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ABSTRACT 16 

Chianti is a precious red wine and enjoys a high reputation for its high quality in the world wine 17 

market. Despite this, the production region is small and product needs efficient tools to protect its 18 

brands and prevent adulterations. In this sense, ICP-MS combined with chemometrics has 19 

demonstrated its usefulness in food authentication. In this study, Chianti/Chianti Classico, authentic 20 

wines from vineyard of Toscana region (Italy), together samples from 18 different geographical 21 

regions, were analyzed for major and trace elements with the objective of differentiate them from 22 

other Italian wines. Partial Least Squares-Discriminant Analysis (PLS-DA) identified variables to 23 

discriminate wine geographical origin. REE, major and trace elements all contributed to the 24 

discrimination of Chianti samples. General model was not suited to distinguish PDO red wines from 25 

samples, with similar chemical fingerprints, collected in some regions. Specific classification 26 
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models enhanced the capability of discrimination, emphasizing the discriminant role of some 27 

elements. 28 

 29 

1. INTRODUCTION 30 

The quality and the reliability of the origin of food products has become a field of increasing 31 

importance in Europe. Since 1992 the European Union created systems known as PDO (Protected 32 

Designation of Origin) but with Council Regulation (EC) No 479/2008 brought the prerogative for 33 

the approval of the PDO at Community level, while before the Ministerial Decree was the means to 34 

proceed in the individual countries of the European Union. PDO covers agricultural products that 35 

are produced, processed and prepared in a given geographical area using recognized know-how. 36 

Products, registered under this scheme, could be protected against frauds, including adulteration, 37 

false declaration of age, and geographical origin (Medina, 1996, Ortega, Gonzalez-San Jose, & 38 

Beltrán, 1999). Typical foodstuffs with recognized PDO are cheeses, meats, oils, honey, beers and 39 

wines. 40 

The EU is a leading producer of wine, as it accounts for 45% of wine-growing areas, 65% of 41 

production, 57% of global consumption and 70% of exports in global terms (Regulation, 1992). In 42 

2016, the total Italian wine production was 16% higher than the historical average, while PDO wine 43 

production increased by 21% compared to the historical average. The total volume of wine, linked 44 

to its geographical origin, was represented by 56% of white wine and 44% of red wine (ISTAT, 45 

2016/17). 46 

Wine is often an adulterated product for its complex production chain and for its commercial value 47 

(Di Paola-Naranjo et al., 2011). The identification of the geographical origin of wines is of great 48 

interest for wine consumers and producers and it is of fundamental relevance providing criteria for 49 

tracing the production chain by chemical markers (Aceto et al., 2013). 50 

Chianti area is a valley in central-western Italy between Florence and Siena. It is mostly known for 51 

the production of high-quality red wines, which are distinguished with a PDO label at European 52 
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level (Regulation (EU) No 1308/2013) and CGDO at national level (DPR 02.07.1984). Nowadays, 53 

the production of Chianti and Chianti Classico wines is estimated in 835,000 hl/year and 286,400 54 

hl/year in 2017 respectively, with a real value of these productions of €87 million for Chianti and 55 

€67 million for Chianti Classico in 2016/2017 (ISTAT, 2017).  56 

It has been observed that the elemental composition of wines depends on several factors, including 57 

soil characteristics, type of grape, area of production and environmental conditions, allowing the 58 

definition of a representative ‘‘fingerprint” which is especially important for quality wines 59 

produced in specific regions (Gonzálvez, Llorens, Cervera, Armenta, & De la Guardia, 2009). 60 

The application of relationship between elements present in the wine and soil composition based on 61 

multi-element data, with varying degrees of success has been previously studied in different wine-62 

producing regions or countries like Argentina (Di Paola-Naranjo et al., 2011), South Africa (P P 63 

Coetzee, Van Jaarsveld, & Vanhaecke, 2014; Paul P Coetzee et al., 2005; Van der Linde, Fischer, & 64 

Coetzee, 2010), Canada (Greenough, Mallory-Greenough, & Fryer, 2005; Taylor, Longerich, & 65 

Greenough, 2003), New Zealand (Angus, O’keeffe, Stuart, & Miskelly, 2006), Slovenia (Šelih, 66 

