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Abstract

This thesis is composed of two independent essays on empirical DSGE models. While they
aim to answer different research questions, the two chapters share a common thread in the
methodology, i.e. the building of an empirical model and its subsequent estimation via
Bayesian techniques.

The first chapter,Whither Liquidity Shocks?, studies the empirical relevance of (flight-
to-)liquidity shocks in the context of DSGE models characterized by a non-trivial financial
sector, focusing on U.S. data. We also investigate how our findings affect the estimated
dynamics and determinants of the natural interest rate, and, consequently, the interpretation
of the monetary policy stance. First, we shed light on the strongly counterfactual implications
that popular models of liquidity shocks have for asset returns and the composition of firms’
liabilities, including the return spread between bank deposits and T-bills and the share of
bank loans on corporate debt. Further, the implied estimate of the natural interest rate entails
that the interest rate gap rose during recessions and fell thereafter. Then, by including the
relevant financial variables as observables in our empirical model, we are able to show that
liquidity shocks played a negligible role and became virtually irrelevant after 2010. We also
find that the slowdown in productivity growth, not liquidity shocks, caused the post-2010
fall in the natural rate.

The second chapter, Who Killed Business Dynamism in the U.S.?, deals with
one of the salient trends that characterized the U.S. economy in the latest decades. In
particular, we offer a new interpretation of the long-term dynamics in the firm entry rate.
According to our findings, its decline was the consequence of a persistent combination of
adverse(favorable) productivity shocks to potential entrants(incumbents), while the long-
term increase in price markups did not play a significant role. In spite of the “Schumpeterian”
structure of our model, not all recessions had a “cleansing” effect, because the combination of
shocks associated with the specific episodes had markedly different effects on the dispersion
of firms’ efficiency. Finally, our model allows us to estimate and distinguish between average
firm efficiency and total factor productivity. Whilst the former’s growth rate is relatively
stable, we rationalize the procyclical pattern of TFP growth and its long-term decline with
adjustments in the extensive margin, i.e. variations in the mass of firms.
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Chapter 1

Whither Liquidity Shocks?

Joint with Patrizio Tirelli

Abstract We show that popular models of (flight-to-)liquidity shocks have strongly
counterfactual implications for asset returns and the composition of firms’ liabilities, including
the return spread between bank deposits and T-bills and the share of bank loans on corporate
debt. Further, the implied estimate of the natural interest rate entails that the interest rate
gap rose during recessions and fell thereafter. By including the relevant financial variables as
observables in our empirical model, we can show that liquidity shocks played a negligible role
and became virtually irrelevant after 2010. We also find that the slowdown in productivity
growth, not liquidity shocks, caused the post-2010 fall in the natural rate.

1.1 Introduction

This paper highlights the counterfactual implications of popular modelizations of liquidity
shocks, interpreted as flight-to-quality episodes. We investigate the implications that these
findings have for the interpretation of the long-term interest rates’ decline and for our un-
derstanding of business cycles.

Interest rates have been gradually falling for a long time in many advanced economies,
including the U.S. The Great Recession episode saw a further acceleration in this downward
trend, leading to an unprecedented period of policy rates at (or even below) the zero lower
bound (ZLB) for several quarters. This spurred renewed attention to the concept of the
natural interest rate (defined by Wicksell, 1898 as the equilibrium interest rate compatible
with price and economic stability) and to the causes and consequences of its decline, with
obvious implications for the scope of monetary policy and for the analysis of business cycles.
While some authors, most notably Summers (2014), pointed to long-term factors that explain
this declining trend and that may have brought about an era of “secular stagnation”, others
emphasized the special role played by the financial crisis (e.g. Borio, 2014).

Regardless of the longer- or shorter-run perspective, safety and liquidity have been pivotal
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subjects of this debate. Among the explanations behind the natural rate decline stand an
increasing propensity to save, in particular through safe assets. This view, related to the
global saving glut hypothesis by Bernanke (2005), argues that a scarcity of safe assets and
their rising attractiveness led to a secular decline in their yields with respect to less safe
instruments. On the other hand, the financial crisis revealed liquidity and safety issues in
markets that were previously regarded as (close to) risk-free, as showed by Kacperczyk and
Schnabl (2013) for money market funds. The associated decoupling between policy rates and
returns on assets characterized by different liquidity and safety attributes paved the way for
a reconsideration of monetary policy transmission mechanisms (see for instance Benigno and
Benigno, 2022).

A number of papers have found liquidity shocks to be an important driver of the U.S.
business cycle. Christiano et al. (2015) identify a “consumption wedge” shock, specified as
a preference for safe and liquid assets, as a fundamental driver behind the Great Recession.
In a model that considers endogenous growth, Anzoategui et al. (2019) show that liquidity
shocks have been crucial in driving the U.S. economy to a lower productivity trend.

One approach to modeling liquidity shocks (Kiyotaki and Moore, 2012; Jermann and
Quadrini, 2012) emphasizes the limited resaleability of firms’ equity when entrepreneurs
are subject to a borrowing constraint. Fisher (2015) offers an alternative microfoundation
within a standard New Keynesian framework, showing how the Smets and Wouters (2007)
risk premium shock is formally equivalent to a (time-varying) preference for holding risk-
free assets. Building on the work of Krishnamurthy and Vissing-Jorgensen (2012), such
preference is justified with the liquidity and safety attributes that characterize government
bonds, so that a positive realization of the risk premium shock assumes the interpretation
of a flight to quality. By simply turning bond holdings into an argument of the household’s
utility function, the microfoundation of liquidity shocks proposed by Fisher (2015) can be
easily incorporated into DSGE models characterized by complex financial markets. Del Negro
et al. (2017) (DGGT henceforth) build a model with financial frictions and further develop
the specification of flight-to-quality shocks, distinguishing between safety and liquidity; their
results ascribe to these two components a fundamental role in determining U.S. business cycle
fluctuations.

The literature on liquidity shocks has important implications for the identification of the
natural rate, r∗, i.e. the flexible-price rate on a risk-free asset. Barsky et al. (2014) and Gerali
and Neri (2019) use frictionless DSGE models to estimate r∗. Both find large fluctuations in
the natural rate that are due to risk premium shocks, interpreted as exogenous reductions
in the required return on savings. DGGT study the determinants of r∗ using both time-
series and DSGE models: their analysis establishes a link between the persistence of liquidity
shocks and the long-term decline in the natural interest rate. Another strand of literature
employs semi-structural models in the spirit of Laubach and Williams (2003) and emphasizes
the role played by the productivity-growth slowdown in the long-term decline of r∗ (see for
instance Laubach and Williams, 2016).1 Eggertsson et al. (2019), with a quantitative life-
cycle model, similarly find that productivity contributed to dragging the natural rate down,

1Specifically, the model developed by Laubach and Williams (2003), and its updated estimates, attribute
a little more than 50% of the r∗ decline since 1998 to the slowdown in trend growth, while the remaining
fraction is imputed to other unspecified drivers.
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but also point out the importance of the demographic shift, in the form of reductions in
fertility and mortality (analogous findings are shared by other works in the OLG framework,
e.g. Gagnon et al., 2021, and Jones, 2022).2

A simple and straightforward consideration motivates our contribution. By their nature,
flight-to-quality shocks affect complex financial markets where different intermediaries chan-
nel funds from households to entrepreneurs. To begin with, a liquidity shock leads households
to a portfolio reallocation towards “safe” assets. This, in turn, implies that return spreads
across assets must adjust. Thus, a prima-facie external validation for the relevance of liquid-
ity shocks should be found in the observed patterns of these spreads. Consider for instance
the characterization of liquidity shocks exploited in DGGT. According to the flight-to-quality
interpretation, households shift their desired portfolio composition from bank deposits to
Treasuries, and in equilibrium the deposit rate must rise relative to the return on T-bills. In
fact, the liquidity shock requires a divergence between deposit and policy rates which is ap-
parently unobservable over the sample period 1964:III-2019:IV. Panel (a) of Figure 1.1 plots
the fed funds rate against the secondary market rate on U.S. 3-month certificates of deposits
(CDs). The two series show a strong co-movement and both decline during recessions. Ac-
cording to Krishnamurthy and Vissing-Jorgensen (2012), Nagel (2016), and Krishnamurthy
and Li (2022), observed spreads between returns on bank deposits and T-Bills are sufficient
to establish that these two assets are imperfect substitutes in terms of their liquidity at-
tributes. Still, these spreads do not show a tendency to increase around recession periods
and are notably smaller than the spread implied by liquidity shocks in DGGT (see panel (b)
of Figure 1.1).

In our view, empirical models should test the ability of liquidity shocks to predict return
spreads and portfolio adjustments that are consistent with observed patterns. As pointed
out in Shi (2015), this concern is justified because asset prices and returns are central to
the transmission mechanism of liquidity shocks. Further, flight-to-quality shocks imply that
excesses of savings are a persistent feature of business cycle fluctuations and implicitly call
for a policy response that should target such asset prices and returns.

We build a business cycle model that accounts for two potential transmission mechanisms
that characterize liquidity shocks. The first one follows DGGT, where a flight to quality
implies that households shift out of bank deposits. The second one is based on a richer
financial market structure where firms, in addition to equity capital, obtain funds via bank
loans and corporate bonds. Here we depart from a longstanding tradition in business cycle
modeling, where financial frictions are typically associated with the existence of a single type
of financial intermediary. In fact, there is evidence that firms with access to the corporate
debt market also borrow from banks, and typically substitute between bank loans and non-
bank financing over the business cycle (Rauh and Sufi, 2010; Adrian et al., 2013; Becker and
Ivashina, 2014).

In the second version of our model, commercial banks collect funds through liquid deposits
and lend to entrepreneurs; non-bank financial intermediaries (NBFIs henceforth) issue de-
posits that are subject to liquidity shocks, and invest in corporate bonds. In this framework,

2The impact demographic factors exert on r∗ works (also) through shifts in saving and investment behav-
iors. Bean et al. (2015) distinguish these into shifts in propensity to save, propensity to invest, and demand
for safe assets.
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Figure 1.1: Fed funds rate, deposit rate, and deposit spreads

Note: Panel (a): data. Panel (b): the solid line is the posterior mode of the smoothed deposit rate/fed

funds rate spread (obtained with our re-estimation of DGGT); “Observed deposit spread/1”: 6-month CD

rate - 6-month T-bill rate (Krishnamurthy and Vissing-Jorgensen, 2012); “Observed deposit spread/2”: 3-

month CD rate - 3-month T-bill rate (Nagel, 2016; the same measure is considered in a robustness test by

Krishnamurthy and Li, 2022). 1964:III-2019:IV.

flight-to-quality shocks imply a household-portfolio reallocation out of non-bank deposits,
toward bank deposits and T-Bills. One novel feature brought about by this assumption is
that, following an adverse liquidity shock, the shift in households’ portfolios toward bank
deposits might favor a symmetrical change in firms’ liabilities towards bank loans.3 Our
approach differs from Kiyotaki and Moore (2012), where flight-to-quality shocks hit firms’
ability to raise funds and induce households to shift their portfolios towards assets that pro-
vide liquidity services. In fact, our characterization is consistent with U.S. capital markets,
where bond financing to the nonfinancial corporate sector accounts for about three-fifths of

3The idea that households turn to bank deposits in times of market stress is consistent with the evidence
in Lin (2020). First, looking at financial assets owned by U.S. households (and non-profit organizations),
he finds that the shares of deposits and corporate equities tend to move in opposite directions. Second,
households increase demand for deposits during stock market crashes, and investor sentiment negatively
affects deposits growth above the effect of stock market returns. Lastly, variations in households’ deposit
holdings directly affect banks’ loan supply. This last finding corroborates the transmission mechanism of
liquidity shocks in our enriched model.
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total funds (De Fiore and Uhlig, 2011).
The distinctive feature of our empirical analysis is the inclusion among the observables of

those financial variables that the model identifies as central to the transmission of liquidity
shocks. More in detail, we first estimate an augmented version of the DGGT model that
accounts for the observed time series of returns on bank deposits. Conversely, the alternative
specification of our model implies that liquidity shocks impact the portfolio composition of
entrepreneurs’ liabilities and the return spread between deposits at banks and NBFIs. The
model is therefore estimated with the addition of two observables, i.e. a proxy for the interest
rate on non-bank deposits and the ratio between bank loans and total credit to the business
sector.

The inclusion of financial variables is decisive. We cannot find a significant impact of liq-
uidity shocks on the business cycle. The reason why this happens is indeed simple: in both
versions of our model, liquidity shocks imply adjustments in asset prices and returns that are
at odds with the corresponding observables added to the model. When the DGGT model
is not constrained to match the observed bank deposit rate, liquidity shocks are prominent
because the predicted volatility of the return spread between bank deposits and Treasuries is
far larger than in the data. When the NBFI model is not constrained to match financial vari-
ables, liquidity shocks are important because the model mispredicts the observed dynamics
of both the bank loans’ share and the return spread between bank and non-bank deposits.

Furthermore, our results challenge the view that liquidity shocks caused the persistent
decline in the natural interest rate. We find a more pronounced role for the productivity
slowdown via persistent technology shocks, in line with the narrative in Laubach andWilliams
(2016). Relative to DGGT, we also obtain significantly higher estimates of the natural
interest rate during the ZLB period, consistently with Wu’s (2017) discussion of DGGT.4 As
a consequence of the higher estimated natural rate, our results call for a reconsideration of
the Fed interest rate policy: in contrast with common wisdom (see for instance Cúrdia, 2015,
and Gerali and Neri, 2019), our estimates of the interest rate gap suggest that the interest
rate policy was indeed expansionary during the last quarters of the ZLB period.

Finally, we discuss a novel result concerning the Fed monetary policy stance as measured
by the gap between the real policy and natural rates. The DGGT-estimated r∗ has the
questionable implication that the policy rate gap systematically increased in recession periods
since 1960. In other words, the real fed funds rate turned from expansionary, at the onset,
to contractionary, at the end of every recession. On the contrary, our estimates of r∗ imply
that the interest rate gap was indeed procyclical during most recession episodes. We obtain
this result because, relative to DGGT, our estimates imply a smaller fall of the natural rate
in the occurrence of recessions.

From a modeling perspective, we contribute to the DSGE literature that incorporates
financial frictions. We combine the building blocks of the seminal works by Christiano et al.
(2014) and Gertler and Karadi (2011), and we depart from the assumption of a single financial
intermediary. Hirakata et al. (2011) and Suh and Walker (2016) also integrate financial
frictions both at the entrepreneur and at the banking level, but they consider a unique
financial intermediary. Somewhat closer to our NBFI specification, Durdu and Zhong (2021)
build and estimate a model with bank and non-bank intermediaries; differently from our

4We refer in particular to her comments on the “implausibly negative nominal r∗” obtained by DGGT.
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approach, their model features two types of entrepreneurs who distinctly borrow from banks
or non-banks. In fact, our framework gives importance to the distinction between bank and
non-bank credit (to the same firm), whose macroeconomic relevance has been underlined by
De Fiore and Uhlig (2011), Becker and Ivashina (2014), and Herman et al. (2017) among the
others.

We also contribute to the literature that investigates the counterfactual implications of
liquidity shocks. Shi (2015) shows that an adverse liquidity shock in the spirit of Kiyotaki and
Moore (2012) generates a counterfactual increase in equity prices. Attempts at addressing
this issue include Cui and Radde (2019), who introduce costly financial intermediation, and
Guerron-Quintana and Jinnai (2019), who eliminate the implausible rise in equity prices by
adding to the model an endogenous growth mechanism that generates a persistent fall in
dividends following the liquidity shock. The counterfactual implications of liquidity shocks
uncovered in this paper cannot be solved in a similar way, simply because return spreads are
not a by-product, but rather a necessary driver for the propagation of these shocks.

Finally, our finding that the post-2010 natural rate was consistently higher than in DGGT
is in line with results in Kiley (2015) and Juselius et al. (2017), who estimate a higher r∗ with
respect to the Laubach and Williams (2003) benchmark, due to the inclusion of the financial
cycle in the model and in the data used for estimation.5

The remainder of the paper is organized as follows. Section 1.2 describes the theoretical
model that encompasses the DGGT and NBFI specifications. Section 1.3 introduces the
estimation details and presents the empirical results. Section 1.4 concludes.

1.2 Model

We build on the New York Fed DSGE model, which accounts for variable capacity utilization,
indexation to past inflation in the price and wage Phillips curves,6 and a time-varying inflation
target in the Central Bank’s monetary policy rule. Exogenous TFP dynamics incorporate
both a stochastic trend and a trend-stationary component. Entrepreneurs borrow funds from
financial intermediaries and their ability to turn raw physical capital into efficient capital units
is subject to idiosyncratic efficiency (risk) shocks (see Christiano et al., 2014). Less efficient
entrepreneurs will go bankrupt and the lenders will repossess the proceedings of the loan
upon payment of a monitoring cost.7 Expected returns from loans are therefore lower than
the contractual lending rate.

The key innovation is that we allow for two alternative characterizations of the finan-
cial sector whose contribution to the model economy depends on the value assigned to the
dummy αbL . When αbL = 0, the model replicates DGGT, i.e liquidity shocks drive a wedge

5Cukierman (2016) and Taylor and Wieland (2016) show theoretically how the omission of relevant
variables, such as those characterizing the financial cycle, may cause a downward bias in the estimate of r∗.
In a nutshell, by extending the Laubach and Williams (2003) model with additional variables, the output
gap does not depend uniquely on the wedge between the actual and the natural rates. Hence, a strongly
negative output gap does not necessarily have to correspond to a strongly negative r∗. While both papers
formally make this argument for a semi-structural model, Taylor and Wieland (2016) suggest that the same
mechanism should apply to a DSGE model.

6The model adopts the Kimball aggregator in the intermediate goods and labor markets.
7Entrepreneurs are also constrained to use both loans and their own funds to buy physical capital.
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between the riskless rate on T-bills and the bank deposit rate. When αbL = 1 (NBFI model
henceforth), bank deposits and T-Bills are perfect substitutes in households’ portfolios, i.e
they equally provide liquidity services, and the model allows for non-bank financial interme-
diaries, broadly interpreted as investment funds that buy corporate bonds. In equilibrium,
entrepreneurs treat bank and non-bank intermediaries as suppliers of homogeneous funds.
By contrast, the liabilities of bank and non-bank intermediaries are imperfect substitutes in
households’ portfolios, because the latter do not provide liquidity services. Liquidity shocks,
therefore, affect the spread between the two deposit rates. In what follows we provide the
details of these alternative characterizations, whereas the full set of equilibrium conditions is
described in Appendix A.1.

1.2.1 Household portfolio choices

Household ι’s expected lifetime utility is based on preferences defined over consumption, ct,
labor supply, Lh

t , and real holdings of a bundle of liquid assets, bLt :

E0

∞∑
t=0

βt

{[
(ct(ι)− ξct−1)

1−σc

1− σc

]
exp

(
σc − 1

1 + νl
Lh
t (ι)

1+νl

)
+ vtU

(
bLt (ι)

)}
, (1.1)

and vt is a shock to the desire for liquidity.8

We posit that

bLt (ι) =
Bt(ι)

Pt

+

(
1 +

Db
t (ι)

Pt

)αbL

− 1,

where Pt is the price of consumption goods, Bt and D
b
t respectively define one-period nominal

government bonds9 and nominal bank deposits, and αbL = {0, 1} identifies the (il)liquid status
of bank deposits. Bank deposits and government bonds respectively yield the nominal rates
Rd,b

t and Rt, where the latter also is the nominally risk-free rate set by the Central Bank.
The flow budget constraint is

ct(ι) +
Bt(ι)

RtPt

+
Db

t (ι)

Rd,b
t Pt

+ αbL D
NBFI
t (ι)

Rd,NBFI
t Pt

≤
(
Bt−1(ι)

Pt−1

+
Db

t−1(ι)

Pt−1

+ αbLD
NBFI
t−1 (ι)

Pt−1

)
1

πt
+

+wtL
h
t (ι)− Tt(ι) + Πt(ι), (1.2)

where πt is the inflation rate, wt is the real wage, Πt and Tt define the consumption value of
dividends and lump-sum taxes, respectively. DNBFI

t (ι) denote deposits held at a non-bank
financial intermediary, which yields the nominal rate Rd,NBFI

t .
In the symmetrical equilibrium, the FOCs relevant for our analysis are:

λt = U ′(ct),

λt = vtU
′ (bLt )+ βEt

[
λt+1

Rt

πt+1

]
, (1.3)

8The treatment of the preference for liquidity strictly follows Fisher (2015), and we obviously assume
that U (•) is positive, increasing, and concave.

9We will use “government bonds” interchangeably with “Treasuries” or “T-bills” to refer to Bt.
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λt = αbL
[
vtU

′ (bLt )](1 + Db
t

Pt

)αbL−1

+ βEt

[
λt+1

Rd,b
t

πt+1

]
. (1.4)

When αbL = 0, log-linearization yields

λ̂t = ε̂lt + R̂t − Et [π̂t+1] + Et

[
λ̂t+1

]
, (1.5)

λ̂t = R̂d,b
t − Et [π̂t+1] + Et

[
λ̂t+1

]
, (1.6)

where ε̂lt = λ−1U ′(bL)vt is the normalized liquidity shock, which is assumed to follow an
AR(1) process.10 Note that:

R̂d,b
t = R̂t + ε̂lt. (1.7)

Thus, a positive liquidity shock inevitably raises the return on bank deposits above the
monetary policy rate. Whilst this mechanism is left implicit in DGGT, a shock with an
analogous transmission is central to the theoretical model proposed by Benigno and Nisticò
(2017).11

By contrast, when αbL = 1 both assets provide liquidity services and

R̂d,b
t = R̂t.

Demand for DNBFI
t is by assumption nil when αbL = 0, whereas when αbL = 1 it is driven

by the standard Euler equation:

λt = βEt

[
λt+1

Rd,NBFI
t

πt+1

]
.

In this case, the liquidity shock drives a wedge between the return on deposits at the NBFI
and the return on the two liquid assets, R̂t:

R̂d,NBFI
t = R̂t + ε̂lt.

1.2.2 Entrepreneurs

In addition to his own resources, N e
t , the representative entrepreneur borrows from financial

intermediaries the funds, Lt, necessary to purchase from capital goods producers the physical
capital, k̄t, at the market price Qt:

Qt−1k̄t−1 = N e
t−1 + Lt−1.

Following Christiano et al. (2014), k̄t is then transformed into effective capital conditionally
to an idiosyncratic efficiency shock ωt, and rented to intermediate goods producers at the

10Variables without the time subscript denote the respective steady-state values.
11Their model explicitly departs from the literature, that for the most part studies shocks to credit spread

between deposit and lending rates, to focus on shocks that raise the wedge between risk-free and deposit rates,
the latter being less liquid than money. Our work can be regarded as an empirical test of the theoretical
transmission mechanism proposed by Benigno and Nisticò (2017).
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nominal rental rate Rk
t . At the end of the period, the undepreciated capital is sold back to

capital goods producers. Entrepreneurs’ profits are

Πe
t = R̃k

tωtQt−1k̄t−1 − Lt−1R
c,L
t , (1.8)

where R̃k
t is the gross nominal return to capital (that includes proceedings from selling un-

depreciated capital), and Rc,L
t is the contractual lending rate. The combination of a pre-

determined lending rate with idiosyncratic productivity shocks exposes entrepreneurs to
bankruptcy risk. In every period the productivity threshold ωt identifies the zero-profit con-
dition that determines the fraction of bankrupt entrepreneurs, Ft (ωt < ωt). Note that banks
repossess the assets of bankrupt entrepreneurs at the monitoring cost µ. In equilibrium, the
following condition must hold:

[1− Ft (ωt < ωt)]Lt−1R
c,L
t + (1− µ)

∫ ωt

0

R̃k
tωtQt−1k̄t−1dFt (ω) = Lt−1R

L
t ,

where RL
t is the average return on loans.

1.2.3 Financial intermediaries

When αbL = 0, we strictly follow DGGT, and perfectly competitive banks turn deposits into
loans that earn the rate RL

t . In this case,

Rd,b
t = RL

t .

