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NONLINEAR RANDOM PERTURBATIONS OF PDES AND

QUASI-LINEAR EQUATIONS IN HILBERT SPACES DEPENDING ON A

SMALL PARAMETER

SANDRA CERRAI, GIUSEPPINA GUATTERI, AND GIANMARIO TESSITORE

Abstract. We study a class of quasi-linear parabolic equations defined on a separable Hilbert
space, depending on a small parameter in front of the second order term. Through the nonlinear
semigroup associated with such equation, we introduce the corresponding SPDE and we study
the asymptotic behavior of its solutions, depending on the small parameter. We show that a
large deviations principle holds and we give an explicit description of the action functional.

1. Introduction

Consider the partial differential equation

dXx

dt
(t) = AXx(t) + b(Xx(t)), Xx(0) = x ∈ H, (1.1)

defined on a separable Hilbert space H, endowed with the scalar product 〈·, ·〉H and the cor-
responding norm ‖ · ‖H . Here A : D(A) ⊂ H → H is the generator of a strongly continuous
semigroup and b : D(b) ⊆ H → H is some non-linear mapping. Next, consider the following
stochastic perturbation of (1.1)

dXx
ǫ (t) = [AXx

ǫ (t) + b(Xx
ǫ (t))] dt+

√
ǫ σ(Xx

ǫ (t)) dWt, Xx
ǫ (0) = x ∈ H, (1.2)

where ǫ > 0 is a small parameter, Wt, t ≥ 0, is a cylindrical Wiener process and σ is a
mapping, defined on H and taking values in some space of bounded linear operators defined
on the reproducing kernel of the noise into H. We assume that the differential operator A, the
coefficients b and σ and the noise Wt are such that both (1.1) and (1.2) are well-posed.

If the parameter ǫ is small, the trajectories of the perturbed system (1.2) remain close to
those of the unperturbed system (1.1) on any bounded time interval. In particular, if there
exist a domain G ⊂ H and a point x0 ∈ G such that any trajectory of (1.1) starting in G
remains in G and converges to x0, as time goes to infinity, then with overwhelming probability
the trajectories of (1.2) starting from any x ∈ G enter any neighborhood of x0, before eventually
leaving the domain G because of the effect of the noise. As know, this is a consequence of the
large deviations of Xǫ(t) from X(t) which are described by the action functional

IxT (f) =
1

2
inf

{
∫ T

0
‖ϕ(t)‖2H dt : f = Xx,ϕ

}

,

where we have denoted by Xx,ϕ the solution of the controlled version of (1.1)

dXx,ϕ

dt
(t) = AXx,ϕ(t) + b(Xx,ϕ(t)) + σ(Xx,ϕ(t))ϕ(t), Xx,ϕ(0) = x,

and by the quasi-potential

V (x0, x) = inf {IT (f) : f ∈ C([0, T ];H), f(0) = x0, f(T ) = x, T > 0} .
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It is known that the stochastic PDE (1.2) is related to the linear Kolmogorov equation on the
Hilbert space H






Dtuǫ(t, x) =
ǫ

2
Tr
[

σσ⋆(x)D2
xuǫ(t, x)

]

+ 〈Ax+ b(x),Duǫ(t, x)〉H , x ∈ H, t > 0,

uǫ(0, x) = g(x), x ∈ H.
(1.3)

Actually, under suitable conditions on the operator A, the coefficients b and σ and the initial
condition g, equation (1.3) admits a unique classical solution uǫ, which can be written in terms
of the linear transition semigroup P ǫ

t associated with (1.2). Namely

uǫ(t, x) = P ǫ
t g(x) = Eg(Xǫ(t, x)), t ≥ 0, x ∈ H.

In particular, the description of the small noise asymptotics of the solutions of equation (1.2)
provided by the theory of large deviations allows to give a detailed description of the long-time
behavior of the solutions of infinite dimensional PDE (1.3).

In [8], Freidlin and Koralov have considered more general stochastic perturbations of the
dynamical system (1.1), when H = R

d, A = 0 and b : R
d → R

d is a Lipschitz-continuous
mapping. They have introduced the following quasi-linear parabolic problem










∂tuǫ(t, x) =
ǫ

2

d
∑

i,j=1

ai,j(x, uǫ(t, x)) ∂ijuǫ(t, x) +

d
∑

i=1

bi(x) ∂iuǫ(t, x), x ∈ R
d, t > 0,

uǫ(0, x) = g(x), x ∈ R
d,

(1.4)

where aij(x, r) = (σσ⋆)ij(x, r), and by invoking the classical theory of quasi-linear PDEs, they
have shown that, under reasonable assumptions on the coefficients f and σ, equation (1.4)
admits a unique classical solution uǫ. Next, for every t > 0 and x ∈ R

d, they have introduced
the following randomly perturbed system







dXt,x
ǫ (s) = b(Xt,x

ǫ (s)) ds +
√
ǫ σ(Xt,x

ǫ (s), uǫ(t− s,Xt,x
ǫ (s))) dBs,

Xt,x
ǫ (0) = x,

(1.5)

where Bt, t ≥ 0, is a d-dimensional Brownian motion. As in the linear case, the PDE (1.4) and
the SDE (1.5) are related by the following relation

uǫ(t, x) = Eg(Xt,x
ǫ (t)) =: T ǫ

t g(x), (1.6)

but now T ǫ
t is a non-linear semigroup. This is in fact reason why equation (1.5) can be seen as

a non-linear perturbation of the deterministic system.
The study of the large deviation principle and of the quasi-potential for (1.5), has allowed

Freidlin and Koralov to study the long-time behavior of the solutions to equation (1.4), restricted
to the domain G (that now is a bounded domain in R

d) and endowed with the boundary condition
uǫ(t, x) = g(x), for every x ∈ ∂G. In this case

uǫ(t, x) = Eg(Xt,x
ǫ (t ∧ τxǫ )),

where τxǫ is the first exit time of Xt,x
ǫ from the domain G. In particular, the asymptotic descrip-

tion of τxǫ in terms of the quasi-potential has made possible to study the asymptotic behavior
of uǫ on exponential time scales t(ǫ) ∼ exp(λ/ǫ). Freidlin and Koralov’s idea is to introduce a
family of linear equations obtained from (1.4) by freezing the second variable in σσ⋆ and putting
it equal to a constant c. This allows them to describe the asymptotics of uǫ(exp(λ/ǫ), x), for
different values of λ ∈ (0,∞), in terms of some function c(λ) obtained from VG(c), the minimum
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of the quasi-potential in G for the linear problem corresponding to c, and from g(x⋆(c)), where
x⋆(c) is the point of ∂G where the quasi-potential attains its minimum, for different values of c.

The present paper represents the beginning of a longer term project where we aim to develop
an analogous theory for infinite dimensional dynamical systems described by PDEs. As in the
finite dimensional case studied in [8], also here, as a first and fundamental step, we need to be
able to study the well-posedness of the following quasi-linear equations






Dtuǫ(t, x) =
ǫ

2
Tr
[

σσ⋆(x, uǫ(t, x))D
2
xuǫ(t, x)

]

+ 〈Ax+ b(x),Duǫ(t, x)〉H , x ∈ H, t > 0,

uǫ(0, x) = g(x), x ∈ H,
(1.7)

However, unlike in finite dimension, where a well-established theory of deterministic quasi-
linear PDEs is available, it seems that the current literature does not provide any Hilbert space
counterpart to such classical theory, and everything has to be done.

In our analysis we will proceed in several steps and here we are considering the case when
σ : H×R → L(H) is Lipschitz continuous and there exist a bounded and non-negative symmetric
operator Q, a continuous mapping f defined on H × R with values in the space of trace-class
operators and a constant δ > 0 such that

σ⋆σ(x, r) = Q+ δ f(x, r), x ∈ H, r ∈ R.

This allows to rewrite equation (1.7) as






Dtuǫ(t, x) = Lǫuǫ(t, x) +
ǫ

2
Tr
[

δ f(x, uǫ)(t, x)D
2
xuǫ(t, x)

]

+ 〈b(x),Duǫ(t, x)〉H ,

uǫ(0, x) = g(x), x ∈ H,

where

Lǫϕ(x) =
ǫ

2
Tr
[

QD2
xϕ(x)

]

+ 〈Ax,Dxϕ(x)〉H .

In particular, if we denote by Rǫ
t the Ornstein-Uhlenbeck semigroup associated with the operator

Lǫ, we can rewrite equation (1.7) in mild form as

uǫ(t, x) = Rǫ
tg(x) +

∫ t

0
Rǫ

t−s

( ǫ

2
Tr
[

δF (uǫ(s, ·))D2
xuǫ(s, ·)

]

+ 〈b(·),Duǫ(s, ·)〉H
)

(x) ds. (1.8)

By assuming suitable conditions on A and Q (see Hypothesis 2), the semigroup Rǫ
t has a

smoothing effect for every fixed ǫ > 0, and this allows to prove by a fixed point argument
that if δ is sufficiently small there exists a local solution in a suitable space of smooth Hölder
continuous functions. Moreover, we show that any mild solution uǫ defined on a given interval
[0, T ] is in fact a classical solution. In particular, uǫ(t, ·) is twice continuously differentiable in
H for every t > 0 and QD2

xuǫ(t, x) is a trace-class operator, uǫ(·, x) is differentiable in (0,+∞)
for every x ∈ D(A) and equation (1.4) holds. Finally, in order to prove that for every T > 0
and ǫ > 0 the solution is defined on the whole interval [0, T ] and is unique, we prove suitable
a-priori bounds.

Once we have proven the existence and uniqueness of a classical solution for equation (1.4),
we can introduce the stochastic PDE







dXt,x
ǫ (s) =

[

AXt,x
ǫ (s) + b(Xt,x

ǫ (s))
]

ds+
√
ǫ σ(Xt,x

ǫ (s), uǫ(t− s,Xt,x
ǫ (s))) dWs,

Xt,x
ǫ (0) = x,

(1.9)
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whereWt is a cylindrical Wiener process inH, defined on some stochastic basis (Ω,F, {Ft}t≥0,P).
Due to the regularity of the coefficients and of the function uǫ, we can show that there exists
δ̄ > 0 such that, for every δ ≤ δ̄ and for every t > 0 and x ∈ H, equation (1.9) admits a unique
mild solution in L2(Ω;C([0, T ];H)). Moreover, we show that, as in the finite dimensional case,
the quasi-linear equation (1.4) and the stochastic PDE are related through formula (1.6) and,
in particular, a maximum principle holds for equation (1.7).

It is worth noticing that as a consequence of the Markov property, the following relation holds

uǫ(t− s,Xt,x
ǫ (s))) = E(g(Xt−s,y

ǫ (t− s))
∣

∣

y=Xt,x
ǫ (s)

= E(g(Xt,x
ǫ (t))|Fs),

for every s ∈ [0, t] and x ∈ H, so that equation (1.5) reads as






dXt,x
ǫ (s) =

[

AXt,x
ǫ (s) + b(Xt,x

ǫ (s))
]

ds+
√
ǫ σ(Xt,x

ǫ (s),E(g(Xt,x
ǫ (t))|Fs)) dWs,

Xt,x
ǫ (0) = x.

(1.10)

Setting Y t,x(s) := E(g(Xt,x
ǫ (t))|Fs)), the equation above can be further rewritten as a coupled

forward backward infinite dimensional stochastic system































dXt,x
ǫ (s) =

[

AXt,x
ǫ (s) + b(Xt,x

ǫ (s))
]

ds+
√
ǫ σ(Xt,x

ǫ (s), Y t,x(s))) dWs, 0 ≤ s ≤ t

−dsY t,x(s) = −Zt,x(s)dWs, 0 ≤ s ≤ t

Y t,x(t) = g(Xt,x
ǫ (t))

Xt,x
ǫ (0) = x.

(1.11)
Coupled forward-backward systems of stochastic equations of the general form































dX(s) = b(X(s), Y (s), Z(s))ds + σ(X(s), Y (s)) dWs, 0 ≤ s ≤ t

−dsY (s) = ψ((X(s), Y (s), Z(s)) ds − Z(s)dWs, 0 ≤ s ≤ t

Y (t) = g(X(t))

Xǫ(0) = x,

(1.12)

have been extensively studied in the finite dimensional case, see [14] where several results are
collected. Since [1], it has been clear that arbitrary forward-backward stochastic systems do
not always admit a solution. Different techniques have been developed to prove existence and
uniqueness both locally in time and in arbitrarily long time intervals. In particular the classical
theory of PDEs, applied to the corresponding nonlinear Kolmogorov equations, offers a wide
range of results stating well posedness of system (1.12) (see, for instance [14] [10] or [11]) that
include existence and uniqueness of a global solution to the finite dimensional analogue of system
(1.11) when σ is not degenerate. In the infinite dimensional case, in which large part of the
analytic techniques are not available any more, very few results on existence and uniqueness of a
solution to system (1.11) in arbitrary time interval are at hand (for local existence and uniqueness
see [9]). It seems that the techniques more likely to be extended in infinite dimensions are the
ones introduced in [15] where quantitative conditions on dissipativity of b and bounds on the
Lipschitz norm of σ and g are required. Such restrictions go in the same direction as the
condition on δ that we have to impose here, see above.
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We finally notice that, if we show that system (1.11) is well posed, then we can define a
candidate solution to the PDE (1.7) by setting

ûǫ(t− s, ξ) = E(Y t,x(s)|Xt,x(s) = ξ)

but, unless we have a satisfactory analytic theory for equation (1.11), the proof that ûǫ is
the unique solution of (1.11) (in which formulation?) is still to be done and does not seem
obvious at all. Once such relation would be understood, it could also be possible to study the
large deviations principle, see below, for more general nonlinear perturbations of (1.1) defined
through systems like (1.12) (see [5] for a similar approach in the finite dimensional case where
the connection between ûǫ and equation (1.11) is a straight-forward consequence of existence
and uniqueness of a regular solution to (1.11) and Ito rule).

