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Charged Rényi entropies and holographic

superconductors

Alexandre Belin,a,b Ling-Yan Hung,b,c Alexander Maloneya,b and Shunji Matsuuraa

aDepartments of Physics and Mathematics, McGill University,
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of this instability as a function of the charge and dimension of the scalar operator. We

also comment on the relation between the phase structure of these entropies and the phase

structure of a holographic superconductor in flat space.

Keywords: Spontaneous Symmetry Breaking, AdS-CFT Correspondence, Black Holes,

Holography and condensed matter physics (AdS/CMT)

ArXiv ePrint: 1407.5630

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP01(2015)059

mailto:alexandre.belin@mail.mcgill.ca
mailto:lhung@physics.harvard.edu
mailto:maloney@physics.mcgill.ca
mailto:matsuura@physics.mcgill.ca
http://arxiv.org/abs/1407.5630
http://dx.doi.org/10.1007/JHEP01(2015)059


J
H
E
P
0
1
(
2
0
1
5
)
0
5
9

Contents

1 Introduction 1

2 From entanglement entropy to thermal entropy 4

3 Holographic computations 6

3.1 Neutral black holes and scalar instability 6

3.2 Charged black hole 7

3.3 Scalar instabilities 8

4 Discussion 12

1 Introduction

The low energy states of a quantum field theory typically exhibit a high degree of spatial

entanglement. To characterize this entanglement precisely, consider a quantum field theory

in state ρ, with space divided into two parts A∪B. The Rényi entropies Sn are the moments

of the reduced density matrix ρA = TrBρ for subsystem A

Sn =
1

1− n
log Tr[ρnA]. (1.1)

The entanglement entropy SEE is SEE = limn→1 Sn = −TrρA log ρA. These entropies

encode the amount of information stored in correlations between A and B, rather than in

A or B separately. Entanglement entropies have played an important role in condensed

matter physics [1–5], quantum gravity [6–12], and quantum information [13].

In many cases we are interested in theories with a conserved charge Q associated with a

global symmetry, such as particle number. When Q is the integral of a local charge density

one can ask how the entanglement depends on the distribution of charge between A and B.

Very naively, one might expect that the entanglement between A and B should increase as

charge is distributed more and more unequally between A and B. This is because one way

of moving charge (say, particle number) into A from B is to create a particle-antiparticle

pair, placing the particle in region A and the anti-particle in region B; particle-antiparticle

pairs created from the vacuum are naturally entangled, so this process should increase the

entanglement entropy. Of course, whether this naive expectation is true will depend on the

details of the state and the theory.

To address this question we will follow [16] and define the charged Rényi entropy:

Sn(µ) =
1

1− n
log Tr

[
ρA

eµQA

NA(µ)

]n
. (1.2)
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The parameter µ is known as an entanglement chemical potential, and QA measures the

amount of charge in subsystem A; it is the integral over A of the local charge density.

NA(µ) ≡ Tr[ρAe
µQA ] is a normalization factor. Applications of charged Rényi entropies

include the supersymmetric Rényi entropies1 [17, 18] and the characterization of symmetry

protected topological phases [19].

We emphasize that µ is not the physical chemical potential of the system, but rather is

a formal parameter used to weight the entanglement in different charge sectors. Neverthe-

less, just as thermodynamic entropies can undergo phase transitions as temperatures and

potentials are varied, the entanglement entropies Sn(µ) can undergo phase transitions as

the Rényi parameter n and the entanglement chemical potential µ are varied. These phase

transitions reflect essentially non-analytic features of the spatial entanglement structure of

quantum field theory ground states.

Rényi phase transitions were investigated in [20] in the case µ = 0. The authors

considered large N conformal field theories which are dual to semi-classical Einstein gravity

in Anti-de Sitter space plus matter. When the entangling surface ∂A is a sphere, Sn is

related to the entropy of a black hole with hyperbolic event horizon. They showed that

Sn is non-analytic in n if the dimension ∆ of the lightest scalar operator O in the theory

is sufficiently small. In particular, ∂2
nSn becomes discontinuous at some n = nc, with

1 < nc <∞, if

d− 2

2
< ∆ <

d+
√
d

2
. (1.3)

Here d is the space-time dimensionality of the CFT and the first inequality is the unitarity

bound. The point is that the field φ dual to O will become unstable if the black hole

temperature is sufficiently small. When n < nc, Sn is computed by the entropy of a

Einstein gravity black hole. But when n > nc the Einstein black hole becomes unstable

and the scalar operator gets a non-zero expectation value near the horizon. In this phase

the entangling surface hosts a localized “impurity” operator with non-vanishing expectation

value. We emphasize that this argument relies crucially on the fact that we are studying

theories at large N . In the context of holographic superconductors, it has been shown

that finite N effects smooth out the phase transition [43]. We expect similar features to

occur here.

The implications of this phase transition were discussed in [20]. For example, the lowest

eigenvalue of the modular hamiltonian is a monotonic function of the lowest excitation

energy in CFT. Similar results have been found in purely QFT analysis [21, 22]. These

authors consider the renormalization group flow of the coupling constants associated to

impurity operators localized on the entangling surface. At a certain value of n, the beta

functions for these couplings change sign and the system undergoes a phase transition. For

example, in [21] it was argued that the Rényi entropies of the O(N) model are non-analytic

at n = 7/4.

