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Abstract Consider a balance law where the flux may depend explicitly on the space
variable. At jump discontinuities, modeling considerations may impose the defect
in the conservation of some quantities, thus leading to non conservative products.
Below, we deduce the evolution in the smooth case from the jump conditions at dis-
continuities. Moreover, the resulting framework enjoys well posedness and solutions
are uniquely characterized. These results apply, for instance, to the flow of water in
a canal with varying width and depth, as well as to the inviscid Euler equations in
pipes with varying geometry.

1 Motivation

When a gas flows through a straight pipe, its dynamics can be described by the 2× 2
system of isentropic gas dynamics, left system in (1), or, taking into account the heat
flow, by the full Euler 3 × 3 system of conservation laws, right system in (1). In (1),
𝜌 is the density of the fluid, 𝑣 is the velocity, 𝑒 is the energy density (per unit mass)
and 𝑝 is the pressure.
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𝑥

Z (𝑥 )

Fig. 1 Pipe with cross section Z that changes smoothly with respect to the spatial variable 𝑥

{
𝜕𝑡 𝜌 + 𝜕𝑥 (𝜌𝑣) = 0,
𝜕𝑡 (𝜌𝑣) + 𝜕𝑥

(
𝑝 + 𝜌𝑣2) = 0,


𝜕𝑡 𝜌 + 𝜕𝑥 (𝜌𝑣) = 0,
𝜕𝑡 (𝜌𝑣) + 𝜕𝑥

[
𝑝 + 𝜌𝑣2] = 0,

𝜕𝑡
[ 1

2 𝜌𝑣
2 + 𝜌𝑒

]
+ 𝜕𝑥

[
𝑣

(
𝜌𝑒 + 𝑝 + 1

2 𝜌𝑣
2
)]

= 0 .
(1)

Both systems fit into the framework of 𝑛×𝑛 one dimensional systems of conservation
laws

𝜕𝑡𝑢 + 𝜕𝑥 𝑓 (𝑢) = 0, 𝑢 (𝑡, 𝑥) ∈ R𝑛, 𝑡 ≥ 0, 𝑥 ∈ R ,

where 𝑢 is the unknown vector of densities of conserved quantities and it depends on
the two scalar independent variables (𝑡, 𝑥), which represent respectively time and the
one dimensional spatial variable. If the cross section Z of the pipe changes smoothly
with respect to the spatial variable, see Figure 1, then the physical system can be
modeled introducing a non zero source term in the right hand side of the equations.
The source term depends on the cross section Z and on its derivative Z ′. The 2 × 2
system of one dimensional isentropic gas dynamics with varying cross section is
given by: {

𝜕𝑡 𝜌 + 𝜕𝑥 (𝜌𝑣) = − Z ′

Z
𝜌𝑣,

𝜕𝑡 (𝜌𝑣) + 𝜕𝑥
(
𝑝 + 𝜌𝑣2) = − Z ′

Z
𝜌𝑣2 .

(2)

This system is included in the general form for 𝑛 × 𝑛 systems of balance laws

𝜕𝑡𝑢 + 𝜕𝑥 𝑓 (𝑢) = 𝑔 (Z (𝑥), 𝑢) , 𝑢 (𝑡, 𝑥) ∈ R𝑛, 𝑡 ≥ 0, 𝑥 ∈ R ,

which have been extensively studied, see for instance [1, 2, 5, 13, 20, 21].
Remark that (2) admits also the following form, where we introduce the linear

mass density Z 𝜌 and the linear momentum density Z 𝜌𝑣:{
𝜕𝑡 (Z 𝜌) + 𝜕𝑥 (Z 𝜌𝑣) = 0,
𝜕𝑡 (Z 𝜌𝑣) + 𝜕𝑥

(
Z 𝑝 + Z 𝜌𝑣2) = Z ′𝑝 .

The mass is (obviously) conserved but the linear momentum is not. This lack of
conservation is due to the pressure of the fluid against the non straight pipe walls.
Therefore, the product in the source term is non conservative and needs to be
appropriately defined, see [14], as soon as Z ′ is a measure and 𝑝 is discontinuous.

