investigate whether or not

these changes had an effect on wheat domestic supply or prices.
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Figure 2.3
Panel A: Wheat used outside the food sector

Panel B: Difference between France and Synthetic France in Panel A

Notes: The outcome variable is the amount of wheat used outside the food sector, measured in Kg per capita. The vertical line is set in 2003.
Panel A compares the evolution of the outcome variable in France and in Synthetic France. Panel B plots the gap between the two lines in
Panel A.
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Table 2.2

Country Weight Country Weight

Bulgaria 0 Italy 0

Denmark 0 Netherlands 0.274

Finland 0 Portugal 0.505

Greece 0.02 Romania 0.201

Ireland 0

Notes: Country weights in synthetic France for the results presented in Figure 2.3

Table 2.3

Variable France Synthetic France Avg. Donor Pool

Wheat, non-food uses, Kg per person (2002) 16.79 16.28 10.71

Wheat, non-food uses, Kg per person (1995) 12.92 11.92 8.10

Wheat, non-food uses, Kg per person (1990) 12.34 13.96 8.11

Wheat, non-food uses, Kg per person (1980) 1.94 2.30 3.63

Share of wheat used in the food sector 0.975 0.969 0.959

Notes: Predictor values for France, Synthetic France and the simple average of all countries in the donor pool. This specification is the one
used to obtain the results presented in Figure 2.3
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Figure 2.4
Panel A – Share of wheat used in the food sector

Panel B – Difference between France and Synthetic France in Panel A

Notes: The outcome variable is the share of wheat used in the food sector. The vertical line is set in 2003. Panel A compares the evolution
of the outcome variable in France and in Synthetic France. Panel B plots the gap between the two lines in Panel A.
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Table 2.4

Country Weight Country Weight

Bulgaria 0 Italy 0

Denmark 0.577 Netherlands 0.109

Finland 0 Portugal 0

Greece 0.145 Romania 0.169

Ireland 0

Notes: Country weights in synthetic France for the results presented in Figure 2.4

Table 2.5

Variable France Synthetic France Avg. Donor Pool

Share of wheat used in the food sector (2002) 0.946 0.946 0.947

Share of wheat used in the food sector (1995) 0.954 0.953 0.953

Share of wheat used in the food sector (1990) 0.946 0.944 0.956

Share of wheat used in the food sector (1980) 0.989 0.987 0.974

Wheat, non-food uses, Kg per person 5.96 4.81 6.50

Notes: Predictor values for France, Synthetic France and the simple average of all countries in the donor pool. This specification is the one
used to obtain the results presented in Figure 2.4.
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2.4.2 Wheat Prices

As discussed in Section 2.2, economic theory suggests that, other things being equal, an ex-

pansion of biofuel production capacity will increase demand for agricultural feedstock. This

in turn is expected to trigger a competition between food and fuel that should put upward

pressure on agricultural prices and thus supply. The results presented in the previous section

substantiate the initial aspect of this narrative, demonstrating that the increase in bioethanol

production capacity led to higher demand for wheat in non-food sector. We now proceed to

investigate the latter aspect, which pertains to the influence of this shock on wheat prices. The

results of the analysis are shown in Figure 2.5, whereas Tables 2.6 and 2.7 show how synthetic

France is built and compare the values of the matching variables for France, synthetic France

and the simple average of units in the donor pool. As we can see, there is no significant differ-

ence in wheat price between France and synthetic France, neither before nor after the shock.

This suggests that the shock to bioethanol production capacity observed in France in 2003 was

not a significant driver of wheat prices in the country in the post-treatment period. However,

for a proper interpretation of this result it is important to note that, during the post-treatment

period, wheat price increases and becomes more volatile in both France and synthetic France.

This is due to the global food crisis that hit the world in those same years, leading to a dramatic

increase in both the level and the volatility of international food prices (Tadasse 2016, Mittal

2009). This is important to consider, as the synthetic control estimator encounters challenges

when estimating relatively ”small” effects, i.e., effects of magnitude similar or lower to the

volatility of the outcome variable. See Section 2.6 for a more detailed explanation of how this

relates to the interpretation of the results in presented in this section. An alternative explana-

tion for this patter could be an high correlation between wheat prices in European countries

that may lead to an almost identical prices of wheat. In this regard, Appendix B.4 shows that

while the price of wheat for country included in the analysis is clearly correlated, there are

large differences in the price of wheat across countries. This high correlation may however

play a role in the results presented in Figure 2.5 and needs to be kept i mind in their interpreta-

tion. Finally. Appendix B.5 presents evidence suggesting that no significant change happened

in France in the share of arable land cultivated with wheat after the shock, a results which is

in line with the lack of effect on wheat prices that we observed in this section.
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Figure 2.5
Panel A – Wheat prices

