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ABSTRACT
A space-based interferometer such as the evolved Laser Interferometer Space Antenna (eLISA)
could observe a few to a few thousands of progenitors of black hole binaries (BHBs) similar
to those recently detected by Advanced LIGO. Gravitational radiation circularizes the orbit
during inspiral, but some BHBs retain a measurable eccentricity at the low frequencies where
eLISA is the most sensitive. The eccentricity of a BHB carries precious information about its
formation channel: BHBs formed in the field, in globular clusters, or close to a massive black
hole (MBH) have distinct eccentricity distributions in the eLISA band. We generate mock eLISA
observations, folding in measurement errors, and using a Bayesian model selection, we study
whether eLISA measurements can identify the BHB formation channel. We find that a handful
of observations would suffice to tell whether BHBs were formed in the gravitational field
of an MBH. Conversely, several tens of observations are needed to tell apart field formation
from globular cluster formation. A 5-yr eLISA mission with the longest possible armlength is
desirable to shed light on BHB formation scenarios.
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1 IN T RO D U C T I O N

The first direct observation of merging black hole binaries (BHBs)
during the first observation run (O1) of Advanced LIGO marked
a milestone in the history of astronomy and fundamental physics.
The observation of two events (GW150914 and GW151226), plus
a third candidate LVT151012 (Abbott et al. 2016a,b,d), provides a
formidable laboratory to test general relativity in the strong-gravity
regime (Abbott et al. 2016e). In addition, gravitational-wave obser-
vations of BHBs can further our understanding of their astrophysical
formation channels (Abbott et al. 2016f). Different formation sce-
narios result in distinct BHB binary properties, which may be disen-
tangled by analysing the statistical parameters of a sufficiently large
number of detections. The currently favoured scenarios involve the
stellar evolution of field binaries (Postnov & Yungelson 2014) and
the dynamical capture of BHs in globular clusters (Benacquista &
Downing 2013). Recent work showed that both field formation

(Mapelli, Colpi & Zampieri 2009; Belczynski et al. 2010;
Dominik et al. 2012, 2013, 2015; Spera, Mapelli & Bressan 2015;
Belczynski et al. 2016a,b) and cluster formation (Rodriguez
et al. 2015a; Chatterjee, Rodriguez & Rasio 2016; Rodriguez,
Chatterjee & Rasio 2016a; Rodriguez et al. 2016b) are com-
patible with the recent Advanced LIGO observations (Abbott
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et al. 2016f). More exotic proposals include the formation via hi-
erarchical triples (Wen 2003; Antonini, Murray & Mikkola 2014;
Antonini et al. 2016), a Population III origin for the binary members
(Kinugawa et al. 2014; Hartwig et al. 2016), chemically homoge-
neous evolution in short-period binaries (Mandel & de Mink 2016;
de Mink & Mandel 2016; Marchant et al. 2016) and even primordial
BHs (Bird et al. 2016).

In the field formation scenario, BHBs have very small eccen-
tricities in the Advanced LIGO band, and the BH spins could be
preferentially aligned with the orbital angular momentum as a con-
sequence of mass-transfer episodes preceding the stellar collapse.
In the globular cluster scenario, BHBs are formed via dynami-
cal processes (involving mostly three- and four-body encounters),
generally resulting in highly eccentric orbits (see e.g. Rodriguez
et al. 2016a). Moreover, as a consequence of the chaotic nature of
the BHB formation process, the spins of the two BHs are likely to
be randomly oriented. Earth-based gravitational-wave observations
could potentially differentiate between field and cluster formation
by looking at mass, mass ratio and possibly redshift distributions
(Rodriguez et al. 2015b), as well as spin dynamics. As for the latter,
however, one should consider that the details of mass transfer and
tidal alignment in BH binaries, as well as the degree of asymmetry
in stellar collapse – and the resulting kicks imparted to the BHs
– are quite uncertain, and they will affect BH spin alignment and
gravitational waveforms in complex ways (Belczynski et al. 2008;
Gerosa et al. 2013; Gerosa et al. 2015; Belczynski et al. 2016a).