As we mentioned at the beginning of this introduction, we are interested in applying our
results to the study of the asymptotic behavior of (1.9) and (1.7), as ǫ ↓ 0. This is a multi-step
project and here we are addressing the problem of the validity of a large deviation principle for
the trajectories of the solutions of equation (1.9). Thus, in the last section of our paper we prove

that the family {Xt,x
ǫ }ǫ∈ (0,1) satisfies a large deviation principle in the space C([0, t];H), which

is governed by the action functional

It,x(X) =
1

2
inf

{
∫ t

0
‖ϕ(s)‖2H ds : X(s) = Xt,x

ϕ (s), s ∈ [0, t]

}

,

where Xt,x
ϕ is the unique mild solution of problem

X ′(s) = AX(s) + b(X(s)) + σ(X(s), g(ZX(s)(t− s)))ϕ(s), X(0) = x,

and for every y ∈ H

Zy(s) = esAy +

∫ s

0
e(s−r)Ab(Zy(r)) dr.

2. Notations and preliminaries

Throughout this paper, H is a separable Hilbert space, endowed with the scalar product
〈·, ·〉H and the corresponding norm ‖ · ‖H . In what follows we shall introduce some notations
and preliminary results (we refer to [2], [6] and [12] for all details).

2.1. Operator spaces. We denote by L(H) the Banach space of all bounded linear operators
A : H → H, endowed with the sup-norm

‖A‖L(H) = sup
‖x‖H≤1

‖Ax‖H .

An operator A ∈ L(H) is symmetric if it coincides with its adjoint A⋆, that is if 〈Ax, y〉H =
〈x,Ay〉H , for all x, y ∈ H. Moreover, it is non-negative if 〈Ax, x〉H ≥ 0, for all x ∈ H. We shall
denote by L+(H) the subspace of all non-negative and symmetric operators in L(H).

An operator A ∈ L(H) is called an Hilbert-Schmidt operator if there exists an orthonormal
basis {ei}i∈N of H such that

∞
∑

i=1

‖Aei‖2H <∞.
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The subspace of Hilbert-Schmidt operators, denoted by L2(H), is a Hilbert space, endowed with
the scalar product

〈A,B〉L2(H) =

∞
∑

i=1

〈Aei, Bei〉H .

As know, for every B ∈ L+(H) there exists a unique C ∈ L(H), denoted by
√
B such that

C2 = B. Thus, for any A ∈ L(H) we can define

|A| :=
√
A⋆A.

We recall that an operator A ∈ L(H) is compact if and only if |A| is compact. Moreover, if A
is a symmetric compact operator, then there exists an orthonormal basis {ei}i∈N of H and a
sequence {αi}i∈N converging to zero such that Aei = αiei, for all i ∈ N. With these notations,
we say that a compact operator A ∈ L(H) is nuclear or trace-class if there exists an orthonormal
basis of H consisting of eigenvectors of |A| corresponding to the eigenvalues {αi}i∈N, such that

∞
∑

i=1

αi <∞.

In particular, if the operator A is symmetric, it is nuclear if and only if there exists an orthonor-
mal basis of H consisting of eigenvectors of A corresponding to the eigenvalues {αi}i∈N, such
that

∞
∑

i=1

|αi| <∞.

We denote by L1(H) the set of nuclear operators.
It is possible to prove that for every A ∈ L1(H) the series

TrA :=

∞
∑

i=1

〈Aei, ei〉H

does not depend on the choice of the orthonormal basis {ei}i∈N. Moreover, a symmetric operator
A belongs to L1(H) if and only if the series above converges absolutely for every orthonormal
basis {ei}i∈N. The space L1(H) is a Banach space, endowed with the norm

‖A‖L1(H) = Tr |A|,

and

|TrA| ≤ ‖A‖L1(H). (2.1)

It is possible to prove that L1(H) ⊂ L2(H) ⊂ L(H) with

‖A‖L(H) ≤ ‖A‖L2(H) ≤ ‖A‖L1(H),

and for j = 1, 2 it holds

‖AB‖Lj(H) ≤ ‖A‖Lj(H)‖B‖L(H), ‖AB‖Lj(H) ≤ ‖B‖Lj(H)‖A‖L(H).

Moreover, if A,B ∈ L2(H), then AB ∈ L1(H), with

‖AB‖L1(H) ≤ ‖A‖L2(H)‖B‖L2(H).
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2.2. Functional spaces. If E is an arbitrary Banach space, endowed with the norm ‖ · ‖E ,
we denote by Bb(H;E) the space of Borel and bounded functions ϕ : H → E. Bb(H;E) is a
Banach space, endowed with the sup-norm

‖ϕ‖0 = sup
x∈H

‖ϕ(x)‖E .

Moreover, we denote by Cb(H;E) the closed subspace of uniformly continuous and bounded
functions.

For every integer n ≥ 1, we denote by Cn
b (H;E) the space of all functions ϕ ∈ Cb(H;E) which

are n-times Fréchet differentiable, with uniformly continuous and bounded Fréchet derivatives
Dlϕ : H → Lh(H;E) (1), for all l ≤ n. We have that Ck

b (H;E) is a Banach space, endowed with
the norm

‖ϕ‖n = ‖ϕ‖0 +
n
∑

l=1

‖Dlϕ‖0.

Next, for every ϑ ∈ (0, 1) we denote by Cϑ
b (H;E) the space of all functions ϕ ∈ Cb(H;E) such

that

[ϕ]ϑ := sup
x,y∈H
x 6=y

‖ϕ(x) − ϕ(y)‖E
‖x− y‖ϑH

<∞.

Cϑ
b (H;E) is a Banach space, endowed with the norm

‖ϕ‖ϑ = ‖ϕ‖0 + [ϕ]ϑ.

Finally, for every integer n ∈ N and ϑ ∈ (0, 1), we denote by Cn+ϑ
b (H;E) the space of all

functions ϕ ∈ Cn
b (H;E) such that

[Dnϕ]ϑ := sup
x,y∈H
x 6=y

‖Dnϕ(x)−Dnϕ(y)‖Ln(H;E)

‖x− y‖ϑH
<∞.

Cn+ϑ
b (H;E) is a Banach space, endowed with the norm

‖ϕ‖n+ϑ = ‖ϕ‖0 +
n
∑

l=1

‖Dlϕ‖0 + [Dnϕ]ϑ = ‖ϕ‖n + [Dnϕ]ϑ.

Notice that in case E = R, we simply write Bb(H) instead of Bb(H;E), and for every α ≥ 0 we
write Cα

b (H) instead of Cα
b (H;R).

Now, we want to see how classical interpolatory estimates for functions defined on R
n are

still valid for functions defined on the infinite dimensional Hilbert space H. To this purpose,
we recall that, as shown in [6, Theorem 2.3.5], for every 0 ≤ α < β < γ there exists a constant
c = c(α, β, γ) > 0 such that for every ϕ ∈ Cγ

b (H)

‖ϕ‖β ≤ c ‖ϕ‖
γ−β
γ−α
α ‖ϕ‖

β−α
γ−α
γ . (2.2)

However, in what follows we will need the following additional interpolatory estimates.

(1)We denote by L
l(H ;E) the space of l-linear bounded operators A : H l

→ E. When l = 1, we identify
L

1(H ;R) with H and when l = 2 we identify L
2(H ;R) with L(H).
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Lemma 2.1. Let us fix ϑ ∈ (0, 1). Then, for every ϕ ∈ C1
b (H) we have

[ϕ]ϑ ≤ c1,ϑ ‖ϕ‖1−ϑ
0 ‖Dϕ‖ϑ0 . (2.3)

Moreover, for every ϕ ∈ C2+ϑ
b (H) we have

‖D2ϕ‖0 ≤ c2,ϑ ‖Dϕ‖
ϑ

1+ϑ

0 [D2ϕ]
1

1+ϑ

ϑ , (2.4)

and

‖Dϕ‖0 ≤ c3,ϑ ‖ϕ‖
1+ϑ
2+ϑ

0 [D2ϕ]
1

2+ϑ

ϑ . (2.5)

Proof. Let us fix ϕ ∈ C1
b (H) and x, y ∈ H. Then, for every ϑ ∈ (0, 1) we have

|ϕ(x+ y)− ϕ(x)| ≤ 2 ‖ϕ‖1−ϑ
0

∣

∣

∣

∣

∫ 1

0
〈Dϕ(x+ λy), y〉H dλ

∣

∣

∣

∣

ϑ

≤ 2 ‖ϕ‖1−ϑ
0 ‖Dϕ‖ϑ0‖y‖ϑH ,

so that (2.3) follows.

Now, if we fix ϕ ∈ C2+ϑ
b (H), for every µ > 0 and x, z ∈ H, with ‖z‖H = 1, we have

ϕ(x+ µz) = ϕ(x) + µ 〈Dϕ(x), z〉H +
µ2

2
〈D2ϕ(x)z, z〉H

+µ2
∫ 1

0
(1− r)〈[D2ϕ(x+ rµz)−D2ϕ(x)]z, z〉H dr.

(2.6)

By proceeding as in [6, proof of Theorem 2.3.5], we use (2.6) to prove (2.4). Actually, thanks to
(2.6) we have

µ2

2

∣

∣〈D2ϕ(x)z, z〉H
∣

∣ ≤ |ϕ(x+ µz)− ϕ(x)− µ 〈Dϕ(x), z〉H |+ µ2+ϑ[D2ϕ]ϑ

∫ 1

0
(1− r)rϑ dr,

so that

‖D2ϕ‖0 ≤ 2

µ
‖Dϕ‖0 + cϑ µ

ϑ [D2ϕ]ϑ, µ > 0.

If we take the minimum over µ > 0, we get (2.4).
Finally, by using again (2.6), we have

µ |〈Dϕ(x), z〉H | ≤ |ϕ(x+ µz)− ϕ(x)|+ µ2

2

∣

∣〈D2ϕ(x)z, z〉H
∣

∣+ µ2+ϑ[D2ϕ]ϑ

∫ 1

0
(1 − r)rϑ dr,

so that, in view of (2.4), we get

‖Dϕ‖0 ≤ 2

µ
‖ϕ‖0 +

c2,ϑµ

2
‖Dϕ‖

ϑ
1+ϑ

0 [D2ϕ]
1

1+ϑ

ϑ + cϑµ
1+ϑ[D2ϕ]ϑ

≤ 2

µ
‖ϕ‖0 +

1

2
‖Dϕ‖0 + cϑµ

1+ϑ[D2ϕ]ϑ.

This implies that

‖Dϕ‖0 ≤ 4

µ
‖ϕ‖0 + cϑµ

1+ϑ[D2ϕ]ϑ, µ > 0,

and if we minimize once again with respect to µ > 0 we obtain (2.5). �
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Remark 2.2. As a consequence of (2.3), (2.4) and (2.5), we have that for every ϑ ∈ (0, 1) there

exists some cϑ > 0 such that for every ϕ ∈ C2+ϑ
b (H)

[ϕ]ϑ ‖D2ϕ‖0 ≤ cϑ ‖ϕ‖0 [D2ϕ]ϑ. (2.7)

Actually, from (2.4) and (2.5), we have

‖D2ϕ‖0 ≤ c2,ϑ

(

c3,ϑ ‖ϕ‖
1+ϑ
2+ϑ

0 [D2ϕ]
1

2+ϑ

ϑ

)
ϑ

1+ϑ

[D2ϕ]
1

1+ϑ

ϑ ≤ c2,ϑ c
1

1+ϑ

3,ϑ ‖ϕ‖
ϑ

2+ϑ

0 [D2ϕ]
2

2+ϑ

ϑ . (2.8)

Moreover, thanks to (2.3) and (2.5) we have

[ϕ]ϑ ≤ c1,ϑ ‖ϕ‖1−ϑ
0

(

c3,ϑ ‖ϕ‖
1+ϑ
2+ϑ

0 [D2ϕ]
1

2+ϑ

ϑ

)ϑ

= c1,ϑ c
ϑ
3,ϑ ‖ϕ‖

2
2+ϑ

0 [D2ϕ]
ϑ

2+ϑ

ϑ .

Therefore, if we combine together this last inequality with (2.8), we obtain (2.7).

2.3. The Ornstein-Uhlenbeck semigroup. By following [6, Chapter 6], we recall here some
results about the Ornstein-Uhlenbeck semigroup and the associated Kolmogorov equation.

Let A : D(A) ⊂ H → H be the generator of a C0-semigroup etA and let Q be an operator in
L+(H). For every t ≥ 0 we define

Qt :=

∫ t

0
esAQesA

⋆

ds,

and we assume that Qt ∈ L1(H), for every t ≥ 0. Thus, we can introduce the centered Gaussian
measure NQt defined on H with covariance Qt, and we can define

Rtϕ(x) :=

∫

H
ϕ(etAx+ y)NQt(dy), x ∈ H, t ≥ 0, (2.9)

for every ϕ in Bb(H). Rt is the Ornstein-Uhlenbeck semigroup associated with A and Q. In
what follows, we assume that

etA(H) ⊂ Q
1/2
t (H), t > 0. (2.10)

and we define

Λt := Q
−1/2
t etA, t > 0.

As shown e.g. in [6, Theorem 6.2.2], as a consequence of assumption (2.10) we have that
Rtϕ ∈ C∞

b (H), for every ϕ ∈ Bb(H) and t > 0, and for every n ∈ N ∪ {0} there exists some
cn > 0 such that

‖DnRtϕ‖0 ≤ cn ‖Λt‖nL(H) ‖ϕ‖0. (2.11)

Moreover, if we fix α ∈ (0, 1) and assume ϕ ∈ Cα
b (H) we have

[DnRtϕ]α ≤ cn ‖Λt‖nL(H) ‖etA‖αL(H) [ϕ]α, (2.12)

so that we conclude that for all α ∈ [0, 1) and ϕ ∈ Cα
b (H)

‖DnRtϕ‖α ≤ cn ‖Λt‖nL(H) ‖ϕ‖t,α, t > 0, (2.13)

where, for every t ≥ 0 and α ∈ (0, 1),

‖ϕ‖t,α :=
(

‖ϕ‖0 + ‖etA‖αL(H) [ϕ]α

)

, (2.14)
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By the interpolation inequality (2.2), for every n ∈ N ∪ {0} and 0 ≤ α ≤ β < 1 and for every

ϕ ∈ Cβ
b (H) and t > 0, we have

‖DnRtϕ‖1+α ≤ ‖DnRtϕ‖β−α
β ‖DnRtϕ‖1−(β−α)

1+β

= ‖DnRtϕ‖β−α
β

(

‖DnRtϕ‖0 + ‖Dn+1Rtϕ‖β
)1−(β−α)

.