When αbL = 1, both banks and non-bank intermediaries supply loans:

Lt = Lb
t + LNBFI

t .

The structure of non-bank financial intermediaries is very simple. The representative
NBFI is subject to the following technology:12

LNBFI
t =

(
DNBFI

t

)αNBFI , αNBFI < 1. (1.9)

For any given average market return on loans, RL
t+1, profit maximization yields the following

supply condition for NBFI loans:

LNBFI
t =

(
RL

t+1

Rd,NBFI
t

) αNBFI
1−αNBFI

. (1.10)

Our modeling strategy for the banking sector follows Gertler and Karadi (2011). This
financial friction implies that the endogenous spread on bank deposits is countercyclical,
dampening the implausible surge in the supply of bank loans that would otherwise occur

12In Mehra et al. (2011), returns to scale in the financial intermediation technology are constant, and
the intermediation cost is a fixed proportion of loans. This, in turn, generates a fixed loan rate spread.
Following their strategy here, where two financial intermediaries supply loans at the market rate, leads to
model indeterminacy.

12



when liquidity shocks raise bank deposits. In a sense, this choice “stacks the cards” against
our conjecture that liquidity shocks imply a counterfactual adjustment in the composition of
firms’ liabilities.

We posit that bankers may divert a fraction Λ of deposits. This, in turn, requires that
bankers put skin in the game by accumulating their own net worth. Bankers exit the financial
sector and become workers with probability (1− θ). Therefore, individual banking activity is
expected to last (1− θ)−1 periods.13 Exiting bankers transfer their net worth to households,
who provide new bankers with an initial endowment corresponding to a fraction Ω of last-
period loans, Lb

t−1. Bank loans amount to

Lb
t = αbLN b

t +Db
t , (1.11)

where N b
t defines bankers’ net worth. Bank profit maximization yields the following FOCs:

νt = (1− θ)β
λt+1

λ

(
RL

t+1 −Rd,b
t

)
+ βθ

λt+1

λt
mt+1νt+1, (1.12)

ηt = (1− θ)β
λt+1

λt
Rd,b

t + θβ
λt+1

λt
ζt+1ηt+1, (1.13)

ϕb
t =

ηt
Λ− νt

, (1.14)

ζt = (RL
t −Rd,b

t−1)ϕ
b
t−1 +Rd,b

t−1, (1.15)

mt = N b
t /N

b
t−1 =

ϕb
t

ϕb
t−1

ζt, (1.16)

N b
t = θζtε

Nb
t N b

t−1 + ΩLb
t−1. (1.17)

νt and ηt respectively define the value to the banker of one additional unit of loans and net
worth, ϕb

t is bank leverage, ζt is the growth rate of bank loans, and mt is the growth rate of
surviving bankers’ net worth. εNb

t is a shock that hits net worth accumulation as in Gertler
and Karadi (2011) and follows an AR(1) process.

1.3 Empirics

The first step in our empirical analysis is a straightforward replication of the estimates ob-
tained in DGGT (i.e. αbL = 0), which we take as a benchmark model, in order to discuss
the implications of liquidity shocks for the smoothed series of the deposit rate. The second
step is the estimation of the same empirical model augmented by the inclusion of one ad-
ditional observable, i.e. a proxy for the commercial bank deposit rate. Finally, we depart
from the DGGT benchmark and estimate the NBFI version of our model (i.e. αbL = 1).
As explained in detail below, our third estimation features two additional observables with
respect to DGGT, specifically a measure of the non-bank deposit rate and the share of bank
over total loans.

13This assumption is typically made to prevent bankers from accumulating net worth up to the point
where they would no longer need deposits to supply loans.
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1.3.1 DGGT model

Following DGGT, the set of observables includes: real GDP and GDI growth for output,
core PCE and GDP deflator for inflation, real consumption and investment growth, real
wage growth, TFP growth, hours worked, fed funds rate, fed funds rate expectations up
to 6 quarters ahead to account for the ZLB and forward guidance, 10-year Treasury yield,
10-year inflation expectations to account for a time-varying inflation target, spread between
Aaa-rated corporate bonds and 20-year Treasury yields, spread between Baa-rated corporate
bonds and 20-year Treasury yields. The estimation is carried out over the period 1960:I-
2019:IV.14

The model features a standard set of shocks and a few measurement errors.15 The issue
posed by the ZLB constraint is addressed by augmenting the monetary policy rule with
anticipated (or news) shocks. This is combined with the inclusion of fed funds rate forecasts
in the set of observables, so that the model’s expectations for the policy rate match the
market expectations. The liquidity shock is made up of a liquidity and a safety component,
each of which is the sum of two AR(1) processes, meant to pick up highly persistent (with
autoregressive coefficient fixed at 0.99) and transitory flight-to-quality episodes. In other
words, there are actually four such shocks possibly hitting the economy: permanent liquidity,
transitory liquidity, permanent safety, and transitory safety.

The presence of the two spreads among the observables is crucial to identify liquidity
and safety shocks. Given their importance in this context, we report here the two related
measurement equations while presenting the remaining ones in Appendix A.3:

Aaa - 20-year Treasury spread = 100 ln(εliq) + Et

[
1

80

79∑
j=0

ε̂liqt+j

]
+ eAaa

t , (1.18)

Baa - 20-year Treasury spread = 100 ln
(
εliqεsafeSP∗

)
+ Et

[
1

80

79∑
j=0

( ˆ̃Rk
t+j+1 − R̂t+j)

]
+ eBaa

t .

(1.19)

The difference between Aaa-rated corporate bonds and Treasury yields is assumed to repre-
sent a liquidity premium. Specifically, it is mapped to the model as the sum of the steady-state
liquidity premium εliq, the (expectations of future) liquidity shocks ε̂liqt+j, and measurement
error eAaa

t . Conversely, the spread between Baa-rated bonds and Treasury yields accounts
for both safety and liquidity components, in addition to the default risk of entrepreneurs.
The term in square brackets in (1.19) is the endogenous spread between the return on capital
and the risk-free rate, where bank leverage, safety and liquidity shocks, and entrepreneur
risk shocks enter. The observation equation is augmented with safety (εsafe) and liquidity
steady-state premia, an additional estimated spread SP∗, and measurement error eBaa

t .
As the measurement equations show, the distinction between liquidity and safety shocks

is purely “empirical”, meaning that there is no endogenous difference between the two before

14Notice that we extend the estimation sample with respect to DGGT, who consider the period 1960:I-
2016:III. All our findings hold irrespective of which of the two samples we use.

15The full list of shocks and measurement errors is presented in Appendix A.2.
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Figure 1.2: IRFs to an adverse transitory liquidity shock (DGGT)
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Note: Estimated impulse response functions at the posterior mode.

taking the model to the data. Indeed, conditional on their standard deviation and autocorre-
lation being equal, liquidity and safety shocks will produce the same effects in all the model
specifications we consider.

Figure 1.2 shows the estimated impulse response functions (IRFs henceforth) to a transi-
tory liquidity shock. According to the flight-to-quality interpretation, households raise their
demand for Treasuries, the deposit rate rises and so does the interest rate on loans, leading
to a positive credit spread (i.e. a positive differential between lending and policy rates). The
liquidity shock causes a slump in both consumption and investment.

Figure 1.3 plots the observed deposit rate against the smoothed series obtained from the
benchmark estimation, which identifies liquidity shocks as one of the main drivers of business
cycle fluctuations. As discussed in the introduction, the liquidity shock requires a divergence
between deposit and policy rates which is unobservable over the sample period. In fact, the
DGGT-implied deposit rate appears to be considerably more volatile than its proxy in the

Figure 1.3: Observed and model-implied bank deposit rate (DGGT)

Note: The dashed line is the posterior mean and the shaded area shows the 68% posterior coverage interval

of the smoothed bank deposit rate (DGGT estimation). The solid line is the observed 3-month CD interest

rate. 1964:III-2019:IV.
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data.16

1.3.2 Augmented DGGT model

The augmented DGGTmodel (Augmented henceforth) is constrained to match one additional
observable, i.e. a proxy for the banking sector deposit rate. Our series of choice is the
secondary market rate on 3-month CDs, assets that match the 3-month maturity of T-bills
whose return in the empirical model is proxied by the fed funds rate. The same measure is
used by Hirakata et al. (2011) in the estimation of a DSGE model.17

The measurement equation for the deposit rate clarifies how this additional observable is
going to discipline the estimate of liquidity shocks:

3-month CD rate = 100(Rd,b − 1) + R̂d,b
t

= 100(Rεliqεsafe − 1) + R̂t + ε̂liqt + ε̂safet ,
(1.20)

where the second equality makes use of the deposit spread defined in (1.7), and Rd,b =
Rεliqεsafe is the implied steady-state deposit rate. Liquidity and safety shock now directly
affect (and are identified by) the two corporate spreads and the wedge between the deposit
and policy rates.

The CD rate time series is available from 1964:III to the end of the estimation sample and
displays an average positive differential of 14 basis points over the fed funds rate. This raises
the issue of matching the calibration of steady-state premiums chosen by DGGT. In their
estimates, the deposit rate is an unobserved variable and they calibrate positive steady-state
premiums for liquidity and safety that allow matching the average convenience yields found
by Krishnamurthy and Vissing-Jorgensen (2012) for the Aaa- and the Baa-Treasury spreads.
This calibration implicitly grants a steady-state spread for the deposit rate of 73 basis points
over the risk-free policy rate and entails that it lies between the corresponding yields on Aaa
and Baa corporate bonds. This is hard to reconcile with the observed average CD rate. To
solve the problem, we have therefore chosen to demean both corporate-Treasury spreads and
to remove steady-state safety and liquidity premiums (εliq = εsafe = 0).

Existing alternatives to our proxy of the deposit rate would be characterized by lower
average returns. For instance, Angeloni and Faia (2013) and Bekiros et al. (2018) consider
the M2 own rate, a weighted average of the rates received on the interest-bearing assets
included in M2. The M2 aggregate bundles assets of different maturities and its rate of
return is characterized, on average, by a substantially negative differential with respect to
the fed funds rate (around -2% between 1960:I and 2019:II, when the M2 own rate series was
discontinued). An alternative measure is provided by Drechsler et al. (2017), who construct
the average rate paid by commercial banks on savings deposits using U.S. Call Reports data
from 1986:I to 2013:IV. Over this period, the savings deposit rate is on average 128 basis

16Absent liquidity shocks, the model-implied deposit rate would be equal to the policy rate, and thus very
close to its observed counterpart (see Figure 1.1, panel (a)).

17Pesaran and Xu (2016) and Hollander and Liu (2016) consider the average between 1-, 3-, and 6-month
secondary market CD rates. The differences between this average and the 3-month rate are in the order of
basis-point decimals.
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points lower than the fed funds rate.18

A full description of the prior distributions and the posterior estimates is left for the
Appendix (Tables A1 and A2). With respect to the original DGGT specification, in all our
estimations we impose a looser prior on the standard deviation of permanent safety and
liquidity shocks. We discuss here the most significant differences between the Augmented
and the DGGT posterior estimates.

The inverse of the elasticity of intertemporal substitution, σc, increases from 0.90 to 1.30.
Given the non-separable preferences in consumption and leisure, this is sufficient to determine
a shift from substitutability to complementarity between consumption and labor. As shown
by Furlanetto and Seneca (2014), complementarity in consumption and labor is important
to obtain procyclical consumption responses to MEI shocks.19 Regarding the parameters
determining internal persistence, the elasticity of investment adjustment costs, S ′′, is consid-
erably larger and shifts from the lower to the upper end of the prior distribution, whereas the
consumption habits parameter, h, falls from 0.49 to 0.21. In spite of the apparent anomaly
relative to the benchmark, this is an intriguing result. In fact, empirical DSGE models obtain
estimated values for the habit parameter that are at odds with microeconometric evidence
(see Havranek et al., 2017). As per the parameters of the exogenous processes, transitory
liquidity and safety shocks are less persistent and have a smaller standard deviation with
respect to DGGT. On the other hand, the standard deviation of permanent flight-to-quality
shocks remains fairly stable.20

The estimated IRFs to a liquidity shock are very close to those in Figure 1.2,21 but the
smoothed series obtained for the deposit rate obviously matches the corresponding observable
we use to estimate the model. This, in turn, suggests that liquidity shocks might have a
negligible impact on business cycle fluctuations.

Figure 1.4 shows the historical decomposition of GDP growth in the benchmark (panel
(a)) and in the Augmented estimation (panel (b)) over the last twenty years of the sample.
We focus on liquidity, productivity, MEI, risk, and monetary policy shocks. According to
the DGGT model, the role of liquidity shocks was particularly pronounced in the last two
recessions, whereas risk and MEI shocks played a lesser role. By contrast, the Augmented
model proposes a quite different narrative: the importance of liquidity shocks is eroded in
favor of MEI and productivity shocks. Similar conclusions hold for the growth rates of
consumption and investment, with the former (latter) most impacted by technology (MEI)
shocks.22

18In Appendix B, we discuss the estimates obtained when the M2 own rate and the savings deposit rate
are chosen to proxy the model-implied bank deposit rate. We consider the alternative of imposing the DGGT
steady-state calibration of the deposit rate, which implies that the estimated shocks are forced to match the
gap with the observed average return on deposits. Our results are fully confirmed.

19Our posterior estimates do not violate the assumptions that consumption and leisure are non-inferior
goods and that the utility function is concave (see Bilbiie, 2009, and Bilbiie, 2011).

20We note in passing that our re-estimation of DGGT led to a substantial change in the MEI shock
autocorrelation coefficient, which shifted from 0.96 in the original estimates to 0.24 in our results.

21Results available upon request.
22See Table E1 in the Appendix for a variance decomposition analysis over the full sample and considering

all shocks. The findings described above are confirmed. Table E1 also shows how DGGT attributes the largest
part of the real policy rate’s variation to liquidity shocks. Their role is nearly irrelevant in Augmented, and
it is quite evenly replaced by technology, MEI, risk, and monetary policy shocks.
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Figure 1.4: GDP growth historical shock decomposition (DGGT vs Augmented)

Note: Historical shock decomposition at the posterior mode. “Liquidity”: sum of transitory liquidity, tran-

sitory safety, permanent liquidity, and permanent safety shocks; “Productivity”: sum of stationary and

permanent technology shocks; “Monetary policy”: sum of contemporaneous and anticipated monetary policy

shocks; “Other”: sum of all other shocks and measurement errors, and initial values. 2000:I-2019:IV.

Finally, it is interesting to note how the estimation handles the simultaneous observation
of the two corporate spreads and the deposit rate, considering their relevance in identifying
liquidity shocks. As evident from the Aaa-Treasury spread equation (1.18), the latter is de-
termined only by liquidity shocks and measurement error: if the estimated standard deviation
of liquidity shocks declines when adding the deposit rate, there is no other endogenous or
exogenous variable that can make up for some of their effects on the Aaa-Treasury spread,
beyond the measurement error itself. Indeed, the variance explained by the measurement
error increases from 6% to 26% in the DGGT and Augmented estimations, respectively. Dif-
ferently, the Baa-Treasury spread observation equation (1.19) contains a fully endogenous
component in the excess return on capital, which is influenced by all structural shocks. In
this respect, our Augmented estimation ends up relying less heavily on liquidity shocks, as
expected, but also on measurement errors (whose contribution to the variance decomposition
drops from 48% to 26% when the deposit rate is observed; see Table E1 in the Appendix).
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1.3.3 NBFI model

The NBFI model is built on the assumption that the return spread between bank deposits and
T-bills is always nil, whereas liquidity shocks affect the spread between NBFI and commercial
bank deposits. This, in turn, impacts on the share of bank loans out of total loans to firms. In
this respect, liquidity shocks play an additional role that is absent in DGGT, which makes us
consider the use of two supplementary observables in order to test their empirical plausibility.

Relative to the Augmented model, we replace our proxy for the banking sector deposit rate
with a proxy for the deposit rate at NBFIs. Drawing from Krishnamurthy and Li (2022),23

this is identified in the interest rate on 90-day P1-rated commercial paper (P1CP), whose
data are available starting 1971:II. Since we do not take a stand on the precise nature of
the non-bank intermediary, we insert a measurement error in the observation equation of
the NBFI deposit rate, which otherwise mimics the bank deposit rate measurement equation
(1.20). The set of observables also includes the growth rate of the ratio between commercial
bank loans and total credit to the non-financial business sector. We construct this observable
as in Becker and Ivashina (2014).24 Following condition (1.17), we also estimate a shock
to bankers’ net worth accumulation, εNb

t . As the P1CP rate is on average extremely close
to the fed funds rate (the spread between the two series amounts to 1 basis point between
1971:II and 2019:IV), we follow the same strategy adopted in the Augmented case, i.e. we
set steady-state safety and liquidity premiums at zero and demean the corporate spreads.

Before turning to the estimates, we briefly discuss the calibration of the parameters and
steady-state values absent in the DGGT framework. Steady-state bank leverage, ϕb, and
bankers’ survival probability, θ, are set at 4 and 0.97156 respectively, as in Gertler and Karadi
(2011). We calibrate the steady-state share of bank over total credit at 0.4, corresponding
to the average ratio in the data used for estimation and consistent with De Fiore and Uhlig
(2011). Lastly, we choose a value of 0.99 for the returns-to-scale coefficient in the NBFI
intermediation technology, αNBFI .

25

Relative to the benchmark DGGT model, posterior estimates exhibit the following fea-
tures. The (inverse) elasticity of intertemporal substitution, σc, is well above unity (1.42), the
degree of consumption habits, h, is rather small (0.31), and S ′′, the elasticity of investment
adjustment costs, is larger and close to its prior mean (4.06). These three estimates go in the
same direction as in the Augmented case. Likewise, both (transitory) safety and liquidity
shocks are less persistent and smaller in magnitude than in DGGT. Finally, wage markup
shocks assume a high autocorrelation coefficient (0.88), as do shocks to bankers’ net worth
(0.95).

Impulse response functions to a liquidity shock are qualitatively similar to the ones esti-
mated with the benchmark DGGT model, but the relative volatility induced by the shock
is unambiguously limited in the NBFI model (see Figure 1.5).26 In fact, the liquidity shock

23Somewhat similarly to the present work, Krishnamurthy and Li (2022) consider a model with money
(bank deposits), near-money (non-bank deposits), and Treasury bonds, where the three assets are allowed to
differ in terms of substitutability and liquidity attributes.

24See Appendix A.4 for a detailed description of how this and the other observables are constructed.
25We examine the calibration of αNBFI and its implications in Appendix C.
26For the sake of comparison, Figure 1.5 reproduces IRFs to a shock of the same standard deviation and

persistence. Specifically, we choose the DGGT estimates.
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induces households to accept a lower return on bank deposits, raising the bankers’ continua-
tion value. This, in turn, limits the credit spread and dampens the investment contraction.
The IRFs also depict a marked and persistent increase in the share of bank loans and in
banks’ net worth. This casts doubts on the possibility that liquidity shocks play a major role
in driving business cycle fluctuations: considering the whole sample, the correlation between
the growth rates of the bank-credit share and GDP (investment) is 0.08 (0.23), similarly to
Durdu and Zhong (2021), who find a weakly positive correlation of both bank and non-bank
credit growth with real activity.27

In contrast with liquidity shocks, an adverse bank net worth shock produces a simultane-
ous fall in output and in the share of bank loans.28 Following the shock, entrepreneurs turn
to NBFIs, whose credit rises but not enough to offset the bank credit crunch, so that total
lending persistently decreases. The drop in the real policy rate, though not immediate, insu-
lates households’ consumption that responds countercyclically. Importantly, the magnitude
of the response is substantially larger for financial than for macroeconomic variables. This
translates into a limited influence of bank net worth shocks in the shock decomposition of
the main macro aggregates.

Figure 1.5: IRFs to an adverse transitory liquidity shock (DGGT vs NBFI)

0 10 20 30 40

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

Output

DGGT
NBFI

0 10 20 30 40

-0.20

-0.15

-0.10

-0.05

0.00
Consumption

0 10 20 30 40

-0.6

-0.4

-0.2

0.0

Investment

0 10 20 30 40
0.00

0.05

0.10

0.15

Credit spread

0 10 20 30 40

-0.6

-0.4

-0.2

0.0

Total credit

0 10 20 30 40

0.70

0.75

0.80

0.85

0.90
Bank loans

0 10 20 30 40

-0.7

-0.6

-0.5

-0.4

-0.3

NBFI loans

0 10 20 30 40

0.6

0.7

0.8

0.9

Bank loans share

0 10 20 30 40
-0.25

-0.20

-0.15

-0.10

-0.05

Entrepreneur net worth

0 10 20 30 40

0.2

0.4

0.6

0.8

1.0

Bank net worth

0 10 20 30 40

-0.08

-0.06

-0.04

-0.02

0.00

Real policy rate

Note: Estimated impulse response functions at the posterior mode.

27Durdu and Zhong (2021) consider a different sample (1987:I-2015:I) and a different dataset, which they
build tracing credit through intermediation chains that depart from non-financial corporate borrowers.

28See Figure E1 in the Appendix.
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IRFs to the remaining shocks are similar across the DGGT and NBFI estimates, with
one important exception. The response of consumption to a MEI shock turns from coun-
tercyclical to procyclical in the NBFI model,29 thanks to the shift in the estimated elas-
ticity of intertemporal substitution that grants complementarity between consumption and
labor. Conversely, consumption still reacts positively to an adverse entrepreneur risk shock
in NBFI,30 thus replicating the pattern observed for the bank net worth shock. In fact,
both MEI and financial-friction shocks have often been recognized in the literature for not
being able to generate a positive co-movement between investment and consumption (see for
instance Furlanetto and Seneca, 2014, and Suh and Walker, 2016).

Figure 1.6: GDP growth historical shock decomposition (NBFI)

Note: Historical shock decomposition at the posterior mode. “Liquidity”: sum of transitory liquidity, tran-

sitory safety, permanent liquidity, and permanent safety shocks; “Productivity”: sum of stationary and

permanent technology shocks; “Monetary policy”: sum of contemporaneous and anticipated monetary policy

shocks; “Other”: sum of all other shocks and measurement errors, and initial values. 2000:I-2019:IV.

Figure 1.6 reports GDP growth historical decomposition according to the NBFI model.
Even during the GFC episode, liquidity shocks are barely noticeable and play no role in
the other periods. MEI shocks assume higher relevance especially between 2008 and 2010,
confirming the results obtained with the Augmented estimation.31 As for the observed credit
spreads, our NBFI model does a poorer job of matching the Aaa- and Baa-Treasury spreads,
whose variance explained by measurement errors significantly increases with respect to both
the DGGT and Augmented estimates (as shown in Table E1 in the Appendix).

To conclude this discussion, we describe how the estimates of NBFI change when we
remove the P1CP rate from the set of observables. This exercise is helpful for understanding
where the “constraints” on the potential role of liquidity shocks come from. Under this
alternative specification, the liquidity shock makes a comeback (albeit less pervasively than
in DGGT) because the empirical model is not forced to replicate the dynamics observed for

29See Figure E2 in the Appendix.
30See Figure E3 in the Appendix.
31Table E1 in the Appendix further demonstrates the consistency between Augmented and NBFI estimates

in terms of variance decomposition. The two models draw a slightly different picture for the determinants of
the real policy rate: according to NBFI, this was less affected by MEI and risk shocks, and more influenced
by productivity and monetary policy.
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the NBFI deposit rate.32 In fact, a gap opens up between the observed and the model-implied
NBFI deposit rate (see Figure 1.7). Interestingly, the mismatch of the non-bank deposit rate
is much less pronounced with respect to the bank deposit rate in DGGT. Including the
bank-loans share in the observables apparently alleviates the counterfactual implications of
liquidity shocks.

Figure 1.7: Observed and model-implied NBFI deposit rate (NBFI, P1CP rate not observed)

Note: The dashed line is the posterior mean and the shaded area shows the 68% posterior coverage interval

from the alternative NBFI estimation (with bank-loans-share growth as the unique additional observable).