Panel B – Difference between France and Synthetic France in Panel A

Notes: The outcome variable is the price of wheat. The vertical line is set in 2003. Panel A compares the evolution of the outcome variable
in France and in Synthetic France. Panel B plots the gap between the two lines in Panel A.
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Table 2.6

Country Weight Country Weight

Denmark 0.322 Netherlands 0.665

Finland 0 Portugal 0.013

Greece 0 Romania 0

Italy 0

Notes: Country weights in synthetic France for the results presented in Figure 2.5

Table 2.7

Variable France Synthetic France Avg. Donor Pool

Wheat prices, dollars (2002) 91.7 94.65 118.73

Wheat prices, dollars (1995) 169.5 177.13 198.71

Wheat prices, dollars (1993) 148.3 163.84 231.82

Share of wheat used in the food sector 0.949 0.916 0.96

Notes: Predictor values for France, Synthetic France and the simple average of all countries in the donor pool. This specification is the one
used to obtain the results presented in Figure 2.5.
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2.5 Robustness Checks

This section presents the results of the robustness tests described in Section 2.3. The placebo-

in-space test and the placebo-in-time test are used to assess the statistical significance and

robustness of the results presented in section 2.4.1. As no impact on wheat prices was found,

these tests are not performed for the results in Section 2.4.2. The leave-one-out test is instead

presented for all our outcome variables to show that the pattern identified in our main results

remains robust for all them when we iteratively remove units from the donor pool.

2.5.1 Placebo in Space

Figure 2.6 shows the ratio of pre-treatment RSME to post-treatment RSME for France and all

countries in the donor pool. This ratio is particularly high for France, which means that the

estimated effect for our treated unit is extreme compared to what we estimate for other units

in the donor pool, providing evidence of its statistical significance (Abadie, 2021, Abadie et

al., 2010).

2.5.2 Placebo in Time (backdating)

We perform the placebo-in-time test by backdating the shock to bioethanol production capac-

ity to 1995. Figure 2.7 show the results of this exercise. In both cases, synthetic France keeps

following France after the “fake” intervention and they only start diverging around 2003, pro-

viding evidence in favour of the robustness in of our results (Abadie et al., 2021).

2.5.3 Leave one out Test

The results of the leave-one-out test show that the pattern observed in Sections 2.4.1. and

2.4.2. is not affected by iteratively removing units from the donor pool (see Figure 2.8). This

means that our results are not dependent on any particular unit being in the donor pool.
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Figure 2.6: Placebo in Space
Panel A – Post to Pre RMSE ratio - Wheat, non-food uses, (Kg per

capita)

Panel B – Post to Pre RMSE ratio - Share of Wheat used in the food

sector

Notes: Ratio of the Root Mean Squared Error in the post- and pre-treatment periods. France in the red bar, other countries in the donor pool
are represented in grey.
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Figure 2.7: Placebo in Time (backdating)
Panel A – Wheat, non-food uses, Kg per person

Panel B – Share of wheat used outside the food sector

Notes: In Panel A the outcome variable is the wheat used outside the food sector, while in Panel B it is the share of wheat used outside the
food sector. The vertical line is set in 1995, the year of the “fake” intervention
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Figure 2.8: Leave one out test
Panel A – Wheat, non-food uses, Kg per person

Panel B – Share of wheat used outside the food sector

Panel C – Wheat Prices

Notes:The test is performed by iteratively remove each country that obtained a positive weight in the results presented in Section 2.4 from
the donor pool.
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2.6 Discussion

We show that the shock to France bioethanol production capacity observed in 2003 had a

strong and statistically significant impact on the amount of wheat used outside the food sector.

As a result of this shock, an additional 28 kg of wheat per capita were used for non-food

related purposes in 2012, leading to a decrease of 11.5 percentage points in the share of wheat

used in the food sector.

One factor that may have contributed to such a strong response is the decline in wheat used

as animal feed that we observe in France over the same period; see Figure 2.9. Between 2000

and 2010, the amount of wheat used as animal feed in the country declined by 100 kg per

capita. This decline is not surprising considering that France lost half of its market share in

animal products between 2000 and 2016 (Cheptea and Huchet, 2020) and that its production

of animal products declined rapidly in the early 2000s after having peaked in the late 1990s;

see Figure 2.10. The proposed analysis cannot establish a causal link between the decline in

the use of wheat as animal feed and the strong increase in the amount of wheat used outside

the food sector in response to the 2003 shock. Similarly, we cannot say whether or not the

strong support for bioethanol in France discussed in Section 2.2 is to some extent related to

this decline and to the loss of market share in animal products. Nevertheless, both hypotheses

seem plausible and we plan to investigate them in future research. In the context of this

work, we believe these trends are important to mention as they may have implications for the

external validity of our results; in the sense that a similar treatment in a country without these

conditions could have a different effect.