If there is a discontinuity in the geometry of the pipe, for instance a discontinuous
change in the cross section as in Figure 2, then the dynamics can be modeled by two
systems of conservation laws restricted to 𝑥 < 0 and to 𝑥 > 0. At 𝑥 = 0 a further
condition is necessary to prescribe the possible defect in the conservation of the
otherwise conserved quantities:
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𝑥
𝑧− 𝑧+

Fig. 2 Pipe with a discontinuity in the cross section, 𝑧− being the cross section of the pipe to the
left of the discontinuity and 𝑧+ the cross section to the right.


𝜕𝑡𝑢 + 𝜕𝑥 𝑓 (𝑢) = 0, for 𝑥 < 0
𝜕𝑡𝑢 + 𝜕𝑥 𝑓 (𝑢) = 0, for 𝑥 > 0
Ψ (𝑧+, 𝑢 (𝑡, 0+) , 𝑧− , 𝑢 (𝑡, 0−)) = 0 for 𝑥 = 0, 𝑡 ≥ 0 .

Under suitable hypotheses, see [7, Lemma 4.1 and 4.2], this three equations are
equivalent to a system of balance laws with a suitable weighted Dirac delta centered
at the origin as a source term:

𝜕𝑡𝑢 + 𝜕𝑥 𝑓 (𝑢) = Ξ
(
𝑧+, 𝑧− , 𝑢 (𝑡, 0−)

)
𝛿0 . (3)

Here and in what follows, 𝛿𝑥 is the Dirac delta centered at 𝑥.
The weight Ξ describes the defect in the conservation and depends on the cross

sections at the sides of the discontinuity 𝑧− and 𝑧+ and on the value of the unknown
on the left of the discontinuity 𝑢 (𝑡, 0−).

More generally, one could have several discontinuities in the pipe profile, say
at the points 𝑥1, . . . , 𝑥𝑁 with cross section described by Z = Z𝑁 (𝑥), see Figure 3.
Therefore, we have a sum of Dirac deltas in the source term in the corresponding

𝑥

Z 𝑁 (𝑥 )

Fig. 3 Pipe with several discontinuities

modeling equations:

𝜕𝑡𝑢
𝑁 + 𝜕𝑥 𝑓

(
𝑢𝑁

)
=

𝑁∑︁
𝑖=1

Ξ

(
Z𝑁 (𝑥𝑖+) , Z𝑁 (𝑥𝑖−) , 𝑢𝑁 (𝑡, 𝑥𝑖−)

)
𝛿𝑥𝑖 . (4)

When, as 𝑁 → +∞, this finite sum of Dirac deltas tends, in some strong sense
specified in [7, Proof of Theorem 2.2, Step 1], to a measure 𝑔, [7, Theorem 2.2]
shows that the limit of the solutions 𝑢𝑁 is a solution of a system of balance laws
with 𝑔 as source term. Moreover, in the same Theorem, the connection between the
jump condition described by Ξ and the limit source term 𝑔 is given. Specific sample
cases of this limit were studied, for instance, in [10, 11, 16].

A different geometrical feature in one dimensional fluid dynamics is a kink in the
pipe profile, see Figure 4. In [9, 17] the kink was modeled by the 2 × 2 system of
isentropic gas dynamics provided with a measure source term given by a Dirac delta
times a weight dependent on the change in the orientation of the pipe:
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𝑥

𝑧− 𝑧+

Fig. 4 Pipe with a kink at a point, resulting in a discontinuity in the vector 𝑧 describing the pipe
orientation.

{
𝜕𝑡 𝜌 + 𝜕𝑥 (𝜌𝑣) = 0,
𝜕𝑡 (𝜌𝑣) + 𝜕𝑥

(
𝑝 + 𝜌𝑣2) = −𝐾 ∥𝑧+ − 𝑧− ∥ 𝜌𝑣 𝛿0 .

This equation is included in the general formulation (3) choosing

Ξ
(
𝑧+, 𝑧− , (𝜌, 𝑣)

)
=

(
0

−𝐾 ∥𝑧+ − 𝑧− ∥ 𝜌𝑣

)
.