Šala, & Drgan, 2014), Romania (Geana et al., 2013), Czech Republic (Kment et al., 2005), 67 

Germany (Thiel, Geisler, Blechschmidt, & Danzer, 2004), Switzerland (Gremaud, Quaile, Piantini, 68 

Pfammatter, & Corvi, 2004), Portugal (Almeida & Vasconcelos, 2003), Spain (Barbaste, Medina, 69 

Sarabia, Ortiz, & Pérez-Trujillo, 2002; Gonzálvez et al., 2009; Iglesias, Besalú, & Anticó, 2007) 70 

and Italy (Aceto et al., 2013; Galgano, Favati, Caruso, Scarpa, & Palma, 2008; Marengo & Aceto, 71 

2003). 72 

The aim of the present study is to investigate the REEs, major, trace and ultratrace element content 73 

to characterise samples of Chianti/Chianti Classico authentic red wine from vineyards of Toscana 74 

region (Italy) and differentiate them from wines of other Italian regions of production. ICP-MS is a 75 

suitable technique for accurate and fast determination of major and trace elements in the same 76 

sample. In order to measure REEs and ultra-trace elements we used a desolvating nebulizer coupled 77 

with ICP-MS (Spalla et al., 2009; Bentlin et al., 2012; Aceto et al. 2013) to improve the sensitivity 78 
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and reduce the intensity ratios of REE oxide/REE.  79 

We further statistically analysed the chemical element composition of wine samples to design the 80 

best model able to recognize the classes to which each sample belonged, including samples of 81 

Chianti/Chianti Classico micro-vinified, that expressed the most natural, unaltered characteristics of 82 

a single vineyard block.  83 

In particular, analytical fingerprints based on the concentrations of some major, trace, ultratrace 84 

elements and REEs were used to calibrate multivariate classification models able to distinguish 85 

Chianti from non-Chianti samples. The capability of classification models to correctly indicate the 86 

origin of production was evaluated by means of validation protocols. The relevance of each element 87 

for the characterisation of Chianti samples was investigated and, finally, further studies were 88 

conducted in order to analyse which Italian regions show major overlaps in the chemical 89 

fingerprints of wine samples with respect to Chianti. 90 

 91 

2. MATERIALS AND METHODS 92 

 93 

2.1. Wine samples 94 

The wine samples were obtained by microvinification of grapes harvested directly in the vineyard. 95 

The sampling team collected grape samples from different regions of Italy, which were selected 96 

among those that are well-suited to red wine production (Table S1). The sampling campaign was 97 

carried out in 2013 (246 collected grapes) and 2014 (393 collected grapes). From all 639 red wine 98 

samples, 122 were Sangiovese, 95 Merlot, 68 Montepulciano, 42 Cabernet Sauvignon, 33 Barbera, 99 

32 Aglianico, 28 Syrah, 21 Nebbiolo, 20 Nero d’Avola, 17 Petit Verdot, 15 Cannonau, 13 Croatina, 100 

10 Bovale Sardo and 123 of 34 other varieties. 101 

 102 

2.2. Major and trace element determinations 103 

The analytical measurements of major and trace elements investigated (As, Ba, Co, Fe, Li, Mg, Mn, 104 
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Na, Ni, Rb, Sr, Ti, Tl and V) were carried out using an ICP-MS instrument (7700x model; Agilent 105 

Technologies, Santa Clara, CA, USA). The analysis of wine can be performed directly after 1:20 106 

dilution with nitric acid at 2% (obtained by dilution of HNO3 67% suprapure, Merck -Darmstadt, 107 

Germany- with Milli-Q Water - electrical resistivity >18MΩ cm). Standard solutions were prepared 108 

from 1000 mg L-1 ICP-MS stock solutions (ICPMS calibration standard, ULTRA Scientific, North 109 

Kingstown, Rhode Island). The operating conditions of the ICP-MS are listed in Table S2. 110 

 111 

2.3. REE and ultratrace element determinations 112 

Wine samples (10 mL) were digested with 6 mL of HNO3 67% (suprapure, Merck) and 4 mL of 113 

H2O2 30% (Merck) in a heating block system (DIGIPREP, SCP Science, Champlain, NY, USA) in 114 

polypropylene tubes (digiTUBES, SCP Science) at 130°C for 3 hours. The digested solutions were 115 

diluted to 50 mL with Milli-Q Water and filtered by using 0.45 μm filter (digiFILTER, SCP 116 