1Note however that supersymmetric Rényi entopies require an imaginary chemical potential that is n

dependent.
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One consequence of this is that the replica trick — where one computes SEE by com-

puting Sn at integer values of n and analytically continuing to n → 1 — must be treated

with care. However, we emphasize that in the above analysis nc was shown to be always

greater than 1, and approaches 1 only as the dimension ∆ approaches the unitarity bound

(at which point the operator should decouple from the theory). Thus the Rényi entropies

are still analytic in a finite neighbourhood of n = 1. So this result does not invalidate the

derivation of the Ryu-Takayanagi formula by Lewkowycz and Maldacena [35], which relied

only on analyticity near n = 1. Further relations between the Ryu-Takayanagi formula

and Rényi entropies at n 6= 1 were discussed in [25, 33–37].

In this paper we investigate the phase transitions of charged Rényi entropies. We

consider large N CFTs with global conserved charges that are holographically dual to

Einstein-Maxwell-Scalar theory in AdS. We will be interested in the charged Rényi en-

tropies of the ground state for spherical entangling surfaces; these Rényi entropies can

be computed by studying the CFT in hyperbolic space at finite temperature and charge

density [16, 23]. In the bulk, the dual states are charged AdS black holes with hyperbolic

event horizons [16, 24].

We will therefore study the phase structure of charged, hyperbolic black holes in AdS.

In particular, we will consider instabilities where a charged scalar field — dual to a CFT

operator with global charge q — condenses near the horizon. In this paper, we will find that

charged entropies Sn(µ) will be non-analytic as we vary n and µ, provided the conformal

dimension of the charged operator lies between

d− 2

2
< ∆c(q) <

1

2

(
d+

√
d+

8(d− 2)q2µ2

8π2R2 + (d− 2)µ2

)
. (1.4)

The setup is very similar to that used in the study of holographic superconductors [26–

28], the only difference being that space is hyperbolic. The qualitative features of these

instabilities are similar to those in flat space. In particular, the high temperature and

large chemical potential behaviour is identical to that of the flat-space holographic su-

perconductor; in these limits the curvature of the hyperbolic spatial slice is irrelevant.

Thus, even though the charged Rényi entropies under consideration probe only proper-

ties of the ground state, they contain information about the phase structure of physical

thermodynamic quantities at finite temperature. This echoes the results of [29, 30], that

entanglement entropies of the ground state can be used to study phase transitions of the

theory involving higher excited states. The connection between the physical energy spec-

trum and the entanglement spectrum has attracted a lot of attention in the last decade.

Some remarkable connections have been found in topological phases (for instance [29]),

symmetry broken phases (for instance [31]), and near critical phases (for instance [32]).

The precise connection is still the subject of much debate (for instance [42] and references

therein). Here we provide an example where they seem to be directly connected, at least

in certain limits.

In section 2, we review the relationship between the reduced density matrix for spher-

ical entangling surfaces and thermal density matrices in hyperbolic space. In section 3

we relate this to black hole entropy using AdS/CFT, and describe the phase transition

– 3 –
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using both analytic and numerical techniques. We compute the critical Rényi parameter

nc numerically using a shooting method. In section 4, we discuss these results and relate

them to the phase structure of the holographic superconductor in certain limits.

2 From entanglement entropy to thermal entropy

In a relativistic theory, an observer undergoing constant acceleration has causal access only

to part of the space-time, known as the Rindler wedge, which is separated from the rest

of the space-time by an event horizon. This Rindler wedge is the causal development of

half-space, and a Rindler observer is in a thermal state due to the Unruh effect. From this

one concludes that the reduced density matrix associated with the half-space is just the

thermal density matrix on Rindler space [6]. In a conformal theory, this can be generalized

to relate the reduced density matrix for a spherical region and the thermal density matrix

on a hyperbolic space [23, 24]. We will now review this argument.

Consider a quantum field on a d-dimensional flat space in Euclidean signature

ds2
Rd = dt2E + dr2 + r2dΩ2

d−2 (2.1)

where tE is the Euclidean time, dΩd−2 is the volume element of a unit sphere, and r is the

radial coordinate. We are interested in the reduced density matrix of the d−1 dimensional

ball of radius R centered at the origin. To compute this, we use the fact that flat space

metric is conformal to S1 ×Hd−1:

ds2
Rd = Ω−2ds2

S1×Hd = Ω−2
(
dτ2
E +R2

(
du2 + sinh2 udΩ2

d−2

))
(2.2)

where

Ω =

∣∣∣∣1 + cosh

(
u+ i

τE
R

)∣∣∣∣ . (2.3)

and the S1 ×Hd−1 coordinates (τE , u) are defined by

exp

[
−
(
u+ i

τE
R

)]
=
R− (r + itE)

R+ (r + itE)
. (2.4)

This conformal map has two important features. First, the τE = 0 slice of the S1 ×Hd−1

geometry covers only the interior of the ball (tE = 0, r = R); the entangling surface at