Hence, thanks to (2.13), we get

‖DnRtϕ‖1+α ≤ cβ−α
n ‖Λt‖n(β−α)

L(H) ‖ϕ‖β−α
t,β

(

cn ‖Λt‖nL(H) ‖ϕ‖0 + cn+1 ‖Λt‖n+1
L(H)‖ϕ‖t,β

)1−(β−α)

≤ cα,β,n ‖ϕ‖t,β
(

‖Λt‖nL(H) + ‖Λt‖n+1−(β−α)
L(H)

)

.

In particular, this allows to conclude that for every n ∈ N and 0 ≤ α ≤ β ≤ 1 and for every

ϕ ∈ Cβ
b (H)

‖DnRtϕ‖α ≤ cα,β,n

(

‖Λt‖n−1
L(H) + ‖Λt‖n−(β−α)

L(H)

)

‖ϕ‖t,β . (2.15)

Next, we recall that in [6, Proposition 6.2.9] it is shown that for every ϕ ∈ C1
b (H) and x ∈ H

Tr [QD2Rtϕ(x)] =

∫

H
〈Q−1/2

t y,ΛtQe
tA⋆

Dϕ(etAx+ y)〉H NQt(dy),

so that, if we assume that

ΛtQe
tA⋆ ∈ L2(H), (2.16)

we have

sup
x∈H

‖QD2Rtϕ(x)‖L1(H) ≤ ‖ΛtQe
tA⋆‖L2(H) ‖Dϕ‖0, t > 0.

Therefore, thanks to the semigroup law and (2.15) we conclude that for every ϕ ∈ Cβ
b (H)

sup
x∈H

‖QD2Rtϕ(x)‖L1(H) ≤ c ‖Λt/2Qe
tA⋆/2‖L2(H)‖Λt/2‖1−β

L(H)‖ϕ‖β , t > 0. (2.17)

Moreover, we recall that in [6, Proposition 6.2.5] it is shown that if the operator ΛtA has a
continuous extension ΛtA to H, for every t > 0, then for every ϕ ∈ Bb(H) and x ∈ H

DRtϕ(x) ∈ D(A⋆), ‖A⋆DRtϕ‖0 ≤ ‖ΛtA‖L(H) ‖ϕ‖0, t > 0. (2.18)

Now, we introduce the parabolic equation in H

Dtu(t, x) =
1

2
Tr
[

QD2
xu(t, x)

]

+ 〈x,A⋆Dxu(t, x)〉H , u(0, x) = ϕ(x). (2.19)

Definition 1. A function u : [0,+∞)×H → R is a classical solution of problem (2.19) if

1. u is continuous in [0,+∞)×H and u(0, ·) = ϕ.
2. u(t, ·) ∈ C2

b (H), for all t > 0, and QD2
xu(t, x) ∈ L1(H), for all t > 0 and x ∈ H.

3. Dxu(t, x) ∈ D(A⋆), for all t > 0 and x ∈ H.

4. u(·, x) is differentiable in (0,+∞) for every x ∈ H and u satisfies equation (2.19).

In [6, Theorem 6.2.4] it is shown that if we assume conditions (2.10) and (2.16) and we assume
that the operator ΛtA has a continuous extension to H, then for every ϕ ∈ Bb(H) the function

u(t, x) = Rtϕ(x)

is the unique classical solution of equation (2.19).
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3. Assumptions and main results

3.1. Assumptions. In what follows, we shall make the following hypotheses.

Hypothesis 1. (1) The mapping σ : H×R → L(H) is Lipschitz continuous and there exist

an operator Q ∈ L+(H), a continuous mapping f : H × R → L1(H) and a constant

δ > 0 such that

σ⋆σ(x, r) = Q+ δ f(x, r), x ∈ H, r ∈ R. (3.1)

(2) For every fixed x ∈ H, the function f(x, ·) : R → L1(H) is differentiable. Both f
and ∂rf are Lipschitz continuous in both variables, uniformly with respect to the other.

Moreover

sup
x∈H

‖f(x, r)‖L1(H) ≤ c (1 + |r|) , r ∈ R. (3.2)

Remark 3.1. Let H = L2(O), for some smooth and bounded domain O ⊂ R
d, with d ≥ 1.

Let {ei}i∈N be an orthonormal basis of H and let {λi}i∈N be a sequence of non-negative real
numbers. We assume that ei ∈ L∞(O), for every i ∈ N, and

∞
∑

i=1

λi ‖ei‖L∞(O) <∞. (3.3)

For every x, y ∈ H and r ∈ R, we define

[f(x, r)y](ξ) =
∞
∑

i=1

fi(x(ξ), r)λi〈y, ei〉Hei(ξ), ξ ∈ O,

for some continuous functions fi : R×R → R such that fi(s, ·) : R → R is differentiable, for every
s ∈ R and i ∈ N. We assume that both fi and ∂rfi are Lipschitz continuous in both variables,
uniformly with respect to the other variable, and uniformly with respect to i ∈ N. Moreover,
we assume that

sup
i∈N

sup
s∈R

|fi(s, r)| ≤ c (1 + |r|) , r ∈ R. (3.4)

With this choice of H and f , we have that condition 2 in Hypothesis 1 holds.
Actually, since fi(·, r) : R → R is Lipschitz continuous, uniformly with respect to r ∈ R and

i ∈ N, for every x, y ∈ H and r ∈ R we have
∞
∑

i=1

|〈[f(x, r)− f(y, r)] ei, ei〉H | =
∞
∑

i=1

λi |〈[fi(x(·), r) − fi(y(·), r)] ei, ei〉H |

≤
∞
∑

i=1

‖fi(x(·), r) − fi(y(·), r)‖H‖ei‖L∞(O)λi ≤ c ‖x− y‖H
∞
∑

i=1

λi‖ei‖L∞(O).

In particular, thanks to (3.3), we can conclude that f(·, r) : H → L1(H) is Lipschitz continuous,
uniformly with respect to r ∈ R. In view of our assumptions, the same is true for ∂rf .

The Lipschitz continuity of f(x, ·), ∂rf(x, ·) : R → L1(H), uniform with respect to x ∈ H, is
proved in a similar way. However, in this case (3.3) is not required and we only need the weaker
condition

∞
∑

i=1

λi <∞.

Finally, (3.2) is an immediate consequence of (3.4).
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Now, we see some consequences of Hypothesis 1.

Lemma 3.2. For any function ϕ : H → R we define

F (ϕ)(x) = f(x, ϕ(x)), x ∈ H. (3.5)

Then, under Hypothesis 1 we have that F maps Cϑ
b (H) into Cϑ

b (H;L1(H)) and for every ϕ ∈
Cϑ
b (H)

‖F (ϕ)‖ϑ ≤ c (1 + ‖ϕ‖ϑ) . (3.6)

Moreover for every ϕ1, ϕ2 ∈ Cϑ
b (H) it holds

‖F (ϕ1)− F (ϕ2)‖ϑ ≤ c (1 + ‖ϕ1‖ϑ + ‖ϕ2‖ϑ) ‖ϕ1 − ϕ2‖ϑ. (3.7)

Proof. Due to (3.2), if ϕ ∈ Cϑ
b (H) we have

‖F (ϕ)‖0 ≤ sup
x∈H

‖f(x, ϕ(x))‖L1(H) ≤ c (1 + ‖ϕ‖0) . (3.8)

Moreover, for every x, y ∈ H

‖f(x, ϕ(x)) − f(y, ϕ(y))‖L1(H)

≤ ‖f(x, ϕ(x)) − f(y, ϕ(x))‖ϑL1(H) ‖f(x, ϕ(x)) − f(y, ϕ(x))‖1−ϑ
L1(H)

+‖f(y, ϕ(x)) − f(y, ϕ(y))‖L1(H) ≤ c ‖x− y‖ϑH
(

1 + ‖ϕ‖1−ϑ
0

)

+ c |ϕ(x) − ϕ(y)|

≤ c ‖x− y‖ϑH
(

1 + ‖ϕ‖1−ϑ
0 + [ϕ]ϑ

)

≤ c ‖x− y‖ϑH (1 + ‖ϕ‖0 + [ϕ]ϑ) ,

so that

[F (ϕ)]ϑ ≤ c (1 + ‖ϕ‖0 + [ϕ]ϑ) . (3.9)

This, together with (3.8) allows to conclude that F (ϕ) ∈ Cϑ
b (H) and (3.6) holds.

Concerning (3.7), for every ϕ1, ϕ2 ∈ Cϑ
b (H) we have

‖F (ϕ1)− F (ϕ2)‖0 ≤ c sup
x∈H

‖f(x, ϕ1(x))− f(x, ϕ2(x))‖L1(H) ≤ c ‖ϕ1 − ϕ2‖0. (3.10)

Moreover, for every x, y ∈ H we have

(f(x, ϕ1(x))− f(x, ϕ2(x))) − (f(y, ϕ1(y))− f(y, ϕ2(y)))

=

∫ 1

0
[γ(sϕ1 + (1− s)ϕ2)(x)(ϕ1 − ϕ2)(x)− γ(sϕ1 + (1− s)ϕ2)(y)(ϕ1 − ϕ2)(y)] ds,

where we have defined

γ(ϕ)(x) = ∂rf(x, ϕ(x)), x ∈ H.

This implies that

[f(·, ϕ1)− f(·, ϕ2)]ϑ ≤
∫ 1

0
‖γ(sϕ1 + (1− s)ϕ2)‖ϑ ds ‖ϕ1 − ϕ2‖ϑ.

Since, we are assuming that ∂rf , like f , is Lipschitz continuous with respect to each variable, uni-
formly with respect to the other, and is clearly uniformly bounded, by using the same arguments
we have used to prove (3.8) and (3.9), we have

‖γ(sϕ1 + (1− s)ϕ2)‖ϑ ≤ c (1 + s ‖ϕ1‖ϑ + (1 − s) ‖ϕ2‖ϑ) ,
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and hence

[F (ϕ1)− F (ϕ2)]ϑ ≤ c (1 + ‖ϕ1‖ϑ + ‖ϕ2‖ϑ) ‖ϕ1 − ϕ2‖ϑ.
This, together with (3.10), implies (3.7).

�

Hypothesis 2. (1) The operator A : D(A) ⊂ H → H generates a C0-semigroup etA and

there exist M,ω > 0 such that

‖etA‖L(H) ≤Me−ωt. (3.11)

(2) If Q is the operator introduced in Hypothesis 1 and if we define

Qt :=

∫ t

0
esAQesA

⋆

ds, t ≥ 0,

we have that Qt ∈ L+
1 (H), for every t ≥ 0.

(3) For every t > 0, we have

etA(H) ⊂ Q
1/2
t (H). (3.12)

(4) If we define

Λt := Q
−1/2
t etA, t > 0,

there exists some λ > 0 such that

‖Λt‖L(H) ≤ c (t ∧ 1)−1/2e−λt, t > 0. (3.13)

(5) For every t > 0 we have that ΛtQe
tA⋆ ∈ L2(H) and for every ϑ ∈ (0, 1) there exist

βϑ < 1 and αϑ > 0 such that

κϑ(t) := ‖ΛtQe
tA⋆‖L2(H)‖Λt‖1−ϑ

L(H) ≤ c (t ∧ 1)−βϑe−αϑt, t > 0. (3.14)

Hypothesis 3. For every (x, r) ∈ H × R and t > 0 we have

etAσ(x, r) ∈ L2(H).

Moreover,

‖etAσ(x, r)‖L2(H) ≤ c (t ∧ 1)−
1
4 (1 + ‖x‖H + |r|) , t > 0,

and for every (x, r), (y, s) ∈ H × R

‖etAσ(x, r)− etAσ(y, r)‖L2(H) ≤ c (t ∧ 1)−
1
4 (‖x− y‖H + |r − s|) , t > 0.

Remark 3.3. Let {ei}i∈N be an orthonormal basis in H and assume that Aei = −αiei and
Qei = γi ei, for every i ∈ N, with αi, γi > 0, and αi ↑ +∞, as i → ∞. By proceeding as in [6,
Example 6.2.11], we have that

Qtei =
γi
2αi

(

1− e−2αit
)

ei, i ∈ N,

so that Qt ∈ L1(H) if and only if
∞
∑

i=1

γi
αi

<∞. (3.15)

Moreover,

Λtei =

(

2αit e
−αit

γi (1− e−2αit)

)1/2

t−1/2e−
αi
2
tei, i ∈ N.
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In particular, if γi ≥ γ0 > 0, we have

‖Λt‖L(H) ≤ c t−1/2e−
α1
2
t, t > 0,

so that (3.13) holds. Furthermore,

‖ΛtQe
tA⋆‖2L2(H) = 2

∞
∑

i=1

αi γi e
−2αit

e2αit − 1
≤ c t−1e−2α1t, (3.16)

When A is the realization of the Laplace operator in an interval, endowed with Dirichlet
boundary conditions, we have that αi ∼ i2 and (3.15) is satisfied, for every choice of Q ∈ L(H).
If we assume that Q = I, we have that (3.13) holds. Moreover, thanks to (3.16) we have

‖ΛtQe
tA⋆‖L2(H)‖Λt‖1−ϑ

L(H) ≤ c t−1/2 e−α1t t−(1−ϑ)/2e−
α1(1−ϑ)t

2 = c t−(1−ϑ/2)e−
α1(3−ϑ)t

2 ,

and Condition (5) in Hypothesis 2 holds for every ϑ ∈ (0, 1). Notice also that in this case
Hypothesis 3 is satisfied.

Hypothesis 4. The mapping b : H → H is Lipschitz continuous and bounded.