Note that Ξ is not differentiable with respect to the geometric parameters of the
system 𝑧− and 𝑧+. On the other hand, it has one sided directional derivatives. To
allow these kind of geometrical structures, in Theorem 1 below, we do not require
differentiability of Ξ but only the existence of one sided directional derivatives (see
Definition (13) and hypothesis (𝚵.4)).

A pipe with 𝑁 kinks, see Figure 5, can again be modeled by (4), Z𝑁 being the

𝑥Z 𝑁 (𝑥 )

Fig. 5 A pipe with a finite number of kinks

piecewise constant pipe’s orientation. In [7, Theorem 3.1] it is shown that when
𝑁 → +∞ and, in this limit, we have a smoothly curved pipe, the limit measure
source term 𝑔 depends on the curvature of the pipe. Indeed, we have

𝑔 = −𝐾 ∥Z ′∥ L = −𝐾 ∥Γ′′∥ L ,

L being the Lebesgue measure and 𝑠 ↦→ Γ(𝑠) being the curve describing the pipe
profile parameterized by arc length.

As a final example we consider the flow of water in a canal of smoothly varying
width and smoothly varying bed elevation. Its dynamics can be described by the
following balance law

𝜕𝑡𝑎 + 𝜕𝑥𝑞 = 0

𝜕𝑡𝑞 + 𝜕𝑥
(
𝑞2

𝑎
+ 1

2
𝑔
𝑎2

𝜎

)
=

1
2
𝑔
𝑎2

𝜎2 𝜕𝑥𝜎 − 𝑔 𝑎 𝜕𝑥𝑏 ,
(5)
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see [22, Formula (1.1)]. Here 𝑔 is gravity, 𝑡 is time, 𝑥 is the longitudinal coordinate
along the canal, 𝑎 = 𝑎(𝑡, 𝑥) is the wetted cross sectional area, 𝑞 = 𝑞(𝑡, 𝑥) is the water
flow, 𝜎 = 𝜎(𝑥) is the canal width and 𝑏 = 𝑏(𝑥) is the height of the bottom.

The presence of discontinuities in the channel width 𝜎 or in the bed elevation 𝑏
prevents the application of standard theorems to (5). Indeed, discontinuities arise in
the flux and non conservative products appear in the source term. As is well known,
these products lack a unique way to be defined. As a reference to non conservative
products, we refer to [15, 19].

In our framework, system (5) is meaningful and is well posed too, requiring 𝜎
and 𝑏 to be merely of bounded variation. Indeed, our results comprise also the case
of balance laws with a space dependent flux and a non conservative product in the
source term of the type

𝜕𝑡𝑢 + 𝜕𝑥 𝑓 (Z, 𝑢) = 𝐷Z𝐺 (Z, 𝑢) 𝐷Z (6)

see [7, § 3.4]. Setting 𝑢 = (𝑎, 𝑞), 𝑝 = 2, and

𝑓 (𝑎, 𝑞) =
[

𝑞
𝑞2

𝑎
+ 1

2𝑔Z1𝑎
2

]
, Z (𝑥) =

[
1/𝜎(𝑥)
𝑏(𝑥)

]
,

𝐺 (𝑧, (𝑎, 𝑞)) =
[

0
− 1

2 𝑔 𝑎
2 𝑧1 − 𝑔 𝑎 𝑧2

]
,

(7)

we see that (5) fits into (6):
𝜕𝑡𝑎 + 𝜕𝑥𝑞 = 0

𝜕𝑡𝑞 + 𝜕𝑥
(
𝑞2

𝑎
+ 1

2
𝑔 Z1 𝑎

2
)
= −1

2
𝑔 𝑎2 𝜕𝑥Z1 − 𝑔 𝑎 𝜕𝑥Z2

(8)

and hence our main result, Theorem 1, applies setting, for instance,

Ξ(𝑧+, 𝑧− , 𝑢−) = 𝐺 (𝑧+, 𝑢−) − 𝐺 (𝑧− , 𝑢−) . (9)

As noted in [7, Section 3], different choices of Ξ may yield different solutions
emanating from discontinuities in Z while giving the same solutions wherever Z is
smooth, see [6] for a related result.