(tE = 0, r = R) has been mapped to the boundary of the hyperbolic space u → ∞. In

Lorentzian signature (taking τE = iτ), this coordinate patch would cover only the interior

of the Causal region associated with the ball (t = 0, r < R). Second, from (2.4) we see that

Euclidean time coordinate τE is periodic with period 2πR. Putting this together, we see

that the reduced density matrix is (up to a unitary transformation which does not enter

into the trace)

ρ =
1

Z1
e−2πRHE (2.5)

– 4 –



J
H
E
P
0
1
(
2
0
1
5
)
0
5
9

Here HE = i ∂
∂τE

is the Hamiltonian which generates translations in τ and Z1 is a nor-

malization factor. Thus the reduced density matrix for a spherical region of radius R is

equivalent to the thermal density matrix on a hyperbolic space with radius R and temper-

ature T0 = 1/2πR. From this, one can show that the Rényi entropy (1.1) is

Sn =
1

n− 1
(n logZ1 − logZn), (2.6)

where Zn is the thermal partition function of the hyperbolic space at T = T0/n.

In a theory with a global conserved charge Q, one can generalize (2.5) to

ρµ =
e−HE/T0+µQ

Z(T0, µ)
. (2.7)

where Z(T, µ) is a partition function evaluated at temperature T and chemical potential

µ. The operator Q measures the charge on hyperbolic space Hd−1, which — from the

conformal transformations above — simply measures the amount of charge in region A.

So (2.7) is the generalized reduced density matrix introduced in (1.2).

Note that µ can be interpreted as the time component of a background gauge field Bµ
which couples to the charge density, via BτE = µ/2πR,2

µ =

∮
B =

∫ 2πR

0
BτEdτE . (2.8)

Since the τE circle shrinks to zero at the entangling surface, this chemical potential intro-

duces a magnetic flux localized at the entangling surface [16]. The charged Rényi entropies

Sn(µ) =
1

1− n
log

Z(T0/n, µ)

Z(T0, µ)n
. (2.9)

measure the entanglement in the (flat space, zero charge density) ground state of a theory,

weighted by the charge contained in region A. In fact, using the thermodynamic identity

Stherm(T, µ) = − ∂F (T, µ)

∂T

∣∣∣∣
µ

=
∂

∂T
(T logZ(T, µ))

∣∣
µ
. (2.10)

this can be written in terms of the standard grand canonical ensemble thermal entropy

Stherm(T, µ):

Sn(µ) =
n

n− 1

1

T0

∫ T0

T0/n
Stherm(T, µ) dT . (2.11)

Finally, it is important to mention the cut-off dependence of the Rényi entropy. The

Rényi entropy, as well as the entanglement entropy, are divergent quantities unless we set

a UV cut-off near the entangling surface. On the other hand, the thermal entropy on

hyperbolic space is a divergent quantity as the volume of the hyperboloid is infinite; we

must set an IR cut-off near the boundary of hyperbolic space.3 In fact, these divergences

are identical: they can be mapped into one another by the conformal transformation (2.2).

We refer the reader to [23] for more details.

2We denote this background gauge field B to avoid confusion with the bulk dynamical A of the

next section.
3For holographic theories, the black hole entropy of a hyperbolic horizon is also a divergent quantity

and requires an IR cut-off near the boundary of AdS space.
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3 Holographic computations

In this section we calculate charged Rényi entropies for large N CFTs which are dual to

semi-classical Einstein gravity coupled to matter in AdS space. In this case Stherm(T, µ) is

the entropy of a black hole entropy in the bulk with hyperbolic event horizon [23, 24]. The

global conserved current of the boundary theory acts as a source for a bulk gauge field. We

will also assume the existence of a scalar operator in the boundary theory, with dimension

∆ and charge q, which is dual to a charged scalar field in the bulk. We are therefore looking

for charged black holes with hyperbolic event horizons in Einstein-Maxwell-Scalar theory.

These solutions are dual to the grand canonical ensemble of the boundary CFT on R×Hd−1.

We first describe the Einstein-Maxwell solutions and give the Rényi entropies when there

is no scalar condensate. We then look for scalar instabilities for the Einstein-Maxwell black

hole at the linearized level. We perform an analytic analysis of the extremal black hole,

and show that instabilities do occur in this case. We then solve the Klein-Gordon equation

for the scalar in the non-extremal case, using a numerical shooting method starting from

the horizon. This allows us to determine the location of the phase transition in Sn(µ) as a

function of ∆ and q. We focus here on 3-dimensional CFT but a similar phase transition

will occur in any dimension d ≥ 3.

3.1 Neutral black holes and scalar instability

Before discussing the charged Rényi entropies and the related charged hyperbolic black

holes, we review a few results concerning uncharged black holes. When the entangling

chemical potential vanishes, the dual gravitational solutions are hyperbolic black holes

ds2 = −f(r)
L2

R2
dτ2 +

dr2

f(r)
+ r2 dH2

2 , (3.1)

where dH2
2 = du2 + sinh2u dφ2 is the metric on H2 with unit curvature and

f(r) =
r2

L2
− 1− M

r
(3.2)

In the entanglement entropy limit n → 1, we recover the massless hyperbolic black hole,

which is AdS4 in Rindler coordinates. To compute the Rényi entropies, we integrate

over a range of temperatures (2.11). As n increases, the integral includes lower and

lower temperatures.