According to economic theory, all else being equal, the additional demand of wheat to

be used in the fuel sector is expected to put upward pressure on wheat price (Gardebroek

et al. 2017, Baffes and Haniotis, 2016; Koizumi, 2015, De Gorter et al., 2015 Busse et al.,

2012). This is not reflected in our results, as we found no impact of the shock on the price

of wheat. It would however be wrong to interpret our results as conclusive evidence that the

2003 shock to bioethanol production capacity had no impact on wheat price in France. A

first reason for this is the increase in the volatility of wheat price in the post-treatment period

due to the 2007/2008 global food crisis. Focusing in particular on cereals, between 2005 and

2008 international maize prices almost tripled, international rice price grew by 170 percent and

wheat prices increased by 127 percent (Tadasse 2016, Mittal 2009). This can be clearly seen in

Figure 2.11, which plots the FAO Cereal index from 1990 to 2023. The index almost doubled

in 2007 and then decreased substantially only to spike again in 2010. As we can see in Figure

2.5, wheat prices in France were not immune from this sudden burst in volatility. According to
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FAOSTAT data, the price of wheat in France was 129.2 USD/tonnes in 2003, it spiked to 259.2

USD/tonnes by 2007, decreased to 212.5 USD/tonnes in 2008 and then again spiked to 246.6

USD/tonnes in 2010. These fluctuations are significantly larger than the expected impact of

the shock to bioethanol production capacity on wheat prices. As pointed out by Abadie (2021),

when using the SCM relatively ”small” effects, i.e., effects of magnitude similar or lower to

the volatility of the outcome, are difficult to detect. This being the case, a different and more

granular approach might be needed in order to capture the effect of the shock on wheat prices

and distinguish it from the effect of the global food crisis of 2007/2008. Nonetheless, the

results outlined in Section 2.4.2 remain relevant. Looking at them, what can infer that if the

shock had any effect on wheat prices, as economic theory would strongly suggest, this effect

was comparatively low with respect to other drivers that were putting upward pressure on the

price of wheat in France during the same time period.

Another reason we cannot conclusively say that the 2003 shock to bioethanol production

capacity had no impact on wheat price in France is the correlation in the price of wheat across

different countries, which we highlight in Appendix A.4. This high correlation may contribute

to hide the impact of the policy shock on wheat prices.

Figure 2.9: Wheat used as animal feed in France

Notes: Source: FAOSTAT, https://www.fao.org/faostat/en/#home
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Figure 2.10: Livestock production Index for France

Notes: Source: World Bank, https://data.worldbank.org/

Figure 2.11: FAO Cereal Price Index

Notes: Source: FAOSTAT, https://www.fao.org/worldfoodsituation/foodpricesindex/en/
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2.7 Conclusions and Policy Implications

The popularity of conventional liquid biofuels made from food crops like maize, wheat, and

soybeans has sparked a debate on the so called ”food-fuel competition” and its impact on

the world’s food security. This competition is a result of the increased demand for agricul-

tural products brought on by biofuel support policies, which can shift crops away from food

production and boost food prices.

The European biofuels debate recently heated up amid the Russian invasion of Ukraine and

efforts like the “Fit for 55” plan. Advanced biofuels are becoming more popular in Europe,

which holds promise, but continued support and policies are needed to overcome technological

issues and compete with traditional bioethanol and biodiesel.

By examining the effects of higher bioethanol production capacity on wheat use and price

in France, our work contributes to this discussion and sheds light on the impact of supporting

conventional biofuels on the price and use of agricultural feedstock. In particular, this study

contributes to filling a gap in the existing literature by providing an empirical analysis focused

on a European country.

We quantify the impact of the 2003 bioethanol production capacity shock in France by us-

ing the Synthetic Control Method. The analysis unveils that historical backing for bioethanol

production in France was not a significant driver of wheat prices in the country, at least relative

to other factors that were affecting the series in the same time period. This is relevant as the

effect of biofuel support policies on food prices is often a prominent concern in the context

of the food-fuel competition. At the same time, our results also demonstrate that in the case

under study support for bioethanol has substantially increased the quantity and proportion of

wheat used in the non-food sector. This stresses the importance of cautious policymaking in

the development of future biofuel support strategies, as overreliance on convetional biofuels

could potentially lead to relevant food-fuel competition within the European Union.