3.2. Main results. As we have done in Section 2 for the linear Kolmogorov equation (2.19),
we introduce here the notion of classical solution for the quasi-linear problem






Dtuǫ(t, x) =
ǫ

2
Tr
[

σ⋆σ(x, uǫ(t, x))D
2
xuǫ(t, x)

]

+ 〈Ax+ b(x),Duǫ(t, x)〉H , x ∈ H, t > 0,

uǫ(0, x) = g(x), x ∈ H.
(3.17)

Definition 2. A function uǫ : [0,+∞) ×H → R is a classical solution of problem (3.17) if the

following conditions are satisfied.

1. It is continuous in [0,+∞) ×H and uǫ(0, ·) = g.

2. uǫ(t, ·) ∈ C2
b (H), for all t > 0, and QD2

xuǫ(t, x) ∈ L1(H), for all (t, x) ∈ (0,+∞)×H.

3. uǫ(·, x) is differentiable in (0,+∞), for every x ∈ D(A).

4. It satisfies equation (3.17), for every (t, x) ∈ (0,+∞)×D(A).

In what follows, for every ǫ ∈ (0, 1), 0 < ϑ < η < 1, ̺ ∈ (0, 1/2) and T > 0, we denote

by Cǫ,̺,η((0, T ];C
2+ϑ
b (H)) the space of all functions u ∈ C([0, T ];Cη

b (H)) ∩ C((0, T ];C2+ϑ
b (H))

such that

‖u‖ǫ,̺,η,ϑ,T := sup
t∈ (0,T ]

(

‖u(t, ·)‖η + ǫ̺(t ∧ 1)̺‖Dxu(t, ·)‖ϑ + ǫ̺+
1
2 (t ∧ 1)̺+

1
2 ‖D2

xu(t, ·)‖ϑ
)

<∞.

Theorem 3.4. Assume Hypotheses 1 to 4, and fix an arbitrary g ∈ Cη
b (H), for some η > 1/2.

Then there exists δ̄ > 0 such that for every δ ≤ δ̄ and ǫ ∈ (0, 1) there exists a unique classical

solution uǫ for equation (3.17). Moreover, if we fix ϑ ∈ (0, (η − 1/2) ∧ 1) and we define

̺ =
1− (η − ϑ)

2
,

we have that uǫ ∈ Cǫ,̺,η((0, T ];C
2+ϑ
b (H)), for every T > 0 and ǫ ∈ (0, 1), and

‖uǫ‖ǫ,̺,η,ϑ,T ≤ cǫ ‖g‖η , ǫ ∈ (0, 1), (3.18)

for some constant cǫ > 0 independent of T > 0.

14



Once proved the existence and uniqueness of a classical solution uǫ for problem (3.17), for
every ǫ > 0, we fix arbitrary t > 0 and x ∈ H and we introduce the following stochastic PDE



















dX(s) = [AX(s) + b(X(s)) + σ(X(s), uǫ(t− s,X(s)))ϕ(s)] ds

+
√
ǫ σ(X(s), uǫ(t− s,X(s))) dWs,

X(0) = x.

(3.19)

Here Wt, t ≥ 0, is a cylindrical Wiener process on H, defined on the filtered probability space
(Ω,F, {Ft}t≥0,P), such that for every h, k ∈ H and t, s ≥ 0

E 〈Wt, h〉H〈Ws, k〉H = (t ∧ s) 〈h, k〉H ,
and ϕ is a predictable process in L2(Ω;L2(0, t;H)).

Definition 3. An adapted process Xt,x
ϕ,ǫ ∈ L2(Ω;C([0, t];H)) is a mild solution for equation

(3.19) if for every s ∈ [0, t]

Xt,x
ϕ,ǫ(s) = esAx+

∫ s

0
e(s−r)Ab(Xt,x

ϕ,ǫ(r)) dr +

∫ s

0
e(s−r)Aσ(Xt,x

ϕ,ǫ(r), uǫ(t− r,Xt,x
ϕ,ǫ(r)))ϕ(r) dr

+
√
ǫ

∫ s

0
e(s−r)Aσ(Xt,x

ϕ,ǫ(r), uǫ(t− r,Xt,x
ϕ,ǫ(r))) dWr.

(3.20)

Theorem 3.5. Suppose that Hypotheses 1 to 4 hold, and fix any g ∈ Cη
b (H), with η > 1/2,

ǫ ∈ (0, 1) and δ ∈ [0, δ̄), where δ̄ is the constant introduced in Theorem 3.4. Moreover, fix an

arbitrary predictable process in L2(Ω;C([0, t];H)) such that
∫ t

0
‖ϕ(s)‖2H ds ≤M, P− a.s. (3.21)

for some M > 0. Then, if we assume that b : H → H is Lipschitz-continuous, equation (3.19)

admits a unique mild solution Xt,x
ϕ,ǫ ∈ L2(Ω;C([0, t];H)), for every x ∈ H and t > 0.

In what follows, the solution of the uncontrolled version of equation (3.19), corresponding to

ϕ = 0, will be denoted by Xt,x
ǫ .

Once proved Theorem 3.5, we are interested in studying the limiting behavior of Xt,x
ǫ as

ǫ ↓ 0. More precisely, we want to prove that for every fixed t > 0 and x ∈ H the family
{L(Xt,x

ǫ )}ǫ∈ (0,1) satisfies a large deviation principle in the space C([0, t];H) (with speed ǫ) with
respect to a suitable action functional It,x that we will describe explicitly.

In order to state our result, we have to introduce some notations. First, we introduce the
unperturbed problem

Z ′(s) = AZ(s) + b(Z(s)), Z(0) = y ∈ H. (3.22)

Since we are assuming that b : H → H is Lipschitz continuous, for every T > 0 and y ∈ H there
exists a unique Zy ∈ C([0, T ];H) such that

Zy(s) = esAy +

∫ s

0
e(s−r)Ab(Zy(r)) dr.

Next, for every x ∈ H, t > 0 and ϕ ∈ L2(0, t;H) we introduce the controlled problem

X ′(s) = AX(s) + b(X(s)) + σ(X(s), g(ZX(s)(t− s)))ϕ(s), X(0) = x. (3.23)
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In Section 8 we will see that under the same assumptions of Theorem 3.5, equation (3.23) admits

a unique mild solution Xt,x
ϕ ∈ C([0, t];H). This will allow to state the last main result of this

paper.

Theorem 3.6. In addition to the conditions assumed in Theorem 3.5, suppose that g : H → R

is Lipschitz-continuous. Then, for every fixed t > 0 and x ∈ H the family {L(Xt,x
ǫ )}ǫ∈ (0,1)

satisfies a large deviation principle in the space C([0, t];H), with speed ǫ, with respect to the

action functional

It,x(X) =
1

2
inf

{
∫ t

0
‖ϕ(s)‖2H ds : X(s) = Xt,x

ϕ (s), s ∈ [0, t]

}

, (3.24)

where Xt,x
ϕ is the unique mild solution of problem (3.23).

4. The well-posedness of the stochastic PDE (3.19)

In this section we will assume that, for some T > 0, η > 1/2, ϑ ∈ (0, (η − 1/2) ∧ 1), ̺ < 1/4,

and ǫ ∈ (0, 1) there exists a mild solution uǫ ∈ Cǫ,̺,η((0, T ];C
2+ϑ
b (H)) for equation (3.17). We

will show how this allows to prove Theorem 3.5 for every t ∈ (0, T ].
We fix t ∈ (0, T ] and a predictable process ϕ ∈ L2(Ω;L2(0, t;H)) satisfying (3.21) and we

consider the stochastic equation


















dX(s) = [AX(s) + b(X(s)) + σ(X(s), uǫ(t− s,X(s)))ϕ(s)] ds

+
√
ǫ σ(X(s), uǫ(t− s,X(s))) dWs,

X(0) = x.

(4.1)

For every ǫ ∈ (0, 1), s ∈ [0, t] and x ∈ H, we define

Σt,ǫ(s, x) := σ(x, uǫ(t− s, x)). (4.2)

A process X ∈ L2(Ω;C([0, t];H)) is a mild solution of equation (4.1) if it is a fixed point of the
mapping Λt,ǫ defined by

Λt,ǫ(X)(s) := esAx+

∫ s

0
e(s−r)Ab(X(r)) ds +

∫ s

0
e(s−r)AΣt,ǫ(r,X(r))ϕ(r) dr

+
√
ǫ

∫ s

0
e(s−r)AΣt,ǫ(r,X(r)) dW (r).

According to Hypothesis 3, for every τ > 0, s ∈ [0, t] and x, y ∈ H we have

‖eτA (Σt,ǫ(s, x)− Σt,ǫ(s, y)) ‖L2(H) ≤ c (τ ∧ 1)−
1
4 (‖x− y‖H + |uǫ(t− s, x)− uǫ(t− s, y)|) .

Since uǫ ∈ Cǫ,̺,η((0, T ];C
2+ϑ
b (H)), we have

|uǫ(t− s, x)− uǫ(t− s, y)| ≤ ‖Dxuǫ(t− s, ·)‖0 ‖x− y‖H

≤ ǫ−̺ ((t− s) ∧ 1)−̺‖uǫ‖ǫ,̺,η,ϑ,T ‖x− y‖H ,
so that

‖eτA (Σt,ǫ(s, x)− Σt,ǫ(s, y)) ‖L2(H) ≤ c (τ ∧ 1)−
1
4
(

1 + ǫ−̺((t− s) ∧ 1)−̺‖uǫ‖ǫ,̺,η,ϑ,T
)

‖x− y‖H .
(4.3)
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Now, for every β ≥ 0 we denote by Kβ,t(H) the Banach space of all H-valued predictable
processes X such that

‖X‖2Kβ,t(H) := sup
s∈ [0,t]

e−βs
E ‖X(s)‖2H <∞.

If X1,X2 ∈ Kβ,t(H), in view of (4.3) we have

E

∥

∥

∥

∥

∫ s

0
e(s−r)A [Σt,ǫ(r,X1(r))− Σt,ǫ(r,X2(r))] ϕ(r) dr

∥

∥

∥

∥

2

H

≤ E

∫ s

0

∥

∥

∥
e(s−r)A [Σt,ǫ(r,X1(r))− Σt,ǫ(r,X2(r))]

∥

∥

∥

2

L2(H)
dr

∫ s

0
‖ϕ(r)‖2H dr

≤ cM E

∫ s

0
((s − r) ∧ 1)−

1
2
(

1 + ǫ−2̺((t− r) ∧ 1)−2̺‖uǫ‖2ǫ,̺,η,ϑ,T
)

‖X1(r)−X2(r)‖2H dr

≤ cM ‖X1 −X2‖2Kβ,t(H)

∫ s

0
((s − r) ∧ 1)−

1
2
(

1 + e−2̺((t− r) ∧ 1)−2̺‖uǫ‖2ǫ,̺,η,ϑ,T
)

eβr dr.

Since we are assuming that ̺ < 1/4, for every s ∈ [0, t]
∫ s

0
((s− r) ∧ 1)−

1
2
(

1 + e−2̺((t− r) ∧ 1)−2̺‖uǫ‖2ǫ,̺,η,ϑ,T
)

e−β(s−r) dr ≤ cǫ,β,t(s),

for some continuous increasing function cǫ,β,t : [0, t] → [0,+∞) such that

lim
β→∞

sup
s∈ [0,t]

cǫ,β,t(s) = 0.

Therefore, we pick β1 = β1(ǫ, t) > 0 such that

sup
s∈ [0,t]

cǫ,β1,t(s) ≤
1

6
,

we have

sup
s∈ [0,t]

e−β1s E

∥

∥

∥

∥

∫ s

0
e(s−r)A [Σt,ǫ(r,X1(r))− Σt,ǫ(r,X2(r))] ϕ(r) dr

∥

∥

∥

∥

2

H

≤ 1

6
‖X1 −X2‖2Kβ1,t

(H).

Moreover, we have

E

∥

∥

∥

∥

∫ s

0
e(s−r)A [Σt,ǫ(r,X1(r))− Σt,ǫ(r,X2(r))] dW (r)

∥

∥

∥

∥

2

H

≤ c

∫ s

0
((s − r) ∧ 1)−

1
2
(

1 + ǫ−2̺((t− r) ∧ 1)−2̺‖uǫ‖2ǫ,̺,η,ϑ,T
)

E‖X1(r)−X2(r)‖2H dr

≤ c ‖X1 −X2‖2Kβ,t(H)

∫ s

0
((s− r) ∧ 1)−

1
2
(

1 + ǫ−2̺((t− r) ∧ 1)−2̺‖uǫ‖2ǫ,̺,η,ϑ,T
)

eβr dr.
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Then, by proceeding as above

sup
s∈ [0,t]

e−β1s E

∥

∥

∥

∥

∫ s

0
e(s−r)A [Σt,ǫ(r,X1(r))− Σt,ǫ(r,X2(r))] dW (r)

∥

∥

∥

∥

2

H

≤ 1

6
‖X1 −X2‖2Kβ1,t

(H).

Finally, due to the Lipschitz-continuity of b, we have that there exists β2 > 0 such that that

sup
s∈ [0,t]

e−β2sE

∥

∥

∥

∥

∫ s

0
e(s−r)A [b(X1(r))− b(X2(r))] dr

∥

∥

∥

∥

2

H

≤ 1

6
‖X1 −X2‖2Kβ2,t

(H).

Therefore, is we take β̄ := β1 ∨ β2 , we have that Λt,ǫ is a contraction in Kβ̄,t(H) and its fixed

point is the unique mild solution Xt,x
ϕ,ǫ of equation (4.1).

Finally, by using a stochastic factorization argument, it is possible to prove that Xt,x
ϕ belongs

to L2(Ω;C([0, t];H)) (for all details about stochastic factorization see [7, Subsection 5.3.1]).

5. Local existence of mild solutions for the quasi-linear problem

In this section we will prove that the quasi-linear problem (3.17) admits a local mild solution,
for every ǫ ∈ (0, 1).

In view of (3.1) and (3.5), problem (3.17) can be rewritten as






Dtuǫ(t, x) = Lǫuǫ(t, x) +
ǫ

2
Tr
[

δ F (uǫ)(t, x)D
2
xuǫ(t, x)

]

+ 〈b(x),Duǫ(t, x)〉H ,

uǫ(0, x) = g(x), x ∈ H,
(5.1)

where Lǫ is the linear Kolmogorov operator

Lǫϕ(x) =
ǫ

2
Tr
[

QD2
xϕ(x)

]

+ 〈Ax,Dxϕ(x)〉H .