We now consider a scalar field in the bulk of negative mass-squared, which is dual to

an operator of dimension ∆ < 3 in the boundary CFT. In this case the black hole may

become unstable at a certain temperature Tc (or equivalently at a certain nc) at which the

black hole undergoes a second order phase transition. This was shown in [20], although in

earlier work the authors of [38] noted a similar instability for topological black holes with

compact horizon (see also [41]). This effect can be understood as follows. In the extremal

limit these black holes have a AdS2 ×H2 near horizon geometry. Scalar fields with masses

below the effective Breitenlohner-Freedman bound for the near-horizon AdS2 (suitably

corrected for the H2 factor) will become unstable at low temperatures. We emphasize that

– 6 –
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this happens for uncharged black holes; for AdS black holes with flat or spherical horizons,

such instabilities occur only at finite chemical potential. When the scalar field is below

this bound the black hole becomes unstable and will decay to a black hole solution with

scalar hair. The corresponding boundary operator acquires a non-zero expectation value.

This instability implies that Sn has a phase transition as a function of n. The Rényi

entropies are obtained from the thermal entropies by integrating once so ∂2
nSn will become

discontinuous at some critical Rényi parameter nc. In order to determine the precise

value of nc at which this transition occurs, it is necessary to study numerically the scalar

wave equation in the black hole background. The results of [20] (see also [21, 22]) show

that nc > 1 as long ∆ is above the unitarity bound. In particular, if we compute the

entanglement entropy by taking n → 1 then Sn is given by the Einstein black hole with

vanishing scalar field. We will see that this is no longer the case for charged Rényi entropies:

when µ 6= 0, it is possible for nc to be less than one.

3.2 Charged black hole

The Einstein-Maxwell-Scalar action with a negative cosmological constant is4

IE−M =
1

2`2P

∫
d4x
√
−g
(

6

L2
+R− `2∗

4
FµνF

µν − V (|φ|)− 1

2
|∇φ− iqAφ|2

)
. (3.3)

We will take the potential to be a mass term V (|φ|) = 1
2m

2|φ|2 which, together with

boundary conditions, fixes the conformal dimension ∆ of the dual CFT operator. We first

consider charged hyperbolic black hole solutions with vanishing scalar field. The metric is

ds2 = −f(r)
L2

R2
dτ2 +

dr2

f(r)
+ r2 dH2

2 , (3.4)

with

f(r) =
r2

L2
− 1− M

r
+
ρ2

r2
(3.5)

The time coordinate is normalized so that the boundary metric naturally is flat space in

Milne coordinates: ds2
CFT = −dτ2 +R2dH2

2 [23]. The bulk gauge field is

A =

(
2Lρ

R`∗ r
− µ

2πR

)
dτ . (3.6)

We will chose our gauge so that A vanishes at the horizon r = rH , so that

µ = 4π
Lρ

`∗rH
. (3.7)

The mass parameter M is related to the horizon radius rH by

M =
rH
L2

(r2
H − L2) +

ρ2

rH
. (3.8)

4The scale `∗ depends on the details of the theory. With this notation, the 4-dimensional gauge coupling

is g 2
4 = 2`2P/`

2
∗.
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We can rewrite f(r) in terms of the horizon radius rH and the chemical potential µ as

f(r) =
(r − rH)(16π2r(r2 − L2 + rrH + r2

H)− rH(`∗µ)2)

16π2L2r2
. (3.9)

The temperature of this black hole is

T =
T0

2
Lf ′(rH) =

T0

2

[
3
rH
L
− L

rH

(
1 +

(
µ `∗
4πL

)2
)]

(3.10)

where T0 = 1/2π and prime denotes differentiation with respect to r. The thermal entropy

of the black hole is given by the Bekenstein-Hawking formula:

Stherm =
2π

`2P
VΣ r

2
H , (3.11)

where VΣ denotes the (appropriately regulated) volume of H2. As noted above, the large-

volume divergence of VΣ is related to a UV divergence in the boundary theory [24]. In

particular, VΣ can be regarded as a function of R/δ, the ratio of the radius of the entangling

sphere to the short-distance cut-off in the boundary theory. The leading term is

VΣ ' 2π
R

δ
+ · · · , (3.12)

Hence the corresponding Rényi entropies begin with an area law contribution. When

there is no scalar condensate, the charged Rényi entropies can be computed from (3.11)

and (2.11):

Sn(µ) = πVΣ

(
L

`P

)2 n

n− 1

[(
1 +

1

4

(
µ`∗
2πL

)2
)

(x1 − xn) + x3
1 − x3

n

]
(3.13)

with

xn =
1

3n
+

√
1

9n2
+

1

3
+

1

12

(
µ`∗
2πL

)2

. (3.14)

3.3 Scalar instabilities

The Einstein-Maxwell black holes described above may become unstable at sufficiently low

temperature in the presence of a scalar field. We will find the onset of the instability by

solving the wave equation for the scalar on the black hole background. The endpoint of

the instability will be a hairy black hole with a non-zero scalar field in the vicinity of the

horizon. Thus there will be more than one classical gravitational solution that satisfies the

same boundary conditions. We should then compare free energies of these saddle point

configurations and determine which one is thermodynamically preferable. In general, we

expect that the dynamically stable saddle point is thermodynamically preferred [39, 40];

indeed, in the holographic superconductor [26, 27] and the constant mode analysis [20]

scalar condensate phases were found to be thermodynamically preferable. We expect that

– 8 –
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in the present case the dynamical instability analysis will agree with the thermodynamical

analysis as well.