The choice (9) actually singles out the source term in (11) below, which accounts
both for the smooth changes as well as for the points of jump in Z . In the case of (5),
this amounts to show that a careful choice of Ξ allows to extend (5) to the case of 𝜎
and 𝑏 in BV.

2 Main Results

Let Ω ⊂ R𝑛 and Z ⊂ R𝑝 be open and convex. Consider a left continuous function
Z ∈ BV(R;Z) and denote by I(Z) the set of jump discontinuities in Z .
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Consider a piecewise constant approximation Zℎ of Z and the following balance
law with measure-valued source term{

𝜕𝑡𝑢 + 𝜕𝑥 𝑓 (Zℎ, 𝑢) =
∑

�̄�∈I(Z ℎ )
Ξ
(
Zℎ (𝑥+), Zℎ (𝑥−), 𝑢(·, 𝑥−)

)
𝛿 �̄�

𝑢(0, 𝑥) = 𝑢𝑜 (𝑥) .
(10)

In the general - non characteristic - setting established below, solutions to (10)
are shown to converge as Zℎ converges to Z in a suitable - strong - sense described
in [7, Proof of Theorem 2.2, Step 1], to solutions to{
𝜕𝑡𝑢 + 𝜕𝑥 𝑓 (Z, 𝑢) =

∑
�̄�∈I(Z )

Ξ (Z (𝑥+), Z (𝑥−), 𝑢(·, 𝑥−)) 𝛿 �̄� + 𝐷+
𝑣Ξ(Z, Z , 𝑢) ∥`∥

𝑢(0, 𝑥) = 𝑢𝑜 (𝑥) .
(11)

The terms in the singular source above are defined as follows. Since Z ∈ BV(R;R𝑝),
the right and left limits Z (𝑥+) and Z (𝑥−) are well defined and the distributional
derivative 𝐷Z can be split in a discrete part and a non discrete one, which may
contain a Cantor part:

𝐷Z =
∑︁

�̄�∈I(Z )
(Z (𝑥+) − Z (𝑥−)) 𝛿 �̄� + 𝑣 ∥`∥ , (12)

where the function 𝑣 is Borel measurable with norm 1 and ` is the non atomic part
of 𝐷Z . In (11) we also used the (one sided) directional Dini derivative

𝐷+
𝑣Ξ(𝑧, 𝑧, 𝑢) = lim

𝑡→0+

Ξ(𝑧 + 𝑡 𝑣, 𝑧, 𝑢) − Ξ(𝑧, 𝑧, 𝑢)
𝑡

. (13)

We require the following assumptions on 𝑓 , Ξ and Z :

(f.1) 𝑓 ∈ C4 (Z ×Ω;R𝑛);
(f.2) the Jacobian matrix 𝐷𝑢 𝑓 (𝑧, 𝑢) is strictly hyperbolic for every 𝑧 ∈ Z and 𝑢 ∈ Ω;
(f.3) each characteristic field is either genuinely nonlinear or linearly degenerate for

all 𝑧 ∈ Z.

In the latter assumption we refer to the definitions by Lax [18], see also [12, § 7.5].
By (f.1) and (f.2) we know that, possibly restricting Ω, the eigenvalues _1 (𝑧, 𝑢),

. . . ,_𝑛 (𝑧, 𝑢) of 𝐷𝑢 𝑓 (𝑧, 𝑢) depend smoothly on 𝑧 and can be indexed so that, for all
𝑢 ∈ Ω and 𝑧 ∈ Z, _1 (𝑧, 𝑢) < _2 (𝑧, 𝑢) < · · · < _𝑛 (𝑧, 𝑢). We thus require the usual
non resonance condition

(f.4) there exists 𝑖𝑜 ∈ {1, . . . , 𝑛 − 1} such that _𝑖𝑜 (𝑧, 𝑢) < 0 < _𝑖𝑜+1 (𝑧, 𝑢) for all
𝑧 ∈ Z and all 𝑢 ∈ Ω.

Note that both the cases of characteristic speeds being either all positive or all
negative are simpler.