As we have recalled in Subsection 2.3, for every ϕ ∈ Bb(H) the unique classical solution of
the linear problem

Dtvǫ(t, x) = Lǫvǫ(t, x), vǫ(0, x) = ϕ(x),

is given by the Ornstein-Uhlenbeck semigroup

vǫ(t, x) = Rǫ
tϕ(x) =

∫

H
ϕ(etAx+ y)NǫQt(dy).

Before proceeding with the study of equation (5.1), we show how, in view of Hypothesis 2,
the properties of the Ornstein-Uhlenbeck semigroup described in Subsection 2.3 apply to the
semigroup Rǫ

t .
Thanks to (3.11) and (3.13), inequality (2.13) gives for every n ∈ N ∪ {0} and α ∈ (0, 1)

‖DnRǫ
tϕ‖α ≤ cn,α ǫ

−n
2 (t ∧ 1)−

n
2 e−λnt‖ϕ‖t,α, t > 0, ǫ ∈ (0, 1), (5.2)

where
‖ϕ‖t,α :=

(

‖ϕ‖0 + e−ωαt[ϕ]α
)

.

In the same way, inequality (2.15) gives for every n ∈ N and 0 ≤ α ≤ β ≤ 1

‖DnRǫ
tϕ‖α ≤ cn,α,β ǫ

−n−(β−α)
2 (t ∧ 1)−

n−(β−α)
2 e−λnt‖ϕ‖t,β , t > 0, ǫ ∈ (0, 1). (5.3)

Finally, since
‖Rǫ

tϕ‖0 ≤ ‖ϕ‖0, [Rǫ
tϕ]β ≤ e−ωβt[ϕ]β , ǫ > 0,
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and

[Rǫ
tϕ]α ≤ ‖DRǫ

tϕ‖
α−β
1−β

0 [Rǫ
tϕ]

1−α
1−β

β ,

thanks to (5.2) and (5.3) we get

[Rǫ
tϕ]α ≤ cα,β ǫ

−α−β
2 (t ∧ 1)−

α−β
2 e−ωα,βt‖ϕ‖t,β , t > 0, ǫ ∈ (0, 1), (5.4)

for some ωα,β > 0, and

‖Rǫ
tϕ‖α ≤ cα,β ǫ

−α−β
2 (t ∧ 1)−

α−β
2 ‖ϕ‖t,β , t > 0, ǫ ∈ (0, 1). (5.5)

Now, we introduce the notion of mild solution for equation (3.17).

Definition 4. A function uǫ ∈ C([0,+∞);H) such that uǫ(t, ·) ∈ C2
b (H), for every t > 0, is a

mild solution for problem (3.17) if for every (t, x) ∈ [0,+∞) ×H

uǫ(t, x) = Rǫ
tg(x) +

∫ t

0
Rǫ

t−s

( ǫ

2
Tr
[

δF (uǫ(s, ·))D2
xuǫ(s, ·)

]

+ 〈b(·),Duǫ(s, ·)〉H
)

(x) ds.

For every R > 0 we define

Y
ǫ,R
̺,η,ϑ,T :=

{

u ∈ Cǫ,̺,η((0, T ];C
2+ϑ
b (H)) : ‖u‖ǫ,̺,η,ϑ,T ≤ R

}

,

and for every v ∈ Y
ǫ,R
̺,η,ϑ,T and δ > 0 we define

Γǫ,δ(v)(t, x) :=

∫ t

0
Rǫ

t−sγǫ,δ(v, s)(x) ds, t ∈ [0, T ], x ∈ H,

where

γǫ,δ(v, s)(x) :=
ǫ

2
Tr
[

δF (v(s, ·))(x)D2
xv(s, x)

]

+ 〈b(x),Dv(s, x)〉H .

In particular, uǫ is a mild solution for problem (3.17) if and only if

uǫ(t, x) = Rǫ
tg(x) + Γǫ,δ(uǫ)(t, x).

First, we investigate the dependence of γǫ,δ on v ∈ Y
ǫ,R
̺,η,ϑ,T .

Lemma 5.1. For every v ∈ Y
ǫ,R
̺,η,ϑ,T and δ > 0

‖γǫ,δ(v, s)‖ϑ ≤ c ǫ
1
2
−̺ δR (1 +R) (s ∧ 1)−(̺+ 1

2
) + c ǫ−̺R(s ∧ 1)−̺, s ∈ (0, T ]. (5.6)

Moreover, for every v1, v2 ∈ Y
ǫ,R
̺,η,ϑ,T and δ > 0

‖γǫ,δ(v1, s)− γǫ,δ(v2, s)‖ϑ ≤ c ǫ
1
2
−̺δ R(1 +R) (s ∧ 1)−(̺+ 1

2
)‖v1(s, ·)− v2(s, ·)‖ϑ

+c ǫ δ(1 +R) ‖D2
xv1(s, ·)−D2

xv2(s, ·)‖ϑ + c ‖Dxv1(s, ·)−Dxv2(s, ·)‖ϑ.
(5.7)

Proof. In view of (3.6) and Hypothesis 3, we have

‖γǫ,δ(v, s)‖ϑ ≤ c ǫ δ ‖F (v(s, ·))‖ϑ ‖D2
xv(s, ·)‖ϑ + ‖b‖ϑ ‖Dxv(s, ·)‖ϑ

≤ c ǫ δ (1 + ‖v(s, ·)‖ϑ) ‖D2
xv(s, ·)‖ϑ + c ‖Dxv(s, ·)‖ϑ,

and since we are assuming that v ∈ Y
ǫ,R
̺,η,ϑ,T , this implies (5.6).
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Next, if v1, v2 ∈ Y
ǫ,R
̺,η,ϑ,T and δ > 0 we have

‖γǫ,δ(v1, s)− γǫ,δ(v2, s)‖ϑ ≤ c ǫ δ ‖F (v1(s, ·)) − F (v1(s, ·))‖ϑ ‖D2
xv1(s, ·)‖ϑ

+c ǫ δ ‖F (v2(s, ·))‖ϑ ‖D2
xv1(s, ·)−D2

xv2(s, ·)‖ϑ + ‖b‖ϑ ‖Dxv1(s, ·)−Dxv2(s, ·)‖ϑ.
Thus, according to (3.6) and (3.7),

‖γǫ,δ(v1, s)− γǫ,δ(v2, s)‖ϑ

≤ c ǫ δ ‖v1(s, ·)− v2(s, ·)‖ϑ (1 + ‖v1(s, ·)‖ϑ + ‖v2(s, ·)‖ϑ) ‖D2
xv1(s, ·)‖ϑ

+c ǫ δ (1 + ‖v2(s, ·)‖ϑ) ‖D2
xv1(s, ·) −D2

xv2(s, ·)‖ϑ + c ‖Dxv1(s, ·) −Dxv2(s, ·)‖ϑ.

Recalling that v1, v2 ∈ Y
ǫ,R
̺,η,ϑ,T , this implies (5.7).

�

Remark 5.2. If for every fixed ǫ, δ > 0 we define

αǫ,δ(R, s) := ǫ
1
2
−̺δR(1 +R)(s ∧ 1)−(̺+ 1

2
) + ǫ−̺R(s ∧ 1)−̺, s > 0, R > 0,

and

aǫ,δ(R, s) := ǫ
1
2
−̺δ(1 +R)2(s ∧ 1)−(̺+ 1

2
) + ǫ−̺(s ∧ 1)−̺, s > 0, R > 0,

due (5.6) and (5.7) we have that for every v, v1, v2 ∈ Y
ǫ,R
̺,η,ϑ,T and s ∈ (0, T ]

‖γǫ,δ(v, s)‖ϑ ≤ c αǫ,δ(R, s), (5.8)

and

‖γǫ,δ(v1, s)− γǫ,δ(v2, s)‖ϑ ≤ c aǫ,δ(R, s) ‖v1 − v2‖ǫ,̺,η,ϑ,T . (5.9)

Notice that for all β < 1 and µ > 0 and for all t ≥ 0
∫ t

0
((t− s) ∧ 1)−βe−µ(t−s)αǫ,δ(R, s) ds

≤ ǫ
1
2
−̺δR(1 +R)

∫ t

0
((t− s) ∧ 1)−βe−µ(t−s)(s ∧ 1)−(̺+ 1

2
) ds

+ǫ−̺R

∫ t

0
((t− s) ∧ 1)−βe−µ(t−s)(s ∧ 1)−̺ ds,

and this implies that there exists some constant c > 0 only dependent on β and µ such that
∫ t

0
((t− s) ∧ 1)−βe−µ(t−s)αǫ,δ(R, s) ds ≤ c (t ∧ 1)

1
2
−(̺+β)ǫ

1
2
−̺λǫ,δ(T, t), (5.10)

where

λǫ,δ(R, t) := δR(1 +R) + ǫ
1
2R (t ∧ 1)

1
2 .

In an analogous way
∫ t

0
(t− s)−βe−µ(t−s)aǫ,δ(R, s) ds ≤ c (t ∧ 1)

1
2
−(̺+β)ǫ

1
2
−̺lǫ,δ(R, t), (5.11)

where

lǫ,δ(R, t) := δ(1 +R)2 + ǫ
1
2 (t ∧ 1)

1
2 .
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Next we prove the following estimates for Γǫ,δ on Y
ǫ,R
̺,η,ϑ,T .

Lemma 5.3. For every v ∈ Y
ǫ,R
ǫ,̺,η,ϑ,T and ǫ, δ ∈ (0, 1) it holds

‖Γǫ,δ(v)‖ǫ,̺,η,ϑ,T ≤ c λǫ,δ(R,T )
[

ǫ
1−(η−ϑ)

2
−̺ (T ∧ 1)

1−(η−ϑ)
2

−̺ (T ∨ 1) + 1
]

. (5.12)

Proof. Step 1. We have

‖Γǫ,δ(v)(t)‖η ≤ c ǫ
1−(η−ϑ)

2
−̺λǫ,δ(R, t) (t ∧ 1)

1−(η−ϑ)
2

−̺(t ∨ 1), t ∈ [0, T ]. (5.13)

Proof of Step 1. In view of (5.5), for every t ∈ [0, T ]

‖Γǫ,δ(v)(t)‖η ≤
∫ t

0
‖Rǫ

t−sγǫ,δ(v, s)‖η ds ≤ c ǫ−
η−ϑ
2

∫ t

0
((t− s) ∧ 1)−

η−ϑ
2 ‖γǫ,δ(v, s)‖ϑ ds

≤ c ǫ−
η−ϑ
2

∫ t

0
((t− s) ∧ 1)−

η−ϑ
2 αǫ,δ(R, s) ds.

Then, by adapting (5.10) to the case µ = 0, we get

‖Γǫ,δ(v)(t)‖η ≤ c ǫ−
η−ϑ
2 ǫ

1
2
−̺λǫ,δ(R, t)(t ∧ 1)

1−(η−ϑ)
2

−̺ (t ∨ 1),

and (5.13) follows.

Step 2. We have

(t ∧ 1)̺ ‖DΓǫ,δ(v)(t)‖ϑ ≤ c ǫ−̺
[

δ R(1 +R) + ǫ−
1
2R(t ∧ 1)

1
2

]

. (5.14)

Proof of Step 2. According to (5.2), we have that
∫ t

0
‖DRǫ

t−sγǫ,δ(v, s)‖ϑ ds ≤ cǫ−
1
2

∫ t

0
((t− s) ∧ 1)−

1
2 e−λ(t−s)‖γǫ,δ(v, s)‖ϑ ds.

Then, thanks to (5.8) and (5.10) we conclude
∫ t

0
‖DRǫ

t−sΓǫ,δ(v, s)‖ϑ ds ≤ c ǫ−
1
2 (t ∧ 1)−̺ǫ

1
2
−̺λǫ,δ(R, t),

and (5.14) follows.

Step 3. We have

(t ∧ 1)̺+
1
2 ‖D2Γǫ,δ(v)(t)‖ϑ ≤ c ǫ−( 1

2
+̺)λǫ,δ(T, t). (5.15)

Proof of Step 3. By proceeding as in the proof of Step 2, we have

‖D2Γǫ,δ(v)(t)‖0 ≤ cǫ−1+ϑ
2

∫ t

0
((t− s) ∧ 1)−1+ϑ

2 e−λ(t−s)αǫ,δ(R, s) ds

≤ c ǫ−1+ϑ
2 ǫ

1
2
−̺(t ∧ 1)−(̺+ 1

2
)+ϑ

2 λǫ,δ(R, t),

and this implies

(t ∧ 1)̺+
1
2 ‖D2Γǫ,δ(v)(t)‖0 ≤ c ǫ−( 1

2
+̺)+ϑ

2 λǫ,δ(R, t)(t ∧ 1)
ϑ
2 . (5.16)

Now, for every x, h ∈ H and t ∈ [0, T ], we have

(t ∧ 1)̺+
1
2‖D2Γǫ,δ(v)(t, x + h)−D2Γǫ,δ(v)(t, x)‖L(H) ≤ c ǫ−( 1

2
+̺)+ϑ

2 λǫ,δ(R, t) (t ∧ 1)
ϑ
2 .
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Hence, if we assume that ‖h‖2H > ǫ t/2 we get

(t ∧ 1)̺+
1
2 ‖D2Γǫ,δ(v)(t, x + h)−D2Γǫ,δ(v)(t, x)‖L(H) ≤ c ǫ−( 1

2
+̺)λǫ,δ(R, t) ‖h‖ϑH . (5.17)

When ‖h‖2H ≤ ǫ t/2 we have

D2Γǫ,δ(v)(t, x) =

∫ ǫ−1‖h‖2H

0
D2Rǫ

sγǫ,δ(v, t − s)(x) ds +

∫ t

ǫ−1‖h‖2
H

D2Rǫ
sγǫ,δ(v, t− s)(x) ds

=: aǫ,δ(h, t, x) + bǫ,δ(h, t, x).