We note that the instability involves a scalar field which is not constant on H2, as the

constant mode on H2 is non-normalizable. Thus the hairy black hole will not have the full

hyperbolic symmetry of the Einstein-Maxwell black hole, making its explicit construction

a technically difficult task. We will therefore leave the construction of hairy black hole

solutions to future work; in the present paper we simply demonstrate that the black holes

are unstable and find the onset of the instability.

To find the instability, we must study the Klein-Gordon equation for a charged (com-

plex) scalar Φ on the black hole background:(
(∇µ − iqAµ)(∇µ − iqAµ)−m2

)
Φ = 0 . (3.15)

It is convenient to decompose the field in eigenfunctions of the Laplacian on H2:

Φ =
φ(r)eωτY (σ)

r
(3.16)

where ∇2
H2
Y = −λY . For a normalizable mode on H2, λ > 1/4. The wave equation

reduces to: (
−
(
f(r)

d

dr

)2

+ V (r)

)
φ(r) = 0 (3.17)

with

V (r) =
f(r)

r2

(
λ+ rf ′(r) + r2m2

)
+ (ω + iqAτ )2 (3.18)

It is convenient to put equation (3.17) in Schrodinger form, by defining the tortoise coor-

dinates r∗ by dr∗ = dr/f(r), so that(
−
(
d

dr∗

)2

+ V (r∗)

)
φ(r∗) = 0 (3.19)

An unstable mode corresponds to a solution of this equation with Reω > 0. We note

that when q = 0, (3.19) is just a one dimension Schrodinger equation with potential V (r),

although in general V (r) will be complex. We are interested in finding the onset of this

classical instability, i.e. we seek a solution with Re(ω) = 0.

Before performing the numerical analysis of the black hole stability, we can understand

analytically when the black hole should become unstable. In the zero temperature limit,

the black hole (3.4) has an AdS2 ×H2 near horizon geometry. The AdS2 and H2 radii are

L2
AdS2

=
2L2

AdS4

f ′′(rext)
L2
H2

= r2
ext (3.20)

where rext is the horizon radius of the extremal black hole. In addition, there is a constant

electric flux on the near horizon AdS2:

F = − µ

2πRrext
dvolAdS2 (3.21)

– 9 –
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In the near horizon region, one can therefore approximate the wave equation (3.19) by[
−
(
ε2f ′′(rext)

2
∂ε

)2

+ ε2
f ′′(rext)

2r2
ext

(λ+ r2
extm

2) +

(
ω − iε qµ

2πRrext

)2
]
φ(ε) = 0 (3.22)

where ε is the near-horizon radial coordinate r = rext + ε. The solutions to (3.22) can be

found analytically, and one can then determine exactly when an instability occurs. In fact,

it is not necessary to even solve (3.22) explicitly to see the instability. We can simply note

that near the asymptotic boundary of the near-horizon AdS2×H2, solutions to (3.22) will

behave as φ(ε) ∼ ε−∆eff , where

∆eff = 1/2 +
√
m2

effL
2
AdS2

+ 1/4, m2
eff =

f ′′(rext)

2r2
ext

(λ+ r2
extm

2)− q2µ2

4π2R2r2
ext

. (3.23)

Thus φ behaves like a field of mass-squared m2
eff in the near-horizon AdS2. The black hole

will become unstable when the effective mass-squared falls below the AdS2 Breitenlohner-

Freedman bound, m2
effL

2
AdS2

< −1/4, i.e. when ∆eff becomes complex.

We conclude that an instability will occur when

m2L2
AdS4

< −f
′′(rext)

8
− 1

4r2
ext

+
2q2µ2

4π2R2r2
extf

′′(rext)
. (3.24)

The first term on the right hand side is the naive AdS2 BF bound. The second term is a

correction term coming from the fact that the lowest eigenvalue of a normalizable mode

on H2 has λ = 1/4; this effect makes the scalar more stable. The final term is a correction

term coming from the charge coupling q2AµA
µ; this effect makes the scalar more unstable.

Using the form of the black hole metric, we expect instabilities when

− 9

4
< m2L2

AdS4
< −3

2
+

2q2µ2

8π2R2 + µ2
(3.25)

The first inequality is the usual BF bound in AdS4.