The solid line is the observed 3-month P1CP interest rate. 1971:II-2019:IV

1.3.4 The natural rate and the Fed monetary policy stance. A
reinterpretation

There are some interesting insights from the historical decomposition of the natural interest
rate, i.e. the risk-free rate estimated when prices and nominal wages are flexible and markup
shocks are assumed away. Liquidity shocks have a one-for-one impact on the natural rate: to
fully absorb an adverse liquidity shock, the real interest rate should adjust by a magnitude
such that the households’ incentive to turn to liquid assets is neutralized. This is exactly
what happens under flexible prices, explaining why r∗ falls one-for-one.

Panels (a) and (b) of Figure 1.8 report the historical decomposition of the natural rate
estimates obtained from the DGGT and NBFI models. According to the DGGT model,
liquidity shocks are responsible for the post-2000 persistent fall in r∗. The NBFI estimates
tell a quite different story: liquidity shocks did not matter, and the natural rate decline is
instead mainly attributed to a slowdown in productivity growth.

Panels (c) and (d) show the historical decomposition of the observed real policy rates.
These are obviously co-determined by nominal frictions and react to the full set of shocks.
The two decompositions “inherit” the drastically different role of liquidity shocks in deter-
mining the two r∗ estimates. Further, the DGGT and NBFI estimates crucially differ in the
role assigned to monetary policy shocks. According to DGGT, policy shocks were mildly
expansionary between 2000 and 2009 and turned mildly contractionary thereafter. Accord-
ing to NBFI estimates, monetary shocks played an important role in depressing the policy

32See Figure D1, panel (a), in the Appendix for the historical decomposition of GDP growth. Appendix
D reports a detailed discussion of this alternative NBFI estimation.
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Figure 1.8: Real policy and natural rates historical shock decomposition (DGGT vs NBFI)

Note: Historical shock decomposition at the posterior mode. “Liquidity”: sum of transitory liquidity, tran-

sitory safety, permanent liquidity, and permanent safety shocks; “Productivity”: sum of stationary and

permanent technology shocks; “Monetary policy”: contemporaneous monetary policy shocks; “Forward guid-

ance”: sum of anticipated monetary policy shocks; “Other”: sum of all other shocks and measurement errors,

and initial values. 2000:I-2019:IV.

rate between 2002 and 2006, in line with the Great Deviation view (Taylor, 2007, 2011), and
were also markedly expansionary after 2013. Over this period, most of the monetary easing
comes from forward guidance shocks, while these latter effects are virtually absent in DGGT
estimates.

The two models have different implications for the estimated volatilities of r∗. Figure 1.9,
panel (a), shows that DGGT predicts a larger volatility of the natural rate: at the posterior
mode, the standard deviation of r∗ in NBFI is 28% smaller than in DGGT, and this is almost
entirely due to the different contribution of estimated liquidity shocks.

Both models predict that r∗ is relatively high towards the end of an expansionary phase
before abruptly falling during the recession, but the DGGT model systematically estimates
a stronger contraction with respect to NBFI. Panels (b) and (c) of Figure 1.9 report the
estimated cyclical patterns of the interest rate gap. From a Wicksellian perspective, it is
the gap between the actual and the natural interest rate that matters for determining the
former’s stabilizing role, rather than the value of the policy rate itself.

According to DGGT, a countercyclical gap exists between the policy rate and r∗: this gap
typically reaches a minimum before the onset of every recession and is consistently increasing
thereafter, suggesting strong swings in monetary policy that turns from accommodative to
restrictive during the recessionary episode. By contrast, NBFI estimates suggest that, at least
since 1981, the gap reaches the maximum at the onset of the recession, and falls afterward.

In this regard, focusing on the r− r∗ gaps estimated for the GFC episode is illuminating:
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Figure 1.9: Natural rates and policy rate gaps (DGGT vs NBFI)

Note: Panel (a): smoothed estimate of r∗ at the posterior mode. Panels (b) and (c): smoothed estimate of

the interest rate gap (i.e. real policy rate minus natural rate); the dashed line is the posterior mean and the

shaded area shows the 68% posterior coverage interval. 1960:I-2019:IV.

according to DGGT, the gap was strongly negative in 2007, then gradually increased to
become strongly positive in 2009, when the recovery began. According to NBFI, the monetary
stance was almost neutral in 2007 and turned strongly expansionary during the crisis period.
Crucially, given that the real policy rate is an observed variable, the opposite patterns in the
r− r∗ gaps are entirely determined by the different estimates the two models generate for r∗.

1.4 Conclusions

We build a business cycle model that encompasses two alternative characterizations of fi-
nancial markets: a standard one, with a single financial intermediary; and a more complex
one, where bank and non-bank intermediaries coexist. In both cases, we shed light on the
counterfactual implications liquidity shocks have for deposit rates and for the portfolio com-
position of firms’ liabilities. Once we extend the standard set of observables with the relevant
financial variables, we find that liquidity shocks did not play a significant role in the U.S.
business cycle.

Further, our estimates are less pessimistic about the fall of the natural interest rate and do
not support the popular view that it is explained by flight-to-liquidity shocks. In this regard,
we identify the slowdown in productivity growth as the main responsible. We also find that
the interest rate gap (i.e. the wedge between the real policy rate and r∗) was procyclical in
occasion of most recession episodes, thus indicating an expansionary monetary policy stance
during these periods.
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Herman, A., Igan, D., and Solé, J. (2017). The macroeconomic relevance of bank and nonbank
credit: An exploration of U.S. data. Journal of Financial Stability, 32:124–141.

Hirakata, N., Sudo, N., and Ueda, K. (2011). Do banking shocks matter for the U.S. economy?
Journal of Economic Dynamics and Control, 35(12):2042–2063.

Hollander, H. and Liu, G. (2016). The equity price channel in a New-Keynesian DSGE model
with financial frictions and banking. Economic Modelling, 52:375–389.

Jermann, U. and Quadrini, V. (2012). Macroeconomic effects of financial shocks. American
Economic Review, 102(1):238–71.

Jones, C. (2022). Aging, secular stagnation and the business cycle. The Review of Economics
and Statistics, pages 1–46.

Juselius, M., Borio, C., Disyatat, P., and Drehmann, M. (2017). Monetary policy, the financial
cycle, and ultra-low interest rates. International Journal of Central Banking, 13:55–89.

Kacperczyk, M. and Schnabl, P. (2013). How safe are money market funds? The Quarterly
Journal of Economics, 128(3):1073–1122.

Kiley, M. T. (2015). What can the data tell us about the equilibrium real interest rate? Fi-
nance and Economics Discussion Series 2015-77, Board of Governors of the Federal Reserve
System (U.S.).

Kiyotaki, N. and Moore, J. (2012). Liquidity, business cycles, and monetary policy. NBER
Working Paper 17934, National Bureau of Economic Research.

Krishnamurthy, A. and Li, W. (2022). The demand for money, near-money, and Treasury
bonds. NBER Working Paper 30051, National Bureau of Economic Research.

Krishnamurthy, A. and Vissing-Jorgensen, A. (2012). The aggregate demand for Treasury
debt. Journal of Political Economy, 120(2):233–267.

Laubach, T. and Williams, J. C. (2003). Measuring the natural rate of interest. The Review
of Economics and Statistics, 85(4):1063–1070.

Laubach, T. and Williams, J. C. (2016). Measuring the natural rate of interest redux.
Business Economics, 51(2):57–67.

Lin, L. (2020). Bank deposits and the stock market. The Review of Financial Studies,
33(6):2622–2658.

27



Mehra, R., Piguillem, F., and Prescott, E. C. (2011). Costly financial intermediation in
neoclassical growth theory. Quantitative Economics, 2(1):1–36.

Nagel, S. (2016). The liquidity premium of near-money assets. Quarterly Journal of Eco-
nomics, 131:1927–1971.

Pesaran, M. H. and Xu, T. (2016). Business cycle effects of credit shocks in a DSGE model
with firm defaults. Mimeo.

Rauh, J. D. and Sufi, A. (2010). Capital structure and debt structure. The Review of
Financial Studies, 23(12):4242–4280.

Shi, S. (2015). Liquidity, assets and business cycles. Journal of Monetary Economics, 70:116–
132.

Smets, F. and Wouters, R. (2007). Shocks and frictions in US business cycles: A Bayesian
DSGE approach. American Economic Review, 97(3):586–606.

Suh, H. and Walker, T. B. (2016). Taking financial frictions to the data. Journal of Economic
Dynamics and Control, 64:39–65.

Summers, L. H. (2014). U.S. economic prospects: Secular stagnation, hysteresis, and the
zero lower bound. Business Economics, 49(2):65–73.

Taylor, J. B. (2007). Housing and monetary policy. NBER Working Paper 13682, National
Bureau of Economic Research.

Taylor, J. B. (2011). Macroeconomic Lessons from the Great Deviation, pages 387–395.
University of Chicago Press.

Taylor, J. B. and Wieland, V. (2016). Finding the equilibrium real interest rate in a fog of
policy deviations. Business Economics, 51:147–154.

Wicksell, K. (1898). Interest and Prices: A Study of the Causes Regulating the Value of
Money. MacMillan, London. Translated by R.F. Kahn (1936).

Wu, J. C. (2017). Comment on ”Safety, liquidity, and the natural rate of interest”. Brookings
Papers on Economic Activity, 2017(Spring):303–310.

28



A Empirical model

A.1 Model description

As mentioned in Section 1.2, we estimate the DGGT version of the New York Fed DSGE
model and an enhanced version of it that adds non-bank financial intermediaries and Gertler
and Karadi (2011) frictions to the banking sector. We refer the reader to DGGT online
appendix for a comprehensive description of their model, while the present section is limited to
the specification of growth in the model economy and to a list of the log-linearized equilibrium
conditions.

Growth is exogenous and driven by the technology process Z∗
t , defined as

Z∗
t = e

1
1−α

z̃tZp
t e

γt,

which includes a stochastic trend (Zp
t ), a deterministic trend (γ), and a stationary component

(z̃t). z̃t and the growth rate of Zp
t follow an AR(1) process.

Equations common to DGGT and NBFI33

• Household marginal utility of consumption:

ĉt = he−z∗(ĉt−1 − ẑ∗t )−
1− he−z∗

σc

ˆ̃λt +
σc − 1

σc

wLh

c
L̂h
t , (1.A1)

where z∗t =
Z∗
t

Z∗
t−1

is the stochastic growth rate of the economy and λ̃t is transformed

marginal utility of consumption (λt = λ̃t (Z
∗
t )

−σc).

• Household liquid asset Euler equation:

ˆ̃λt =
ˆ̃λt+1 + R̂t − Et [π̂t+1] + ε̂lt − σcEt[ẑ

∗
t+1]. (1.A2)

• Optimal investment decision:

ît =
q̂t

S ′′e2z∗(1 + β̃)
+

1

1 + β̃
(̂it−1 − ẑ∗t ) +

β̃

1 + β̃
Et [̂it+1 + ẑ∗t+1] + µ̂t, (1.A3)

where β̃ = βe(1−σc)z∗ and µ̂t is a shock to the marginal efficiency of investment (MEI)
that follows an AR(1) process.

• Optimal rate of capital utilization:

ût =
1− ψ

ψ
r̂kt . (1.A4)

33We use the following notation: for a given variable xt, x̂t and x respectively represent its log-deviation
from the steady state and its steady-state value.
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• Effective capital:

k̂t =
ˆ̄kt−1 + ût − ẑ∗t . (1.A5)

• Entrepreneur nominal return to capital:

ˆ̃Rk
t =

rk

rk + 1− δ
r̂kt +

1− δ

rk + 1− δ
q̂t − q̂t−1 + π̂t. (1.A6)

• Entrepreneur excess return on capital (i.e. spread between expected return on capital
and borrowing rate for entrepreneurs):

Et[
ˆ̃Rk
t+1 − R̂L

t ] = ζsp,b(q̂t +
ˆ̄kt − n̂e

t ) + ˆ̃σω,t, (1.A7)

where ˆ̃σω,t is a shock to the riskiness of entrepreneurs (risk) that follows an AR(1)
process.

• Entrepreneur net worth evolution:

n̂e
t = ζ

ne,R̃k

(
ˆ̃Rk
t − π̂t

)
− ζne,R

(
R̂L

t−1 − π̂t

)
+ ζne,qK(q̂t−1 +

ˆ̄kt−1)+

+ζne,nen̂e
t−1 − γ∗

v

ne
ẑ∗t −

ζn,σω

ζsp,σω

ˆ̃σω,t−1, (1.A8)

where the ζ terms are steady-state elasticities, v is steady-state entrepreneur equity,
and γ∗ is the fraction of surviving entrepreneurs.

• Production function:
ŷt = Φ

[
αk̂t + (1− α)L̂h

t

]
. (1.A9)

• Capital evolution:

ˆ̄kt =

(
1− i

k̄

)(
ˆ̄kt−1 − ẑ∗t

)
+
i

k̄
ît +

i

k̄
S ′′e2z

∗
(1 + β̃)µ̂t. (1.A10)

• Real rental rate of capital:
r̂kt = L̂h

t + ŵt − k̂t. (1.A11)

• Real marginal costs:

m̂ct = ŵt + α
(
L̂h
t − k̂t

)
. (1.A12)

• Marginal rate of substitution between consumption and labor:

µ̂w,t = ŵt − νlL̂
h
t −

1

1− he−z∗
ĉt +

he−z∗

1− he−z∗
(ĉt−1 − ẑ∗t ) . (1.A13)

• Price Phillips curve:

π̂t =
ιp

1 + ιpβ̃
π̂t−1 +

β̃

1 + ιpβ̃
Et[π̂t+1] +

(1− ζpβ̃) (1− ζp)

ζp [(Φ− 1)ϵp + 1] (1 + ιpβ̃)
m̂ct + λ̂p,t, (1.A14)

where λ̂p,t is a price markup shock that follows an ARMA(1,1) process.
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• Wage Phillips curve:

wt = − (1− ζwβ̃)(1− ζw)

ζw [(λw − 1)ϵw + 1] (1 + β̃)
µ̂w,t +

1

1 + β̃
(ŵt−1 − ẑ∗t + ιwπ̂t−1)−

1 + ιwβ̃

1 + β̃
π̂t+

+
β̃

1 + β̃
Et[ŵt+1 + π̂t+1 + ẑ∗t+1] + λ̂w,t,

(1.A15)

where λ̂w,t is a wage markup shock that follows an ARMA(1,1) process.

• Aggregate resource constraint:

ŷt =
c

i
ĉt +

i

y
ît + rk

k

y
ût + g∗ĝt, (1.A16)

where exogenous government spending is defined as ĝt = log
(

Gt

Z∗
t yg∗

)
and follows an

AR(1) process (the shock is allowed to be correlated with stationary technology inno-
vations).

• Monetary policy rule:

R̂t = ρRR̂t−1+(1−ρR)
[
ψ1(π̂t − π∗

t ) + ψ2(ŷt − ŷft )
]
+ψ3

[
(ŷt − ŷft )− (ŷt−1 − ŷft−1)

]
+r̂mt ,

(1.A17)
where ŷft is output in the flexible-price economy, π̂∗

t is a stochastic inflation target (that
follows an AR(1) process), and r̂mt is a monetary policy shock. The latter evolves as
follows:

r̂mt = ρrm r̂
m
t−1 + ϵRt +

K∑
k=1

ϵRk,t−k, (1.A18)

where ϵRt is the standard contemporaneous shock, whereas ϵRk,t−k is a shock that is
known to agents at time t− k but takes effect in time t: thus, it can be interpreted as
a forward guidance shock in that it anticipates future policy decisions by k quarters.

• The DGGT model is closed by the following condition (that derives from the household
illiquid asset Euler equation):

R̂L
t = R̂d,b

t = R̂t + ε̂lt. (1.A19)

Equations specific to NBFI

• Equation (1.A19) is replaced by

R̂d,b
t = R̂t, (1.A20)

R̂d,NBFI
t = R̂t + ε̂lt. (1.A21)
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• NBFI (and bank) lending rate:

R̂L
t = R̂d,NBFI

t + (1− αNBFI)d̂
NBFI
t . (1.A22)

• NBFI loan supply:
l̂NBFI
t = αNBFI d̂

NBFI
t . (1.A23)

• Bank loan supply:
l̂bt = ϕ̂b

t + n̂b
t . (1.A24)

• Value of bank capital:

ν̂t = β̃

[
1− θ

ν
(RL −R) + θm

]
Et

[
ˆ̃λt+1 − ˜̂

λt − σcẑ
∗
t+1

]
+

1− θ

ν
β̃Et

[
RLR̂L

t+1 −RR̂d,b
t

]
+

+θβ̃mEt [m̂t+1 + ν̂t+1] .
(1.A25)

• Value of bank net worth:

η̂t = Et

[
ˆ̃λt+1 − σcẑ

∗
t+1

]
− ˆ̃λt +

(
1− θβ̃ζ

)
R̂d,b

t + θβ̃ζEt

[
ζ̂t+1 + η̂t+1

]
. (1.A26)

• Bank optimal leverage:

ϕ̂b
t = η̂t +

ν

Λ− ν
ν̂t. (1.A27)

• Growth rate of bank capital:

ζζ̂t = RLϕbR̂L
t + (RL −R)ϕbϕ̂b

t−1 +R(1− ϕb)R̂d
t−1. (1.A28)

• Growth rate of bank net worth:

m̂t = ζ̂t + ϕ̂b
t − ϕ̂b

t−1. (1.A29)

• Bank net worth evolution:

n̂b
t = θζe−z∗

(
ζ̂t − ẑ∗t + n̂b

t−1 + ε̂Nb
t

)
+ Ωϕbl̂bt . (1.A30)

• Total loan supply:

l̂t =
lb

l
l̂bt +

1− lb

l
l̂NBFI
t . (1.A31)

• Entrepreneur balance sheet:

q̂t +
ˆ̄kt =

1− ne

k̄
l̂t +

ne

k̄
n̂e
t . (1.A32)

• Share of bank loans over total credit:

l̂b,sharet = l̂bt − l̂t. (1.A33)
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A.2 Shocks and measurement errors

The model is characterized by the following structural shocks: stationary technology shock
and shock to the growth rate of technology; liquidity shock; MEI shock; risk shock; wage and
price markup shock; government spending shock; inflation target shock; contemporaneous
monetary policy shock; anticipated monetary policy shocks up to six quarters ahead; bank
net worth shock (only for the NBFI specification).

The flight-to-quality shock appearing in equilibrium conditions (1.A2), (1.A19), and
(1.A21), ε̂lt, is defined as the sum of safety and liquidity shocks:

ε̂lt = ε̂safet + ε̂liqt ,

where the first term is the sum of transitory and permanent safety shocks, namely ε̂safe,Tt

and ε̂safe,Pt , and the second is the sum of transitory and permanent liquidity shocks, ε̂liq,Tt

and ε̂liq,Pt . All four shocks follow AR(1) processes.
In addition to the structural shocks, measurement errors, denoted by et, are assumed for

a subset of the observables. These include output growth (with two distinct errors on GDP
and GDI growth), inflation (with two distinct errors on core PCE inflation and GDP deflator
inflation), the 10-year Treasury yield, TFP growth, the Aaa- and Baa-Treasury spreads, and
the NBFI deposit rate (only for the NBFI specification).

A.3 Measurement equations

GDP growth = 100γ + (ŷt − ŷt−1 + ẑ∗t ) + egdpt − egdpt−1

GDI growth = 100γ + (ŷt − ŷt−1 + ẑ∗t ) + egdit − egdit−1

Consumption growth = 100γ + (ĉt − ĉt−1 + ẑ∗t )

Investment growth = 100γ + (̂ıt − ı̂t−1 + ẑ∗t )

Real wage growth = 100γ + (ŵt − ŵt−1 + ẑ∗t )

Hours = L̄+ L̂h
t

Core PCE inflation = 100(π − 1) + π̂t + epcet

GDP deflator inflation = 100(π − 1) + δgdpdef + γgdpdef π̂t + egdpdeft

Fed funds rate = 100(R− 1) + R̂t

Fed funds rate expectations = 100(R− 1) + Et

[
1

40
R̂t+j

]
, j = 1, ..., 6

10-year Treasury yield = 100(R− 1) + Et

[
1

40

39∑
j=0

R̂t+j

]
+ e10yt

10-year inflation expectations = 100(π − 1) + Et

[
1

40

39∑
j=0

π̂t+j

]
TFP growth, demeaned = ẑ∗t +

α

1− α
(ût − ût−1) + etfpt
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Aaa - 20-year Treasury spread = 100 ln(εliq) + Et

[
1

80

79∑
j=0

ε̂liqt+j

]
+ eAaa

t

Baa - 20-year Treasury spread = 100 ln
(
εliqεsafeSP∗

)
+ Et

[
1

80

79∑
j=0

( ˆ̃Rk
t+j+1 − R̂t+j)

]
+ eBaa

t

(DGGT, Augmented)

= 100 ln

(
εliqεsafeSP∗

dNBFI

lNBFI

)
+ Et

[
1

80

79∑
j=0

( ˆ̃Rk
t+j+1 − R̂t+j)

]
+ eBaa

t

(NBFI)

3-month CD rate = 100(Rεliqεsafe − 1) + R̂d,b
t (Augmented)

3-month P1CP rate = 100(Rεliqεsafe − 1) + R̂d,NBFI
t + eR

NBFI

t (NBFI)

Bank-loans-share growth = l̂b,sharet − l̂b,sharet−1 (NBFI)

L̄ is the mean level of hours worked, which is estimated. δgdpdef and γgdpdef allow for a
different “matching function” between the model concept of inflation and the GDP deflator
measure with respect to core PCE inflation. SP∗ is an estimated interest rate spread. dNBFI

lNBFI

is an additional steady-state spread component arising from the decreasing returns to scale
in the technology of NBFIs.

A.4 Data

Sources

Data construction for the observables used in the benchmark estimation strictly follows
DGGT. Data on nominal GDP [GDP], nominal GDI [GDI], the GDP deflator [GDPDEF],
core PCE inflation [PCEPILFE], nominal personal consumption expenditures [PCE], and
nominal fixed private investment [FPI] are produced at a quarterly frequency by the Bureau
of Economic Analysis (BEA) and are included in the National Income and Product Accounts
(NIPA). Average weekly hours of production and nonsupervisory employees for total private
industries [AWHNONAG], civilian employment [CE16OV], and the civilian non-institutional
population [CNP16OV] are produced by the Bureau of Labor Statistics (BLS) at a monthly
frequency. The first of these series is obtained from the Establishment Survey, and the re-
maining from the Household Survey. Both surveys are released in the BLS Employment
Situation Summary. We take quarterly averages of the monthly data. Compensation per
hour for the non-farm business sector [COMPNFB] is obtained from the Labor Productiv-
ity and Costs release and is produced by the BLS at a quarterly frequency. The federal
funds rate [DFF] is obtained from the Federal Reserve Board’s H.15 release at a business
day frequency. The 10-year Treasury yield (zero-coupon, continuously compounded) series
[SVENY10] is made available by the Board of Governors of the Federal Reserve System at a
business day frequency. Corporate-Treasury spreads are computed as the difference between
the Moody’s seasoned Baa (Aaa) corporate bond yield [BAA] ([AAA]) and the yield on U.S.
Treasury securities at 20-year constant maturity [GS20], also at a business day frequency
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(all data obtained from the Federal Reserve Board’s H.15 release). We take quarterly av-
erages of the annualized daily data. Quarterly data on 10-year CPI inflation expectations
are made available by the Federal Reserve Bank of Philadelphia: these combine the series
from the Survey of Professional Forecasters [INFCPI10YR] since 1991:IV and data from the
Blue Chip Economic Indicators from 1979:IV to 1991:I. The measure for TFP growth is from
Fernald (2014),34 whose updated series (unadjusted for utilization) is made available by the
Federal Reserve Bank of San Francisco at a quarterly frequency [dtfp; alpha]. Lastly, data
on interest rate expectations, from 1 to 6 quarters ahead, are taken directly from the DGGT
dataset,35 since they use internal data from the Federal Reserve Board on the implied federal
funds rate derived from OIS quotes.