Due to (5.3), from (5.8) we have

|aǫ,δ(h, t, x + h)− aǫ,δ(h, t, x)| ≤ c ǫ−1+ϑ
2

∫ ǫ−1‖h‖2
H

0
(s ∧ 1)−1+ϑ

2 ‖γǫ,δ(v, t − s)‖ϑ ds

≤ c ǫ−1+ϑ
2

∫ ǫ−1‖h‖2
H

0
s−1+ϑ

2 e−λsαǫ,δ(R, s) ds ≤ c ǫ−( 1
2
+̺)λǫ,δ(R, t) (t ∧ 1)−(̺+ 1

2
) ‖h‖ϑH .

(5.18)

As for bǫ,δ(h, t, ·), we have

bǫ,δ(h, t, x+ h)− bǫ,δ(h, t, x) =

∫ t

ǫ−1‖h‖2
H

[

D2Rǫ
sγǫ,δ(v, t− s)(x+ h)−D2Rǫ

sγǫ,δ(v, t− s)(x)
]

ds.

Hence, due again to (5.3), we have

‖bǫ,δ(h, t, x+ h)− bǫ,δ(h, t, x)‖L(H)

≤
∫ t

ǫ−1‖h‖2
H

‖D2Rǫ
sγǫ,δ(v, t − s)(x+ h)−D2Rǫ

sγǫ,δ(v, t− s)(x)‖L(H) ds

≤ c

∫ t

ǫ−1‖h‖2
H

‖Rǫ
sγǫ,δ(v, t− s)‖3 ds‖h‖H

≤ c ǫ−
3−ϑ
2 ǫ

1
2
−̺

∫ t

ǫ−1‖h‖2
H

(s ∧ 1)−
3−ϑ
2 e−2λs((t− s) ∧ 1)−(̺+ 1

2
)λǫ,δ(R, t− s) ds.

Since we assuming ‖h‖2H ≤ ǫ t/2, we have
∫ t

ǫ−1‖h‖2
H

(s ∧ 1)−
3−ϑ
2 e−2λs((t− s) ∧ 1)−(̺+ 1

2
)) ds

=

∫ t/2

ǫ−1‖h‖2
H

(s ∧ 1)−
3−ϑ
2 e−2λs((t− s) ∧ 1)−(̺+ 1

2
) ds +

∫ t

t/2
s−

3−ϑ
2 e−2λs((t− s) ∧ 1)−(̺+ 1

2
) ds

≤ c t−(̺+ 1
2
) ‖h‖−1+ϑ

H + c t−
3−ϑ
2 t

1
2
−̺ = c t−̺

(

ǫ
1−ϑ
2 ‖h‖−1+ϑ

H + t−
1−ϑ
2

)

≤ c ǫ
1−ϑ
2 (t ∧ 1)−(̺+ 1

2
) ‖h‖−1+ϑ

H .

Moreover, in the same way we have
∫ t

ǫ−1‖h‖2
H

s−
3−ϑ
2 e−2λs((t− s) ∧ 1)−̺ ds ≤ c ǫ

1−ϑ
2 (t ∧ 1)−̺ ‖h‖−1+ϑ

H ,
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so that
(t ∧ 1)̺+

1
2 ‖bǫ,δ(h, t, x+ h)− bǫ,δ(h, t, x)‖L(H) ≤ c ǫ−( 1

2
+̺)λǫ,δ(R, t)‖h‖ϑH .

This, together with (5.18) and (5.17), implies that for every h ∈ H

(t ∧ 1)̺+
1
2 ‖D2Γǫ,δ(v)(t, x + h)−D2Γǫ,δ(v)(t, x)‖L(H) ≤ c ǫ−( 1

2
+̺)λǫ,δ(R, t) ‖h‖ϑH .

Thus, thanks to (5.16), we obtain (5.15).

Conclusion. Estimate (5.12) is a consequence of (5.13), (5.14) and (5.15). �

Remark 5.4. From the proof of the previous lemma, we easily see that for every t ∈ (0, T ] and
ǫ ∈ (0, 1)

ǫ
η−ϑ
2 [Γǫ,δ(v)(t)]η + ǫ̺(t ∧ 1)̺‖DΓǫ,δ(v)(t)‖ϑ + ǫ

1
2
+̺(t ∧ 1)̺+

1
2 ‖D2Γǫ,δ(v)(t)‖ϑ

≤ c λǫ,δ(R, t)
(

(t ∧ 1)
1−(η−ϑ)

2
−̺ǫ

1−(η−ϑ)
2

−̺ + 1
)

,

(5.19)

for some constant c > 0 independent of T > 0. Actually, in view of (5.4) and (5.8), we have

[Γǫ,δ(v)(t)]η ≤ c ǫ−
η−ϑ
2

∫ t

0
e−ωϑ,η(t−s)((t− s) ∧ 1)−

η−ϑ
2 [γǫ,δ(v, s)]ϑ ds

≤ c ǫ−
η−ϑ
2

∫ t

0
e−ωϑ,η(t−s)((t− s) ∧ 1)−

η−ϑ
2 αǫ,δ(R, s) ds

≤ c λǫ,δ(R, t)
(

ǫ
1−(η−ϑ)

2
−̺(t ∧ 1)

1−(η−ϑ)
2

−̺ + 1
)

.

This, together with (5.14) and (5.15), implies (5.19).

Now we are ready to prove the existence of a local mild solution.

Theorem 5.5. Fix η > 1/2 and ϑ ∈ (0, (η − 1/2) ∧ 1) and define

̺ :=
1− (η − ϑ)

2
. (5.20)

Then, there exist δ1, T1 > 0 such that for every ǫ ∈ (0, 1) problem (3.17) has a mild solution uǫ
in Cǫ,̺,η((0, T1];C

2+ϑ
b (H)), for every δ ≤ δ1.

Proof. A function uǫ is a mild solution of equation (3.17) if and only if it is a fixed point for the
mapping Γg

ǫ,δ defined by

Γg
ǫ,δ(v)(t) = Rǫ

tg + Γǫ,δ(v)(t), t ∈ [0, T ].

Thus, we will prove the existence of a local mild solution for equation (3.17) by showing that

there exist some T1, R > 0 and δ1 > 0 such that Γg
ǫ,δ maps Y

ǫ,R
̺,ϑ,T1

into itself as a contraction,

for every δ ≤ δ1.
Thanks to (5.5) we have

‖Rǫ
tg‖η ≤ c ‖g‖η . (5.21)

Moreover, thanks to (5.3)

‖DRǫ
tg(v)(t)‖ϑ ≤ c ǫ−

1−(η−ϑ)
2 (t ∧ 1)−

1−(η−ϑ)
2 e−λt ‖g‖η ,

‖D2Rǫ
tg(v)(t)‖ϑ ≤ c ǫ−(1− η−ϑ

2
)(t ∧ 1)−(1− η−ϑ

2
) e−2λt ‖g‖η .

(5.22)
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Therefore, if we define ̺ as in (5.20), we have that ̺ ∈ (0, 1/4) and from (5.21) and (5.22) it
follows

‖Rǫ
tg‖η + ǫ̺(t ∧ 1)̺‖DRǫ

tg(t)‖ϑ + ǫ
1
2
+̺(t ∧ 1)̺+

1
2 ‖D2Rǫ

tg(t)‖ϑ ≤ c ‖g‖η . (5.23)

With ̺ defined as in (5.20), together with (5.12) this implies that for every v ∈ Y
ǫ,R
̺,η,ϑ,T

‖Γg
ǫ,δ(v)‖ǫ,̺,η,ϑ,T ≤ c ‖g‖η + c

[

δ R(1 +R) + ǫ−
1
2R (T ∧ 1)

1
2

]

(T ∨ 1).

In particular, if we first take R := 3c ‖g‖η and δ′ > 0 small enough such that

c δ′ R(1 +R) ≤ R

3
,

and then fix T ′ ≤ 1 small enough so that

ǫ−
1
2R(T ′ ∧ 1)

1
2 ≤ R

3
,

we conclude that for every δ ≤ δ′ and T ≤ T ′

‖Γg
ǫ,δ(v)‖ǫ,̺,η,ϑ,T ≤ R,

so that Γg
ǫ,δ maps Yǫ,R

̺,η,ϑ,T into itself.

Now, if we fix v1, v2 ∈ Y
ǫ,R
̺,η,ϑ,T , we have

‖Γg
ǫ,δ(v1)− Γg

ǫ,δ(v2)‖ǫ,̺,η,ϑ,T ≤ c

∫ T

0
(t− s)−

η−ϑ
2 ‖γǫ,δ(v1, s)− γǫ,δ(v2, s)‖ϑ ds

+ǫ̺ sup
t∈ (0,T ]

(t ∧ 1)̺
∫ t

0
ǫ−

1
2 ((t− s) ∧ 1)−

1
2 e−λ(t−s)‖γǫ,δ(v1, s)− γǫ,δ(v2, s)‖ϑ ds

+ǫ
1
2
+̺ sup

t∈ (0,T ]
(t ∧ 1)̺+

1
2

∫ t

0
ǫ−(1−ϑ

2
)(t− s)−(1−ϑ

2
)e−2λ(t−s)‖γǫ,δ(v1, s)− γǫ,δ(v2, s)‖ϑ ds

+ǫ
1
2
+̺ sup

t∈ (0,T ]
(t ∧ 1)̺+

1
2 [D2Γg

ǫ,δ(v1)(t)−D2Γg
ǫ,δ(v2)(t)]ϑ =:

4
∑

i=1

Iδ,i(ǫ).

Then, according to (5.9) and (5.10), we have

Iδ,1(ǫ) ≤ c lǫ,δ(R,T ) ‖v1 − v2‖ǫ,̺,η,ϑ,T . (5.24)

In the same way,

Iδ,2(ǫ) ≤ c ǫ̺ sup
t∈ (0,T ]

(t ∧ 1)̺
∫ t

0
ǫ−

1
2 (t− s)−

1
2 e−λ(t−s)aǫ,δ(R, s) ds ‖v1 − v2‖ǫ,̺,η,ϑ,T

≤ c lǫ,δ(R,T )‖v1 − v2‖ǫ,̺,η,ϑ,T .
(5.25)
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and

Iδ,3(ǫ)

≤ c ǫ
1
2
+̺ sup

t∈ (0,T ]
(t ∧ 1)̺+

1
2

∫ t

0
ǫ−(1−ϑ

2
)((t− s) ∧ 1)−(1−ϑ

2
)e−2λ(t−s)aǫ,δ(R, s) ds ‖v1 − v2‖ǫ,̺,η,ϑ,T

≤ c ǫ
ϑ
2 (T ∧ 1)

ϑ
2 lǫ,δ(R,T ) ‖v1 − v2‖ǫ,̺,η,ϑ,T .

(5.26)
As for Iδ,4(ǫ), due to (5.26), if we fix any x, h ∈ H and assume ‖h‖2H > ǫ t/2 we have

ǫ̺+
1
2 (t ∧ 1)̺+

1
2 ‖D2Γg

ǫ,δ(v1)(t, x + h)−D2Γg
ǫ,δ(v2)(t, x)‖L(H)

≤ c ǫ
ϑ
2 (t ∧ 1)

ϑ
2 lǫ,δ(R, t)‖v1 − v2‖ǫ,̺,η,ϑ,T ≤ c lǫ,δ(R, t) ‖v1 − v2‖ǫ,̺,η,ϑ,T‖h‖ϑH .

(5.27)

On the other hand, if we assume that ‖h‖2H ≤ ǫ t/2 we write

D2Γg
ǫ,δ(v1)(t, x)−D2Γg

ǫ,δ(v2)(t, x) = aǫ,δ(h, t, x) + bǫ,δ(h, t, x),

where

aǫ,δ(h, t, x) :=

∫ ǫ−1‖h‖2
H

0
D2Rǫ

s (γǫ,δ(v1, t− s)− γǫ,δ(v2, t− s)) ds,

and

bǫ,δ(h, t, x) =:

∫ t

ǫ−1‖h‖2
H

D2Rǫ
s (γǫ,δ(v1, t− s)− γǫ,δ(v2, t− s)) ds.

Then, thanks to (5.9) and (5.10), we can proceed as in Step 3 of the proof of Lemma 5.3 and
we obtain that (5.27) holds also when ‖h‖2H ≤ t/2. In particular, we obtain that

ǫ̺+
1
2 (t ∧ 1)̺+

1
2 [D2Γg

ǫ,δ(v1)(t)−D2Γg
ǫ,δ(v2)(t)]ϑ ≤ c lǫ,δ(R, t)‖v1 − v2‖ǫ,̺,η,ϑ,T ,

so that

Iδ,4(ǫ) ≤ c lǫ,δ(R, t)‖v1 − v2‖ǫ,̺,η,ϑ,T . (5.28)

Therefore, if we combine (5.24), (5.25), (5.26) and (5.28), we obtain that

‖Γg
ǫ,δ(v1)− Γg

ǫ,δ(v2)‖ǫ,̺,η,ϑ,T ≤ c lǫ,δ(R, t)‖v1 − v2‖ǫ,̺,η,ϑ,T .

This means that if we first choose δ1 ≤ δ′ such that

c δ1 (1 +R)2 <
1

2
,

and then T1 ≤ T ′ such that

c ǫ−
1
2 (T1 ∧ 1)

1
2 <

1

2
,

we can conclude that Γδ,g maps YR
̺,ϑ,T1

into itself as a contraction, for every δ ≤ δ1. �
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6. Further properties of mild solutions of the quasi-linear problem

We will show that any mild solution uǫ of equation (3.17) that belongs to Cǫ,̺,η((0, T ];C
2+ϑ
b (H))

is in fact a classical solution in the sense of Definition 2. Moreover, by using its probabilistic
interpretation in terms of equation (3.19), we will prove that a maximum principle holds for
equation (3.17). This will imply that the local mild solution we have found in Section 5 is the
unique global classical solution of Theorem 3.4.

We start by proving that QD2
xuǫ(t, x) is a trace-class operator.

Lemma 6.1. For every t ∈ (0, T ] and x ∈ H, we have that QD2
xuǫ(t, x) ∈ L1(H).

Proof. If uǫ is a mild solution, with the notations we have introduced in Section 5 we have

uǫ(t, x) = Rǫ
tg(x) + Γǫ,δ(uǫ)(t, x).