Science) before the determination of Ce, Dy, Er, Eu, Gd, Ho, La, Lu, Nd, Pr, Re, Sm, Ta, Tb, Tm, 117 

V, Y, and Yb by ICP-MS. The ICP-MS instrument was equipped with a nebulization/desolvation 118 

sample introduction system (Apex; Elemental Scientific, Omaha, NE, USA). The solution is sucked 119 

inside a concentric nebulizer micro-PFA and is completely vaporized within a spray chamber 120 

maintained at 140 °C. The aerosol passes through a condenser Peltier cooled to a temperature of 2 121 

°C and is desolvated by the heated macro-porous Teflon Membrane Desolvation (Spiro TMD, 122 

Elemental Scientific) that further reduces the amount of the solvent. In this way the sensitivity 123 

increases of at least ten times and the oxides are reduced to 0.1% (CeO+/Ce). Standard solutions 124 

were prepared from a 10 mg L-1 REE multi-element ICPMS stock solution (ICP-MS calibration 125 

standard, CPI International). The operating conditions for the instrument are listed in Table S3. 126 

 127 

2.4. Statistical analysis 128 

Experimental data were organized in a numerical matrix with 639 rows (wine samples) and 31 129 

columns (element determinations), where each xij element of the matrix represents the concentration 130 
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of the j-th element in the i-th wine sample. In order to reduce the variability scale of concentrations, 131 

the data matrix was log-scaled before the multivariate statistical analysis.  132 

The dataset was preliminarily investigated by means of K-Contractive Maps (K-CM) method 133 

(Buscema, 2014) to analyze data patterns and evaluate the relationships among the different regions 134 

of wine production. K-CM is a machine learning method that combines an artificial neural network 135 

(ANN) for the non-linear optimization of the variable relationships and a fuzzy profiling of the 136 

samples. In particular, K-CM exploits the non-linear variable relationships provided by the Auto-137 

CM neural network (Buscema, 2008) to obtain a fuzzy profiling of the samples and then applies 138 

local similarity analysis to evaluate significant patterns in the data. K-CM is capable of supporting 139 

its decisions by using a weighted semantic map of samples and a variable semantic graph, which 140 

shows the relationships among all the variables of the training samples. 141 

Supervised classification was successively applied in order to distinguish Chianti vs. non-Chianti 142 

samples by means of predictive multivariate models. Classification methods aim to develop 143 

mathematical models to recognize the membership of each sample to its proper class on the basis of 144 

a selected set of variables (i.e., chemical element concentrations). The classification model can be 145 

then utilized to predict the membership of unknown samples to the Chianti or non-Chianti class.  146 

In this work, we used Partial Least Squares - Discriminant Analysis (PLS-DA), which is a linear 147 

classification method that combines the properties of Partial Least Squares (PLS) regression with 148 

the discrimination power of a classification technique. The underlying PLS regression algorithm 149 

identifies latent variables with a maximum covariance with the classes (Höskuldsson, 1988). When 150 

dealing with PLS-DA, the class vector is transformed into a dummy matrix Y, which represents the 151 

membership of each sample in a binary form. The PLS2 model is then calibrated on the Y matrix 152 

(Barker, 2003) and then the probability that a sample belongs to a specific class can be calculated 153 

on the basis of the estimated class values (Pérez, 2009). Thus, each modelled class can be described 154 

by a classification function reporting the coefficients that determine the linear combination of the 155 

original variables to define the classification score. Before the PLS-DA calculation, data were 156 
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autoscaled. 157 

Classification models were validated through a strict protocol based on random data splitting. This 158 

ensured a reliable assessment of the predictive performance, that is, the capability to correctly 159 

predict unknown sample as Chianti or non-Chianti. Samples were randomly assigned to a training 160 

or a test set, which included 479 and 160 samples, respectively (i.e., 75% and 25% splitting). The 161 

so-called stratified splitting was performed, by maintaining the class proportion of the whole set in 162 

the training and test sets. The training set thus included 94 Chianti and 385 non-Chianti samples, 163 

while the test set 31 and 129 Chianti and non-Chianti samples, respectively. The 479 training 164 

samples were used to calibrate the classification models. To this end, an internal cross-validation 165 

procedure with 5 cancellation groups was used to estimate the optimal number of PLS-DA latent 166 

variables. Test samples were used to evaluate the predictive ability of the trained models only.  167 