In future research, we plan to study in more detail whether and to what extent the decline

in the production of livestock products and in the use of wheat as animal feed observed in

France (see Figures 20.9 and 2.10) played a role in how domestic wheat supply responded to

the 2003 shock in bioethanol production capacity. This will allow us to better understand the

factors behind the support for traditional biofuels in the European Union.
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2.8 Appendix B

B.1 Robustness to specificaton searching

The issue of specification searching in empirical applications using the synthetic control method

arises when the researcher has control over the results by changing the set of predictors used

in the analysis. As a robustness check against specification searching, Ferman Pinto and Pos-

serborn (2021) propose to present results for different specifications that rely on all or a subset

of pre-treatment lags of the outcome variable (Ferman Pinto and Posserborn, 2021). Kaul

et al. (2021) show that by including all lags of the outcome as separate predictors we make

other matching variables irrelevant and therefore advise against this in applications where we

believe these covariates to be important.

Borrowing from both these papers, we present results for the following 8 additional speci-

fications additional specifications:

• Specification A: All pre-treatment lags of the outcome variables

• Specification B: Only even pre-treatment lags of the outcome variables

• Specification C: Only odd pre-treatment lags of the outcome variables

• Specification D: Only the first half of the pre-treatment lags of the outcome variables

• Specification E: The average of pre-treatment values of the outcome variables

• Specification F: The initial and final value of pre-treatment values of the outcome vari-

able with the addition of wheat yields and the per capita domestic what supply as pre-

dictor variables. Furthermore, depending on the outcome variable we also add the share

of wheat used in the food sector or the amount of wheat used outside the food sector

following the same rationale as in the main analysis (see Section 2.3.5).

• Specification G: The initial and final value of pre-treatment values of the outcome vari-

able with the addition of wheat yields, the per capita domestic what supply as predictor

variables, the share of all cereals used outside the food sector, the share of all cereals

used for direct human consumption, the share of all cereals used as animal feed and the

terrain ruggedness index, i.e. an index measuring the amount of elevation difference at

the country level
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Specifications A to E are taken directly from Ferman et a., (2021), while in Specifications

F and G we rely more heavily on covariates that might help predict the outcome variables of

interest.

In Figures B.1, B.2 and B.3 we compare results from these additional specifications with

results from the specifications used in the main analysis and show that different specifications

result in similar estimates of the effect of interest.

Figure B.1: Specification Searching – Wheat, non-food uses, Kg per Person

Notes: The figure compares the gap between France and Synthetic France obtained using the main specification (black line) and specifications
A to G described in the Appendix.
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Figure B.2: Specification Searching – Share of wheat used outside the food sector

Notes:The figure compares the gap between France and Synthetic France obtained using the main specification (black line) and specifications
A to G described in the Appendix.

Figure B.3: Specification Searching – Wheat prices

Notes: The figure compares the gap between France and Synthetic France obtained using the main specification (black line) and specifications
A to G described in the Appendix.
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B.2 Larger Donor Pool

In this Section we present the results including in the Donor Pool all countries available,

i.e. we do not exclude from the sample countries that experienced a shock in bioethanol

production capacity that, while smaller than the one observed in France, can be considered

sizable. Interestingly the results using this larger donor are very similar to the one presented

in the main analysis even if there are differences in the countries used to build Synthetic

France.

Figure B.4: Wheat used outside the food sector
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Table B.1

Country Weight Country Weight

Austria 0 Ireland 0

Bulgaria 0 Italy 0

Cyprus 0 Netherlands 0.204

Finland 0 Poland 0.245

Denmark 0 Portugal 0

Germany 0.37 Romania 0.179

Greece 0 Spain 0

Hungary 0 Sweden 0

Notes: Country weights in synthetic France for the results presented in Figure B.4

Figure B.5: Share of wheat used in the Food Sector
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Table B.2

Country Weight Country Weight

Austria 0 Ireland 0

Bulgaria 0 Italy 0

Cyprus 0 Netherlands 0.133

Finland 0 Poland 0.019

Denmark 0 Portugal 0

Germany 0.37 Romania 0.189

Greece 0.007 Spain 0

Hungary 0.651 Sweden 0

Notes: Country weights in synthetic France for the results presented in Figure B.5

Figure B.6: Wheat price
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Table B.3