It is straightforward to generalize this to arbitrary dimension (we will omit the details

for the sake of brevity). In general, we find an instability when

− d2

4
< m2L2

AdSd+1
< −d(d− 1)

4
+

2(d− 2)q2µ2

8π2R2 + (d− 2)µ2
. (3.26)

In terms of conformal dimension of dual operators, this gives

∆ <
1

2

(
d+

√
d+

8(d− 2)q2µ2

8π2R2 + (d− 2)µ2

)
≡ ∆c(q) (3.27)

We will now study the stability of the charged hyperbolic black holes by numerically

solving the scalar wave equation.5 Normalizability of the modes requires the field to be

regular at the horizon; we can expand perturbatively for the field near the horizon. We

5For the remainder of this section we set L = R = `∗ = 1
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Figure 1. log nc as a function of µ and q for ∆ = 2. Every configuration above this surface is

unstable.

then use a shooting method to obtain desired boundary conditions near the boundary of

AdS4, namely

Φ(r)|r→∞ ∝ r−∆ (3.28)

In figure 1, we show the results. We show the critical value of the Rényi parameter nc
at which the phase transition occurs, as a function of µ and q for ∆ = 2. We see that

increasing the charge makes the configuration less stable for any µ 6= 0. For large enough

q, increasing µ also renders the black hole less stable. However, for a neutral scalar, as

we increase µ we make the black hole first more stable until some maximum value after

which nc decreases again. We will return to discuss this non-monotonic behaviour in the

next section.

In figure 2, we show the value of nc for µ = 5, varying ∆ and q. As expected, we see

that decreasing ∆ or increasing q makes the configuration less stable. From this graph,

we can determine the critical value ∆c (for a given q) at which the instability kicks in.

In figure 3, we plot the curves ∆(q) for different values of nc and show that the curves

approach the analytic value derived in (3.24) as nc →∞. This confirms the effective mass

analysis given above.

In figure 4, we show the critical chemical potential µc as a function of (∆,q) with

nc = 1. We see that, even when n = 1, it is possible for the Einstein-Maxwell black hole

to be unstable. When µ > µc, the scalar condenses even though the only remaining defect

inserted at the entangling surface is a Wilson line. As we increase q and/or decrease ∆,

µc decreases. We note, however, that µ = 0 is always stable as long as ∆ is above the

unitarity bound, ∆ > 1/2.
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Figure 2. The graph of lognc as we vary q and ∆ for µ = 5. Every configuration above this surface

is unstable.

0.0 0.5 1.0 1.5
q1.0

1.5

2.0

2.5

3.0
D

LogHnL = 4
LogHnL = 5
LogHnL = 6
LogHnL = 8
LogHnL = 10
DcHqL

Figure 3. The graph of ∆ as we vary q for µ = 5 and different values of log n. As we increase n,

we get closer and closer to the analytical estimate ∆c(q).

4 Discussion

We have shown that the hyperbolic charged black hole can become unstable, and investi-

gated the onset of the instability as we vary n, µ and ∆. We now comment on our results.

First, we note that for an uncharged scalar (q = 0), the black hole can be unstable for

sufficiently small scalar mass. This is not surprising; for µ 6= 0 this was already noticed

in the holographic superconductor [26, 27] for black holes with flat horizons. However, we

have seen that for hyperbolic black holes increasing the chemical potential first renders the

solution more stable until we reach a peak of stability. Beyond that point, increasing µ

– 12 –
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Figure 4. The graph of µc as we vary q and ∆ at nc = 1. Every configuration above this surface

is unstable.

renders the black holes more unstable as can be seen in figure 6. This is in contrast with

flat black holes, where no condensation can occur for µ = 0.

In addition to the numerical method used above, one can also use a WKB method to

determine when instabilities exist and to approximate the unstable modes. We will study

this in the q = 0 case, and use the WKB analysis to confirm the surprising behaviour

described above. The number of bound states of the Schrodinger potential V (r∗) can be

estimated using the WKB integral:

Nbound states =

∫ √
−V (r∗)dr∗ =

∫ r0

rh

√
−V (r)

f(r)
dr (4.1)

where we integrate from the horizon r = rh up to the zero of the potential V (r0) = 0,

with r0 > rh. The instability appears when Nbound states ∼ 1. Keeping the temperature

fixed and increasing µ, we find Nbound states first decreases and then increases again as we

increase µ. We plot of
∫ √
−V (r∗)dr∗ against µ at ∆ = 2 at 10 different temperatures in

figure 5 below. One can see that for a given n it decreases with µ before increasing again

for sufficiently large µ, signifying that the system is more stable as µ increases at small µ,

but the trend is reversed for larger values of µ. As a note of caution however, we emphasize

that — in the absence of any small perturbative parameter — this WKB approximation

should at best be taken with a grain of salt, although it does reproduce the qualitative

features of the numerics.

Next, we would like to comment on the large µ limit of the charged Rényi entropies.

When µ becomes larger than any other scale in the problem, the critical temperature should

be proportional to µ. One should note however, that the ratio T/µ remains small even in

the scaling regime, meaning that the black hole continues to stay close to extremality, an
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n� 13.245

n� 16.5289

n� 21.978

n� 32.7869

n� 64.5161

n� 6.64452

Figure 5. Plots of
∫ r0
rh

√
−V (r)/f(r)dr against µ at ∆ = 2 at 10 different temperatures.