Turning to the Augmented estimation, our baseline measure for the deposit rate is the sec-
ondary market rate on 3-month CDs, which comes from the OECDMain Economic Indicators
database [IR3TCD01USQ156N] and is available at a quarterly frequency. The alternative se-
ries for the 1- [CD1M] and 6-month secondary market CD rates [CD6M], both discontinued
in July 2013, are obtained from the Federal Reserve Board’s H.15 release (monthly aver-
ages of business-day data). The M2 own rate series [M2OWN], discontinued in July 2019,
was made available by the Board of Governors of the Federal Reserve System at a monthly
frequency. Our last measure is the savings deposit rate from Drechsler et al. (2017), who
gather monthly bank data from U.S. Call reports and compute the average interest rate paid
on different forms of deposits by U.S. commercial banks. We take quarterly averages of the
monthly data.

Our proxy for the interest rate on non-bank deposits is constructed by combining two
sources: the interest rate on 3-month prime commercial paper [WCP3M], available from
1971:II to 1996:IV (Federal Reserve Board’s H.15 release), and the 90-day AA nonfinancial
commercial paper interest rate [RIFSPPNAAD90NB], available from 1997:I (Board of Gov-
ernors of the Federal Reserve System). The former is available at a weekly frequency, the
latter at a business day frequency, and we take quarterly averages of both. Data on bank
and non-bank loans are from Table B.103 of the Financial Accounts of the United States Z.1
release, i.e. we consider the liabilities of the Nonfinancial Corporate Business sector: bank
credit is the sum of Other Loans and Advances [OLALBSNNCB] and Bank Loans Not Else-
where Classified [BLNECLBSNNCB], while non-bank credit is the sum of Commercial Paper
[CPLBSNNCB] and Corporate Bonds [CBLBSNNCB], all available at a quarterly frequency.

Transformations

Following DGGT, civilian population data are treated with a Hodrick-Prescott filter. The
resulting series is used to transform GDP, GDI, consumption, investment, and hours worked
in per-capita terms. GDP, GDI, consumption, investment, and wages are also set in real
terms by dividing them by the GDP deflator. The fed funds rate, the 10-year Treasury yield,
the corporate-Treasury spreads, 10-year inflation expectations, and both bank and non-bank
deposit rates are divided by 4 to express them in quarterly terms. 10-year inflation is further

34Available at https://www.frbsf.org/economic-research/indicators-data/

total-factor-productivity-tfp/.
35Available at https://github.com/FRBNY-DSGE/rstarBrookings2017.
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adjusted for the average differential between CPI and GDP deflator inflation. Finally, the
TFP growth series is demeaned, divided by 4 (to convert it into quarterly growth rates),
and divided by Fernald (2014) estimate of the labor share to express it in labor-augmenting
terms.

Output growth = 100∆ ln[(GDP/GDPDEF )/CNP16OV ]

= 100∆ ln[(GDI/GDPDEF )/CNP16OV ]

Consumption growth = 100∆ ln[(PCEC/GDPDEF )/CNP16OV ]

Investment growth = 100∆ ln[(FPI/GDPDEF )/CNP16OV ]

Wage growth = 100∆ ln(COMPNFB/GDPDEF )

Hours worked = 100 ln[(AWHNONAG)(CE16OV/100)/CN16OV ]

Core PCE inflation = 100∆ ln(PCEPILFE)

GDP deflator inflation = 100∆ ln(GDPDEF )

Fed funds rate = DFF/4

Fed funds rate expectations = OIS/4

10-year bond yield = SV ENY 10/4

10-year inflation expectations = (INFCPI10Y R− 0.5)/4

TFP growth, demeaned = (dtfp, demeaned)/[4(1− alpha)]

Aaa - 20-year Treasury spread = (AAA−GS20)/4

Baa - 20-year Treasury spread = (BAA−GS20)/4

3-month CD rate = IR3TCD01USQ156N/4

3-month P1CP rate = RIFSPPNAAD90NB/4

Bank-loans-share growth = 100∆ ln

[
OLALBS +BLNECLBS

OLALBS +BLNECLBS + CPLBS + CBLBS

]

A.5 Parameters

Description and priors

Table A1: Parameters’ description and priors

Prior
Parameter Description Type Mean SD

Steady State

100γ Technology growth rate N 0.400 0.100
α Capital share N 0.300 0.050
100(β−1 − 1) Discount rate G 0.250 0.100
σc Inverse EIS N 1.500 0.370
h Consumption habits B 0.700 0.100
νl Inverse Frisch elasticity N 2.000 0.750
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Table A1: Parameters’ description and priors

Prior
Parameter Description Type Mean SD

δ Capital depreciation rate - 0.025 -
Φp Production fixed costs - 1.000 -
S′′ Investment adj. costs N 4.000 1.500
ψ Utilization costs B 0.500 0.150
L̄ Mean level of hours N -45.000 5.000
λw SS wage markup - 1.500 -
π∗ SS inflation - 0.500 -
g∗ SS govt. spending - 0.180 -

Nominal Rigidities

ζp Calvo price stickiness B 0.500 0.100
ζw Calvo wage stickiness B 0.500 0.100
ιp Price indexation B 0.500 0.150
ιw Wage indexation B 0.500 0.150
ϵp Price Kimball curvature - 10.000 -
ϵw Wage Kimball curvature - 10.000 -

Policy

ψ1 Weight on inflation N 1.500 0.250
ψ2 Weight on output gap N 0.120 0.050
ψ3 Weight on output gap growth N 0.120 0.050
ρR Interest rate smoothing B 0.750 0.100

Financial Frictions

F (ω̄) Entrepreneur SS prob. of default - 0.030 -
SP∗ SS spread G 1.000 0.100
ζsp,b Spread elasticity to leverage B 0.050 0.005
γ∗ Entrepreneur survival prob. - 0.990 -
αNBFI NBFI returns to scale (*) - 0.990 -
ϑ Banker survival prob. (*) - 0.972 -
εsafe SS safety premium - 0.000 (0.065) -
εliq SS liquidity premium - 0.000 (0.117) -

Exogenous Processes

ρg Govt. spending a.c. B 0.500 0.200
ρµ MEI a.c. B 0.500 0.200
ρzp Permanent technology a.c. - 0.990 -
ρz Stationary technology a.c. B 0.500 0.200
ρliq,P Permanent liquidity a.c. - 0.990 -
ρliq,T Transitory liquidity a.c. B 0.500 0.200
ρsafe,P Permanent safety a.c. - 0.990 -
ρsafe,T Transitory safety a.c. B 0.500 0.200
ρσω Entrepreneur risk a.c. B 0.750 0.150
ρπ∗ Inflation target a.c. - 0.990 -
ρλf

Price markup a.c. B 0.500 0.200

ρλw Wage markup a.c. B 0.500 0.200
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Table A1: Parameters’ description and priors

Prior
Parameter Description Type Mean SD

ηλf
Price markup MA coeff. B 0.500 0.200

ηλw Wage markup MA coeff. B 0.500 0.200
ρrm Monetary policy a.c. B 0.500 0.200
ρNb Banker net worth a.c. (*) B 0.500 0.200
ηgz Govt. spending/technology corr. B 0.500 0.200
σg Govt. spending s.d. IG 0.100 2.000
σµ MEI s.d. IG 0.100 2.000
σzp Permanent technology s.d. IG 0.100 2.000
σz Stationary technology s.d. IG 0.100 2.000
σliq,P Permanent liquidity s.d. IG 0.030 6.000
σliq,T Transitory liquidity s.d. IG 0.100 2.000
σsafe,P Permanent safety s.d. IG 0.030 6.000
σsafe,T Transitory safety s.d. IG 0.100 2.000
σσω Entrepreneur risk s.d. IG 0.050 4.000
σπ∗ Inflation target s.d. IG 0.030 6.000
σλf

Price markup s.d. IG 0.100 2.000

σλw Wage markup s.d. IG 0.100 2.000
σrm Monetary policy s.d. IG 0.100 2.000
σNb Banker net worth s.d. (*) IG 0.100 2.000
σ1,r 1-quarter-ahead mon. policy s.d. IG 0.200 4.000
σ2,r 2-quarter-ahead mon. policy s.d. IG 0.200 4.000
σ3,r 3-quarter-ahead mon. policy s.d. IG 0.200 4.000
σ4,r 4-quarter-ahead mon. policy s.d. IG 0.200 4.000
σ5,r 5-quarter-ahead mon. policy s.d. IG 0.200 4.000
σ6,r 6-quarter-ahead mon. policy s.d. IG 0.200 4.000

Measurement

δgdpdef GDP deflator param. 1 N 0.000 2.000
γgdpdef GDP deflator param. 2 N 1.000 2.000
ρgdp GDP growth a.c. N 0.000 0.200
ρgdi GDI growth a.c. N 0.000 0.200
ϱgdp GDP/GDI corr. N 0.000 0.400
ρgdpdef GDP deflator a.c. B 0.500 0.200
ρpce PCE inflation a.c. B 0.500 0.200
ρAAA Aaa-Treasury spread a.c. B 0.500 0.100
ρBBB Baa-Treasury spread a.c. B 0.500 0.100
ρ10y 10-year yield a.c. B 0.500 0.200
ρtfp TFP growth a.c. B 0.500 0.200
ρRNBFI NBFI deposit rate a.c. (*) B 0.500 0.200
σgdp GDP growth s.d. IG 0.100 2.000
σgdi GDI growth s.d. IG 0.100 2.000
σgdpdef GDP deflator s.d. IG 0.100 2.000
σpce PCE inflation s.d. IG 0.100 2.000
σAAA Aaa-Treasury s.d. IG 0.100 2.000
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Table A1: Parameters’ description and priors

Prior
Parameter Description Type Mean SD

σBBB Baa-Treasury s.d. IG 0.100 2.000
σ10y 10-year yield s.d. IG 0.750 2.000
σtfp TFP growth s.d. IG 0.100 2.000
σRNBFI NBFI deposit rate s.d. (*) IG 0.100 2.000

Note: For Inverse Gamma (IG) prior mean and standard deviation, τ and ν reported. When the type and

the standard deviation of a prior are not specified, the parameter of interest is fixed. Terms in round brackets

refer to the prior specifications used in the estimation of DGGT, when different from the baseline Augmented

and NBFI priors. Parameters denoted with (*) are specific to the NBFI-model estimation.

Posterior estimates

Table A2: Parameters’ Estimates

DGGT Posterior Augmented Posterior NBFI Posterior
Parameter Mean Mean 90.0% L. 90.0% U. Mean 90.0% L. 90.0% U.

Steady State

100γ 0.434 0.418 0.342 0.495 0.429 0.344 0.510
α 0.187 0.225 0.206 0.244 0.118 0.104 0.132
100(β−1 − 1) 0.287 0.135 0.065 0.206 0.114 0.043 0.183
σc 0.903 1.303 1.172 1.426 1.420 1.148 1.696
h 0.495 0.208 0.159 0.257 0.310 0.216 0.397
νl 2.482 2.618 1.728 3.486 2.815 2.072 3.527
δ 0.025 0.025 - - 0.025 - -
Φp 1.000 1.000 - - 1.000 - -
S′′ 1.466 4.818 3.315 6.292 4.056 3.281 4.751
ψ 0.615 0.683 0.574 0.801 0.714 0.561 0.867
δgdpdef 0.001 0.008 -0.028 0.044 0.013 -0.030 0.055
L̄ -47.413 -47.538 -49.924 -45.276 -46.009 -48.320 -43.700
λw 1.500 1.500 - - 1.500 - -
π∗ 0.500 0.500 - - 0.500 - -
g∗ 0.180 0.180 - - 0.180 - -

Nominal Rigidities

ζp 0.957 0.952 0.943 0.961 0.951 0.940 0.961
ζw 0.967 0.962 0.956 0.968 0.971 0.967 0.976
ιp 0.210 0.253 0.110 0.385 0.261 0.124 0.405
ιw 0.821 0.809 0.713 0.913 0.897 0.835 0.958
ϵp 10.000 10.000 - - 10.000 - -
ϵw 10.000 10.000 - - 10.000 - -

Policy

ψ1 1.797 1.649 1.367 1.929 1.221 1.062 1.375
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Table A2: Parameters’ Estimates

DGGT Posterior Augmented Posterior NBFI Posterior
Parameter Mean Mean 90.0% L. 90.0% U. Mean 90.0% L. 90.0% U.

ψ2 0.277 0.191 0.147 0.236 0.088 0.058 0.121
ψ3 0.335 0.371 0.320 0.426 0.284 0.231 0.338
ρR 0.856 0.819 0.777 0.861 0.670 0.603 0.736

Financial Frictions

F (ω̄) 0.030 0.030 - - 0.030 - -
SP∗ 1.047 0.970 0.807 1.137 1.222 1.064 1.373
ζsp,b 0.045 0.049 0.042 0.055 0.042 0.037 0.048
γ∗ 0.990 0.990 - - 0.990 - -
αNBFI - - - - 0.990 - -
ϑ - - - - 0.972 - -
εsafe 0.065 0.000 - - 0.000 - -
εliq 0.117 0.000 - - 0.000 - -

Exogenous Processes

ρg 0.991 0.992 0.986 0.998 0.989 0.985 0.994
ρµ 0.237 0.340 0.254 0.428 0.388 0.223 0.547
ρzp 0.990 0.990 - - 0.990 - -
ρz 0.935 0.963 0.944 0.975 0.967 0.956 0.980
ρliq,P 0.990 0.990 - - 0.990 - -
ρliq,T 0.870 0.489 0.252 0.730 0.459 0.192 0.721
ρsafe,P 0.990 0.990 - - 0.990 - -
ρsafe,T 0.626 0.593 0.381 0.809 0.489 0.207 0.760
ρσω 0.987 0.957 0.938 0.976 0.963 0.934 0.989
ρπ∗ 0.990 0.990 - - 0.990 - -
ρλf

0.807 0.850 0.782 0.917 0.824 0.737 0.911

ρλw 0.324 0.342 0.099 0.560 0.884 0.878 0.892
ηλf

0.596 0.677 0.543 0.841 0.685 0.549 0.836

ηλw 0.402 0.412 0.207 0.604 0.891 0.885 0.898
ηgz 0.500 0.410 0.130 0.687 0.531 0.237 0.820
ρrm 0.191 0.110 0.038 0.182 0.215 0.101 0.332
ρNb - - - - 0.946 0.914 0.981
σg 2.240 2.350 2.142 2.553 2.268 2.070 2.456
σµ 0.422 0.665 0.584 0.748 0.602 0.521 0.684
σzp 0.050 0.073 0.062 0.083 0.061 0.047 0.074
σz 0.522 0.556 0.506 0.608 0.556 0.507 0.604
σliq,P 0.019 0.021 0.018 0.023 0.012 0.011 0.012
σliq,T 0.067 0.014 0.013 0.015 0.036 0.031 0.040
σsafe,P 0.013 0.014 0.013 0.015 0.029 0.026 0.032
σsafe,T 0.155 0.031 0.028 0.034 0.035 0.030 0.041
σσω 0.067 0.138 0.097 0.177 0.149 0.080 0.227
σπ∗ 0.056 0.063 0.049 0.076 0.030 0.020 0.039
σλf

0.067 0.060 0.043 0.076 0.068 0.052 0.084

σλw 0.395 0.399 0.359 0.445 0.378 0.344 0.414
σrm 0.225 0.238 0.218 0.256 0.224 0.205 0.244
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Table A2: Parameters’ Estimates

DGGT Posterior Augmented Posterior NBFI Posterior
Parameter Mean Mean 90.0% L. 90.0% U. Mean 90.0% L. 90.0% U.

σNb - - - - 1.316 1.041 1.575
σ1,r 0.092 0.100 0.075 0.118 0.098 0.079 0.124
σ2,r 0.090 0.087 0.066 0.105 0.081 0.065 0.095
σ3,r 0.088 0.084 0.070 0.097 0.083 0.065 0.100
σ4,r 0.092 0.095 0.072 0.111 0.085 0.068 0.099
σ5,r 0.090 0.095 0.073 0.128 0.088 0.072 0.105
σ6,r 0.086 0.088 0.072 0.103 0.094 0.078 0.111

Measurement

δgdpdef 0.001 0.008 -0.028 0.044 0.013 -0.030 0.055
γgdpdef 1.047 1.031 0.962 1.101 1.027 0.954 1.099
ρgdp 0.017 0.023 -0.213 0.242 -0.009 -0.229 0.211
ρgdi 0.947 0.941 0.907 0.975 0.940 0.902 0.973
ϱgdp -0.154 -0.183 -0.809 0.402 -0.178 -0.806 0.414
ρgdpdef 0.412 0.401 0.266 0.538 0.416 0.284 0.548
ρpce 0.222 0.254 0.072 0.421 0.233 0.060 0.389
ρAAA 0.639 0.722 0.613 0.837 0.750 0.667 0.832
ρBBB 0.913 0.954 0.939 0.969 0.892 0.856 0.926
ρ10y 0.951 0.946 0.919 0.979 0.944 0.914 0.976
ρtfp 0.271 0.272 0.157 0.380 0.287 0.177 0.394
ρRNBFI - - - - 0.465 0.183 0.736
σgdp 0.243 0.241 0.200 0.285 0.244 0.200 0.289
σgdi 0.311 0.308 0.275 0.347 0.312 0.277 0.346
σgdpdef 0.171 0.173 0.159 0.186 0.175 0.160 0.188
σpce 0.116 0.119 0.103 0.134 0.118 0.101 0.135
σAAA 0.022 0.027 0.024 0.031 0.035 0.033 0.038
σBBB 0.050 0.059 0.054 0.064 0.063 0.060 0.067
σ10y 0.123 0.121 0.112 0.130 0.127 0.115 0.136
σtfp 0.667 0.619 0.554 0.685 0.712 0.650 0.774
σRNBFI - - - - 0.037 0.032 0.042

B Robustness checks on the Augmented estimation

This section presents the main results from a set of robustness exercises on the Augmented
estimation. We first re-estimate the model imposing the steady-state calibration of DGGT
concerning safety and liquidity premiums. Then, we test the validity of our baseline results
using two alternative proxies for the bank deposit rate.

B.1 Estimation with alternative calibration

In the baseline Augmented estimation, we demeaned the corporate spreads to make the
steady-state calibration consistent with the observed CD rate. We now reintroduce the
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“original” Baa- and Aaa-Treasury spreads as observables (not demeaned), and fix the liquidity
and safety premiums as in DGGT. As a consequence, the steady-state deposit rate is assumed
to be 73 basis points higher than the fed funds rate.

Parameter estimates are virtually unchanged with respect to our baseline specification.36

Results in terms of historical decomposition also replicate our baseline findings, as reported
in Figure B1, except for slight differences in the real policy and the natural rates. There is
a small and nearly constant positive contribution of liquidity shocks to the real policy rate,
which is reflected in the estimate of the natural interest rate. This is directly linked to the
different calibration, and to the aforementioned steady-state premium of the deposit rate over
the policy rate. Because the CD rate in the data is closer to the fed funds rate (on average)
than implied by the calibration, the model identifies a sequence of negative liquidity shocks
that raises the policy rate and is able to cancel the model-imposed wedge.

Figure B1: Historical shock decomposition (Augmented, alternative calibration)

Note: Historical shock decomposition at the posterior mode. “Liquidity”: sum of transitory liquidity, tran-

sitory safety, permanent liquidity, and permanent safety shocks; “Productivity”: sum of stationary and

permanent technology shocks; “Monetary policy”: sum of contemporaneous and anticipated monetary policy

shocks; “Other”: sum of all other shocks and measurement errors, and initial values. 2000:I-2019:IV.

36A full description of the posterior estimates of this and of the following robustness exercises is available
upon request.
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B.2 Estimation with alternative data

The alternative deposit rate measures we use as observables are the M2 own rate and the
savings deposit rate. The M2 own rate is available up to 2019:II, whereas the savings deposit
rate series spans from 1986:I to 2013:IV. Figure B2 shows the two series as opposed to the
fed funds rate.

Figure B2: Fed funds rate vs alternative deposit rate measures

Note: The fed funds rate and the M2 own rate are plotted from 1960:I to 2019:II. The savings deposit rate

is from Drechsler et al. (2017), and is displayed over the period 1986:I-2013:IV.

Both series display a substantial and negative differential with respect to the fed funds
rate. In fact, the savings deposit is a more liquid saving instrument than the certificate of
deposit. The M2 aggregate similarly comprises several assets that are more liquid than CDs
(including savings deposits). We see that the two series, when jointly available, are fairly
close in terms of level and co-movement. Indeed, estimates turn out to be similar using the
two proxies (this appendix reports the results obtained with the M2 own rate only).

When we estimate the model matching the M2 own rate, we observe meaningful variations
in the posterior of some crucial parameters. In particular, the estimated autocorrelation of
transitory liquidity (and safety) shocks is around 0.9, implying that the model requires all
flight-to-quality shocks to be highly persistent in order to match the deviations between
the fed funds rate and the deposit rate. Moreover, the posterior mean of the inverse EIS
σc is extremely small (0.41) and, combined with the estimate of β (0.999), entails a low
steady-state real interest rate of 1.04%.

Figure B3 shows the historical decomposition of GDP growth, the real policy rate, and
the natural rate. The role of liquidity shocks in explaining GDP growth (top panel) is
dominated by other disturbances, namely technology and monetary policy shocks, confirming
our baseline results. Turning to the interest rates, there is a strong contribution by liquidity
shocks (panels (b) and (c)). However, the largest part of their impact consists in raising
the policy rate, at least up to 2008. Even thereafter, their contribution to dragging the real
fed funds rate down is small compared to technology shocks; after 2017, they explain the
departure from the ZLB. This result stems from the low steady-state real interest rate: the
model estimates this value to be closer to the average deposit rate than to the fed funds rate,
and then attributes the rise of the policy rate with respect to its steady state to a series
of negative liquidity shocks. Since these shocks are persistent, the natural interest rate is
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estimated to be exceptionally less volatile and closer to the actual real rate than in DGGT
(see Figure E4).

Figure B3: Historical shock decomposition (Augmented, M2 own rate observed)

Note: Historical shock decomposition at the posterior mode. “Liquidity”: sum of transitory liquidity, tran-

sitory safety, permanent liquidity, and permanent safety shocks; “Productivity”: sum of stationary and

permanent technology shocks; “Monetary policy”: sum of contemporaneous and anticipated monetary policy

shocks; “Other”: sum of all other shocks and measurement errors, and initial values. 2000:I-2019:IV.

We conduct a final robustness check by shifting the M2 own rate upwards to have the same
sample mean as the 3-month CD rate over the period 1964:III-2016:III, and by estimating the
model with this new measure. We are so able to remove the observed negative differential
between the M2 own rate and the fed funds rate, which is at odds with the assumptions
of the benchmark model. Though evidently artificial, this adjustment may be rationalized
with a premium for the transaction services provided by the assets included in M2. Such a
premium is not modeled and thus is cleared away from the data.

This new estimation yields parameter estimates that are close to the version with the
unadjusted M2 own rate, i.e. a low σc (0.57) and high autocorrelation coefficient for all
liquidity shocks (larger than 0.86).37 The shock decomposition of GDP growth is also virtually
unaffected by the adjustment of the M2 own rate (see panel (a) of Figure B4). On the other

37The discount rate β is instead estimated to be closer to the baseline, as is the steady state real interest
rate. This follows from the upward shift of the deposit rate proxy.
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hand, the picture for the real policy rate is similar to the benchmark estimation without the
observed deposit rate, with liquidity shocks pushing down interest rates following the financial
crisis. Still, the estimated path of the natural rate is strikingly different with respect to the
one found by DGGT, as Figure E4 shows.