(𝚵.1) Ξ : Z × Z → C1 (Ω;R𝑛) is a Lipschitz continuous map and Ξ : Z × Z →
C2 (Ω;R𝑛);
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(𝚵.2) sup𝑧+ ,𝑧−∈Z ∥Ξ(𝑧+, 𝑧− , ·)∥C2 (Ω;R) < +∞;
(𝚵.3) Ξ(𝑧, 𝑧, 𝑢) = 0 for every 𝑧 ∈ Z and 𝑢 ∈ Ω;
(𝚵.4) there exists a non decreasing map 𝜎 : [0, 𝑡 [ → Rwith lim𝑡→0 𝜎(𝑡) = 0 such that

for all (𝑧, 𝑣, 𝑢) ∈ Z × 𝐵(0; 1) × Ω,
Ξ(𝑧 + 𝑡 𝑣, 𝑧, 𝑢) − 𝐷+

𝑣Ξ(𝑧, 𝑧, 𝑢) 𝑡
 ≤ 𝜎(𝑡) 𝑡

and moreover the map (𝑧, 𝑣, 𝑢) → 𝐷+
𝑣Ξ(𝑧, 𝑧, 𝑢) is Lipschitz continuous.

We now precisely state what we mean by solution to (11).

Definition 1 Let 𝑢𝑜 ∈ L1
𝑙𝑜𝑐

(R;R𝑛). A map 𝑢 ∈ C0 ( [0, +∞[; L1
𝑙𝑜𝑐

(R;R𝑛)) with
𝑢(𝑡) ∈ BV(R;R𝑛) and left continuous for all 𝑡 ∈ R+, is a solution to (11) if for all
test functions 𝜙 ∈ C1

𝑐 (]0, +∞[ × R;R),

−
∫ +∞

0

∫
R
(𝑢(𝑡, 𝑥) 𝜕𝑡𝜙(𝑡, 𝑥) + 𝑓 (Z (𝑥), 𝑢(𝑡, 𝑥)) 𝜕𝑥𝜙(𝑡, 𝑥)) d𝑥 d𝑡

=
∑︁

�̄�∈I(Z )

∫ +∞

0
Ξ (Z (𝑥+), Z (𝑥), 𝑢(𝑡, 𝑥)) 𝜙(𝑡, 𝑥) d𝑡 (14)

+
∫ +∞

0

∫
R
𝐷+

𝑣(𝑥 )Ξ (Z (𝑥), Z (𝑥), 𝑢(𝑡, 𝑥)) 𝜙(𝑡, 𝑥) d∥`∥(𝑥) d𝑡

where 𝑣, ` are as in (12), and moreover 𝑢(0) = 𝑢𝑜.

In the last integral in (14), the integrand is Borel measurable in (𝑡, 𝑥) since, for
instance, by the above assumptions on 𝑢, we have at every (𝑡, 𝑥) ∈ R+ × R

𝑢(𝑡, 𝑥) = lim
ℎ→0

1
ℎ

∫ 𝑥

𝑥−ℎ
𝑢(𝑡, 𝑦) d𝑦 .

Moreover, Borel measurability on R2 ensures measurability with respect to the
product measure.

Note that the value of the integrand in the first line in (14) is independent of
changes of the integrand on sets of Lebesgue measure 0 in R2, while the latter
integrand is integrated with respect to the product measure ∥`∥ ⊗ d𝑡. Nevertheless,
(14) is meaningful, since 𝑢 is prescribed pointwise, at every point and not merely
almost everywhere.

The above definition is known not to guarantee uniqueness. On the contrary,
Theorem 1 below does guarantee uniqueness, relying on an extension to the case
of (11) of the precise characterization originally provided in [3] for homogeneous
systems of conservation laws.