The performance of the classification models was encoded within the so-called confusion matrix, 168 

that is, a square matrix having as many rows and columns as the number of classes. To each 169 

column/row there corresponds one class, and rows and columns represent experimental and 170 

predicted classes, respectively. Each entry cgk of this matrix is the number of samples belonging to 171 

g-th class and predicted as the k-th class. From the confusion matrix, sensitivity (Sn) and specificity 172 

(Sp) can be calculated: these accuracy metrics are used to evaluate the model ability to correctly 173 

predict Chianti and non-Chianti samples, respectively, and were calculated as follows (Ballabio, 174 

2018):  175 

TPSn
TP FN

 
�

 176 

TNSp
FP TN

 
�

 177 

where TP and FN indicate the number of Chianti samples correctly predicted (True Positive) and 178 

the number of Chianti samples classified as non-Chianti (False Negative), respectively; TN and FP 179 

represent the number of non-Chianti samples correctly classified (True Negative) and the number of 180 

non-Chianti samples predicted as Chianti (False Positive), respectively. Finally, the Non-Error Rate 181 
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(NER) was calculated as the arithmetic mean of specificity and sensitivity. 182 

 183 

2.5. Software 184 

Exploratory analysis by K-CM method was carried out by a dedicated software released by 185 

SEMEION (Buscema, 1999). Classification models were calculated with the Classification Toolbox 186 

for MATLAB (Ballabio, 2013). 187 

 188 

3. RESULTS AND DISCUSSION 189 

3.1. ICP-MS analysis 190 

The calibration, quality control of the multi-element determinations by ICP-MS system were 191 

performed in agreement with the USEPA 6020B (2014) and UNI EN ISO 17294-2 (2005). The 192 

method performance with respect to precision was aligned with Horwitz and Albert model (2006). 193 

The Method Detection Limits (MDL) and results of the selected elements in wines in 2013 and 194 

2014 are reported in Table S4. 195 

 196 

3.2. Regional compositional patterns 197 

The K-CM analysis was carried out on the data matrix (639 x 31) by using the 18 geographical 198 

provenance regions as the targets. Prior to the K-CM analysis, all the variables were range scaled on 199 

the minimum and maximum values so that each scaled variable was allowed to vary in the range 0–200 

1. In addition, the class variable was unfolded into a binary vector of dimension 18 (i.e., the number 201 

of considered geographical regions), where 1 indicates the class membership.  202 

In the first stage of the procedure, the Auto-CM neural network was run with the following 203 

parameter settings: contraction parameter C 31 5.568   p  and learning rate constant 204 

31 1 1.565 10
639

�D    u
n

, where p is the number of variables and n the number of samples 205 

characterising the dataset. During the learning phase, the 31 mono-dedicated connections between 206 
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the input and hidden layer were updated at the end of each epoch on the basis of the difference 207 

between the values of the corresponding input and hidden nodes and further modulated for the input 208 

node itself. All the variable weights converged to the same value (i.e., the contraction parameter C) 209 

after 600 epochs. After convergence, all the linear and non-linear relationships between variables 210 

were encoded into the connection weight matrix, which is the final output of Auto-CM. In the 211 

second phase of K-CM procedure, the connection weight matrix, which encodes the full set of 212 

relationships among the input variables, was used to transform the original dataset into a new fuzzy 213 

dataset, more informative than the previous one. In the final step, the class memberships of the wine 214 

samples were determined according to the same principle as the k-nearest neighbor (kNN) classifier 215 

(Kowalski, 1972). 216 

A graphical visualization of the wine samples and their distribution in the 18 considered Italian 217 

regions is achieved by the semantic map of Figure 1, which is based on a Minimum Spanning Tree 218 

(MST) calculated on the meta-distances between samples. The meta-distance is a measure of 219 

dissimilarity between two samples, which takes into account the distances they have from all the 220 

training samples. The MST is often used as a filter on the distance matrix to highlight the most 221 

significant relationships between samples through the concepts of the graph theory (Kruskal, 1956). 222 