Figure B4: Historical shock decomposition (Augmented, adjusted M2 own rate observed)

Note: Historical shock decomposition at the posterior mode. “Liquidity”: sum of transitory liquidity, tran-

sitory safety, permanent liquidity, and permanent safety shocks; “Productivity”: sum of stationary and

permanent technology shocks; “Monetary policy”: sum of contemporaneous and anticipated monetary policy

shocks; “Other”: sum of all other shocks and measurement errors, and initial values. 2000:I-2019:IV

In conclusion, even though the use of alternative deposit rate proxies allows for a larger
influence of liquidity shocks with respect to our baseline, these are overshadowed by other
shocks (mainly to productivity) and are effectively irrelevant for GDP growth after 2010.
Additionally, the inclusion of a deposit rate measure that is farther from the fed funds rate,
forces the model to explain the deposit spread with highly persistent liquidity shocks. This
has profound implications for the dynamics of the natural interest rate that gets remarkably
closer to the real policy rate.
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C αNBFI calibration

The parameter αNBFI determines the degree of returns to scale in the NBFI-transformation
of deposits into loans. As mentioned in Section 1.2.3, we do not impose constant returns
to scale because this would lead to an indeterminate solution of our model. In fact, if we
assumed αNBFI = 1, bank and non-bank credit would not be separately identified. The goal
of our calibration strategy is therefore to choose a value for αNBFI so as to maintain the
transmission mechanism of liquidity shocks close to DGGT. As we show below, a relatively
high value of αNBFI safeguards liquidity shocks from having counterfactual implications for
the co-movement between output, on the one hand, and investment and credit, on the other.

In order to understand the impact of αNBFI , combine the log-linearized equilibrium con-
ditions (1.A20) and (1.A21) to get an expression for the spread between lending and policy
rates:

R̂L
t − R̂t = ε̂lt + (1− αNBFI)d̂

NBFI
t . (1.C1)

When an adverse liquidity shock hits (i.e. a positive realization of ε̂lt), the spread widens,
but there is a simultaneous force that pulls in the opposite direction. Consistently with a
flight to quality, the amount of deposits held at NBFIs, d̂NBFI

t , decreases and reduces the
spread. As is clear from (1.C1), the larger αNBFI , the smaller the dampening effect of NBFI
deposits. Further, looking at (1.A23), as αNBFI increases, the reduction in NBFI loans is
larger following a liquidity shock.

Figure C1: Impact responses to an adverse transitory liquidity shock (NBFI)
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Note: Estimated impact responses at the posterior mode.

Figure C1 shows the estimated response of selected variables on impact, after an adverse
liquidity shock, for a range of αNBFI values that goes from 0.75 to 0.99. In line with the
previous discussion, as we move to the left of the αNBFI-grid, lending rates and the credit
spread increase by less, while NBFI loans decrease by less. This prompts a smaller reduction
in credit, and eventually in investment. For smaller values of αNBFI and/or a different
autocorrelation coefficient of the shock, the response of credit and investment may turn
countercyclical (notice how the impact response of output is relatively more stable). In this
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sense, the choice of αNBFI = 0.99 is “conservative” and allows credit to co-move with output,
consistently with the behavior induced by liquidity shocks in DGGT (see Figure 1.5).

D Alternative NBFI estimation

We conduct an alternative estimation of the NBFI model, where the bank-loans-share growth
rate is the only additional observable with respect to DGGT. The model is thus not con-
strained to match the P1CP rate as a measure of the non-bank deposit rate. As shown in
Figure 1.7, this estimation leads to a mismatch between the model-implied NBFI deposit rate
and the observed return on P1CP. Though apparently small, this gap is sufficient to generate
a quite relevant role for liquidity shocks as a driver of GDP growth. However, as evident in
panel (a) of Figure D1, the predominance of flight-to-quality shocks is limited to the Great
Recession period.

Figure D1: Historical shock decomposition (NBFI, P1CP rate not observed)

Note: Historical shock decomposition at the posterior mode. “Liquidity”: sum of transitory liquidity, tran-

sitory safety, permanent liquidity, and permanent safety shocks; “Productivity”: sum of stationary and

permanent technology shocks; “Monetary policy”: sum of contemporaneous and anticipated monetary policy

shocks; “Other”: sum of all other shocks and measurement errors, and initial values.

As shown in panel (b), there is a widespread contribution of monetary policy shocks to the
real fed funds rate dynamics. This channel is stronger than in our baseline NBFI estimation,
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especially between 2002 and 2006, and after 2012. The natural rate is exceptionally less
volatile than in DGGT, and liquidity shocks play virtually no role in explaining its decline
(panel (c)). Surprisingly enough, the estimated pattern of r∗ since the mid-80s is roughly in
line with those predicted by the alternative Augmented estimates (i.e. with the M2 own rate
as bank deposit rate; see Figure E4). If anything, these alternative estimates suggest that
monetary policy was even more expansionary than implied by our baseline, at least after the
GFC.

E Additional tables and figures

E.1 Tables

Table E1: Variance decomposition (full sample)

Liquidity Tech. MEI Risk Govt. Monetary Markup Bank n.w. m.e.

GDP growth
DGGT 24% 25% 3% 3% 11% 17% 3% - 14%
Augmented 3% 36% 14% 5% 8% 17% 2% - 15%
NBFI 3% 39% 8% 3% 10% 18% 2% 2% 15%

Consumption growth
DGGT 30% 24% 3% 6% 14% 19% 4% - -
Augmented 4% 42% 3% 7% 18% 22% 3% - -
NBFI 5% 49% 3% 3% 11% 24% 2% 3% -

Investment growth
DGGT 24% 13% 9% 29% 1% 19% 5% - -
Augmented 1% 8% 56% 24% 1% 6% 2% - -
NBFI 2% 9% 54% 16% 2% 9% 4% 6% -

Real policy rate
DGGT 69% 12% 1% 2% 2% 11% 3% - -
Augmented 5% 29% 15% 18% 2% 27% 4% - -
NBFI 6% 35% 7% 9% 1% 35% 4% 3% -

Aaa-Treasury spread
DGGT 94% - - - - - - - 6%
Augmented 74% - - - - - - - 26%
NBFI 58% - - - - - - - 42%

Baa-Treasury spread
DGGT 32% 4% 2% 3% 4% 3% 3% - 48%
Augmented 10% 17% 9% 9% 11% 9% 10% - 26%
NBFI 5% 10% 2% 10% 0% 3% 1% 2% 67%

Note: Variance decomposition at the posterior mode. The percentage contribution is given by the variance
of a variable accounted for by each of the listed (groups of) shocks divided by the summed variances of the
same variable accounted for by all (groups of) shocks.
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E.2 Figures

Figure E1: IRFs to an adverse bank net worth shock (NBFI)
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Note: Estimated impulse response functions at the posterior mode.

Figure E2: IRFs to an adverse MEI shock, selected macro aggregates (DGGT vs NBFI)
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Note: Estimated impulse response functions at the posterior mode. The autocorrelation coefficient and the

standard deviation of the shock are fixed at the DGGT-posterior-mode estimates.
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Figure E3: IRFs to an adverse entrepreneur risk shock, selected macro aggregates (DGGT
vs NBFI)
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Note: Estimated impulse response functions at the posterior mode. The autocorrelation coefficient and the

standard deviation of the shock are fixed at the DGGT-posterior-mode estimates.

Figure E4: Alternative r∗ estimates

Note: Smoothed estimates of r∗ at the posterior mode. 1960:I-2019:IV.
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Chapter 2

Who Killed Business Dynamism in
the U.S.?

Joint with Bianca Barbaro and Patrizio Tirelli

Abstract We offer a new interpretation of the long-term dynamics in the U.S. firm
entry rate. Its decline was the consequence of a persistent combination of adverse(favorable)
productivity shocks to potential entrants(incumbents), while the long-term increase in price
markups did not play a significant role. In spite of the “Schumpeterian” structure of our
model, not all recessions had a “cleansing” effect, because the combination of shocks asso-
ciated with the specific episodes had markedly different effects on the dispersion of firms’
efficiency. Finally, the extensive margin allows to rationalize the procyclical pattern of TFP
growth and its long-term decline.

2.1 Introduction

We offer a new interpretation of the long-term dynamics in the U.S. firm entry rate, docu-
mented in Figure 2.1: it exhibits a procyclical pattern and gradually falls up to 2010. Since
then, it is essentially flat. In fact, a consistent reduction in the number of young firms (Decker
et al., 2014) and a slowdown in productivity growth (Fernald, 2014; Boppart and Li, 2021)
characterized the U.S. economy over the last decades.

In this regard, the literature on endogenous firm dynamics sees new businesses as the
principal source of innovation in the economy (Asturias et al., 2017; Alon et al., 2018), and
treats the falling entry rate as the key factor behind the productivity slowdown. For instance,
Gourio et al. (2016) document that entry shocks cause a 1-1.5 percent increase in GDP, lasting
over ten years. Increasing concentration and greater market power, reported in studies such
as Autor et al. (2020) and Grullon et al. (2019), are identified as the main culprits, leading to
the rise in markups documented in De Loecker et al. (2020), Gutiérrez and Philippon (2016),
and Eggertsson et al. (2021).
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Figure 2.1: Firm entry rate, U.S., 1978-2019

Note: Annual data (Business Dynamics Statistics)

By contrast, other studies emphasize the important contribution of older firms to innova-
tion and productivity growth. According to Hsieh and Klenow (2018), incumbents account
for the lion’s share of innovation through improvements on their own products, whereas at
most one-quarter of U.S. productivity growth is ascribable to creative destruction and inputs
reallocation towards relatively new firms. Fort et al. (2018) document the limited effect of
firm entry and exit on the overall decline in U.S. manufacturing employment between 1977
and 2012, and conclude that incumbents might have been successful in raising their produc-
tivity relative to new entrants. Garcia-Macia et al. (2019) find that most growth comes from
incumbents’ contribution, with the role of entrants and creative destruction fading over the
latest decades. Similarly, Klenow and Li (2021) show how fluctuations in U.S. productivity
growth have been mostly driven by variations in incumbents’ ability to innovate.

We build a new model that encompasses these alternative views. We incorporate endoge-
nous firm dynamics, as in Hopenhayn (1992), Asturias et al. (2017), and Piersanti and Tirelli
(2020), into a stochastic growth model where technology improvements are determined by the
different shocks that hit potential new entrants and incumbent firms. Long-term stochastic
growth and business cycle dynamics are interpreted on the grounds of a set of shocks that
hit the economy at low and high frequencies. In our model, the entry rate falls either if
the internal productivity growth of potential entrants is subject to an adverse shock, or if
favorable productivity shocks hit incumbents, or if price markups increase.1 We estimate the
model and let the data speak to the relative importance of these alternative mechanisms for
the decline in firm entry.

Our results are summarized as follows. The estimated model predicts a declining entry
rate even if we exclude entry data from the set of observables. This is a very important
preliminary result, suggesting that we are not forcing the model to rationalize long-run en-
try data “artificially” included in the set of observables. A persistent combination of ad-

1Further, the entry rate falls if adverse demand shocks lower the value of the entry decision.
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verse(favorable) productivity shocks to potential entrants(incumbents) causes the long-run
decline in the model-predicted entry rate. This pattern is fully confirmed when we add the
entry rate to the set of observed variables. The model predicts a long-term increase in price
markups that is consistent with documented evidence, but we cannot find a persistent effect
of markup shocks on the entry rate decline.

Our model allows us to estimate the dynamics of both TFP and average firm efficiency.
The growth of firm efficiency is relatively stable and acyclical. By contrast, TFP growth is
subject to a gradual slowdown and has an unambiguous procyclical pattern. Our original
contribution is that adjustments in the extensive margin, i.e. the mass of firms, drive these
findings. Non-technology shocks explain the cyclical pattern of TFP growth, via their effect
on the extensive margin. We also find that recessions induced by adverse demand shocks
do not have a cleansing effect, i.e. they do not reduce the dispersion of firms’ idiosyncratic
efficiency.

Our interpretation of the entry rate decline, which points to the importance of produc-
tivity dynamics, is complementary to contributions that emphasize the importance of demo-
graphic factors, such as Hopenhayn et al. (2018), Pugsley and S, ahin (2018), Karahan et al.
(2019), and Peters and Walsh (2021).

We also contribute to a growing literature on business cycle models of endogenous firm
dynamics. Lewis and Poilly (2012) and Lewis and Stevens (2015) estimate models in the
tradition of Bilbiie et al. (2007) and Bilbiie et al. (2012), but their focus is different as they
neglect the analysis of long-term entry dynamics and the implications for long-run growth.
Just like us, Clementi and Palazzo (2016) build upon Hopenhayn’s (1992) model, but they
treat entry and exit as an exogenous amplification mechanism of productivity shocks that
symmetrically hit all firms. To the best of our knowledge, this is the first contribution that
incorporates the effect of asymmetric productivity shocks on the entry rate.

Finally, we contribute to the literature that investigates the procyclical pattern of TFP
and the sluggish recoveries following major crises. Anzoategui et al. (2019) focus on the
role of R&D; Qiu and Rı́os-Rull (2022) link firms’ TFP to the number of varieties each
firm is able to sell. Other studies obtain procyclical TFP either in consequence of sectoral
productivity changes (Swanson, 2006) or through a combination of increasing returns and
increased utilization of the production factors (Gottfries et al., 2021). In our framework,
instead, the extensive margin of goods production drives TFP dynamics.

The paper is organized as follows: section 2 describes the model, section 3 provides infor-
mation on the estimation procedure, results are presented in section 4, section 5 concludes.

2.2 Model2

Households demand a bundle of differentiated retail goods

Ct =

(∫ 1

0

Ct (r)
ϵ
p
t−1

ϵ
p
t dr

) ϵ
p
t

ϵ
p
t−1

, (2.1)

2See Appendix G for the full set of equilibrium conditions and for the derivation of key equations.
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supply capital services, kt, to firms in the intermediate-goods producing sector (INT hence-
forth), and sell the services of a differentiated labor type ι to the competitive labor packers
who assemble the labor bundle

lt =

(∫ 1

0

lt (ι)
ϵw−1
ϵw dh

) ϵw

ϵw−1

(2.2)

that enters the production of INT-goods. INT-goods are sold to retailers.
The perfectly competitive INT-firms have mass ηt, distributed between new entrants,

NEt, and incumbents, INCt, who survived out of the ηt−1 firms active at time t− 1:

ηt = NEt + INCt. (2.3)

BothNEs and INCs group heterogeneous firms that are subject to idiosyncratic productivity
shocks.

At the beginning of each period, two sets of shocks hit the economy. The first one is a
set of demand and supply shocks that characterize standard DSGE models, i.e. marginal
efficiency of investment, retail price markups and labor supply, monetary and fiscal policy.
The second one includes two independent productivity shocks that symmetrically affect the
idiosyncratic efficiency distribution of NEs and INCs respectively. The sequence of events
unfolds as in Figure 2.2.

Figure 2.2: Model sequence of events

2.2.1 INT-sector

The production function of a generic firm f is:
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yf,jt = Af,j
t

(
Zf,j

t

)γ
, (2.4)

Zf,j
t =

[
(kf,jt )α(lf,jt )(1−α)

]
, (2.5)

where j = NE, INC. Af,j
t defines the firm-specific level of productivity, γ < 1 is the degree

of decreasing return to scale, Zf,j
t is a Cobb-Douglas bundle of factor inputs. Firm dividends

are
df,jt = pty

f,j
t − rkt k

f,j
t − wtl

f,j
t − wtϕ

j , (2.6)

where pt is the consumption price of INT-goods, rkt is the real rental rate of capital, wt is the
consumption real wage and ϕj is the exogenous fixed production cost defined in labor units.
Factor demands are:

kf,jt = αγ
pty

f,j
t

rkt
, (2.7)

lf,jt = (1− α)γ
pty

f,j
t

wt

, (2.8)

and

pzt =

[
rkt
α

]α [
wt

(1− α)

](1−α)

(2.9)

is the consumption price of Zt. Note that the capital intensity of the input bundle Zf,j
t does

not vary across firms, but its scale obviously grows with firm efficiency:

Zf,j
t =

[
pt
pzt
Af,j

t γ

] 1
1−γ

. (2.10)

The firm supply function therefore is

yf,jt =
(
Af,j

t

) 1
1−γ

[
γ
pt
pzt

] γ
1−γ

. (2.11)

From (2.6) and (2.11), the firm’s value can be written recursively as

Vt

(
Af,j

t

)
= (1− γ)

[
Af,j

t

ptγ
γ

(pzt )
γ

] 1
1−γ

− wtϕ
j + Et

{
Λt+1Vt+1

(
Af,j

t+1

)}
, (2.12)

where ϕj allows to identify the cutoff values Âj
t that define the entry and exit productivity

thresholds
Vt

(
Âj

t

)
= 0. (2.13)

Right from the outset, note that these thresholds react to current economic conditions, i.e.
an increase in pt unambiguously raises the firm value and lowers the idiosyncratic efficiency
level that meets the profitability condition, whereas an increase in the price of inputs or in
the fixed cost would work in the opposite direction. Future valuation of the firm also matters,
and firms may operate under temporarily negative profitability.
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New entrants

At the beginning of period t, potential NEs draw their productivity level Af,NE
t from the

Pareto distribution

ft
(
ANE

t

)
=

∫ +∞

zt

ξ (zt)
ξ(

Af,NE
t

)ξ+1
d
(
Af,NE

t

)
= 1, (2.14)

where

zt = zt−1g
z
t (2.15)

defines the technology frontier, gzt is the stochastic exogenous firm productivity driver in the
long run

ln(gzt ) = (1− ρz) ln(gz) + ρz ln(gzt−1) + εzt ; ε
z
t ∼ N (0, σz) (2.16)

and gz defines the deterministic productivity growth trend. The mass of new entrants is

NEt =

∫ +∞

ÂNE
t

ξ (zt)
ξ(

Af,NE
t

)ξ+1
d
(
Af,NE

t

)
=

(
zt

ÂNE
t

)ξ

, (2.17)

where ÂNE
t defines the productivity threshold such that Vt

(
ÂNE

t

)
= 0.

Incumbents

At the beginning of period t, the ηt−1 firms draw their idiosyncratic productivity from the
following distribution:

ft(Â
INC
t ) =

∫ +∞

ÂINC
t−1 gz(1−δINC)Ψt

ξ
[
ÂINC

t−1 g
z
(
1− δINC

)
Ψt

]ξ(
Af,INC

t

)
ξ+1

d(Af,INC
t ) , (2.18)

where ÂINC
t−1 , Vt

(
ÂINC

t−1

)
= 0, defines the productivity threshold that characterized the dis-

tribution of INCt−1 firms; by setting gz
(
1− δINC

)
< 1 we assume that, on average, the ηt−1

firms deplete their knowledge capital.3 Finally,

ln (Ψt) = ρΨ ln (Ψt−1) + εΨt ; ε
Ψ
t ∼ N

(
0, σΨ

)
(2.19)

denotes the equivalent of a standard productivity shock. The mass of incumbents is

INCt = ηt−1Ht , (2.20)

where

Ht =

∫ +∞

ÂINC
t

ξ
[
ÂINC

t−1 g
z
(
1− δINC

)
Ψt

]ξ(
Af,INC

t

)
ξ+1

d(Af,INC
t ) =

(
ÂINC

t−1 g
z (1− δ)Ψt

ÂINC
t

)ξ

(2.21)

3This is akin to Liu et al. (2020) and the literature cited therein.
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is the endogenous survival probability for the ηt−1 firms. The expected efficiency of the ηt−1

firms is

Et−1 {Aηt−1

t } =
ξ

ξ − 1
Et−1

{
ÂINC

t−1 g
z (1− δ)Ψt

}
. (2.22)

The mass of exiting firms is

EXt = ηt−1 (1−Ht) = ηt−1

(
ÂINC

t − ÂINC
t−1 g

z (1− δ)Ψt

ÂINC
t

)ξ

. (2.23)

Thresholds

We now derive the efficiency thresholds associated with the intertemporal zero profit condition
(2.13). To begin with, from condition (2.22) notice that firms operative in t are confronted
with the same present value of future dividends

Et

{
V
(
Af,j

t+1

)}
=

∫ +∞

ÂINC
t+1

Vt+1

(
Af,INC

t+1

) ξ
(
ÂINC

t+1

)ξ
(
Af,INC

t+1

)ξ+1
d
(
Af,INC

t+1

)
= Et

{
Ht+1V

av
t+1

}
, (2.24)

where V av
t+1 defines the continuation value of the ηt firms conditional to survival in t + 1. In

recursive form,

V av
t+1 =

ξ (1− γ)

ξ (1− γ)− 1

[
(1− γ)1−γ

γγ
pt+1(
pzt+1

)γ ÂINC
t+1

] 1
1−γ

− wt+1ϕ
INC + Et+1

{
Λt+2Ht+2V

av
t+2

}
.

(2.25)
Given the shape of the Pareto distribution, the condition

ξ (1− γ) > 1

is necessary to ensure that Et

{
V
(
Af,j

t+1

)}
converges to finite value.

Using (2.13) and (2.25), the following condition identifies the thresholds for INCt and
NEt firms:

Âj
t =

[
wtϕ

j − Et

{
Λt+1Ht+1V

av
t+1

}
γ

γ
1−γ (1− γ)

]1−γ
(pzt )

γ

pt
. (2.26)

Increases in the participation cost wtϕ
j and in the price of the input bundle pzt raise the

productivity threshold, whereas increases in current or discounted future profitability, re-
spectively determined by pt and Λt+1Ht+1V

av
t+1, allow relatively less efficient firms to operate

in the market.
Figure 2.3 provides a graphical representation of how NEs and INCs are distributed.

Panel (a) identifies the fraction of potential entrants that choose to operate in t. In Panel
(b) we represent the distribution of the depreciated knowledge capital inherited by the ηt−1

firms. Finally, in Panel (c) ÂINC
t splits the support between exiting and surviving ηt−1 firms.
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Figure 2.3: Model firm dynamics

The following condition highlights the impact of productivity shocks on firm dynamics:

ηt =

(
zt

ÂNE
t

)ξ

+ ηt−1

(
ÂINC

t−1 g
z (1− δ)Ψt

ÂINC
t

)ξ

. (2.27)

From (2.15) it is easy to see that shocks to zt have permanent effects on the support of the
NEs distribution. Using (2.26), we get

ηt =


(

zt

[wtϕNE−Et{Λt+1Ht+1V av
t+1]]

1−γ

)ξ

+

ηt−1

(
ÂINC

t−1 gz(1−δ)Ψt

[wtϕINC−Et{Λt+1Ht+1V av
t+1]]

1−γ

)ξ


(
γγ (1− γ)1−γ pt

(pzt )
γ

)ξ

. (2.28)

Thus, a positive shock to zt creates a supply congestion effect that lowers pt and raises
the productivity thresholds. Our estimates will show that this is associated with an increase
in both entry and exit rates. This mechanism, akin to a Schumpeterian cleansing effect,
is enriched by the role of discounted future profitability: ceteris paribus, the larger ÂINC

t

also raises the firm survival probability in the next period, Ht+1, and causes a persistent
downward pressure on the price of INT-goods. The initial εzt shock permanently raises the
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expected z values in the NEs distribution support. This, combined with the ÂINC
t increase,

generates a sequence of falling prices and endogenously increasing firm productivity.4

The Ψt shock raises the survival probability of the ηt−1 firms and triggers a fall in pt.
In this case, both entry and exit rates fall. Finally, demand shocks also matter for firms’
productivity and entry/exit flows. In fact, any change in demand for INT-goods that raises
pt
pzt

will lower the productivity thresholds, raising both INCs and NEs.

INT-sector aggregation

Production of INT-goods is
Y INT
t = Y NE

t + Y INC
t , (2.29)

Y NE
t =

∫ +∞

ÂNE
t

Af,NE
t

[(
kf,NE
t

)α (
lf,NE
t

)1−α
]γ
dF
(
Af,NE

t

)
, (2.30)

Y INC
t =

∫ +∞

ÂINC
t

Af,INC
t

[(
kf,INC
t

)α (
lf,INC
t

)1−α
]γ
dF
(
Af,INC

t

)
. (2.31)

Straightforward manipulations yield the supply function

Y INT
t =

ξ (1− γ)

ξ(1− γ)− 1

[
NEt

(
ÂNE

t

) 1
1−γ

+ INCt

(
ÂINC

t

) 1
1−γ

](
γpt
pzt

) γ
1−γ

, (2.32)

where

ξ (1− γ)

ξ(1− γ)− 1

(
Âj

t

) 1
1−γ
(
γpt
pzt

) γ
1−γ

denotes the average production of j-type firms.
Note that an increase in pt has manifold effects. First, it increases the price/cost margin,

pt
pzt
. Second, it raises the mass of j-firms (see conditions 2.17, 2.21 and 2.26). Third, by

loosening the zero-profit condition (2.26), it reduces the average firm efficiency Âj
t . The

supply elasticity is

∂Y INT
t

∂pt

pt
Y INT
t

= ξ − 1 .