Figure 6. The graph of log nc as we vary µ for q = 0 and ∆ = 2. The blue line represents the

critical Rényi parameter and the red line represents the critical temperature for the field theory on

flat space with physical chemical potential µ.

observation also noted in the flatly sliced AdS charged black holes [26, 27]. This is indeed

the case as can be seen in figure 6.

It is interesting to compare the critical temperature6 of the charged hyperbolic black

hole with that of its flat counterpart — the flat holographic superconductor at finite (phys-

ical) chemical potential µ. We find a perfect match for large µ; this is to be expected,

since when µ/R� 1/L the curvature of the horizon is small compared to the scale set by

the chemical potential. This can be seen in figure 6 as well. We note that, although the

gravitational computations for flat and hyperbolic black holes are quite similar, these quan-

tities have very different CFT interpretations. In particular, we see that one can extract

6We will actually compare nc = 1/2πTc.
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information about physical phase transitions at finite chemical potentials and temperatures

(which naturally involve higher excited states) solely by considering the entanglement of

the ground state.

We should comment on the difference between these two phase transitions from the

CFT perspective. The superconductor lives on an infinite flat plane and boundary effects

do not play any important role. However, boundary effects at the entangling surface

are crucial in the phase transitions of the neutral Rényi entropies, as explained in [21].

In the phase transitions of the charged Rényi entropies, there is a qualitative difference

between the neutral and the charged scalar operators. As in the case of the neutral Rényi

entropies, neutral operators can be hosted on the entangling surface without breaking the

U(1) symmetry. Below the critical temperature, these localized operators induce the phase

transitions. There is another instability, which is caused by the entanglement chemical

potential term coupling to the entire subsystem. As in the case of the superconductors,

this instability causes the scalar to condense as well.7 These two effects may in principle

compete or amplify one another. On the other hand, charged operators cannot be hosted

on the entangling surface unless the U(1) symmetry is spontaneously broken. Therefore, it

is the entanglement chemical potential effect that causes the phase transition. This could

explain the qualitative difference in the phase transitions between the q = 0 case and the

q 6= 0 case (as shown in figure 1). This would be interesting to investigate from the field

theory point of view.

Let us comment also on the n = 1 limit. When n = 1 and µ = 0 the conical defect

operator disappears and we obtain the entanglement entropy. On the other hand, if µ is

non-vanishing, then even as n → 1 a defect operator — the Wilson line — remains. So

a phase transition could occur even at n ≤ 1. One might worry that a phase transition

precisely at n = 1 would make it impossible to compute entanglement entropies as a

limit of the charged Rényi entropies. However, since ∂Sn
∂n is still continuous (only ∂2Sn

∂n2 is

discontinuous) the Rényi entropies are still smooth enough to give unique and well-defined

entanglement entropies as n→ 1.

We note also that the Wilson line couples to the global current, so at first sight one

might expect it not to affect uncharged operators. We have seen, however, that this is

not the case. While uncharged operators do not directly couple to the Wilson line, they

still experience its presence indirectly via couplings to other charged operators. This is

manifested holographically by the fact that even neutral scalar fields in the bulk can detect

changes in µ at fixed temperature indirectly, via the µ dependence of the metric.

One can also extract information about the largest eigenvalue of the charged reduced

density matrix (2.7) by considering the limit n → ∞. From the definition of the Rényi

entropy (1.2), one can compute the eigenvalues of the charged reduced density matrix (2.7)

once we know the Rényi entropy as a function of the Rényi parameter n;

exp((1− n)Sn) =

∫ λ1

0
dλ d(λ)λn (4.2)

where λ is the eigenvalue and d(λ) is the spectral density. λ1 is the largest eigenvalue. In

general, d(λ) contains delta functions. In fact, if the Rényi entropy decays polynomially

7Neutral scalars may condense if the conformal dimension is small enough.
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as n→∞, one can show that the spectral function take the following form

d(λ) = δ(λ− λ1)h1(λ) + Θ(λ− λ1)h2(λ), (4.3)

where h1 and h2 are some functions of λ and Θ(λ − λ1) is the Heaviside step function.

There is a simple relation between the largest eigenvalue λ1 and the n → ∞ limit of the

Rényi entropy (called the min-entropy)

S∞ = − log λ1. (4.4)

Below the critical temperature (when n > nc) the scalar field acquires a non-zero expecta-

tion value. These hairy black holes have smaller thermal entropy than that of non-hairy

black holes of the same temperature and chemical potential. Since the Rényi entropy is

given by the integral of the thermal entropy (2.11), this means that the min-entropy S∞
is always smaller than that of Einstein-Maxwell black hole

S∞(Einstein-Maxwell) > S∞(Einstein-Maxwell-Scalar) (4.5)

Moreover, the critical temperature increases as one decreases the conformal dimension ∆.