C© 2016 The Authors
Published by Oxford University Press on behalf of the Royal Astronomical Society

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/465/4/4375/2566720 by U
niversity of M

ilan-Bicocca user on 24 M
arch 2024

mailto:anishiza@olemiss.edu
mailto:eberti@olemiss.edu


4376 A. Nishizawa et al.

In this respect, eccentricity may be a complementary robust tracer
of the formation channel. In addition, a characteristic eccentricity
distribution can be a tracer of a formation scenario even for pri-
mordial BHs (Cholis et al. 2016). Radiation reaction is well known
to circularize the orbit. While field and cluster formation scenarios
predict very distinct eccentricity distributions at BHB formation,
both scenarios result in nearly circular binaries in the Advanced
LIGO band. The first observed signals did not set strong bounds on
the eccentricity of the binary (Abbott et al. 2016b,c), and it is quite
unlikely that eccentricity measurements with ground-based detec-
tors will ever differentiate between the field and cluster scenarios.
However, Sesana (2016) showed that, depending on the intrinsic
rates (which are only loosely constrained by current detections) and
on the detector baseline, the evolved Laser Interferometer Space An-
tenna (eLISA) will observe a few to a few thousands of BHBs (see
also Kyutoku & Seto 2016). Because of the much lower frequency
band, eLISA will detect these systems before circularization, and in
many cases, it will be able to measure their eccentricity (Nishizawa
et al. 2016).

In this article, we use a Bayesian model selection to demonstrate
how eLISA eccentricity measurements can conclusively distinguish
between different BHB formation channels. In Section 2, we con-
sider three models for BHB formation, and discuss the eccentric-
ity distributions predicted by these models in the eLISA band.1 In
Section 3, we simulate and analyse eLISA observations using var-
ious models and detector baselines. In Section 4, we present our
main results, and in Section 5, we discuss their implications. We as-
sume a concordance � cold dark matter cosmology with h = 0.679,
�M = 0.306 and �� = 0.694 (Planck Collaboration XIII 2015).

2 A S T RO P H Y S I C A L M O D E L S A N D
E C C E N T R I C I T Y D I S T R I BU T I O N S

We consider a BHB population merging at a rate R, charac-
terized by a chirp mass probability distribution p(Mr) – where
Mr ≡ (M1,rM2,r)3/5/(M1,r + M2,r)1/5, and a subscript ‘r’ denotes
quantities in the rest frame of the source – and by an eccentricity
probability distribution p(e∗) at some reference frequency f∗ close
to coalescence (we set f∗ = 10 Hz). If p(e∗) depends only on the
BHB formation route, but not on the chirp mass and redshift, the
merger rate density per unit mass and eccentricity is given by

d3n

dMrdtrde∗
= p(Mr) p(e∗)R. (1)

Equation (1) can then be converted into a number of sources emitting
per unit mass, redshift and frequency at any time via

d4N

dMrdzdfrde∗
= d3n

dMrdtrde∗

dV

dz

dtr

dfr
(e(e∗, f )), (2)

where dV/dz is the standard volume shell per unit redshift, and

dtr

dfr
(e(e∗, f )) = 5c5

96π8/3
(GMr)

−5/3f −11/3
r

1

F (e(e∗, f ))
. (3)

Here,

F (e(e∗, f )) = (1 − e2)−7/2

(
1 + 73

24
e2 + 37

96
e4

)
, (4)

1 For a detailed astrophysical comparison of BHBs formed in galactic fields
and globular clusters observable by eLISA, see Breivik et al. (2016).

and e(e∗, f ) is computed by finding the root of

f

f∗
=

⎡
⎣ 1 − e2

∗
1 − e2

(
e

e∗

)12/19
(

1 + 121
304 e2

1 + 121
304 e2∗

)870/2299
⎤
⎦

−3/2

. (5)

We can construct a population of systems potentially observ-
able by eLISA by Monte Carlo sampling from the distribution in
equation (2) using appropriate distribution functions for p(Mr) and
p(e∗). For the mass distribution, we employ the ‘flat’ mass function
of Abbott et al. (2016f), i.e. we assume that the two BH masses
are independently drawn from a log-flat distribution in the range of
5 < M1, 2, r < 100 M�, restricting the total BHB mass to be less
than 100 M�.2

For the eccentricity distribution, we consider, as a proof of con-
cept, three popular BHB formation scenarios:

(i) Model field: This is the default BHB field formation scenario
of Kowalska et al. (2011), taken to be representative of BHBs re-
sulting from stellar evolution.