From conditions (2.7) and (2.8), factor-inputs demands are:

KINT
t = αγ

ptY
INT
t

rkt
, (2.33)

LINT
t = (1− α)γ

ptY
INT
t

wt

+ ϕNENEt + ϕINCINCt . (2.34)

4See Piersanti and Tirelli (2020) for a detailed discussion.
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2.2.2 Retailers

There is a continuum of monopolistic retailers r ∈ (0, 1), and final output is a CES bundle
of differentiated goods:

Yt =

(∫ 1

0

Yt (r)
ϵ
p
t−1

ϵ
p
t dr

) ϵ
p
t

ϵ
p
t−1

, (2.35)

where
ln(ϵpt ) = (1− ρp) ln(ϵp) + ρp ln(ϵpt−1) + εpt − ηpεpt−1; ε

p
t ∼ N (0, σp) (2.36)

allows the identification of standard price markup shocks.5

Retailers face Calvo rigidities and either re-optimize with probability 1−Γp or follow the
simple indexation rule

Pt(r) =
(
π
µp

t−1π
1−µp
ss

)
Pt−1 . (2.37)

Their price is a combination of steady-state and past inflation indexed by the parameter µp.
The solution to the retailers’ pricing problem is:

P
1−ϵpt
t = (1− Γp) (P

∗
t )

1−ϵpt + Γp

(
π
µp

t−1π
1−µp
ss Pt−1

)1−ϵpt , (2.38)

where P ∗
t is the optimal price level and Pt is the retail price index. Aggregating across

individual retailers, we obtain

Yt =
Y INT
t

ξpt
, (2.39)

where ξpt is the standard measure of price dispersion under Calvo pricing.

2.2.3 Households

The representative household ι, ι ∈ (0, 1), maximizes

Et

∞∑
i=0

βt

[
1

1− σ
(Ct+i − hCt+i−1)

1−σ

]
exp

(
ψ
σ − 1

1 + φ
ζ lt+ilt+i (ι)

1+φ

)
, (2.40)

where ζ lt is a labor supply shock

ln(ζ lt) = ρl ln(ζ lt−1) + εlt; ε
l
t ∼ N

(
0, σl

)
, (2.41)

subject to:6

Ct + It +
Bt

Pt

= wt (ι) lt (ι) +
(
rkt − aut

)
UtKt +Rn

t−1

Bt−1

Pt

+DF
t . (2.42)

Ct is consumption of the retail goods bundle, DF
t are firm dividends, Bt is a one-period

nominally riskless bond with gross remuneration Rn
t , Ut denotes variable capacity utilization,

and aut = γ1 (Ut − 1) + γ2
2
(Ut − 1)2 defines its adjustment cost.

5We follow Smets and Wouters (2007) in modeling the price markup shock as an ARMA(1,1) process.
This allows us to catch high-frequency fluctuations in inflation.

6We implicitly assume that risk-sharing schemes insulate individual consumption from idiosyncratic
shocks to the household wage bill.
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The capital stock evolves as follows:

Kt+1 = µt

(
1− S

(
It
It−1

))
It + (1− δ)Kt , (2.43)

where δ is the depreciation rate, S
(

It
It−1

)
= γI

2

(
It

It−1
− 1
)2

defines investment adjustment

costs, and µt,

ln(µt) = ρµ ln(µt−1) + εµt ; ε
µ
t ∼ N (0, σµ) , (2.44)

is a shock to the marginal efficiency of investment (MEI shock).
Households face the downward-sloping demand function

lt (ι) =

(
wt (ι)

wt

)−ϵw

lt , (2.45)

and Calvo rigidities affect wage-setting decisions: each household either optimizes with prob-
ability Γw or follows the indexation rule

wt (ι) =
πµw

t−1π
1−µw
ss wt−1 (ι)

πt
. (2.46)

Wage dynamics are

w1−ϵw

t = (1− Γw) (w
∗
t )

1−ϵw + Γw

(
πµw

t−1π
1−µw
ss wt−1

πt

)1−ϵw

, (2.47)

where w∗
t is the wage set by re-optimizing households.

2.2.4 Monetary Policy

We opt for a very simple Taylor rule,7

Rn
t

Rn
ss

=

(
Rn

t−1

Rn
ss

)ρi
[(

πt
πt

)κπ (
Yt
Yt−1

)κy
]1−ρi

ζrt , (2.48)

where Rn
ss is the steady-state nominal interest rate, ζrt is a monetary policy shock

ln(ζrt ) = ρr ln(ζrt−1) + εrt ; ε
r
t ∼ N (0, σr) (2.49)

and
ln (πt) = (1− ρπ) (πss) + ρπ ln (πt−1) + επt ; ε

π
t ∼ N (0, σπ) (2.50)

is the stochastic inflation target.

7We also experimented with the complex rule in Smets and Wouters (2007). Our results were confirmed.
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2.2.5 Market clearing

Market clearing requires:8

Lt = LINT
t , (2.51)

Kt = KINT
t , (2.52)

Yt = Ct + It +Gt . (2.53)

where Gt = gstYss denotes public consumption as a fraction of steady-state output and

ln(gst ) = (1− ρg
s

) ln(gs) + ρg
s

ln(gst−1) + εg
s

t ; εg
s

t ∼ N
(
0, σgs

)
(2.54)

denotes a public consumption shock as in Smets and Wouters (2007).

2.2.6 Shocks and the endogenous persistence of efficiency thresh-
olds

To support intuition, we discuss here the IRFs to productivity, MEI, and markup shocks
(Figures 2.4).9 The choice of this specific subset of shocks is motivated by their relative
importance for the subsequent analysis of observed entry rate dynamics.

Our purpose is to clarify the endogenous propagation mechanism that drives the response
of firms’ productivity to exogenous shocks. Right from the outset, note that technology
shocks to NE(INC) firms adversely affect the valuation of the other group of firms, and
therefore impact on exit(entry) rates. Further, demand and markup shocks affect entry/exit
rates through the price/cost margin of INT-firms. This, in turn, matters for average firm
productivity that unambiguously falls in the occurrence of INT-sector demand-driven booms
and vice-versa.

Consider first a white noise entry shock, εzt . From condition (2.16) it is easy to see that
the shock entails a permanent increase in the new entrants’ productivity shifter zt. There are
permanent effects on consumption and investment that materialize at very low frequencies.
By looking at the dynamics of the productivity thresholds for both NEs and INCs, one can
gauge the persistence of the endogenous amplification mechanism, that turns the shock into a
permanent increase in average firm productivity which is as large as the initial increase in zt.
Even if εzt has no persistence, increased supply from NEs immediately raises the productivity
threshold for INCt firms. This, in turn, triggers a gradual and very persistent upward shift
in the support of the Htηt−1 mass of surviving incumbents (see condition 2.21), causing a
twofold effect. On the one hand, the incumbents’ expected survival probability falls. On the
other hand, the increase in ÂINC

t drives the long-term response of output. The short-run
transitions require a careful discussion. The increased competition from NEs lowers the
present value of potential incumbents and raises the exit rate. In fact, the shock is associated
with an episode of “creative destruction”. This effect is so strong that the initial surge in the
exit rate reduces the extensive margin pushing up the consumption price of INT-goods and
the marginal cost for firms in the retail sector. This, in turn, causes a persistent increase in

8The model is solved up to first order. We, therefore, neglect price and nominal wage dispersion.
9Parameters are calibrated at the posterior-mean values obtained for our baseline model (see section 2.4

below).
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Figure 2.4: Estimated IRFs
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(a): one-standard-deviation entry and incumbents’ productivity shocks. Panel (b): one-standard-deviation

MEI and price markup shocks.
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inflation and in real interest rates that initially lowers both consumption and investment.
Finally, note that the shock raises the price/cost margin of INT-firms.

The incumbents’ productivity shock, εΨt , is by assumption temporary and has an esti-
mated autoregressive coefficient ρΨ = 0.247 at the posterior mean. The shock affects the
bulk of the ηt−1 firms and therefore has a large effect on the supply of INT-goods. The
decrease in pt

(pzt )
γ causes a persistent fall in the entry rate, and it is initially so strong that

the exit rate increases too. Note that εΨt increases the density of firms characterized by
Af,INC

t > ÂINC
t . For this reason, after a few quarters the exit rate falls below steady state

and the number of incumbents picks up again. The initial reduction in the number of in-
cumbents is associated with shifts to the support of the Htηt−1 mass of surviving incumbents
(see condition 2.21), raising the average efficiency of these firms. Due to the persistent fall
in pt

(pzt )
γ , both productivity thresholds remain above steady state for a prolonged period. In

line with standard productivity shocks, the increased supply of INT-goods has a deflation-
ary effect that triggers an expansionary monetary policy, stimulating both consumption and
investment.

The MEI shock drives a standard boom in demand. The increase in pt
(pzt )

γ raises(lowers) the

entry(exit) rate. This has non-negligible implications for the productivity thresholds and for
average firm efficiency that persistently fall. Finally, a negative markup shock has an unam-
biguously expansionary effect. The shock pulls up pt

(pzt )
γ , lowering productivity thresholds and

increasing(reducing) the entry(exit) rate. The average efficiency of INT-firms falls. The ex-
pansionary monetary policy response to the shock supports the growth of both consumption
and investment.

2.3 Bayesian estimation

We estimate the model on U.S. data spanning from 1966:I to 2019:IV (with a presample of
four quarters starting in 1965:I). The dataset consists of the yearly firm entry rate measured
by the Business Dynamics Statistics (BDS), and of seven standard macroeconomic variables
observed at a quarterly frequency: worked hours, the Fed funds rate, the inflation rate (GDP
deflator), and the growth rates of GDP, investment, consumption, and wages in real terms.
The macroeconomic observables and the initial date are the same considered by Smets and
Wouters (2007), whose results we take as a benchmark reference for business cycle analysis.10

As regards our measure of firm entry, we choose the BDS database, which gathers in-
formation on the entire universe of U.S. firms.11 This source has been widely employed to
study various features of business dynamism. Examples include Hathaway and Litan (2014),
who analyze the geographical aspects of the decline in U.S. business dynamism, Decker et al.
(2014), who study the role played by entrepreneurship (in the form of startup rates) in U.S.
job creation, Gourio et al. (2016), who use a VAR to estimate the effects of a shock to the
number of startups, and Karahan et al. (2019), who link the fall in firm entry to the slow-

10Appendix F.1 contains a detailed discussion of data sources, definitions, and transformations.
11The BDS data are aggregated starting from the Longitudinal Business Database (LBD), that tracks

single establishments and firms since 1976. These micro-data are used, among the others, by Decker et al.
(2020) to discriminate between possible reasons behind the firm entry decline.
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ing pace of labor supply growth. An alternative source for data on startups is provided by
the Bureau of Labor Statistics (BLS), whose records are available at a quarterly frequency.
However, the BLS data are characterized by two crucial features that make the BDS more
suitable for our purposes. First, its sample starts in 1992 and does not allow us to study
the persistent decline in the entry rate. Second, the BLS provides data on establishment
entry rates: while these might be more useful to investigate job creation and destruction,
they are arguably less relevant for new business formation, as new business establishments do
not necessarily represent new firms. Conversely, the BDS database does distinguish between
firms and establishments.12

In order to deal with the mixed-frequency nature of our dataset, we construct an annual-
ized model-implied measure of firm entry.13 In particular, we take the sum of new entrants
over the periods t : t−3 divided by the average of total firms over the periods t : t−7, where
each period t denotes a quarter. This is consistent with the BDS measure of firm entry,
which is defined as the number of firm births in each year divided by the average number of
firms in that and in the previous year. Then, our model-implied variable is matched with
the observed BDS data only in the final quarter of each year. The values for the remaining
quarters are treated as missing observations and inferred by the Kalman filter.

Hirose and Inoue (2016) suggest that ZLB periods may bias the estimates of some parame-
ters and shocks. To check for this, we estimated the model over the subsample 1966:I-2007:III.
Further, we estimated the model over the full sample after replacing the Fed funds rate with
the shadow rate, obtained by Wu and Xia (2016), from 1990:I up to the end of our sample.

Another important issue concerns the analysis of unconventional monetary policies, which
are not considered in our model. To some extent, these policy actions might be captured by
MEI shocks, which may be interpreted as disturbances that affect the financial system ability
to turn savings into capital (Justiniano et al., 2011).14

2.3.1 Calibration and priors

Following common practice, we calibrate some parameters that are hard to identify (Table
2.1). These include the capital depreciation rate, δ = 0.025, corresponding to a 10% de-
preciation rate per year; the capital share α = 0.33, corresponding to a steady-state share
of capital income roughly equal to 30%; the labor disutility parameter ψ is calibrated to
pin down the steady-state level of worked hours at 0.33; the steady-state product and labor
market elasticities, ϵp and ϵw, are set at 6 and 21, implying steady-state markups of 20%
and 5% respectively, as in Christiano et al. (2014). The share of government spending in
aggregate output, gs = 0.18, and the AR(1) parameter in (2.50), ρπ = 0.99, are borrowed
from Del Negro et al. (2015).

We set firms’ return, γ = 0.9, in the range of Basu and Fernald (1997) estimates, and the
tail index of the Pareto distribution, ξ = 15, following Asturias et al. (2017).

12BLS data are used by Casares et al. (2020) to estimate a model with endogenous entry and exit.
Differently from our long-term perspective, their focus is on the period following the financial crisis and on
the relationship between U.S. business cycle fluctuations and the extensive margin.

13See Pfeifer (2013) for references on methodology.
14We also experimented with an additional risk-premium shock that did not play any significant role in

our estimates.
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Table 2.1: Calibrated parameters

Parameter Lss gs ϵp ϵw α γ δ ξ entry wssϕ
INC ϕratio ρπ

Value 0.33 0.18 6 21 0.33 0.9 0.025 15 0.025 0.05 0.7 0.99

We set the de-trended support of the NEs distribution, z, the depreciation rate of firms
efficiency, δINC , the de-trended and wage-adjusted fixed production costs, wssϕ

j, to calibrate
some steady-state variables that characterize firm dynamics and the structure of the INT-
goods sector. We set the firm entry rate, NE

η
= 2.5%, to match the 10% average yearly entry

rate observed over the period 1978-2019. The steady-state number of firms, η, is normalized
at 1. The fixed costs of production in labor units, w

(
ϕNE + ϕINC

)
, amount to 13, 8% of

total GDP (Bilbiie et al., 2012; Colciago and Etro, 2010). The relative production size of
NEs, which ultimately depends on the ratio of fixed costs, is 0.7, close to the value reported
in Clementi and Palazzo (2016). The remaining parameters are estimated with Bayesian
techniques. Priors are in line with those adopted in previous empirical DSGE models. In
particular, most prior distributions are borrowed from Smets and Wouters (2007) with few
minor differences. We slightly reduce the prior standard deviation of φ, the inverse Frisch
elasticity parameter. The prior for π̄ss is looser and centered on a higher mean, following
Del Negro et al. (2015). Finally, the Taylor rule response to GDP growth and the two Calvo
parameters are assigned a higher prior mean, closer to Christiano et al. (2014) and Justiniano
et al. (2011).

2.4 Results

Table 2.2 describes parameters and shock processes and reports our posterior estimates for
the baseline, full sample model.15 Consumption habits are in line with Justiniano et al.
(2011), whereas both Calvo parameters are close to the values reported by Del Negro et al.
(2015) and are substantially smaller than in Del Negro et al. (2017) and Casares et al. (2020).
The elasticity of capital utilization costs is slightly higher than in Casares et al. (2020) and
Justiniano et al. (2011) who find a value of 0.84. Lastly, investment adjustment costs are close
to Lewis and Stevens (2015) and below the estimate obtained by Christiano et al. (2014).

Table 2.2: Estimated parameters and structural shocks

Prior Posterior

Description Dist. Mean Stdev. Mean Stdev. HPD inf HPD sup

σ Inverse EIS norm 1.500 0.3750 1.173 0.0415 1.1048 1.2389
φ Inverse Frisch elasticity norm 2.000 0.5000 2.354 0.4387 1.6174 3.0601
h Consumption habits beta 0.700 0.1000 0.840 0.0331 0.7860 0.8940
100(β−1 − 1) Discount factor gamm 0.250 0.2000 0.169 0.0798 0.0332 0.2887
π̄ss SS inflation rate gamm 0.750 0.4000 0.716 0.3398 0.1743 1.2297
100(gz − 1) Deterministic trend norm 0.400 0.1000 0.350 0.0437 0.2791 0.4230

(Continued on next page)

15See Appendix F.2 for a detailed discussion of parameters’ identification and convergence.
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Table 2.2: (continued)

Prior Posterior

Description Dist. Mean Stdev. Mean Stdev. HPD inf HPD sup

κπ Taylor rule coeff. on π norm 1.500 0.2500 1.736 0.1767 1.4447 2.0237
κy Taylor rule coeff. on y norm 0.200 0.0500 0.239 0.0453 0.1647 0.3136
ρi Policy rate per. beta 0.750 0.1000 0.764 0.0274 0.7196 0.8094
Γp Price rigidity beta 0.650 0.1000 0.834 0.0215 0.7982 0.8688
µp Price indexation beta 0.500 0.1500 0.247 0.0971 0.0923 0.4000
Γw Wage rigidity beta 0.650 0.1000 0.815 0.0493 0.7345 0.8988
µw Wage indexation beta 0.500 0.1500 0.315 0.1457 0.0924 0.5217
γI Investment adjustment costs norm 4.000 1.5000 9.415 1.1286 7.5649 11.2810
σa Capital utilization elasticity beta 0.500 0.1500 0.884 0.0483 0.8092 0.9601
ρµ MEI shock per. beta 0.500 0.2000 0.556 0.0683 0.4554 0.6648
ρr Monetary shock per. beta 0.500 0.2000 0.305 0.0617 0.2064 0.4099
ρp Price markup shock per. beta 0.500 0.2000 0.984 0.0064 0.9742 0.9943
ηp Price markup shock MA par. beta 0.500 0.2000 0.363 0.0682 0.2513 0.4757
ρl Labor supply shock per. beta 0.500 0.2000 0.172 0.0636 0.0666 0.2739
ρΨ Incumbents’ prod. shock per. beta 0.500 0.2000 0.247 0.0667 0.1378 0.3566
ρg

s

Gov. spending shock per. beta 0.500 0.2000 0.961 0.0106 0.9442 0.9779
σz Entry shock s.d. gamm 0.100 0.0500 0.005 0.0003 0.0047 0.0055
σµ MEI shock s.d. gamm 0.100 0.0500 0.090 0.0154 0.0655 0.1145
σr Monetary policy shock s.d. gamm 0.100 0.0500 0.002 0.0001 0.0022 0.0026
σp Price markup shock s.d. gamm 0.100 0.0500 0.079 0.0104 0.0625 0.0959
σl Labor supply shock s.d. gamm 0.100 0.0500 0.158 0.0363 0.0995 0.2146
σΨ Incumbents’ prod. shock s.d. gamm 0.100 0.0500 0.006 0.0003 0.0053 0.0063
σgs

Gov. spending shock s.d. gamm 0.100 0.0500 0.033 0.0017 0.0306 0.0360
σπ Inflation target shock s.d. gamm 0.100 0.0500 0.001 0.0002 0.0008 0.0013

Note: The last two columns report the lower (HPD inf) and the upper bound (HPD sup) of the parameter’s

90% highest posterior density interval.

In Appendix H, we draw a comparison with the posterior estimates coming from a stan-
dard New Keynesian (NK) model, estimated on the same sample and with the same observ-
ables (excluding the entry rate). We also benchmark the interpretation of the U.S. business
cycle provided by our model against the established narrative based on the standard NK
model.

2.4.1 Drivers of the entry rate decline

A preliminary step in our analysis is a discussion of the model-implied entry rate obtained
in an “uninformed” estimation that excludes the entry rate series from the set observables.16

Via this exercise, we can test the model’s ex-ante ability to capture entry dynamics, without

16Removing firm entry from the observables does not produce significant variations in most parameters’
posterior estimates with a few exceptions. The uninformed estimation generates a higher degree of wage
indexation, while the elasticity of investment adjustment costs and the MEI-shock autoregressive coefficient
are respectively smaller and larger when the model is not constrained to explain entry rate dynamics.
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Figure 2.5: Model-implied entry rate, 1978:I-2019:IV (unobserved-entry estimation)

Note: The solid line shows the annualized smoothed estimate of the model-implied entry rate at the posterior

mean (unobserved-entry estimation). The dashed line shows the annual firm entry rate in the data (BDS).

forcing it to rationalize long-run entry data. As apparent from Figure 2.5, the model-implied
entry rate grossly overpredicts the response of the observed one to post-recession recoveries
up to the mid-90s, before shifting mildly below its empirical counterpart. Nevertheless,
information coming from the standard set of observed macroeconomic variables and the need
to match the U.S. business cycle data is sufficient for the model to predict a long-term decline
in firm entry, and its correlation with the observed series is rather large (0.76). The model also
predicts a flattening of the entry rate following the Global Financial Crisis (GFC), consistent
with the data.

It is also interesting to look at the historical decomposition of the model-implied entry rate
(Figure 2.6, Panel (a)), where the estimated technology shocks that persistently lower(raise)
the productivity of NEs(INCs) also imply the prediction of a long-term decline in the entry
rate.

Figure 2.6, Panel (b), presents the historical decomposition of the observed entry ob-
tained in our baseline model. Relative to the uninformed estimation, the contribution of
technology shocks is virtually unchanged, confirming that productivity growth of potential
NEs gradually declined over the sample and that NEs were crowded out by the technol-
ogy shocks that raised INCs productivity. Price-markup and other, mainly demand, shocks
contribute to predicting the observed entry rate, essentially compensating the gap between
the model-implied and observed series. These shocks bring down the entry rate when it is
relatively high (between 1978 and the mid-90s), and tend to raise it thereafter. These results
are fully confirmed when we implement robustness checks either restricting the sample to
the pre-GFC period, i.e. the estimation sample is truncated at 2007:III, or substituting the
shadow rate for the observed interest rate.17

As a final remark, Table 2.3 summarizes the contribution of different shocks to GDP
growth according to the baseline and unobserved-entry estimates since 1978, i.e. the first
year when the baseline model is “constrained” to match the entry rate. Perhaps surprisingly,

17The posterior estimates of these alternative specifications are presented in Table J1.
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Figure 2.6: Historical shock decomposition: model-implied vs observed entry rate, 1978:I-
2019:IV

Note: The solid line is firm entry in log-deviations from its steady state (quarterly estimate at the posterior

mean). The colored bars are the contributions of the grouped shocks (“Demand” includes monetary policy,

inflation target, MEI, and government spending shocks; “Other” includes labor supply shocks and contribu-

tion from initial values). Panel (a): unobserved-entry estimation. Panel (b): baseline estimation (firm entry

coincides with the observed one).

technology shocks play a lesser role when we match firm entry and are replaced by demand
shocks. Furthermore, the two models agree about the relative contributions of the technology
shocks that affect NEs and INCs.

Table 2.3: Historical shock decomposition “summary”: GDP growth, 1978:I-2019:IV

Shocks

Incumbents Entry Price markup Demand Other

Unobserved entry 16.3% 11.9% 11.3% 48.0% 12.4%
Baseline 10.2% 7.1% 9.8% 60.7% 12.2%

Note: For each shock group, the percentage terms refer to its average contribution to GDP growth, as

obtained from the historical shock decomposition (at the posterior mean), over the period 1978:I-2019:IV.
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Discussion

The minor role of markup shocks, mostly relegated to cyclical dynamics in entry, is in contrast
with Gutiérrez and Philippon (2017), who argue that the increase in price markups might
have been at the root of the observed secular decline in entry rates. Our model does predict
a long-term increase in price markups and in “pure” profits (in line with evidence reported in
Traina, 2018), and highlights the persistent decline in the demand elasticity of retail goods,
ϵpt , as the main driver of long-run markup dynamics.18 However, this latter effect has only
short-lived implications for the entry rate.