The MST is what we might call the nervous system of any dataset; it is an undirected graph with 223 

many vertices as the samples being evaluated, completely linked each other and colored according 224 

to the class membership. 225 

From the semantic map, it is apparent how the majority of wine samples taken from the same region 226 

tend to cluster forming well-defined branches of the tree. In particular, samples from Sardinia 227 

(white), Basilicata (light green), Sicily (turquoise), Apulia (bright green) and Piedmont (yellow) are 228 

well-separated meaning that the wine samples from these Italian regions have quite characteristic 229 

elemental composition. Chianti samples (black) are mainly concentrated in the terminal upper part 230 

of the tree, but they are distributed into different branches along with several samples from other 231 

regions. In addition, this map clearly shows some anomalous Chianti samples that are spread 232 
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overall the tree. Since the aim of this work was the discrimination of Chianti wines (to protect the 233 

DPO label), supervised classification models were then specifically calibrated in order to better 234 

distinguish Chianti from samples of all other regions. 235 

 236 

3.3. Multivariate classification models 237 

PLS-DA classification models were calibrated on the 479 training samples with the aim of 238 

discriminating between Chianti and non-Chianti wine samples on the basis of their chemical 239 

profiles related to the concentrations of 31 chemical elements (major, trace and ultratrace elements). 240 

The optimal number of latent variables was selected by an internal cross-validation procedure. The 241 

model predictivity was assessed on the 160 test samples that were not used in the model calibration 242 

process. Classification results are summarised in Tables 3 and 4.  243 

The obtained PLS-DA model demonstrated a satisfactory capability to discriminate Chianti and 244 

non-Chianti samples. In fact, when evaluating results achieved on the training set, 75 Chianti 245 

samples out of 94 were correctly classified, leading to sensitivity equal to 0.80. Predictions 246 

achieved on test samples confirmed this discrimination ability. In fact, 22 out of 31 Chianti test 247 

samples were correctly classified (sensitivity equal to 0.71). Similar performance was obaserved for 248 

non-Chianti samples: 304 (out of 385) training samples and 102 (out of 129) test samples were 249 

correctly predicted as non-Chianti, thus leading to specificity values equal to 0.79 in both cases. 250 

NER values equal to 0.79 and 0.75 for training and test sets (Table 4), respectively, indicate a 251 

similar model performance in fitting and prediction, as well as the absence of overfitting.  252 

The discriminant power of each chemical element in the PLS-DA model was investigated by the 253 

coefficients related to the Chianti class (Figure 2). Such coefficients are used to linearly combine 254 

the chemical concentrations to calculate the classification score for the Chianti class. The higher the 255 

score, the higher the probability to predict a sample as belonging to the Chianti class. Positive large 256 

coefficients are thus associated with those chemical elements that contribute more to determine the 257 

Chianti membership, while the opposite happens for elements with highly negative coefficients. 258 



 11 

Close-to-zero coefficients are related to elements with no relevant contribution in the discrimination 259 

of Chianti wine samples. REEs, major, trace and ultratrace elements all contribute to the 260 

discrimination of Chianti samples. Major and trace elements are mainly associated to large positive 261 

or negative coefficients and thus appear to have a higher influence in the identification of Chianti 262 

samples; in particular, Mg, Ti, and Co have large positive coefficients, while V, Li, As negative 263 

ones. The contribution of REEs and ultratrace elements is not completely irrelevant, despite 264 

associated to lower weights. In particular, Tb, Gd, Dy and Re have positive contribution to 265 

determine the Chianti fingerprint, while Ta, Lu, Yb and Tm have negative coefficients.  266 

Since non-Chianti wines were sampled over different Italian regions (Table S1) and some overlap 267 

among regions arose from the exploratory analysis (Figure 1), further investigation was carried out 268 

to evaluate which regions have higher or significant overlaps with respect to Chianti, that is, which 269 

regions provide wines with chemical fingerprints similar to that of Chianti samples. Such regional 270 

analysis was enhanced by taking into considerations prediction errors on non-Chianti training and 271 

test samples. In particular, 81 training and 27 test non-Chianti samples were incorrectly classified 272 

by the PLS-DA model, they being assigned to the Chianti class (Table 1 and Table 2, respectively). 273 