According to (2.17) we have that QD2
xR

ǫ
tg(t, x) ∈ L1(H), for every ǫ ∈ (0, 1), t > 0 and x ∈ H,

and thanks to (2.17) and (3.14)

‖QD2
xR

ǫ
tg(t)‖0 ≤ κǫ,η(t/2) ‖g‖η .

As far as Γǫ,δ(u) is concerned, if R = ‖uǫ‖ǫ,̺,η,ϑ,T , thanks to (2.17), (3.14) and (5.8), we have

‖QD2Γǫ,δ(u)(t, x)‖L1(H) ≤
∫ t

0
‖QD2

xR
ǫ
t−sγǫ,δ(u, s)(x)‖L1(H) ds ≤

∫ t

0
κǫ,ϑ(t− s)‖γǫ,δ(s)‖ϑ ds

≤ c e−βϑ

∫ t

0
((t− s) ∧ 1)−βϑe−αϑ

(t−s)
2 ǫ−(̺+ 1

2
)(s ∧ 1)−( 1

+
̺)λǫ,δ(R, s) ds ≤ cǫ(R,T ).

This allows to conclude that QD2
xuǫ(t, x) ∈ L1(H) for every ǫ ∈ (0, 1), t ∈ (0, T ] and x ∈ H.

�

Next, we show that uǫ is differentiable with respect to t ∈ (0, T ] and x ∈ D(A) and is a
classical solution of equation (3.17). In Subsection 2.3, we have seen that for every ϕ ∈ Bb(H)
and x ∈ D(A) the mapping

t ∈ (0,+∞) 7→ Rǫ
tϕ(x) ∈ R,

is differentiable and

DtR
ǫ
tϕ(x) = LǫR

ǫ
tϕ(x).

Hence, since

uǫ(t, x) = Rǫ
tg(x) +

∫ t

0
Rǫ

t−s

( ǫ

2
Tr [δ F (uǫ(s, ·))D2

xuǫ(s, ·)] + 〈b(·),Duǫ(s, ·)〉H
)

(x) ds

= Rǫ
tg(x) + Γǫ,δ(uǫ)(t, x),

thanks to Lemma 6.1, for every x ∈ D(A) we can differentiate both sides with respect to t > 0,
and we get

Dtuǫ(t, x) = LǫR
ǫ
tg(x) +

ǫ

2
Tr [δ F (uǫ(t, x))D

2
xuǫ(t, x)] + 〈b(x),Duǫ(t, x)〉H + LǫΓǫ,δ(t)(t, x)

= Lǫuǫ(t, x) +
ǫ

2
Tr [δ F (uǫ(t, x))D

2
xuǫ(t, x)] + 〈b(x),Duǫ(t, x)〉H .

Thus, we have proven the following result.
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Theorem 6.2. Under Hypotheses 1 to 4, if uǫ is a mild solution of equation (3.17) that belongs

to Cǫ,̺,η((0, T ];C
2+ϑ
b (H)), then it is a classical solution.

Next, we show how any solution of equation (3.17) is related to the stochastic PDE (3.19).

Theorem 6.3. Assume Hypotheses 1 to 4. Then if uǫ ∈ Cǫ,̺,η((0, T ];C
2+ϑ
b (H)) is a solution

of equation (3.17) and Xt,x
ǫ ∈ L2(Ω;C([0, t];H)) is a solution of equation (3.19), we have

uǫ(t, x) = Eg(Xt,x
ǫ (t)). (6.1)

Proof. The natural way to prove (6.1) is by applying the Itô formula to the function (s, x) ∈
[0, t] ×H 7→ uǫ(t − s, x) and to the process Xt,x

ǫ (s). However, we cannot do this directly first
because uǫ satisfies equation (3.17) in classical sense only for x ∈ D(A) and second because

Xt,x
ǫ is only a mild solution of equation (3.19), and not a strong solution, as required when Itô’s

formula is used. To overcome these difficulties, we introduce a suitable approximation of uǫ and
Xt,x

ǫ , by adapting an argument introduced in [7, Proof of Theorem 9.25].
For every m ∈ N we define Jm = m(m−A)−1 and

uǫ,m(t, x) = uǫ(t, Jmx), (t, x) ∈ [0, T ] ×H.

Since Jmx→ x, as m→ ∞, and uǫ ∈ Cǫ,̺,η((0, T ];C
2+ϑ
b (H)), we have that

lim
m→∞

sup
t∈ [0,T ]

‖uǫ,m(t, ·)− u(t, ·)‖0 = 0. (6.2)

Moreover,

Dxuǫ,m(t, x) = J⋆
mDxu(t, Jmx), D2

xuǫ,m(t, x) = J⋆
mD

2
xu(t, Jmx)Jm. (6.3)

Next, for every m ∈ N we introduce the stochastic PDE







dXt,x
ǫ,m(s) =

[

AXt,x
ǫ,m(s) + Jmb(X

t,x
ǫ,m(s))

]

ds+ JmΣǫ,t(s,X
t,x
ǫ,m(s)) dWm

s ,

Xt,x(0) = Jmx,
(6.4)

where Σǫ,t is the operator introduced in (4.2) andWm
t is the projection of the cylindrical Wiener

process Wt onto Hm := span{e1, . . . , em}. By proceeding as in Section 4, we can prove that

equation (6.4) admits a unique mild solution Xt,x
ǫ,m ∈ L2(Ω;C([0, T ];H)). Since Jm maps H

into D(A) and Wm
t is a finite dimensional noise, it is immediate to check that Xt,x

ǫ,m is a strong
solution. Namely

Xt,x
ǫ,m(s) = Jmx+

∫ s

0
AXt,x

ǫ,m(r) dr +

∫ s

0
Jmb(X

t,x
ǫ,m(r)) dr +

∫ s

0
JmΣǫ,t(r,X

t,x
ǫ,m(r)) dWm(r).

At the end of this section we will prove that

lim
m→∞

sup
s∈ [0,t]

E‖Xt,x
ǫ,m(s)−Xt,x(s)‖H = 0. (6.5)
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Now we apply Itô’s formula to uǫ,m and Xt,x
ǫ,m and thanks to (6.3) we get

dsuǫ,m(t− s,Xt,x
ǫ,m(s)) = −Dtu(t− s, JmX

t,x
ǫ,m(s)) ds

+
1

2
Tr
[

J⋆
mD

2
xu(t− s, JmX

t,x
ǫ,m(s))Jm(JmΣǫ,t(r,X

t,x
ǫ,m(r)))(JmΣǫ,t(r,X

t,x
ǫ,m(r)))⋆

]

ds

+〈AJmXt,x
ǫ,m(s) + J2

mb(X
t,x
ǫ,m(s)),Dxu(t− s, JmX

t,x
ǫ,m(s))〉H ds

+〈J2
mΣǫ,t(r,X

t,x
ǫ,m(s)) dWm(s),Dxu(t− s, JmX

t,x
ǫ,m(s))〉H .

Therefore, recalling that u(t, x) satisfies equation (5.1), for every x ∈ D(A), since JmX
t,x
ǫ,m(s) ∈

D(A) we have

dsuǫ,m(t− s,Xt,x
ǫ,m(s))

= 〈J2
mΣǫ,t(r,X

t,x
ǫ,m(s)) dWm(s),Dxu(t− s, JmX

t,x
ǫ,m(s))〉H + [Iǫm,1(s) + Im,2(s)

ǫ] ds,

(6.6)

where

Iǫm,1(s) :=
ǫ

2
Tr
[

J⋆
mD

2
xu(t− s, JmX

t,x
ǫ,m(s))Jm(JmΣǫ,t(r,X

t,x
ǫ,m(r)))(JmΣǫ,t(r,X

t,x
ǫ,m(r)))⋆

]

− ǫ
2
Tr
[

D2
xu(t− s, JmX

t,x
ǫ,m(s))(Σǫ,t(r, JmX

t,x
ǫ,m(r)))(Σǫ,t(r, JmX

t,x
ǫ,m(r)))⋆

]

,

and

Iǫm,2(s) := 〈J2
mb(X

t,x
ǫ,m(s))− b(JmX

t,x
ǫ,m(s)),Dxu(t− s, JmX

t,x
ǫ,m(s))〉H .

If we take the expectation of both sides in (6.6) and integrate with respect to s ∈ [0, t] we get

Eg(JmX
t,x
ǫ,m(t)) = uǫ,m(t, Jmx) +

∫ t

0
E
(

Iǫm,1(s) + Iǫm,2(s)
)

ds. (6.7)

In view of (6.2) and (6.5), we have that

lim
m→∞

Eg(JmX
t,x
ǫ,m(t)) = Eg(Xt,x(t)), lim

m→∞
uǫ,m(t, Jmx) = u(t, x).

Moreover, since uǫ ∈ Cǫ,̺,η((0, T ];C
2+ϑ
b (H)), by using again (6.2) and (6.5) it is not difficult to

check that

lim
m→∞

∫ t

0
E
(

|Iǫm,1(s)|+ |Iǫm,2(s)|
)

ds = 0.

Therefore, if we take the limit of both sides in (6.7), as m→ ∞, we obtain (6.1).
�

Remark 6.4. Thanks to the representation formula (6.1) of uǫ, we have that

sup
t∈ [0,T ]

‖uǫ(t, ·)‖0 ≤ ‖g‖0. (6.8)

Now, we conclude this section with the proof of (6.5).

Lemma 6.5. If Xt,x
ǫ,m is the solution of problem (6.4), we have

lim
m→∞

sup
s∈ [0,t]

E‖Xt,x
ǫ,m(s)−Xt,x

ǫ (s)‖2H = 0. (6.9)
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Proof. If we denote ρǫ,m(s) := Xt,x
ǫ,m(s)−Xt,x

ǫ (s) and Wm(r) =W (r)−Wm(r), we have

ρǫ,m(s) = esA(Jmx− x) +

∫ s

0
e(s−r)A

(

Jmb(X
t,x
ǫ,m(r))− b(Xt,x

ǫ (r))
)

dr

+

∫ s

0
e(s−r)A

(

JmΣǫ,t(r,X
t,x
ǫ,m(r))− Σǫ,t(r,X

t,x
ǫ (r))

)

dWm(r)

+

∫ s

0
e(s−r)AΣǫ,t(r,X

t,x
ǫ (r))dWm(r).

Therefore, since ‖Jm‖L(H) ≤ 1, we have

E‖ρǫ,m(s)‖2H ≤ c‖Jmx− x‖2H + ct

∫ s

0
E‖ρǫ,m(r)‖2H dr

+ct

∫ s

0
E‖Jmb(Xt,x

ǫ (r))− b(Xt,x
ǫ (r))‖2H dr

+c

∫ s

0
E‖e(s−r)AJm

(

Σǫ,t(r,X
t,x
ǫ,m(r))− Σǫ,t(r,X

t,x
ǫ (r))

)

‖2L2(H) dr

+c

∫ s

0
E‖Jme(s−r)AΣǫ,t(r,X

t,x
ǫ (r))− e(s−r)AΣǫ,t(r,X

t,x
ǫ (r))‖2L2(H) dr

+c

∫ s

0
E‖e(s−r)AΣǫ,t(r,X

t,x
ǫ (r))Sm‖2L2(H) dr =:

6
∑

i=1

Iǫm,i(s),

where Sm := I − Pm is the projection of H onto span{em+1, em+2, . . .}.
By proceeding as in Section 4, we have that

Iǫm,4(s) ≤ c(ǫ)

∫ s

0
((s− r) ∧ 1)−

1
2
(

1 + ((t− r) ∧ 1)−2̺
)

E‖ρǫ,m(r)‖2H dr,

so that

E‖ρǫ,m(s)‖2H ≤ c(ǫ)

∫ s

0
((s− r) ∧ 1)−(2̺+ 1

2
)
E‖ρǫ,m(r)‖2H dr + Λǫ,m(s),

where

Λǫ,m(s) := Iǫm,1(s) + Iǫm,3(s) + Iǫm,5(s) + Iǫm,6(s).

Since 2̺+ 1/2 < 1, thanks to a generalized Gronwall’s inequality (see [16]), this implies that

E‖ρǫ,m(s)‖2H ≤ cǫ,tΛǫ,m(s) ≤ cǫ,tΛǫ,m(t), s ∈ [0, t],

and (6.9) follows if we can prove that

lim
m→∞

Λǫ,m(t) = 0. (6.10)

It is immediate to check that

lim
m→∞

Iǫm,1 + Iǫm,3(t) = 0. (6.11)
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Moreover, according to Hypothesis 3 and to the fact that u is bounded in [0, t] ×H, for every
m ∈ N we have

‖Jme(t−r)AΣǫ,t(r,X
t,x
ǫ (r))− e(t−r)AΣǫ,t(r,X

t,x
ǫ (r))‖L2(H)

≤ 2 ‖e(t−r)Aσ(Xt,x
ǫ (r), uǫ(t− r,Xt,x

ǫ (r))‖L2(H) ≤ c (t− r)−
1
4
(

1 + ‖Xt,x
ǫ (r)‖H

)

.

Then, since

lim
m→∞

‖Jme(t−r)AΣǫ,t(r,X
t,x
ǫ (r))− e(t−r)AΣǫ,t(r,X

t,x
ǫ (r))‖ = 0,

and since the mapping

s ∈ [0, t] 7→ (t− s)−
1
4
(

1 + ‖Xt,x
ǫ (s)‖H

)

∈ R,

belongs to L2(Ω;L2([0, t])), by the dominated convergence theorem we have that

lim
m→∞

Iǫm,5(t) = 0. (6.12)

In the same way, by the dominated convergence theorem we have also that

lim
m→∞

Iǫm,6(t) = 0. (6.13)

Therefore, combining together (6.11), (6.12) and (6.13), we obtain (6.10) and (6.9) follows. �

7. Existence and uniqueness of global classical solutions for the quasi-linear

problem

In Theorem 5.5 we have proved that for every η > 1/2 and ϑ ∈ (0, (η − 1/2) ∧ 1), there exist

δ1, T1 > 0 such that problem (3.17) has a mild solution uǫ in Cǫ,̺,η((0, T1];C
2+ϑ
b (H)). In Section

6 we have shown that such mild solution is in fact a classical solution. Our purpose here is first
proving that uǫ is defined on the interval [0, T ], for every T > 0, and then proving that it is the
unique solution.