Conversely, we identify a reversal in technology shocks as the main reason for the decline
in the long-run entry rate. As shocks for NEs(INCs) turned less(more) favorable, the
productivity threshold for potential entrants increased reducing their probability to effectively
enter the economy. This pattern, displayed in our historical decomposition of entry, is indeed
reflected in a divergence between the productivity thresholds of new entrants and incumbents
(see Panel (a) of Figure 2.7). The efficiency gap between incumbents and new entrants has
gradually increased since the mid-1980s. This is consistent with the evidence that incumbents
accounted for the lion’s share of innovation in the latest decades (Hsieh and Klenow, 2018;
Garcia-Macia et al., 2019). The declining growth rate of new entrants’ productivity may
instead be reminiscent of the findings in Bloom et al. (2020), who document a fall in research
productivity during the past 15 years, arguing that ideas are getting increasingly harder to
find.

Figure 2.7: Model predictions for productivity thresholds and the price/cost margin

Note: All lines depict quarterly smoothed estimates at the posterior mean (baseline estimation). Panel

(a): NE productivity threshold ÂNE
t (blue) and INC productivity threshold ÂINC

t (orange); both series

are normalized at 1 in 1978:I. Panel (b): price/cost margin of INT-firms (orange) and entry rate (blue).

1978:I-2019:IV.

We also estimate a strong correlation (78%) between the entry rate and the price/cost
margin index pt

(pzt )
(see Panel (b) of Figure 2.7). The historical decomposition of pt

(pzt )
is

essentially driven by technology shocks, whereas those demand shocks that matter for the
entry rate bear nearly symmetrical effects on the prices of the intermediate goods and of the

18See Figure J1 in the Appendix.
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Z bundle.19 This is a novel result, whereby pt
(pzt )

can be interpreted as a summary statistics

capturing the occurrence of technology shocks that determine the dynamics of firm entry.
To conclude this discussion, we highlight the reasons why technology shocks may have

similar implications for the entry rate and for the price/cost margin in the INT-sector. Con-
sider first the case of an adverse entry shock (Figure 2.4).20 In this case, the short-run effect
of the shock temporarily raises output and demand for labor and capital but depresses the
consumption price of intermediate goods and lowers pt

(pzt )
. Then, consider a favorable shock to

the productivity of incumbents. For reasons already discussed in section 2.5 above, the entry
rate drops, but the sustained output expansion raises both the wage rate and the rate of
return on capital. As a result, pzt increases and the price/cost margin of INT-firms inevitably
falls.

The following sections present additional results regarding the implications of our model
for total factor productivity and other measures of business dynamism.

2.4.2 Firm efficiency and total factor productivity in the long run

We define TFP, average firm efficiency, and efficiency dispersion respectively as

TFPt =

∫ ∞

ÂNE
t

Af,NE
t +

∫ ∞

ÂINC
t

Af,INC
t =

ξ

ξ − 1

(
NEtÂ

NE
t + INCtÂ

INC
t

)
, (2.55)

Âav
t =

TFPt

ηt
, (2.56)

ΣA
t =

ξ

(ξ − 2) ηt

[
NEt

(
ÂNE

t

)2
+ INCt

(
ÂINC

t

)2]
. (2.57)

Both technology and non-technology shocks explain the volatility of the growth rates of
TFPt, Â

av
t , and ΣA

t .
21 Shocks to incumbents’ productivity determine about 92% of average

efficiency growth volatility, while the contribution of non-technology shocks is less than 8%.
We observe a similar variance decomposition for the growth rate of efficiency dispersion. By
contrast, demand shocks have predominant effects on TFP growth through their impact on
the extensive margin.

The left panel of Figure 2.8 plots the post-1966 series of firm size, proxied by the average
size of the Zt bundle, and firm efficiency dispersion. Hopenhayn et al. (2018) find that
average firm size, measured by the number of employees, rose by 20% between 1977 and
2014. Our measure, which also accounts for capital accumulation, predicts a 28% increase
over the same period. As for productivity dispersion, Kehrig (2015) reports that it “doubled”
over the period 1972-2009. Our estimation implies that in 2009 the productivity-dispersion
measure was about 2.3-times larger than in 1972.

Kehrig (2015) shows that the dispersion of firms’ total factor productivity in U.S. man-
ufacturing is greater in recessions than in booms. He builds on this result to discriminate

19See Figure J2 in the Appendix.
20Note that the IRFs in Figure 2.4 display the effects of a positive entry shock.
21See Table J2 in the Appendix for the unconditional variance decomposition.
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Figure 2.8: Model predictions for TFP, firm efficiency and firm size

Note: All lines depict quarterly smoothed estimates at the posterior mean (baseline estimation). Panel (a):

Average firm size (blue), proxied by the ratio of the factor-inputs bundle (Zt) over the number of firms

(ηt), and productivity dispersion (orange), i.e. weighted average of the productivity dispersion of NEs and

INCs (dispersion of INC (NE) firm productivities is computed as the variance of the left-truncated Pareto

distribution INC (NE) firms draw efficiency from; the truncation is given by the respective productivity

threshold that varies over time, while the shape of the distribution is constant); 1966:I-2019:IV (the smoothed

series of Zt and ηt are normalized at 1 in 1966:I). Panel (b): average firm efficiency Âav
t (blue) and model-

predicted TFP ηtÂ
av
t (orange); 1971:I-2019:IV (Âav

t is normalized at 1 in 1966:I).

between “Schumpeterian” models that unambiguously praise the cleansing effect of reces-
sions, and the “sullying view” supported by models in the tradition of Melitz (2003), where
the procyclical pattern of input costs generates opposite effects of efficiency dispersion. Even
if our INT-firm sector is inherently “Schumpeterian”, we find that the estimated pattern of
efficiency dispersion in recessions is ambiguous. According to our estimates (Figure 2.9, top
panel), during recession episodes in 2001 and 2007, the productivity thresholds are almost
entirely determined by technology shocks, but these shocks did not play a key role in de-
termining the recession (see Figure H1, top panel, for the historical decomposition of GDP
growth).22

Extensive margin dynamics drive our estimated TFP measure, as shown in Panel (b) of
Figure 2.8 where the wedge between TFP and average efficiency is entirely accounted for by
variations in the mass of firms. Consistently with previous evidence (Field, 2010, 2011), TFP
growth is strongly procyclical, it has declined since 2005, but the GFC apparently marked
a watershed, as pointed out in studies such as Anzoategui et al. (2019) and Bianchi et al.
(2019).23 Differently from these studies, our estimates interpret the TFP slowdown during
the GFC as the consequence of adverse non-technology shocks that mainly operated through
the extensive margin (Figure 2.9, bottom panel).

22To rationalize this result, consider that, because of the predominant presence of incumbents in the
market, Âav

t is mainly affected by the INCs’ threshold and the latter is strongly sensitive to the price/cost
margin, which does not necessarily decrease during recessions (see Panel (b) of Figure 2.7). We further discuss
the determinants of productivity thresholds in Appendix G.3.

23By contrast, Fernald (2014) points out that productivity behaved similarly to previous episodes of severe
recession, but recovered strongly once the recession ended.

72



Figure 2.9: Historical shock decomposition: average threshold (de-trended) and TFP growth
rate, 1978:I-2019:IV

Note: The colored bars are the contributions of the grouped shocks (“Other” includes labor supply shocks and

contribution from initial values). Panel (a): The solid line is the de-trended average productivity threshold

in log-deviations from its steady state (quarterly estimate at the posterior mean). Panel (b): The solid line

is TFP growth in log deviations from its steady state (quarterly estimate at the posterior mean).

2.4.3 Other measures of business dynamism

In addition to the entry rate, our model bears predictions for other measures of business
dynamism, such as net entry and turnover, respectively NEt−EXt

ηt
and NEt+EXt

ηt
. The model

does a reasonably good job in predicting either variable (see Panels (a) and (b) of Figure
2.10), but there is a tendency to predict a pro(counter)cyclical pattern that is difficult to
detect in the observed series for net entry(turnover). In fact, these results are driven by the
gap between the model-predicted and the observed exit rate series, as shown in Panel (c).24

Due to the overestimated countercyclical pattern of the exit rate, our model also exagger-
ates the procyclicality of ∆ηt (see Panel (d) of Figure 2.10). This effect is particularly strong
in occasion of the recessions that marked the beginning and the end of the Great Moderation
period. This suggests that our results concerning the deep TFP fall during the GFC should
be taken with some caution.

24Since exit flows contribute to determining the number of firms, one might wonder whether this bias
could have implications for the interpretation of the entry-rate drivers. We discuss this issue in Appendix I.
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Figure 2.10: Model predictions for other measures of business dynamism, 1978-2019

Note: Solid lines show annualized smoothed estimates at the posterior mean; dashed lines display the re-

spective counterparts in the data (BDS). The model-implied series in panels (a), (b), and (c) are indexed at

the 2000:I observed values. Both series in Panel (d) are expressed in percentage deviations from their sample

mean.

2.5 Conclusions

The paper establishes a strong connection between the long-term decline in the entry rate and
the asymmetric technology shocks that persistently hit new entrants and incumbent firms.
By contrast, the model-implied cumulative increase in price markups did not contribute to
the concurrent fall in the entry rate. Importantly, these results are confirmed even if we
exclude the entry rate from the observed variables.

Our results emphasize the importance of the extensive margin in determining the long-
term slowdown in TFP growth. The extensive margin also introduces a hitherto unexplored
channel for the transmission of non-technology shocks to the cyclical component of aggregate
TFP.

The model challenges popular wisdom on the “cleansing” effect of recessions: demand-
driven recessions do not necessarily generate survival of the fittest.

Finally, we highlight the reduction in price/cost margins of INT-firms as a single statistic
that captures the effects of technology shocks on entry decisions. Micro-econometric analysis
should investigate the responsiveness of the entry rate to price/cost margins. We leave this
for future work.
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F Estimation

F.1 Data

Data on real GDP [GDPC1], the GDP deflator [GDPDEF], nominal personal consump-
tion expenditures [PCEC], and nominal fixed private investment [FPI] are produced at a
quarterly frequency by the Bureau of Economic Analysis and are included in the National
Income and Product Accounts (NIPA). Average weekly hours in the nonfarm business sector
[PRS85006023] and hourly compensation in the nonfarm business sector [PRS85006103] are
produced by the Bureau of Labor Statistics (BLS) at a quarterly frequency. The civilian em-
ployment level [CE16OV] and the civilian non-institutional population [CNP16OV] are also
produced by the BLS at a monthly frequency. We take quarterly averages of the monthly
data. The federal funds rate [FEDFUNDS] is obtained from the Federal Reserve Board’s H.15
release at a business day frequency. We take quarterly averages of the annualized daily data.
All these data are collected from FRED (except for hourly wages, retrieved from the BLS
database), and are transformed following Smets and Wouters (2007). Data on total firms
and firm births (defined as firms born during the last 12 months) are produced by the Census
Bureau, within the Business Dynamics Statistics (BDS) survey, at an annual frequency. In
a robustness estimation, we use shadow rate data from Wu and Xia (2016).25

Table F1: Data Transformation

Data Transformation

Output growth 100∆ ln
(

GDPC1
CNP16OVindex

)
Investment growth 100∆ ln

[(
FPI

GDPDEF

)
1

CNP16OVindex

]
Consumption growth 100∆ ln

[(
PCEC

GDPDEF

)
1

CNP16OVindex

]
Wages growth 100∆ ln

(
PRS85006103
GDPDEF

)
Hours worked 100 ln

[(
PRS85006023
CNP16OVindex

) (
CE16OVindex

100

)]
Inflation 100∆ ln (GDPDEF )

Nominal interest rate FEDFUNDS/4 [SHADOWRATE/4]

Entry rate 100 ln
(
1 + BIRTHSy

(FIRMSy+FIRMSy−1)/2

)

F.2 Parameters’ identification and convergence

The model is solved using a first-order approximation around the deterministic steady state
and is estimated using Dynare 4.6.2 (Adjemian et al., 2022). The baseline estimation is run
with a single Markov Chain of 2 million draws, of which we discard the first 400 thousand.
The overall acceptance ratio of the Metropolis-Hastings algorithm is close to 26%. Estimation
results are virtually identical if we run four chains of 500 thousand draws each.

25https://sites.google.com/view/jingcynthiawu/shadow-rates
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Prior-posterior plots

All posterior distributions are well-shaped and tighter than the respective priors, with the
exception of the steady-state inflation rate whose prior and posterior distributions almost
overlap, indicating a weak identification for this parameter. We do not consider this a major
weakness of our estimation, since the posterior mean is close to the average inflation rate in
the data and to the estimates in the DSGE literature.

Figure F1: Prior-posterior plots

0.1 0.2 0.3
0

500

1000

1500

0 0.1 0.2 0.3
0

10

20

30

0.1 0.2 0.3
0

1000

2000

3000

0.1 0.2 0.3
0

20

40

0 0.2 0.4
0

5

10

0.1 0.2 0.3
0

500

1000

1500

0.1 0.2 0.3
0

100

200

0 0.1 0.2 0.3
0

1000

2000

0.5 1 1.5 2 2.5
0

5

10

0 2 4 6
0

0.5

1

0.4 0.6 0.8 1
0

5

10

0 0.5 1
0

2

4

0 1 2
0

0.5

1

0.2 0.4 0.6
0

2

4

6

8

1 2 3
0

1

2

0 0.2 0.4
0

2

4

6

8

0.4 0.6 0.8
0

5

10

15

0.4 0.6 0.8
0

10

20

(Continued on next page)

80



Figure F1: (continued)
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Convergence

We consider two convergence diagnostics tests. The Geweke test uses a χ-square test to
compare the means of draws from 400,000 to 720,000 and from 1,200,000 to 2,000,000. The
null hypothesis is that the two sample means are equal, suggesting that draws from the two
samples come from the same distribution, and thus that the chain has converged. In order
to tackle the impact of draws’ correlation on the estimates, a Newey and West (1987)-type
estimator is used that tapers spectral density. The Raftery and Lewis test identifies the
number of burn-in and the number of draws after burn-in required to estimate the q=0.025
percentile (corresponding to a 95% HPDI) with a precision of 0.5% with 95% certainty. If
the number of burn-in and required draws is below the number of draws considered in the
estimation, we can conclude that the chain has converged.

Looking at the p-values accounting for serial correlation (with taper), the null hypothesis
for equality of means of the Geweke test (Table F2) is not rejected for all parameters but κπ
and ρl, at a 5% significance level. On the contrary, the Raftery and Lewis test (Table F3)
delivers a maximum number of required draws well below the 2 million used in our estimation.
In order to further examine the convergence of κπ and ρl, we look at the trace plots of the
two parameters (see Figures F2 and F3): in neither case do we spot evident drifts or jumps
to other modes. Therefore, we are led to conclude that the Markov Chain has converged to
the ergodic distribution.
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Table F2: Geweke (1992) Convergence Tests, based on means of draws 400000 to 720000 vs
1200000 to 2000000. p-values are for χ2-test for equality of means.

Posterior p-values

Parameter Mean Std No Taper 4% Taper 8% Taper 15% Taper

σεz 0.0051 0.0003 0.3410 0.9308 0.9232 0.9069
σεµ 0.0906 0.0154 0.0000 0.5877 0.5327 0.5003
σεr 0.0024 0.0001 0.0000 0.1742 0.1723 0.1592
σεp 0.0795 0.0105 0.0006 0.8070 0.7835 0.7506
σεl 0.1584 0.0370 0.0000 0.3895 0.3909 0.3583
σεΨ 0.0058 0.0003 0.0000 0.1566 0.1995 0.2521
σεgs 0.0333 0.0017 0.0000 0.1229 0.0868 0.0659
σεπ 0.0011 0.0002 0.0000 0.3065 0.2557 0.2323
σ 1.1723 0.0418 0.0000 0.4398 0.4220 0.3782
φ 2.3524 0.4382 0.0000 0.4047 0.3570 0.3561
h 0.8402 0.0331 0.0000 0.7524 0.7516 0.7310
100(β−1 − 1) 0.1687 0.0797 0.0000 0.1027 0.1037 0.0663
π̄ss 0.7145 0.3385 0.0000 0.1459 0.1240 0.1242
100(gz − 1) 0.3508 0.0437 0.8886 0.9892 0.9877 0.9866
κπ 1.7367 0.1770 0.0000 0.0301 0.0155 0.0081
κy 0.2391 0.0453 0.0000 0.3856 0.3896 0.4003
ρi 0.7642 0.0274 0.0000 0.2307 0.3054 0.3418
Γp 0.8337 0.0215 0.0002 0.8269 0.8024 0.7629
µp 0.2471 0.0975 0.0000 0.0961 0.0838 0.0568
Γw 0.8153 0.0493 0.0000 0.4520 0.4308 0.4062
µw 0.3161 0.1458 0.0000 0.1583 0.1291 0.1166
γI 9.4144 1.1290 0.9057 0.9924 0.9915 0.9904
σa 0.8844 0.0481 0.0000 0.5240 0.5560 0.5497
ρµ 0.5555 0.0686 0.0000 0.3768 0.3432 0.3348
ρr 0.3059 0.0617 0.0000 0.7046 0.7270 0.7181
ρp 0.9841 0.0064 0.0000 0.4358 0.4603 0.4485
ηp 0.3625 0.0686 0.0000 0.5989 0.5790 0.5659
ρl 0.1722 0.0636 0.0000 0.0203 0.0084 0.0003
ρΨ 0.2472 0.0666 0.0000 0.5467 0.5078 0.4864
ρg

s
0.9609 0.0105 0.1021 0.9080 0.8946 0.8667
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Table F3: Raftery/Lewis (1992) Convergence Diagnostics, based on quantile q=0.025 with
precision r=0.005 with probability s=0.950.

V ariables M(burn− in) N(req.draws) N +M(totaldraws) k(thinning)

σεz 56 60622 60678 1
σεµ 68 73755 73823 1
σεr 90 95568 95658 11
σεp 72 77938 78010 1
σεl 253 293418 293671 18
σεΨ 65 70697 70762 1
σεgs 83 85280 85363 8
σεπ 91 98169 98260 1
σ 1040 1123633 1124673 43
φ 77 83752 83829 1
h 236 251685 251921 15
100(β−1 − 1) 46 50096 50142 1
π̄ss 37 39767 39804 1
100(gz − 1) 68 73880 73948 1
κπ 54 58891 58945 1
κy 87 94815 94902 1
ρi 111 121169 121280 1
Γp 106 115155 115261 1
µp 53 57460 57513 1
Γw 77 83610 83687 1
µw 59 63990 64049 1
γI 105 109813 109918 11
σa 180 195344 195524 1
ρµ 375 411367 411742 1
ρr 81 87327 87408 1
ρp 109 118552 118661 1
ηp 64 69629 69693 1
ρl 53 56834 56887 1
ρΨ 78 84465 84543 1
ρg

s
173 189324 189497 1

Maximum 1040 1123633 1124673 43
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Figure F2: Trace plot for parameter κπ

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

10
6

1.2

1.4

1.6

1.8

2

2.2

2.4

MCMC draw

200 period moving average

Figure F3: Trace plot for parameter ρl
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G Theoretical DSGE model

G.1 Set of dynamic equations

Tables from (G1) to (G3) summarize the system of dynamic equations:

Table G1: List of dynamic equations/1

Descriptions Equations

1) Marginal utility of consumption λt = (Ct − hCt−1)
−σ exp

(
σ−1
1+φ

ζ ltL
1+φ
t

)
,

2) Marginal rate of substitution MRSt = (Ct − hCt−1)
(
ψζ ltL

φ
t

)
,

3) Euler equation from capital λt

Et{λt+1} = β
[
Et

{rkt+1}
Qt

+ (1− δ)Qt+1

Qt

]
,

4) Euler equation it = (πt+1)
λt

λt+1β
,

5) FOC variable capital utilization rkt = γ1 + γ2 (Ut − 1) ,

6) Euler equation for investments 1 = Qtµ
i
t

[
1−

(
S ′
(

It
It−1

)
It

It−1
+ S

(
It

It−1

))]
+ βEt

{
λt+1

λt
Qt+1µ

i
t+1S

′
(

It+1

It

)(
It+1

It

)2]
,

7) Capital law of motion Kt+1 = µi
t

(
1− S

(
It

It−1

))
It + (1− δ)Kt,

8) Production bundle cost pzt =
[
rkt
α

]α [
wt

(1−α)

](1−α)

,

9) Incumbents’ productivity threshold ÂINC
t =

[
wtϕINC−Et{Λt+1Ht+1V av

t+1]
γ

γ
1−γ (1−γ)

]1−γ
(pzt )

γ

pt
,

10) New entrants’ productivity threshold ÂNE
t =

[
wtϕNE−Et{Λt+1Ht+1V av

t+1]
γ

γ
1−γ (1−γ)

]1−γ
(pzt )

γ

pt
,

11) Discounted value of future dividends V av
t+1 =

ξ(1−γ)
ξ(1−γ)−1

(1−γ)
γ

[
pt+1ÂINC

t+1 γ

(pzt+1)
γ

] 1
1−γ

− wt+1ϕ
INC + Et+1

[
Λt+2Ht+2V

av
t+2

]
,

12) Survival probability Ht =

(
ÂINC

t−1 gz(1−δINC)Ψt

ÂINC
t

)ξ

,
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Table G2: List of dynamic equations/2

Descriptions Equations

13) New entrants NEt =
(

zt
ÂNE

t

)ξ
,

14) Incumbents INCt = ηt−1Ht,
15) Exit EXt = ηt−1 (1−Ht) ,
16) Active firms ηt = NEt + INCt,
17) Share of entry entryt =

NEt

ηt
,

18) Share of exit exitt =
EXt

ηt
,

19) INT-output Y INT
t =

ξ{[wtϕNE−Et{Λt+1Ht+1V av
t+1]]NEt+[wtϕINC−Et{Λt+1Ht+1V av

t+1]]INCt}
pt[ξ(1−γ)−1]

,

20) Capital demand Kt = KINT
t = αγ

rkt
ptY

INT
t ,

21) Labor demand Lt = LINT
t = (1−α)γ

wt
ptY

INT
t +NEtϕ

NE + INCtϕ
INC ,

22) TFP TFPt =
ξ

ξ−1

(
NEtÂ

NE
t + INCtÂ

I
t

)
,

23) Average firms’ efficiency Âav
t = TFPt

ηt

24) Efficiency dispersion ΣA
t = ξ

(ξ−2)ηt

[
NEt

(
ÂNE

t

)2
+ INCt

(
ÂINC

t

)2]
25) Solow Residual SRt =

Yt

[(Kt)
α(Lt)

1−α]
γ ,

26) Set of Calvo price eq. (1) a1,t = Yt
(
ΠC∗

t

)
+ β Γp

ΠC∗
t

ΠC∗
t+1

(
π
µp
t π̄

(1−µp)
ss

πt+1

)1−ϵpt
λt+1

λt
a1,t+1,

27) Set of Calvo price eq. (2) a2,t = P̃t Yt +
λt+1

λt
β Γp

(
π
µp
t π̄

(1−µp)
ss

πt+1

)(−ϵpt )
a2,t+1,

28) Set of Calvo price eq. (3) a1,t =
ϵpt a2,t
ϵpt−1

,

29) Set of Calvo price eq. (4) 1 = (1− Γp)
(
ΠC∗

t

)1−ϵpt + Γp

(
π
µp
t−1π̄

(1−µp)
ss

πt

)1−ϵpt

,

30) Set of Calvo price eq. (5) ξpt = (1− Γp)
(
ΠC∗

t

)(−ϵpt ) + Γp

(
π
µp
t−1π̄

(1−µp)
ss

πt

)(− ϵpt )
ξpt−1,
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Table G3: List of dynamic equations/3

Descriptions Equations

31) Set of Calvo wages eq. (1) aw1,t = λtw
ϵw

t Lt + βΓw

(
πµw
t π̄

(1−µw)
ss

πt+1

)ϵw−1

aw1,t+1,

32) Set of Calvo wages eq. (2) aw2,t = φw
(1+θ)ϵw

t L1+θ
t + β Γw

(
πµw
t π̄

(1−µw)
ss

πt+1

)(1+θ)ϵw

aw2,t+1,

33) Set of Calvo wages eq. (3) (w#
t )

1+ϵwθ = ϵw

ϵw−1

aw2,t
aw1,t

,

34) Set of Calvo wages eq. (4) w1−ϵw

t = (1− Γw)
(
w#

t

)1− ϵw

+ Γw

(
wt−1

πµw
t−1π̄

(1−µw)
ss

πt

)1−ϵw

,

35) Monetary policy rule
Rn

t

Rn
ss

=
(

Rn
t−1

Rn
ss

)ρi [(
πt

πt

)κπ (
Yt

Yt−1

)κy
]1−ρi

ζrt ,

36) Aggregate resources constraint Yt =
Y INT
t

ξpt
= Ct + It + gSt Y ,

37) Technology frontier evolution (NEs) zt = gzt zt−1,
38) Shock to NEs’ technology ln(gzt ) = (1− ρz) ln(gz) + ρz ln(gzt−1) + εzt ,
39) Shock to INCs’ technology ln (Ψt) = ρΨ ln (Ψt−1) + εΨt ,
40) Shock to inflation target ln (πt) = ln (1− ρπ) πss + ρπ ln (πt−1) + επt ,
41) Shock to monetary policy ln(ζrt ) = ρr ln(ζrt−1) + εrt ,
42) Shock to labot supply ln(ζ lt) = ρl ln(ζ lt−1) + εlt,
43) Shock to MEI ln(µt) = ρµ ln(µt−1) + εµt ,

44) Shock to public expenditure ln(gSt ) = ρg
s
ln(gSt−1) + εg

s

t .
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G.2 The de-trended model

The model economy follows a Balanced Growth Path (BGP). Output Yt, consumption Ct,
capitalKt, investment It and wage wt grow at the endogenous rate gt. Further, the technology
frontier zt and the technology thresholds Âj

t grow at the exogenous rate gtz. The remaining
variables are stationary. In order to compute the deterministic steady state and the de-
trended model, we have to identify the relation that binds the different growth rates.