(ii) Model cluster: Globular clusters efficiently form BHBs via
dynamical capture. Most of these BHBs are ejected from the cluster
and evolve in isolation until they eventually merge. Because of their
dynamical nature, BHBs typically form with a thermal eccentric-
ity distribution. A comprehensive study of this scenario has been
performed by Rodriguez et al. (2016a).

(iii) Model MBH: BHs and BHBs are expected to cluster in galac-
tic nuclei because of strong mass segregation. In this case, binaries
within the sphere of influence of the central MBH undergo Kozai–
Lidov resonances, forming triplets in which the external perturber
is the MBH itself. This scenario has been investigated in Antonini
& Perets (2012), and it results in high BHB eccentricities.

The proponents of all models listed above conveniently evolved
the BHB populations close to the merger, constructing the resulting
eccentricity distributions at a fixed frequency. In more detail, the
three distributions we adopt are as follows:

(i) the fiducial model shown in fig. 5 of Kowalska et al. (2011)
at f = 3 Hz for the field scenario (smoothed out and extrapolated to
f∗ = 10 Hz);

(ii) the one shown in fig. 10 of Rodriguez et al. (2016a) at f∗ =
10 Hz for the cluster scenario; and

(iii) the ‘cusp model’ shown in fig. 7 of Antonini & Perets (2012)
at f∗ = 10 Hz for the MBH scenario. Those are shown in the top
panel of Fig. 1 and are the starting point of our eccentricity distri-
bution reconstruction. In the bottom panel, assuming that the ec-
centricity evolves exclusively through gravitational wave emission,
we propagate these distributions ‘back in time’ to obtain p(e0) at a
frequency f0 = 0.01 Hz, where most eLISA detections are expected
to occur. In this calculation, we must take into account the fact that
highly eccentric binaries evolve more quickly – by a factor of F(e)
– than circular ones so that only a few highly eccentric binaries will
be observable in the eLISA band for a given coalescence rate.

2 Although this choice results in a BHB population biased towards heavy sys-
tems, we found that this does not affect the properties of the eLISA-detected
systems. In fact, a heavy-biased mass function implies a low intrinsic co-
alescence rate, for consistency with Advanced LIGO measurements (see
fig. 10 in Abbott et al. 2016b). Assuming a more conservative Salpeter mass
function results in a comparable number of eLISA detections, by virtue of
the higher intrinsic rate.

MNRAS 465, 4375–4380 (2017)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/465/4/4375/2566720 by U
niversity of M

ilan-Bicocca user on 24 M
arch 2024



eLISA measurements of eccentric binaries 4377

Figure 1. Eccentricity distributions predicted by the field (orange), cluster
(turquoise) and MBH (purple) scenarios. The top panel shows the distribu-
tion at the reference frequency f∗ = 10 Hz, while the bottom panel is the
observable distribution p(e0) evolved ‘back in time’ to f0 = 0.01Hz.

3 SI M U L ATI O N S A N D A NA LY S I S TO O L S

We consider two eLISA baselines, N2A2 and N2A5, in the notation
of Klein et al. (2016). We adopt the noise level (N2) recently demon-
strated by LISA Pathfinder (Armano et al. 2016), and, following the
recommendations of the GOAT committee,3 we choose armlengths
of two (A2) and five (A5) million kilometres. We also explore two
nominal mission lifetimes (2 and 5 yr) for a total of four mission
baselines: N2A2-2y, N2A2-5y, N2A5-2y and N2A5-5y.

For our simulated experiments, we need (i) the theoretical eccen-
tricity distribution PX(e0) predicted by the three BHB formation
models, and (ii) catalogues of ‘synthetic’ eLISA observations to be
tested against the models. The theoretical distributions are generated
as follows:

(i) Following the formalism described in Section 2, for each
model we generate a large Monte Carlo catalogue of BHBs emitting
in the eLISA frequency window.

(ii) For each eLISA baseline, we select a sample of 104 de-
tectable BHBs with a signal-to-noise ratio (S/N) > 8 and construct
an histogram of PX(ei) on a grid of logarithmically spaced bins
�(log ei) = 0.1 centred at eccentricity values ei.

(iii) We fit a smooth 10th-order polynomial function to the set of
points (ei,PX(ei)), which is generally accurate at a 0.003 level.