Country Weight Country Weight

Austria 0 Italy 0

Cyprus 0 Netherlands 0.502

Finland 0 Poland 0

Denmark 0.301 Portugal 0

Germany 0 Romania 0

Greece 0 Spain 0

Hungary 0.126 Sweden 0.071

Notes: Country weights in synthetic France for the results presented in Figure B.6

B.3 Results - Cereals

In the main analysis, we investigate the effect of the 2003 shock to bioethanol production ca-

pacity to wheat use and prices. The reasons why we focus precisely on wheat are explained

in the main text. This section shows that the main conclusions of the analysis hold even if

we focus on cereals in general. The pattern of Synthetic France suggests that countries in the

Donor Pool relied less on wheat and more on other cereals to produce bioethanol compared to

France. A comparison of Figure B.7 with Figure 2.3 shows instead that, as expected, in France

wheat was by far the cereal that reacted most to the shock in bioethanol production capacity.

This was expected as in the decade before the shock (1992-2002) wheat accounted for 74% of

all cereals used outside the food sector in the country (as discussed in Section 2.1) and in light

of the discussion presented in Section 2.6.
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Figure B.7: Cereals used outside the food sector

Table B.4

Country Weight Country Weight

Bulgaria 0.371 Italy 0

Denmark 0 Netherlands 0

Finland 0.04 Portugal 0.256

Greece 0 Romania 0.333

Ireland 0

Notes: Country weights in synthetic France for the results presented in Figure B.7
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Table B.5

Variable France Synthetic France Avg. Donor Pool

Cereals, non-food uses, Kg per person (2002) 22.33 22.51 18.60

Cereals, non-food uses, Kg per person (1995) 18.39 17.04 14.51

Cereals, non-food uses, Kg per person (1990) 14.61 15.83 14.71

Cereals, non-food uses, Kg per person (1980) 6.27 8.19 15.46

Share of cereals used in the food sector 0.977 0.984 0.96

Notes: Predictor values for France, Synthetic France and the simple average of all countries in the donor pool. This specification is the one
used to obtain the results presented in Figure b.7

Figure B.8: Share of Cereals used in the food sector
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Table B.6

Country Weight Country Weight

Bulgaria 0.371 Italy 0

Denmark 0 Netherlands 0

Finland 0.04 Portugal 0.256

Greece 0 Romania 0.333

Ireland 0

Notes: Country weights in synthetic France for the results presented in Figure B.8

Table B.7

Variable France Synthetic France Avg. Donor Pool

Wheat prices, dollars (2002) 91.7 94.65 118.73

Wheat prices, dollars (1995) 169.5 177.13 198.71

Wheat prices, dollars (1993) 148.3 163.84 231.82

Share of wheat used in the food sector 0.949 0.916 0.96

Notes: Predictor values for France, Synthetic France and the simple average of all countries in the donor pool. This specification is the one
used to obtain the results presented in Figure B.8
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B.4 Wheat Prices in European Countries

Figure B.9 shows the price of wheat for country included in the analysis in paragraph 2.4.2.

The graph shows that while the price of wheat follows a similar trend for all countries in the

sample, there are large differences in the price of wheat across countries.

Figure B.9: Share of Cereals used in the food sector
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B.5 Share of Arable Land cultivated with Wheat

In this Section, we briefly look at the evolution of the share of land allocated to wheat in

France during the period of interest. Country level data on overall arable land come directly

from FAOSTAT, while the arable land allocated to wheat has been estimated using data on

wheat production and wheat yields, which are also contained in the FAOSTAT database. As

we can see, the share of agricultural land used to grow wheat remained more or less stable

between 1980 and 2012. A small positive difference between France and Synthetic France

may seem to emerge in the post-treatment period, but further tests suggest this difference is

far from being significant and not robust to different specifications. This result is in line with

the lack of a statistically significant effect on wheat prices.

Figure B.10: Share of Arable Land cultivated with Wheat
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Country Weight Country Weight

Bulgaria 0.261 Italy 0.303

Denmark 0.101 Netherlands 0

Finland 0.087 Portugal 0

Greece 0 Romania 0.248

Ireland 0

Notes: Country weights in synthetic France for the results presented in Figure B.10

Variable France Synthetic France Avg. Donor Pool

Share wheat on arable land (2002) 0.176 0.180 0.123

Share wheat on arable land (1995) 0.157 0.167 0.115

Share wheat on arable land (1990) 0.168 0.163 0.113

Share wheat on arable land (1980) 0.145 0.146 0.097

Share of wheat used in the food sector 0.976 0.975 0.962

Wheat, non-food uses, Kg per person 5.97 4.90 6.50

Notes: Country weights in synthetic France for the results presented in Figure B.10
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