Definition 2 By Generalized Riemann Problem we mean the Cauchy Problem (11)
with Z and the initial datum 𝑢𝑜 as follows:

Z (𝑥) = 𝑧− 𝜒R− (𝑥) + 𝑧+ 𝜒R+ (𝑥) and 𝑢𝑜 (𝑥) = 𝑢ℓ 𝜒R− (𝑥) + 𝑢𝑟 𝜒R+ (𝑥) . (15)

For 𝑧 ∈ Z and 𝑢 ∈ Ω, call 𝜎𝑖 → 𝐻𝑖 (𝑧, 𝜎𝑖) (𝑢) the Lax curve of the 𝑖–th family
relative to 𝑓 (𝑧, ·) exiting 𝑢, see [4, § 5.2] or [12, § 9.3]. Introduce recursively the
states 𝑤0, . . . , 𝑤𝑛+1 ∈ Ω with 𝑤0 = 𝑢ℓ , 𝑤𝑛+1 = 𝑢𝑟 and
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𝑤𝑖+1 = 𝐻𝑖+1 (𝑧+, 𝜎𝑖+1) (𝑤𝑖) if 𝑖 = 0, . . . , 𝑖𝑜 − 1,
𝑓 (𝑧+, 𝑤𝑖𝑜+1) − 𝑓 (𝑧− , 𝑤𝑖𝑜 ) = Ξ(𝑧+, 𝑧− , 𝑤𝑖𝑜 )
𝑤𝑖+1 = 𝐻𝑖 (𝑧− , 𝜎𝑖) (𝑤𝑖) if 𝑖 = 𝑖𝑜 + 1, . . . , 𝑛 .

We thus define as Admissible Solution to the Generalized Riemann Problem (11)–
(15) the gluing along 𝑥 = 0 of the Lax solutions to the (standard) Riemann Problems{

𝜕𝑡𝑢 + 𝜕𝑥 𝑓 (𝑧− , 𝑢) = 0
𝑢(0, 𝑥) = 𝑢ℓ 𝜒R− (𝑥) + 𝑤𝑖𝑜 𝜒R+ (𝑥),

{
𝜕𝑡𝑢 + 𝜕𝑥 𝑓 (𝑧+, 𝑢) = 0
𝑢(0, 𝑥) = 𝑤𝑖𝑜+1𝜒R− (𝑥) + 𝑢𝑟 𝜒R+ (𝑥).

Throughout, we refer to the stationary jump discontinuities due to jumps in 𝑧 as to
zero waves. [8, Lemma 3.3] ensures that, with the above definition, the Generalized
Riemann Problem (11)–(15) turns out to be well posed.

Aiming at the characterization of solutions to (11), we now extend to the present
case the general definitions introduced in [3], see also [4, Chapter 9]. Fix Z ∈
BV(R;Z), a function 𝑢 = 𝑢(𝑡, 𝑥) with 𝑢(𝑡) ∈ BV(R;Ω) for all 𝑡 and a point
(𝜏, b) ∈ [0, +∞[ ×R. Define the function𝑈♯

(𝑢;𝜏, b ) as the solution to the generalized
Riemann Problem

𝜕𝑡𝑈 + 𝜕𝑥 𝑓 (Z (b),𝑈) = Ξ (Z (b+), Z (b), 𝑢(𝑡, b−)) 𝛿b
𝑈 (0, 𝑥) =

{
𝑢(𝜏, b−) 𝑥 < b ;
𝑢(𝜏, b+) 𝑥 > b .

(16)

Note that if b ∉ I(Z), then the right hand side in (16) vanishes due to (𝚵.3) and the
above definition of 𝑈♯

(𝑢;𝜏, b ) reduces to the classical one in [3, Chapter 9] related to
the homogeneous flow 𝑢 → 𝑓 (Z (b), 𝑢).

We define the function𝑈♭
(𝑢;𝜏, b ) as the solution to the following linear hyperbolic

problem with constant coefficients and measure-valued source term{
𝜕𝑡𝑈 + 𝐴 𝜕𝑥𝑈 = 𝑔

𝑈 (0, 𝑥) = 𝑢(𝜏, 𝑥) (17)

with 𝐴 = 𝐷𝑢 𝑓 (Z (b), 𝑢(𝜏, b)) and for any Borel subset 𝐸 of R,

𝑔(𝐸) =
∑︁

�̄�∈I(Z )

(
Ξ (Z (𝑥+), Z (𝑥), 𝑢(𝜏, b))

− 𝑓 (Z (𝑥+), 𝑢(𝜏, b)) + 𝑓 (Z (𝑥), 𝑢(𝜏, b))
)
𝛿 �̄� (𝐸)

+
∫
𝐸

(
𝐷+

𝑣(𝑥 )Ξ (Z (𝑥), Z (𝑥), 𝑢(𝜏, b)) − 𝐷𝑧 𝑓 (Z (𝑥), 𝑢(𝜏, b)) 𝑣(𝑥)
)

d∥`∥ (𝑥).