This procedure yields 12 theoretical eccentricity distributions to
be tested against observations for each setup (i.e. for each combi-
nation of BHB formation model and eLISA baseline).

The next step is the generation of synthetic BHB observations.
We use the Fourier-domain eccentric waveforms by Tanay, Haney &
Gopakumar (2016) in the small-eccentricity approximation, which
is accurate up to (Newtonian, e6

0) order in amplitude and (2PN,
e6

0) order in phase. The non-spinning eccentric waveforms have
10 physical parameters {Mz, η, tc, φc,DL, e0, θ̄L, φ̄L, θ̄S, φ̄S}: red-
shifted chirp mass, symmetric mass ratio, time and phase at coa-
lescence, luminosity distance, eccentricity at 10−2 Hz, two angles
describing the direction of the orbital angular momentum and two
angles corresponding to the orientation of the source in the sky. We
select 103 detectable events with S/N > 8 (because of computa-

3 http://www.cosmos.esa.int/web/goat

Figure 2. Distribution of BHBs with �e0 < e0 (solid histogram) and with
�e0 > e0 (dashed histogram), assuming the field formation channel and the
N2A5-5yr baseline. The dashed blue vertical line marks eth ≈ 6 × 10−4.
Two examples of p(e0) are shown in red: a Gaussian distribution for a case
with measured eccentricity (right-hand side) and a step-function (log-flat)
distribution for an upper limit (left-hand side). The y-axes are in arbitrary
units.

tional limitations) and with an eccentricity smaller than 0.1 when
eLISA observations begin (because of limitations in our waveform
model, that becomes unreliable for high eccentricities). For each
of these events, we compute the error �e0 in the measurement of
the binary eccentricity e0 using the Fisher information matrix, as
described in Nishizawa et al. (2016).4 For any given number 1 ≤
Nobs ≤ 100 of observed BHBs with S/N > 8, depending on the
eLISA configuration and BHB merger rate, we draw 100 random
catalogues of Nobs systems from the 103 simulated detections.

As shown by Nishizawa et al. (2016), eLISA will enable precise
measurements of e0 down to e0 ≈ 10−3, with a mild dependence
on armlength or observation time. Roughly speaking, as shown in
Fig. 2, this means that e0 can be measured above some threshold
eth. To fold in error measurements into each catalogue, we split
the events into two classes: (i) If �e0 < e0, the eccentricity is
measurable, and we assign to the eccentricity a probability distri-
bution p(e0) = 1/

√
2π�e2

0 × exp[−(e0 − ē)2/(2�e2
0)], where the

measured value ē is drawn from a Gaussian distribution centred on
e0 with variance �e0. (ii) If �e0 > e0, we simply assume that we
have an upper limit on e0, which we take to be eth for simplicity. The
probability distribution is then constructed to be flat in log space in
a range of emin < e0 < eth, i.e. p(log e0) = 1/(log eth − log emin). We
caution that these assumptions carry a certain degree of arbitrari-
ness. In case (i), p(e0) extends to negative values when the condition
�e0 � e0 is broken, which is the case when e0 � eth. When this
occurred, we simply ignored the negative part of the distribution.
In case (ii), instead, we have the freedom to pick emin, which we fix
to be 10−7. We verified (for example, by trying different values of
emin) that neither of these choices affects our results. Examples of
eccentricity probability distributions are shown in Fig. 2.

For each setup and each Nobs, this procedure yields 100 catalogues
of observed events, each characterized by the appropriate p(e0). The
100 catalogues are not independent when Nobs > 10, since most of
them will share some events. However, even for the ‘shared’ events,
ē is obtained from a different random draw each time, and therefore
p(e0) is different in different catalogues. We checked that the results
presented in the next section are unaffected when we consider a
smaller number of truly independent catalogues (e.g. 10 catalogues

4 We refer the reader to section V-D of Nishizawa et al. (2016) for a critical
discussion of the appropriateness of the Fisher matrix approximation in this
context.
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with Nobs = 100). We are therefore confident that our results are
robust with respect to statistical fluctuations.