These misclassifications can be further detailed in terms of the region of origin (Table S5, where the 274 

total number of samples, the number of misclassified samples and the percentage of 275 

misclassifications (number of misclassified samples over the total number of samples) are reported 276 

for each region in both training and test sets. Most of the regions (i.e. Abruzzo, Sardinia, Apulia and 277 

Piedmont) with a large number of samples are characterised by a small degree of overlap with 278 

respect to Chianti. Only 6 training (out of 47, 13%) and 1 test (out of 10, 10%) samples from 279 

Abruzzo were incorrectly classified as Chianti; similar results were achieved for Sardinia, Apulia 280 

and Piedmont. On the other hand, Sicily (29% and 31% errors on the training and the test set, 281 

respectively), Marches (30% and 50% on the training and test sets, respectively) and Umbria (41% 282 

errors on the training set), were characterised by a remarkably higher percentage of errors. This 283 

indicates that the calibrated PLS-DA model is not particularly suited to distinguish Chianti wines 284 
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from samples from such regions.  285 

 286 

3.4. Specific classification models to distinguish critical regions 287 

The unsatisfactory performance of the PLS-DA model on some regions can be due to the calibration 288 

of a “general” model, which makes it hard to find a unique linear combination of variables that 289 

grasp all the regional differences between wines. On this basis, specific classification models were 290 

calibrated to discriminate Chianti samples from the regions characterized by critical error 291 

percentages. Sicily, Marches and Umbria were, thus, considered, as they not only are characterised 292 

by high percentages of errors (29%, 30% and 41%, respectively) but also by a high number of 293 

samples. Other regions demonstrated a significant overlap with Chianti (such as Emilia Romagna, 294 

Friuli-Venezia Giulia, Trentino-South Tyrol), but, due to their low number of samples, they were 295 

not taken into account.  296 

Three region-based distinct models were calibrated, as follows: 297 

1. Sicily vs. Chianti wine samples. The model was calibrated on 149 samples (94 from Chianti and 298 

55 from Sicily) and validated on 44 samples (31 from Chianti and 13 from Sicily);  299 

2. Marches vs. Chianti wine samples, with 140 training samples (94 from Chianti and 46 from 300 

Marches) and 43 test samples (31 from Chianti and 12 from Marches); 301 

3. Umbria vs. Chianti wine samples, with 128 training samples (94 from Chianti and 34 from 302 

Abruzzo) and 38 test samples (31 from Chianti and 7 from Abruzzo).  303 

The classification performance achieved on training and test samples for each regional model is 304 

reported in Table 2. It is remarkable how the capability of discrimination of critical regions was 305 

enhanced when modelled against Chianti one at a time. For example, the samples from Sicily are 306 

well-distinguished from Chianti ones by the regional model: 93% and 85% of Sicily samples are 307 

correctly predicted in the training and test set, respectively (Table 2), while around 30% of Sicilian 308 

wine samples were misclassified in the general model (Table 1). Similar results, even if with a 309 

lower performance on test samples, were achieved for Chianti vs. Marche and vs. Umbria samples, 310 
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with NER values larger than or equal to 0.72 for both training and test sets (Table 2). 311 

The discriminating role of each chemical element was again assessed by looking at the 312 

classification coefficients of the PLS-DA models (Table S5). Compared to the general classification 313 

model, the discriminating capability of some elements for specific regions emerged. For example, 314 

Ni was previously associated to a close-to-zero coefficient (Figure 2). However, when looking at 315 

the discrimination between Chianti and non-Chianti samples from Sicily, Ni plays a role in 316 

characterising Chianti wines. Similar conclusions can be extended to Na and Rb when 317 

characterising Marches´s wines against Chianti. Finally, Sr emerged as a relevant chemical marker 318 

when separating Chianti from Sicily, Marches and Umbria, while again it was associated a small 319 

weight in the global classification model (Figure 2).  320 

 321 

4. CONCLUSIONS 322 

In this work, the combination of ICP-MS with chemometrics has demonstrated to be useful for 323 

distinguish Chianti red wines from samples of other Italian region. 31 chemical elements (major, 324 

trace and ultratrace elements), measured with direct dilution and acid digestion, represented the 325 

chemical profile of each wine samples and the calibration of PLS-DA models. This general model 326 

demonstrated a satisfactory capability to discriminate Chianti and non-Chianti samples.  Accuracy 327 

metrics, like sensitivity and specificity, improved with specific regional PLS-DA model. These 328 

specific models introduced elements with high discriminant potentiality between Chianti and other 329 

regions, compared with general model, like Sr. 330 
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TABLES 

Table 1. Classification errors for non-Chianti training and test samples. For each region, the total 

number of samples, the number of misclassified samples and the percentage of errors are reported 

for both training and test sets. Regions are sorted according to the number of samples they contain, 

in descending order.  