(18)

where we used the same notation as in (12) and (13).
We are now ready to state the main result.



Balance Laws with Singular Source Term and Applications to Fluid Dynamics 9

Theorem 1 ([8, Theorem 2.3])
Let 𝑓 satisfy (f.1)–(f.4), Ξ satisfy (𝚵.1)–(𝚵.4). Fix 𝑧 ∈ Z, �̄� ∈ Ω. Then, there exist

positive 𝛿 and 𝐿 such that for any Z ∈ BV(R;Z) with TV(Z) < 𝛿 and ∥Z (𝑥) − 𝑧∥ < 𝛿
there exist a domain DZ ⊆ �̄� + L1 (R;Ω) containing all functions 𝑢 in �̄� + L1 (R;Ω)
with TV(𝑢) < 𝛿 and a semigroup 𝑆Z : R+ × DZ → DZ such that

1. For all 𝑢𝑜 ∈ DZ , the orbit 𝑡 → 𝑆
Z
𝑡 𝑢𝑜 solves (11) in the sense of Definition 1.

2. 𝑆Z is L1–Lipschitz continuous, i.e. for all 𝑢𝑜, 𝑢1
𝑜, 𝑢

2
𝑜 ∈ DZ and for all 𝑡, 𝑡1, 𝑡2 ∈

R+ 𝑆Z𝑡 𝑢1
𝑜 − 𝑆

Z
𝑡 𝑢

2
𝑜


L1 (R;R𝑛 )

≤ 𝐿
𝑢1

𝑜 − 𝑢2
𝑜


L1 (R;R𝑛 ) ;𝑆Z𝑡1𝑢𝑜 − 𝑆Z𝑡2𝑢𝑜L1 (R;R𝑛 )

≤ 𝐿 |𝑡1 − 𝑡2 | .

3. If Z ∈ PC(R;Z) and 𝑢𝑜 ∈ PC(R;Ω), then for 𝑡 sufficiently small, the map
(𝑡, 𝑥) → (𝑆Z𝑡 𝑢𝑜) (𝑥) coincides with the gluing of Admissible Solutions, in the
sense of Definition 2, to Generalized Riemann Problems at the points of jumps
of 𝑢𝑜 and of Z .

Moreover, let _̂ be an upper bound for the (moduli of) characteristic speeds and
define 𝑢(𝑡, 𝑥) = (𝑆Z𝑡 𝑢𝑜) (𝑥). Then, for every (𝜏, b) ∈ R+ × R,

(i)

lim
\→0

1
\

∫ b+\_̂

b−\_̂

���𝑢(𝜏 + \, 𝑥) −𝑈♯

(𝑢;𝜏, b ) (\, 𝑥)
��� d𝑥 = 0 .

(ii) There exists a constant 𝐶 such that for every 𝑎, 𝑏 ∈ R with 𝑎 < b < 𝑏 and for
every \ ∈ ]0, (𝑏 − 𝑎)/(2_̂) [,

1
\

∫ 𝑏−\_̂

𝑎+\_̂

���𝑢(𝜏 + \, 𝑥) −𝑈♭
(𝑢;𝜏, b ) (\, 𝑥)

��� d𝑥
≤ 𝐶 [TV (𝑢(𝜏), ]𝑎, 𝑏[) + TV (Z, ]𝑎, 𝑏[)]2 .

If 𝑢 : [0, 𝑇] → DZ is L1–Lipschitz continuous and satisfies (i) and (ii) for almost
every time 𝜏 and for all b ∈ R, then 𝑡 → 𝑢(𝑡, ·) coincides with an orbit of the
semigroup 𝑆Z .

Note that whenever Z is piecewise constant, the properties 1., 2. and 3. above
uniquely characterize the semigroup 𝑆Z , see [8, Lemma 3.14].
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