Therefore, as observed in [20],

dS∞(µ,∆)

d∆
> 0. (4.6)

The main difference between the neutral case [20] and the charged case is that (4.6) is

a strict inequality even in the case of nc ≤ 1, while the neutral case is not. Therefore

S∞(µ,∆) is a monotonic function of ∆. The entanglement chemical potential dependence

of the min-entropy is

dS∞(q 6= 0,∆)

dµ
< 0. (4.7)

We close by recalling that the chemical potential in hyperbolic space can be interpreted

as the insertion of a background Wilson line. The insertion of the Wilson line in the

imaginary time direction has opposite orientation when viewed from region A as opposed

to its complement B. At the same time, the ground state satisfies Sn(A) = Sn(B), for all

n, since the reduced density matrices of A and B have the same eigenvalues. Thus

Sn(µ,A) = Sn(−µ,B). (4.8)

In a theory with charge conjugation invariance, this would additionally imply that

Sn(µ,A) = Sn(−µ,A), i.e. that the charged Rényi entropy is an even function of µ. This

is, in particular, clearly true in the case of holographic dual of Einstein-Maxwell theory.
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[arXiv:1401.6764] [INSPIRE].

[19] L.Y. Hung, S. Matsuura, S. Ryu and X. Wen, Charged topological entanglement entropy, to

appear.

[20] A. Belin, A. Maloney and S. Matsuura, Holographic phases of Rényi entropies, JHEP 12
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[34] T. Faulkner, The entanglement Rényi entropies of disjoint intervals in AdS/CFT,

arXiv:1303.7221 [INSPIRE].

[35] A. Lewkowycz and J. Maldacena, Generalized gravitational entropy, JHEP 08 (2013) 090

[arXiv:1304.4926] [INSPIRE].

[36] D.V. Fursaev, Proof of the holographic formula for entanglement entropy, JHEP 09 (2006)

018 [hep-th/0606184] [INSPIRE].

– 18 –

http://dx.doi.org/10.1007/JHEP07(2014)061
http://arxiv.org/abs/1401.6764
http://inspirehep.net/search?p=find+EPRINT+arXiv:1401.6764
http://dx.doi.org/10.1007/JHEP12(2013)050
http://dx.doi.org/10.1007/JHEP12(2013)050
http://arxiv.org/abs/1306.2640
http://inspirehep.net/search?p=find+EPRINT+arXiv:1306.2640
http://dx.doi.org/10.1103/PhysRevB.80.115122
http://arxiv.org/abs/0904.4477
http://dx.doi.org/10.1103/PhysRevB.84.195128
http://arxiv.org/abs/1104.2544
http://dx.doi.org/10.1007/JHEP05(2011)036
http://arxiv.org/abs/1102.0440
http://inspirehep.net/search?p=find+EPRINT+arXiv:1102.0440
http://dx.doi.org/10.1007/JHEP12(2011)047
http://arxiv.org/abs/1110.1084
http://inspirehep.net/search?p=find+EPRINT+arXiv:1110.1084
http://dx.doi.org/10.1007/JHEP11(2014)007
http://arxiv.org/abs/1404.1309
http://inspirehep.net/search?p=find+EPRINT+arXiv:1404.1309
http://dx.doi.org/10.1103/PhysRevLett.101.031601
http://dx.doi.org/10.1103/PhysRevLett.101.031601
http://arxiv.org/abs/0803.3295
http://inspirehep.net/search?p=find+EPRINT+arXiv:0803.3295
http://dx.doi.org/10.1088/1126-6708/2008/12/015
http://dx.doi.org/10.1088/1126-6708/2008/12/015
http://arxiv.org/abs/0810.1563
http://inspirehep.net/search?p=find+EPRINT+arXiv:0810.1563
http://dx.doi.org/10.1103/PhysRevD.78.065034
http://dx.doi.org/10.1103/PhysRevD.78.065034
http://arxiv.org/abs/0801.2977
http://inspirehep.net/search?p=find+EPRINT+arXiv:0801.2977
http://dx.doi.org/10.1103/PhysRevLett.101.010504
http://arxiv.org/abs/0805.0332
http://dx.doi.org/10.1103/PhysRevLett.113.106801
http://arxiv.org/abs/1305.1949
http://inspirehep.net/search?p=find+EPRINT+arXiv:1305.1949
http://arxiv.org/abs/1112.5166
http://inspirehep.net/search?p=find+EPRINT+arXiv:1112.5166
http://dx.doi.org/10.1103/PhysRevA.78.032329
http://dx.doi.org/10.1103/PhysRevA.78.032329
http://dx.doi.org/10.1103/PhysRevD.82.126010
http://dx.doi.org/10.1103/PhysRevD.82.126010
http://arxiv.org/abs/1006.0047
http://inspirehep.net/search?p=find+EPRINT+arXiv:1006.0047
http://arxiv.org/abs/1303.7221
http://inspirehep.net/search?p=find+EPRINT+arXiv:1303.7221
http://dx.doi.org/10.1007/JHEP08(2013)090
http://arxiv.org/abs/1304.4926
http://inspirehep.net/search?p=find+EPRINT+arXiv:1304.4926
http://dx.doi.org/10.1088/1126-6708/2006/09/018
http://dx.doi.org/10.1088/1126-6708/2006/09/018
http://arxiv.org/abs/hep-th/0606184
http://inspirehep.net/search?p=find+EPRINT+hep-th/0606184


J
H
E
P
0
1
(
2
0
1
5
)
0
5
9
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