Table 2. Indices of classification performance obtained on training and test sets for the specific 

regional PLS-DA models discriminating Chianti and critical regions (Sicily, Marches, Umbria); Sn 

indicates Chianti sensitivity, Sp indicates Chianti specificity, NER is the average of Sn and Sp. 

Table 3. Confusion matrices obtained on 479 training samples and 160 test samples by means of 

PLS-DA classification model. 

Table 4. Classification performance on training and test sets: sensitivity (Sn), specificity (Sp) and 

Non-Error Rate (NER) on Chianti class are reported. 
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Table 1. Classification errors for non-Chianti training and test samples. For each region, the total 

number of samples, the number of misclassified samples and the percentage of errors are reported 

for both training and test sets. Regions are sorted according to the number of samples they contain, 

in descending order.  

 
    Training     Test   

Region 
No. 

samples 
No. 

misclassified 
% 

errors 
No.  

samples 
No. 

misclassified 
% 

errors 
Sicily 55 16 29% 13 4 31% 
Abruzzo 47 6 13% 10 1 10% 
Marches 46 14 30% 12 6 50% 
Sardinia 42 1 2% 10 0 0% 
Umbria 34 14 41% 7 0 0% 
Piedmont 31 5 16% 12 1 8% 
Apulia 28 1 4% 12 0 0% 
Emilia Romagna 14 5 36% 8 4 50% 
Basilicata 13 0 0% 5 1 20% 
Lombardy 13 4 31% 4 0 0% 
Friuli-Venezia Giulia 12 5 42% 5 2 40% 
Lazio 10 1 10% 9 0 0% 
Veneto 10 1 10% 5 4 80% 
Calabria 9 1 11% 3 0 0% 
Campania 8 2 25% 7 1 14% 
toscana 8 2 25% 2 1 50% 
Trentino-South Tyrol 5 3 60% 5 2 40% 

 

 

 

  



Table 2. Indices of classification performance obtained on training and test sets for the specific 

regional PLS-DA models discriminating Chianti and critical regions (Sicily, Marches, Umbria); Sn 

indicates Chianti sensitivity, Sp indicates Chianti specificity, NER is the average of Sn and Sp. 

 

Set 
Sicily Marches Umbria 

NER Sn Sp NER Sn Sp NER Sn Sp 

Training 0.92 0.90 0.93 0.87 0.87 0.87 0.83 0.80 0.85 

Test 0.89 0.94 0.85 0.72 0.77 0.67 0.74 0.77 0.71 

 
 
 
Table 3. Confusion matrices obtained on 479 training samples and 160 test samples by means of 

PLS-DA classification model. 

 

 
Training Test 

 
Chianti non-Chianti Chianti non-Chianti 

Chianti 75 19 22 9 

non-Chianti 81 304 27 102 

 
  
 

 

 

 

Table 4. Classification performance on training and test sets: sensitivity (Sn), specificity (Sp) and 

Non-Error Rate (NER) on Chianti class are reported. 

 
  NER Sn Sp 

training set 0.79 0.80 0.79 

test set 0.75 0.71 0.79 

 

 



FIGURES 

 

Figure 1. Semantic map of the wine dataset obtained as a Minimum Spanning Tree. The tree nodes 

represent the wine samples, colored according to the provenance regions. 

Figure 2. PLS-DA coefficients for the Chianti class associated to the 31 REEs, major, trace and 

ultratrace elements. 
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Figure 1. Semantic map of the wine dataset obtained as a Minimum Spanning Tree. The tree nodes 

represent the wine samples, colored according to the provenance regions. 

 



 

Figure 2. PLS-DA coefficients for the Chianti class associated to the 31 REEs, major, trace and 

ultratrace elements. 
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