3.1 Statistical analysis

For a given eLISA baseline, our main goal is to consider catalogues
of Nobs observed events from model A (chosen among field, cluster
and MBH) and assess to what confidence (if any) we can say whether
the underlying astrophysical model was in fact A, or an alternative
model B. This is a classic Bayesian model selection problem. To
compare two models A and B, we must compute the odds ratio as
follows:

OAB = ZAP (A)

ZBP (B)
, (6)

whereZX is the evidence of model X and P(X) is the prior belief that
model X is right. In the absence of prior information, we conser-
vatively assume P(A) = P(B) = 0.5. Moreover, for non-parametric
models (i.e. models without free parameters, as those considered
here), the evidence is simply the likelihood P(D|X) of the data,
given the model. The odds ratio then reduces to the likelihood ra-
tio

OAB = P (D|A)

P (D|B)
. (7)

In our case, for each set of Nobs measurements, we have i =
1, . . . , Nobs probability distributions of measured eccentricity pi(e0)
to be compared with the theoretical eccentricity distribution pre-
dicted by a given model, PX(e0). Strictly speaking, Nobs also de-
pends on eccentricity because eccentricity affects the detectability
of the signal. However, we can neglect this dependence because in
the small-eccentricity approximation, the S/N is modified by terms
of order O(e2

0), with corrections that are typically 1 per cent. The
likelihood of the data given the model is therefore given by

P (D|X) =
Nobs∏
i=1

∫
pi(e0)PX(e0)de0. (8)

In this framework, we can also assign to model A a probability pA =
P(D|A)/[P(D|A) + P(D|B)] and to model B the complementary
probability pB = 1 − pA. From equation (7), pA = OAB/(OAB + 1).
It is therefore natural to associate the odds ratio with the ‘confidence’
in a given model. For example, if OAB 	 20, then pA 	 0.95, and
we can say that model A is favoured at 2σ (95 per cent confidence).
Definitive 5σ identification can be associated with OAB ∼ 106.

For each of the 100 catalogues of Nobs detections, generated
for each setup, we compute the likelihood of the observed data
against each model: field, cluster and MBH. If the observations can
discriminate between different models, the odds ratio will favour the
actual model from which the data were drawn. For each comparison,
we then compute the probabilities pA and pB defined above, which
describe our degree of confidence that the data were actually drawn
from either of the models considered in the comparison.

4 R ESULTS

In Fig. 3, we compare the median log(OAB) as a function of Nobs for
each pair of models. The median is computed over 100 Monte Carlo
catalogues for each value of Nobs. The two lower panels show that,
regardless of the detector baseline, model MBH can be confidently
separated – with log (O) = 6, i.e. at approximately 5σ – from any
other model after a handful of observations. This is because the
eccentricity distribution for model MBH is biased towards high

Figure 3. Median odds ratio as a function of Nobs for different model pairs
and different detector baselines, as labelled in the figure. In each comparison,
thick orange curves represent OAB when A is the true model, whereas thin
green curves represent OBA when B is the true model.

values (see Fig. 1), at variance with other models. Note also that it
is easier to reject model MBH when it is false (orange curves) than to
confirm it when it is true (green curves). This is because models field
and cluster allow for low eccentricities that are not supported by
model MBH (Fig. 1). As soon as a BHB has a measured eccentricity
e0 < 0.01, model MBH is automatically rejected. The converse is
not true: The eccentricity range of model MBH is also supported
by the other models. Therefore, when BHB formation is indeed
described by model MBH, there is always a chance that highly
eccentric BHBs were drawn from other models, and a few more
detections are required to reject them. Models field and cluster, on
the other hand, predict similar eccentricity distributions. Depending
on which one was the true model and on the eLISA baseline, a
number of detections between 30 and 95 are needed to achieve the
log (O) = 6 threshold.

Since all detector baselines yield similar results, we take a closer
look at the N2A2-5y case, a plausible ‘minimum’ eLISA baseline
target. In Fig. 4, we show odds ratios for this specific configuration,
including the 90 per cent confidence interval computed from the
100 catalogues constructed for each Nobs. The log(O) = 6 threshold
is always achieved with less than 10 observed BHBs when the MBH
model is involved in the comparison, whereas up to 100 BHBs may
be needed to discriminate between the field and cluster models,
depending on the specific ensemble of observed BHBs.