Households

We can start our computation from the households’ first-order conditions. Since we know
that C grows at the same rate as Y , we can show that the Lagrangian multiplier follows this
path:

λ̃t =
λt
gt

=

(
C̃t − h

C̃t−1

gt

)−σ

exp

(
σ − 1

1 + φ
L1+φ
t

)

M̃RSt =

(
C̃t − h

C̃t−1

gt

)
(ψLφ

t )

From the households’ Euler conditions, we can find the de-trended Euler equations on
capital:

λt
Et{λt+1}

= β

[
Et

{rkt+1}
Qt

+ (1− δ)
Qt+1

Qt

]
λ̃tgt+1

β Et

{
λ̃t+1

} =

(
Qt+1r

k
t+1

Qt

+
Qt+1

Qt

(1− δ)

)

INT-firms

Once we have defined the costs of production we can compute the productivity thresholds:

Âj
t =

[
wtϕ

j − Et

{
Λt+1Ht+1V

av
t+1

]
γ

γ
1−γ (1− γ)

]1−γ
(pzt )

γ

pt

This implies:

Âj
t =

gtwtϕ
j − Et

{
gt

Λ̃t+1

gt+1
Ht+1Ṽ

av,s
t+1 gt+1

]
γ

γ
1−γ (1− γ)

1−γs

·


[
r̃kt
α

]α [
gtw̃t

(1−α)

](1−α)

p
1
γ

t


γ

Âj
t = g1−αγ

t

wtϕ
j − Et

[
Λ̃t+1Ht+1Ṽ

av
t+1

}
γ

γ
1−γ (1− γ)

1−γ

(p̃zt )
γ

pt
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˜ÂNE,INC
t =

w̃tϕ
j − Et

{
Λ̃t+1Ht+1Ṽ

av
t+1

}
γ

γ
1−γ (1− γ)

1−γ

(p̃zt )
γ

pt

Since the number of firms is assumed to be stationary ,it will follow that g1−αγ
t = gzt

ηt =

 z

˜̂ANE
t

ξS

+ ηt−1

 ˜̂
AI

t−1g
z
(
1− δINC

)
Ψt

gzt
˜̂
AI

t

ξS

The remaining de-trending steps are straightforward.
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Set of de-trended equations

Tables from (G4) to (G6) summarize the system of de-trended equations:

Table G4: List of de-trended equations/1

Descriptions Equations

1) Marginal utility of consumption λ̃t =
(
C̃t − h C̃t−1

gt

)−σ

exp
(

σ−1
1+φ

L1+φ
t

)
,

2) Marginal rate of substitution M̃RSt =
(
C̃t − h C̃t−1

gt

)
(ψLφ

t ) ,

3) Euler equation from capital λ̃tgt+1

β Et{λ̃t+1} =
(

Qt+1rkt+1

Qt
+ Qt+1

Qt
(1− δ)

)
,

4) Euler equation it =
πt+1

β
gt+1λ̃t

λ̃t+1
,

5) FOC variable capital utilization rkt = γ1 + γ2 (Ut − 1) ,

6) Euler equation for investments 1 = Qtµ
i
t

[
1−

(
S ′
(

Ĩtgt
Ĩt−1

)
Ĩtgt
Ĩt−1

+ S
(

Ĩtgt
Ĩt−1

))]
+ βEt

{
λ̃t+1

λ̃tgt+1
Qt+1µ

i
t+1S

′
(

Ĩt+1gt+1

Ĩt

)(
Ĩt+1gt+1

Ĩt

)2]
,

7) Capital law of motion K̃t+1 = µi
t

(
1− S

(
ĨtgKt
Ĩt−1

))
Ĩt +

(1−δ)K̃t

gKt
,

8) Production bundle cost p̃zt =
[
rkt
α

]α [
w̃t

(1−α)

](1−α)

,

9) Incumbents’ productivity threshold
˜̂
A

INC

t =

[
w̃tϕINC−Et{Λ̃t+1Ht+1Ṽ av

t+1}
γ

γ
1−γ (1−γ)

]1−γ
(p̃zt )

γ

pt
,

10) New entrants’ productivity threshold
˜̂
A

NE

t =

[
w̃tϕNE−Et{Λ̃t+1Ht+1Ṽ av

t+1}
γ

γ
1−γ (1−γ)

]1−γ
(p̃zt )

γ

pt
,

11) Discounted value of future dividends Ṽ av
t+1 =

ξ(1−γ)
ξ(1−γ)−1

(1−γ)
γ

[
pt+1

˜̂
A

INC

t+1 γ

(p̃zt+1)
γ

] 1
1−γ

− w̃t+1ϕ
INC + Et+1

[
Λ̃t+2Ht+2Ṽ

av
t+2

]
,

12) Survival probability Ht =

( ˜̂
A

INC

t−1 gz(1−δINC)Ψt˜̂
A

INC

t gzt

)ξ

,
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Table G5: List of de-trended equations/2

Descriptions Equations

13) New entrants NEt =

(
z˜̂

A
NE

t

)ξ

,

14) Incumbents INCt = ηt−1Ht,
15) Exit EXt = ηt−1 (1−Ht) ,
16) Active firms ηt = NEt + INCt,
17) Share of entry entryt =

NEt

ηt
,

18) Share of exit exitt =
EXt

ηt
,

19) INT-output Ỹ INT
t =

ξ{[w̃tϕNE−Et{Λt+1Ht+1Ṽ av
t+1}]NEt+[w̃tϕINC−Et{Λ̃t+1Ht+1Ṽ av

t+1}]INCt}
pt[ξ(1−γ)−1]

,

20) Capital demand K̃t = K̃INT
t = αγ

rkt
ptỸ

INT
t ,

21) Labor demand Lt = LINT
t = (1−α)γ

w̃t
ptỸ

INT
t +NEtϕ

NE + INCtϕ
INC ,

22) Average productivity T̃FP t =
ξ

ξ−1

(
NEt

˜̂
A

NE

t + INCt
˜̂
A

I

t

)
,

23) Average firms’ efficiency
˜̂
A

av

t = T̃ FP t

ηt

24) Efficiency dispersion Σ̃A
t =

ξ
(ξ−2)ηt

[
NEt

(˜̂
A

NE

t

)2

+ INCt

(˜̂
A

INC

t

)2
]

25) Solow Residual S̃Rt =
Ỹt

[(K̃t)
α
(Lt)

1−α]
γ ,

26) Set of Calvo price eq. (1) ã1,t = Ỹt
(
ΠC∗

t

)
+ β Γp

ΠC∗
t

ΠC∗
t+1

(
π
µp
t π̄

(1−µp)
ss

πt+1

)1−ϵpt
λ̃t+1

λ̃t
ã1,t+1,

27) Set of Calvo price eq. (2) ã2,t = P̃t Ỹt +
λ̃t+1

λ̃t
β Γp

(
π
µp
t π̄

(1−µp)
ss

πt+1

)(−ϵpt )
ã2,t+1,

28) Set of Calvo price eq. (3) ã1,t =
ϵpt ã2,t
ϵpt−1

,

29) Set of Calvo price eq. (4) 1 = (1− Γp)
(
ΠC∗

t

)1−ϵpt + Γp

(
π
µp
t−1π̄

(1−µp)
ss

πt

)1−ϵpt

,

30) Set of Calvo price eq. (5) ξpt = (1− γ)
(
ΠC∗

t

)(−ϵpt ) + γ

(
π
µp
t−1π̄

(1−µp)
ss

πt

)(−ϵpt )
ξpt−1,
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Table G6: List of de-trended equations/3

Descriptions Equations

31) Set of Calvo wages eq. (1) ãw1,t = λ̃tw̃
ϵw

t Lt + βΓw

(
πµw
t π̄

(1−µw)
ss

πt+1

)ϵw−1

ãw1,t+1,

32) Set of Calvo wages eq. (2) ãw2,t = φw̃
(1+θ)vw
t L1+θ

t + β Γw

(
πµw
t π̄

(1−µw)
ss

πt+1

)(1+θ)ϵw

ãw2,t+1,

33) Set of Calvo wages eq. (3) (w̃#
t )

1+ϵwθ = ϵw

ϵw−1

ãw2,t
ãw1,t

,

34) Set of Calvo wages eq. (4) w̃1−ϵw

t = (1− Γw)
(
ŵ#

t

)1− ϵw

+ Γw

(
w̃t−1π

µw
t−1π̄

(1−µw)
ss

gtπt

)1−ϵw

,

35) Monetary policy rule
Rn

t

Rn
ss

=
(

Rn
t−1

Rn
ss

)ρi [(
πt

πt

)κπ (
Ỹt

gtỸt−1

)κy
]1−ρi

ζrt ,

36) Aggregate resources constraint Ỹt =
Ỹ INT
t

ξpt
= C̃t + Ĩt + gSt Y ,

37) Growth rates gt = (gzt )
1

1−αγ ,
38) Shock to NEs’ technology ln(gzt ) = (1− ρz) ln(gz) + ρz ln(gzt−1) + εzt ,
39) Shock to INCs’ technology ln (Ψt) = ρΨ ln (Ψt−1) + εΨt ,
40) Shock to inflation target ln (πt) = ln (1− ρπ) πss + ρπ ln (πt−1) + επt ,
41) Shock to monetary policy ln(ζrt ) = ρr ln(ζrt−1) + εrt ,
42) Shock to labor supply ln(ζ lt) = ρl ln(ζ lt−1) + εlt,
43) Shock to MEI ln(µt) = ρµ ln(µt−1) + εµt ,

44) Shock to public expenditure ln(gSt ) = ρg
s
ln(gSt−1) + εg

s

t .

92



G.3 Key derivations

Equation (2.25) - Firms’ continuation value

We start from the (2.12) and (2.13) to get

V av
t+1 = Et

{
V
(
Aj

t+1

)}
=

=

∫ +∞

ÂINC
t+1

Vt+1

(
AINC,j

t+1

)
ft

(
AINC,j

t+1

)
d
(
AINC,j

t+1

)
= Ht+1V

av
t+1

=

∫ +∞

ÂINC
t+1

(1− γ)

[
Af,j

t+1

pt+1γ
γ(

pzt+1

)γ
] 1

1−γ

ft

(
AINC,j

t+1

)
d
(
AINC,j

t+1

)
− wt+1ϕ

INC
t + Et

{
Λt+2Vt+2

(
Af,j

t+2

)}
=

=
(1− γ)

γ

[
pt+1γ(
pzt+1

)γ
] 1

1−γ ∫ +∞

ÂINC
t+1

[
Af,j

t+1

] 1
1−γ

ft

(
AINC,j

t+1

)
d
(
AINC,j

t+1

)
− wt+1ϕ

INC
t + Et

{
Λt+2Vt+2

(
Af,j

t+2

)}
=

=
(1− γ)

γ

[
pt+1γ(
pzt+1

)γ
] 1

1−γ ∫ +∞

ÂINC
t+1

[
Af,j

t+1

] 1
1−γ −ξ−1

d
(
AINC,j

t+1

)
− wt+1ϕ

INC
t + Et

{
Λt+2Vt+2

(
Af,j

t+2

)}
=

=
(1− γ)

γ

[
pt+1γ(
pzt+1

)γ
] 1

1−γ ∫ +∞

ÂINC
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Equation (2.26) - Productivity thresholds

Also in this case, we get the condition from (2.12) and (2.13)

Vt

(
Âj

t

)
= (1− γ)

[
Âj

t

ptγ
γ

(pzt )
γ

] 1
1−γ

− wtϕ
j + Et

{
Λt+1V

av
t+1

]
= 0

(1− γ)

[
Âj

t

ptγ
γ

(pzt )
γ

] 1
1−γ

= wtϕ
j − Et

{
Λt+1V

av
t+1

]
Âj

t =

[
wtϕ

j − Et

{
Λt+1Ht+1V

av
t+1

]
(1− γ) pt

]1−γ [
pzt
ptγ

]γ

Equation (2.32) - Aggregate INT-output

We start from the idiosyncratic production function.

yf,jt = Af,j
t

[
(kf,jt )α(lf,jt )(1−α)

]γ
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Aggregating for NEs idiosyncratic productivity, we get

Y NE
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∫ +∞
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t
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t
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)α (
lf,NE
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ÂNE
t

(
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,

and, aggregating for INCs idiosyncratic productivity, we get

Y INC
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.

Elasticity of productivity thresholds

In order to measure the sensitivity of the two productivity thresholds to their different com-
ponents, we compute the first-order approximation of equation (2.26):

˜̂
A

j

t =

w̃tϕ
j − Et

{
Λ̃t+1Ht+1Ṽ

av
t+1

}
γ

γ
1−γ (1− γ)

1−γ

(p̃zt )
γ

pt
.

In the de-trended steady state,

˜̂
A

j

=

[
w̃ϕj −HṼ av

γ
γ

1−γ (1− γ)

]1−γ
(p̃z)γ

p
.
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Log-linearizing,26

âjt =
1− γ

wϕj −HV av

[
ϕjŵt −HV av(Λ̂t+1 + Ĥt+1 + V̂ av

t+1)
]
− (p̂t − γp̂zt ).

From our calibration, ϕNE < ϕINC implies that the sensitivity of the thresholds to the
approximated wedge between participation costs and expected future profits is larger for
NEs. On the other hand, sensitivity to the price/cost margin is the same for each type of
firm.

H Comparison with standard NK model

The main purpose here is to benchmark our interpretation of the U.S. business cycle against
the established narrative based on the standard NK model. First, we briefly discuss posterior
estimates27 and impulse response functions. Interestingly enough, our model generates higher
internal persistence: consumption habits (h), price and wage stickiness (Γp and Γw), invest-
ment adjustment and capital utilization costs are somewhat larger, but fall in the ballpark of
existing estimates in the DSGE literature. On the contrary, the exogenous persistence of the
standard NK model, identified in the shocks’ autocorrelation coefficients, is generally more
pronounced than in our model. With respect to the common shocks, the IRFs of the two
models are very similar (reported in Figure J3).

We next turn to the historical decomposition of GDP growth obtained with the two mod-
els (Figure H1). To sharpen the analysis we focus on the post-2000 period. After 2013, the
two models convey similar messages, but important differences are easy to spot in the pre-
vious years. According to the NK estimates, markup shocks are persistently contractionary,
whereas technology shocks pull in the opposite direction with an almost symmetrical pattern.
Thus the NK model conveys a story where pre-2013 growth is determined by a combination of
technology improvements and persistently adverse markup shocks. These contemporaneous
and opposite effects are particularly large in the occurrence and in the immediate aftermath
of the GFC. The contribution of technology shocks to the post-2008:IV recovery appears im-
plausibly large and in sharp contrast with results obtained in contributions such as Fernald
(2014) and Vinci and Licandro (2021). By contrast, our baseline model does not generate
equally persistent patterns and technology shocks play a lesser role. Demand shocks are
relatively more important. Their positive contribution to growth in the 2003-2006 period is
consistent with the popular narrative about the importance of the credit boom in the run-up
to the GFC.

26Where x̂t is the de-trended log-deviation of the generic variable xt. For the sake of a clear notation the
log-deviation of Âj

t is labeled by âjt .
27See Table J1.
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Figure H1: Historical shock decomposition comparison: GDP growth, 2000:I-2019:IV

Note: The solid line is observed GDP growth in log-deviations from its estimated steady state. The colored

bars are the contributions of the grouped shocks (“Demand” includes monetary policy, inflation target, MEI,

and government spending shocks for panel (a) and (b), and risk premium shocks for panel (b); “Supply”

includes price markup shocks for panel (a) and (b), labor supply shocks for panel (a), and wage markup

shocks for panel (b); “Other” includes contribution from initial values). Panel (a): Baseline model estimation.

Panel (b): Standard NK model estimation.
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I Implications of exit mismatch for the estimation of

entry

Up to first-order approximation, condition (2.3) can be decomposed as follows:

êntry = HN̂Et − (1−H) ÊX t − (1−H)

T0∑
j=1

(
N̂Et−j − ÊX t−j

)
, (2.58)

where x̂t denotes log-deviations from the steady state, H is the survival probability of
firms in the deterministic steady state, and T0 denotes the initial sample period. Figure I1
suggests that the current estimate of exit has virtually no effect on our interpretation of the
observed entry rate. The accumulated past balance between exit and entry has a limited
effect and matters only after the GFC. In this period it is driven by the accumulation of exit
flows, but its importance in determining êntry remains limited.

Figure I1: Entry rate decomposition, 1978:I-2019:IV
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Note: In both panels, the solid line depicts log-deviations from the steady state of the quarterly entry-rate

smoothed estimate at the posterior mean. The colored bars display the model-implied contribution to those

deviations coming from (i) current new entrants, (ii) current firm exits, (iii) past accumulated new entrants,

and (iv) past accumulated firm exits. Panel (b) groups contributions from (iii) and (iv).
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J Additional tables and figures

J.1 Tables

Table J1: Posterior estimates comparison

Prior Posterior mean

Dist. Mean Stdev. Baseline Shadow Short Unobserved Standard
rate sample entry NK

σ norm 1.500 0.3750 1.173 1.168 1.233 1.116 1.118
φ norm 2.000 0.5000 2.354 2.297 2.323 2.039 2.131
h beta 0.700 0.1000 0.840 0.847 0.842 0.799 0.813
100(β−1 − 1) gamm 0.250 0.2000 0.169 0.149 0.198 0.181 0.389
π̄ss gamm 0.750 0.4000 0.716 0.707 0.720 0.715 0.705
100(gz − 1) norm 0.400 0.1000 0.350 0.351 0.430 0.311 0.379
κπ norm 1.500 0.2500 1.736 1.762 1.638 1.651 1.787
κy norm 0.200 (0.125) 0.0500 0.239 0.240 0.222 0.246 0.006
κ∆y

norm 0.125 0.0500 - - - - 0.025
ρi beta 0.750 0.1000 0.764 0.770 0.750 0.751 0.784
Γp beta 0.650 0.1000 0.834 0.833 0.804 0.813 0.711
µp beta 0.500 0.1500 0.247 0.271 0.371 0.296 0.206
Γw beta 0.650 0.1000 0.815 0.821 0.876 0.805 0.788
µw beta 0.500 0.1500 0.315 0.330 0.336 0.774 0.564
γI norm 4.000 1.5000 9.415 9.694 8.574 7.515 7.542
σa beta 0.500 0.1500 0.884 0.887 0.777 0.863 0.766
ϕp norm 1.250 0.1250 - - - - 1.663
∆L norm 1.000 (0.000) 2.0000 - - 1.106 - -2.735
ρµ beta 0.500 0.2000 0.556 0.548 0.460 0.795 0.815
ρr beta 0.500 0.2000 0.305 0.325 0.288 0.239 0.273
ρp beta 0.500 0.2000 0.984 0.982 0.976 0.964 0.973
ηp beta 0.500 0.2000 0.363 0.359 0.401 0.482 0.845
ρl beta 0.500 0.2000 0.172 0.173 0.134 0.225 -
ρw beta 0.500 0.2000 - - - - 0.933
ηw beta 0.500 0.2000 - - - - 0.874
ρΨ beta 0.500 0.2000 0.247 0.240 0.255 0.173 -
ρa beta 0.500 0.2000 - - - - 0.930
ρg

s

beta 0.500 0.2000 0.961 0.961 0.975 0.966 0.957
ρrp beta 0.500 0.2000 - - - - 0.147

Note: Terms in round brackets refer to the prior specifications used in the estimation of the benchmark NK

model, when different from ours.

The interpretation of κy differs between the NK benchmark and our model. In the former, κy determines the

Taylor rule response to output gap deviations from the steady state, where the output gap is defined as the

difference between the actual and the flexible-price output level. κ∆y
stands for the monetary policy weight

on output gap growth. Conversely, monetary policy in our model targets output growth through κy.

ϕp is the estimated share of fixed costs and ρrp is the persistence of risk premium shocks, both absent in our

model, while ρw and ρa are the autocorrelation coefficients of the wage markup and stationary technology

processes, respectively. These two shocks can be thought of as counterparts of our labor supply and incum-

bent shocks.
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∆L enters the observation equation of hours worked as a “correction” term when the steady state of L does

not equal the observed sample mean.

Table J2: Productivity measures variance decomposition

Shocks

Incumbents Entry Supply Demand

TFP growth 8.2% 2.4% 22.0% 67.4%
Average efficiency growth 91.9% 0.4% 1.5% 6.3%
Efficiency dispersion growth 93.1% 0.4% 1.3% 5.3%

Note: Unconditional variance decomposition at the posterior mean. Non-technology shocks are grouped into

two categories: supply and demand. “Supply” includes price markup and labor supply shocks; “Demand”

includes monetary policy, inflation target, MEI, and government spending shocks.
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J.2 Figures

Figure J1: Model predictions for the profit share of GDP and markups, 1966:I-2019:IV

Note: Panel (a): quarterly smoothed estimates, at the posterior mean, of profits of INT-firms and retailers

as a share of GDP (blue), and of retailers’ price markup over marginal costs (orange). Panel (b): the solid

line is markup in log-deviations from its steady state (quarterly estimate at the posterior mean); the colored

bars are the contributions of the grouped shocks (“Demand” includes monetary policy, inflation target, MEI,

and government spending shocks; “Other” includes labor supply shocks and contribution from initial values).

Figure J2: Historical shock decomposition: price/cost margin of INT-firms, 1978:I-2019:IV

Note: The solid line is the price/cost margin in log-deviations from its steady state (quarterly estimate at the

posterior mean); the colored bars are the contributions of the grouped shocks (“Demand” includes monetary

policy, inflation target, MEI, and government spending shocks; “Other” includes labor supply shocks and

contribution from initial values).

100



Figure J3: IRFs comparison (baseline vs standard NK model)
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Note: Quarterly estimated mean impulse responses (solid lines) with 90% HPD intervals (dashed lines) to one-standard-deviation shocks.
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