When comparing two models A and B for a given eLISA baseline,
we can use the 100 catalogues at a fixed Nobs to construct cumulative
distributions functions (CDFs) of pA and pB (Sesana et al. 2011).
Suppose that, in a comparison between models A and B, A is the
right model, and we draw 100 realizations of Nobs observations
from model A. We can compute the associated CDF of pA and plot
it against the confidence (0 < p < 1). The result for different values
of Nobs is shown in the upper curves of each panel of Fig. 5. We can
also draw 100 realizations of Nobs observations from B and compute
the CDF of pA when A is not true. The result are the lower curves
in each panel of Fig. 5.

Set, for example, p = 0.95 (approximately 2σ ). The value of
the upper curve at p is the fraction of realizations for which we
have more than 2σ confidence that model A is correct when it is, in
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Figure 4. Median and 90 per cent confidence interval of the odds ratio as a
function of Nobs for baseline N2A2-5y. For each value of Nobs, we consider
100 Monte Carlo realizations. In each comparison panel, orange curves and
shaded areas represent OAB when A is the true model, whereas green curves
represent OBA when B is the true model.

Figure 5. CDF of the confidence in a given model over 100 Monte Carlo
realizations of the observed BHB sample for different BHB observations
Nobs (as labelled in each panel) assuming the N2A2-5y eLISA baseline. The
top curve in each pair marks the CDF of confidence in model A when model
A is true, whereas the bottom curve marks the CDF of confidence in model
A when model B is true.

fact, true. The value of the lower curve at 1 − p is the fraction of
realization for which we cannot rule out model A at 2σ confidence
when it is the wrong model (i.e. observations are generated by
model B). Fig. 5 presents a similar analysis for all pairs of models
assuming the N2A2-5y baseline. About 30 BHB observations are
required for a 2σ -confidence identification of model field against
model cluster in about 90 per cent of the realizations. The same
level of confidence requires only four and two BHBs when model
MBH is compared with models cluster and field, respectively.

Table 1. Expected number of sources (column 2) for each eLISA baseline
(column 1), compared with the number of observations needed to distin-
guish between models field and cluster at a given confidence threshold in
50 per cent (N50) and 90 per cent (N90) of the cases (columns 3–6).

3σ 5σ

eLISA base Nobs N50 N90 N50 N90

N2A2-2y 10–80 35 >100 95 >100
N2A5-2y 80–600 34 95 80 >100
N2A2-5y 50–300 25 60 61 100
N2A5-5y 300–2500 25 62 60 100

5 D I S C U S S I O N A N D O U T L O O K

For the log-flat distribution assumed here, the Advanced LIGO ob-
servations imply a 90 per cent credible interval for the merger rate
of R = [10, 70] yr−1 Gpc−3 (Abbott et al. 2016b). The resulting
range in Nobs is reported in Table 1 for the different baselines, and it
should be compared with the number of events needed to discrim-
inate among different models at a desired confidence threshold.
Model MBH can be identified by all the configurations with just
a few BHB observations; therefore, it is not reported in the ta-
ble. Discriminating between the cluster and field scenarios requires
tens of events, and only the baseline N2A5-5y can guarantee a 5σ

confidence with 90 per cent probability. Baselines N2A2-5y and
N2A5-2y can distinguish among these models at the 3σ level, but
this may not be possible should the event rate lean towards the
lower limit of the allowed range. The N2A2-2y baseline performs
relatively poorly, and it may not deliver enough detections to pin
down the formation mechanism.

These results highlight the importance of aiming for a 5-yr mis-
sion with the longest possible armlength. However, we should bear
in mind some limitations of our proof-of-principle analysis. First
of all, we selected three representative models from the literature:
This does not fully capture all of the relevant physics affecting
the eccentricity distribution of BHBs. For example, several vari-
ations of the ‘fiducial’ model of Kowalska et al. (2011) result in
slightly different eccentricity distributions. Our analysis can be ap-
plied systematically to any such variation, assessing to what ex-
tent the underlying physics can be constrained. Secondly, we as-
sumed the eccentricity distribution to be independent of masses
and redshifts. In practice, different formation channels will result
in different mass–eccentricity (and possibly redshift–eccentricity,
or spin–eccentricity) correlations, which can be exploited in a mul-
tidimensional analysis to enhance the discriminating power of the
observations. Finally, it is very likely that several different forma-
tion channels operate at the same time in the Universe. In the context
of massive BHB observations, Sesana et al. (2011) studied whether
eLISA could identify a superposition of distinct formation channels
from the statistical properties of the observed population. A similar
analysis in the present context is an interesting topic for future work.
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