We start with the following a-priori bound.

Lemma 7.1. There exists δ2 ∈ (0, δ1], that depends only on ‖g‖η , such that if uǫ is a mild

solution of (3.17) for some δ ≤ δ2, belonging to Cǫ,̺,η((0, T ];C
2+ϑ
b (H)), then

‖u‖ǫ,̺,η,ϑ,T ≤ cǫ ‖g‖η , ǫ ∈ (0, 1), (7.1)

for some constant cǫ independent of T > 0.

Proof. In what follows, for any function v : [0, T ]×H → R we define

Nǫ(v(t)) := [v(t, ·)]η + ǫ̺(t ∧ 1)̺‖Dv(t, ·)‖ϑ + ǫ̺+
1
2 (t ∧ 1)̺+

1
2 ‖D2v(t, ·)‖ϑ.

With the notations we have introduced in Section 5, thanks to (6.8) we have

‖uǫ(t, ·)‖0 +Nǫ(uǫ(t)) ≤ ‖g‖0 +Nǫ(R
ǫ
tg) +Nǫ(Γ

ǫ
δ,1(uǫ)(t)) +Nǫ(Γ

ǫ
2(uǫ)(t)), (7.2)

where

Γǫ
δ,1(u)(t, x) :=

∫ t

0
Rǫ

t−s γ
ǫ
δ,1(u, s)(x) ds :=

ǫ

2

∫ t

0
Rǫ

t−sTr
[

δF (u)(s, ·)D2u(s, ·)
]

(x) ds

and

Γǫ
2(u)(t, x) :=

∫ t

0
Rǫ

t−sγ2(u, s)(x) ds :=

∫ t

0
Rǫ

t−s〈b,Du(s, ·)〉H (x) ds.
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In (5.23) we have already shown that

sup
t∈ [0,T ]

Nǫ(R
ǫ
tg) ≤ c ‖g‖η . (7.3)

Thus, in order to prove (7.1) we need to estimate Nǫ(Γ
ǫ
δ,1(uǫ)(t)) and Nǫ(Γ

ǫ
2(uǫ)(t)).

Thanks to (3.8) and (6.8), we have

‖F (uǫ(s, ·))‖0 ≤ c (1 + ‖uǫ(s, ·)‖0) ≤ c (1 + ‖g‖0) ,

and then

‖γǫδ,1(uǫ, s)‖0 ≤ c ǫ δ‖F (uǫ(s, ·))‖0‖D2uǫ(s, ·)‖0 ≤ c ǫ δ (1 + ‖g‖0) ‖D2uǫ(s, ·)‖0. (7.4)

Moreover, due to (3.9) and (6.8) we have

[F (uǫ(s, ·))]ϑ ≤ c (1 + ‖uǫ(s, ·)‖0 + [uǫ(s, ·)]ϑ) ≤ c (1 + ‖g‖0 + [uǫ(s, ·)]ϑ) ,

so that

[γǫδ,1(uǫ, s)]ϑ ≤ c ǫ δ [F (uǫ(s, ·))]ϑ‖D2uǫ(s, ·)‖0 + c ǫ δ‖F (uǫ(s, ·))‖0[D2uǫ(s, ·)]ϑ

≤ c ǫ δ (1 + ‖g‖0) ‖D2uǫ(s, ·)‖ϑ + c ǫ δ [uǫ(s, ·)]ϑ‖D2uǫ(s, ·)‖0.

According to (2.7) and (6.8), this implies

[γǫδ,1(uǫ, s)]ϑ ≤ c ǫ δ (1 + ‖g‖0) ‖D2uǫ(s, ·)‖ϑ + c ǫ δ ‖uǫ(s, ·)‖0[D2uǫ(s, ·)]ϑ

≤ c ǫ δ (1 + ‖g‖0) ‖D2uǫ(s, ·)‖ϑ.
(7.5)

Therefore, if we combine together (7.4) and (7.5) we conclude that

‖γǫδ,1(uǫ, s)‖ϑ ≤ c ǫ δ (1 + ‖g‖0) ‖D2uǫ(s, ·)‖ϑ

≤ c ǫ δ (1 + ‖g‖0) ǫ−(̺+ 1
2
)(s ∧ 1)−(̺+ 1

2
)Nǫ(uǫ(s, ·)).

By proceeding as in the proof of Lemma 5.3 (see also Remark 5.4), this allows to conclude

Nǫ(Γ
ǫ
δ,1(uǫ)(t)) ≤ c δ (1 + ‖g‖0) sup

s∈ [0,t]
Nǫ(uǫ(s, ·)), t ∈ [0, T ]. (7.6)

Now, let us estimate Nǫ(Γ
ǫ
2(uǫ)(t)). We have

‖γ2(uǫ)(t)‖1 ≤ c
(

‖Duǫ(t, ·)‖0 + ‖D2uǫ(t, ·)‖0
)

.

Thus, according to (2.5) and (2.8), thanks to (6.8) for every α > 0 there exists κα > 0 such that

‖γ2(uǫ)(t)‖1 ≤ α [D2uǫ(s, ·)]ϑ + κα‖uǫ(s, ·)‖0. (7.7)
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In view of (2.15) and (7.7), there exists some λϑ > 0 such that for every t ∈ [0, T ]

Nǫ(Γ
ǫ
2(u)(t)) ≤ α

∫ t

0
e−λϑ(t−s)[D2uǫ(s, ·)]ϑ ds

+α ǫ̺ (t ∧ 1)̺
∫ t

0
e−λϑ(t−s)ǫ−

ϑ
2 ((t− s) ∧ 1)−

ϑ
2 [D2uǫ(s, ·)]ϑ ds

+α ǫ̺+
1
2 (t ∧ 1)̺+

1
2

∫ t

0
e−λϑ(t−s)ǫ−

1+ϑ
2 ((t− s) ∧ 1)−

1+ϑ
2 [D2uǫ(s, ·)]ϑ ds

+κα

∫ t

0
e−λϑ(t−s)ǫ−

1+ϑ
2 ((t− s) ∧ 1)−

1+ϑ
2 ds‖g‖0

≤ c αǫ−
1+ϑ
2 sup

s∈ [0,t]
Nǫ(uǫ(s, ·)) + c καǫ

− 1+ϑ
2 ‖g‖0.

(7.8)

Hence, if we plug (7.3), (7.6) and (7.8) into (7.2), we obtain

‖uǫ(t, ·)‖η +Nǫ(uǫ(t, ·))

≤ c ‖g‖η + c
[

δ (1 + ‖g‖0) + αǫ−
1+ϑ
2

]

sup
s∈ [0,t]

Nǫ(uǫ(s, ·)) + c καǫ
− 1+ϑ

2 ‖g‖0.

In particular if take δ2 ≤ δ1 such that

c δ2 (2 + ‖g‖0) < 1/2,

and α = δǫ
1+ϑ
2 , we obtain (7.1) for every δ ≤ δ2.

�

7.1. Conclusion of the proof of Theorem 3.4. Thanks to (7.1), by standard arguments we
have that for every ǫ ∈ (0, 1) the local solution we found in Theorem 5.5 is in fact a global

solution. Moreover, this global solution is unique. Actually, if u1, u2 ∈ Cǫ,̺,η((0, T ];C
2+ϑ
b (H))

are two solutions of equation (5.1), for some fixed δ ≤ δ2, we assume that

t0 := sup {t ∈ (0, T ] : u1(s) = u2(s), s ∈ [0, t]} < T.

With the same notations we have used in Section 5, we introduce the problem

u(t) = Γϕ
ǫ,δ(u)(t) = Rǫ

tϕ+ Γǫ,δ(u)(t), t ≥ t0, (7.9)

where ϕ := u1(t0) = u2(t0). Due to (7.1), we have that

‖ϕ‖η ≤ cǫ,δ ‖g‖η ,

for some constant cǫ,δ > 0 independent of T > 0.
As shown in Section 5, there exist R̄, τ̄ > 0 and δ̄ ≤ δ2 such that the mapping Γϕ

ǫ,δ maps

Y
ǫ,R̄
̺,η,ϑ,t0,τ̄

into itself as a contraction, for every δ ≤ δ̄, where

Y
ǫ,R
̺,η,ϑ,t0,τ̄

:=
{

u ∈ Cǫ,̺,η((t0, t0 + τ̄ ];C2+ϑ
b (H)) : ‖u‖ǫ,̺,η,ϑ,t0,τ̄ ≤ R̄

}

,
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and Cǫ,̺,η((t0, t0+τ̄ ];C
2+ϑ
b (H)) is the space of all functions u belonging to C([t0, t0+τ̄ ];C

η
b (H))∩

C((t0, t0 + τ̄ ];C2+ϑ
b (H)) such that the norm

‖u‖ǫ,̺,η,ϑ,t0,τ̄

:= sup
t∈ (t0,t0+τ̄ ]

(

‖u(t, ·)‖η + ǫ̺((t− t0) ∧ 1)̺‖Dxu(t, ·)‖ϑ + ǫ̺+
1
2 ((t− t0) ∧ 1)̺+

1
2‖D2

xu(t, ·)‖ϑ
)

is finite.
In particular Γϕ

ǫ,δ has a unique fixed point in Y
ǫ,R̄
̺,η,ϑ,t0,τ̄

or, equivalently, equation (7.9) has a

unique solution on the interval [t0, t0 + τ̄ ]. This implies that

u1(s) = u2(s), s ∈ [0, t0 + τ̄ ],

violating the definition of [0, t0] as the maximal interval where u1 and u2 coincide.

8. The large deviation principle

In this last section we give a proof of Theorem 3.6. We follow the well-known method based
on weak convergence, as developed in [3]. To this purpose, we need to introduce some notations.

For every t > 0, we denote by Pt the set of predictable processes in L2(Ω× [0, t];H), and for
every M > 0 we introduce the sets

St,M :=
{

ϕ ∈ L2
w(0, t;H) : ‖ϕ‖L2(0,t;H) ≤M

}

,

and
Λt,M := {ϕ ∈ Pt : ϕ ∈ St,M , P− a.s.} .

In Theorem 3.5 we have shown that for every M, t > 0 and ϕ ∈ Λt,M and for every x ∈ H

and ǫ ∈ (0, 1) there exists a unique mild solution Xt,x
ϕ,ǫ ∈ L2(Ω;C([0, t];H)) for equation (3.19).

Next, we consider the problem

dX

ds
(s) = AX(s) + b(X(s)) + σ(X(s), g(ZX(s)(t− s)))ϕ(s), X(0) = x, (8.1)

where, as we did in Section 3, for every y ∈ H we denote by Zy the solution of equation (3.22).
In what follows, we show that the following result holds.

Proposition 8.1. Assume that g : H → R is Lipschitz-continuous. Then, under the same

assumptions of Theorem 3.5, for every t > 0 and ϕ ∈ L2(0, t;H) and for every x ∈ H, there

exists a unique mild solution Xt,x
ϕ ∈ C([0, t];H) for equation (8.1).

Once proved Theorem 3.5 and Proposition 8.1, we introduce the following two conditions.

C1. Let {ϕǫ}ǫ>0 be an arbitrary family of processes in Λt,M such that

lim
ǫ→0

ϕǫ = ϕ, in distribution in L2
w(0, t;H),

where L2
w(0, t;H) is the space L2(0, t;H) endowed with the weak topology and ϕ ∈ Λt,M .

Then we have

lim
ǫ→0

Xt,x
ϕǫ,ǫ = Xt,x

ϕ , in distribution C([0, t],H).

C2. For every t, R > 0, the level sets Φt,R = {It,x ≤ R} are compact in the space C([0, t];H).

As shown in [3], Conditions C1. and C2. imply that the family {Xt,x
ǫ }ǫ∈ (0,1) satisfies a Laplace

principle with action functional It,x in the space C([0, t];H) for the . Due to the compactness
of the level sets Φt,R stated in C2. this is equivalent to the validity of Theorem 3.6.
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8.1. Proof of Proposition 8.1. For every y ∈ H and s ∈ [0, t] we define

Σt(y, s) := σ(y, g(Zy(t− s))).

With this notation, a function in C([0, t];H) is a mild solution for equation (8.1) if it is a fixed
point of the mapping Λt defined for every X ∈ C([0, t];H) by

Λt(X)(s) := esAx+

∫ s

0
e(s−r)Ab(X(r)) dr +

∫ s

0
e(s−r)AΣt(X(r), r)ϕ(r) dr, s ∈ [0, t].

It is immediate to check that there exists a continuous increasing function κ(s) such that for
every y1, y2 ∈ H

‖Zy1(s)− Zy2(s)‖H ≤ κ(s) ‖y1 − y2‖H , s ≥ 0. (8.2)

Hence, since we are assuming that g : H → R is Lipschitz-continuous, according to Hypothesis
1 for every y1, y2, h ∈ H we have

‖[Σt(y1, r)− Σt(y2, r)]h‖H ≤ c (1 + κ(t− r)) ‖y1 − y2‖H‖h‖H , r ∈ [0, t].

In particular, for every X1,X2 ∈ C([0, t];H) and s ∈ [0, t] we have

‖Λt(X1)(s)− Λt(X2)(s)‖H ≤ c

∫ s

0
(1 + (1 + κ(t− r)) ‖ϕ(r)‖H ) ‖X1(r)−X2(r)‖H dr

≤ ct
(

‖ϕ‖L2(0,t;H) + 1
)

‖X1 −X2‖C([0,t];H).

This implies that Λt : C([0, t];H) → C([0, t];H) is Lipschitz continuous and by standard argu-
ments we conclude that Λt has a unique fixed point.

8.2. Proof of the validity of Conditions C1 and C2. It is enough to prove Condition C1.
Actually, from the proof of Condition C1 we will see that the mapping

ϕ ∈ L2
w(0, t;H) 7→ Y t,x

ϕ

is continuous and

Φt,R = {It,x ≤ R} = {Y t,x
ϕ : ϕ ∈ Λt,c(R)},

for some c(R) > 0. Therefore, since the set Λt,M is compact in L2
w(0, t;H) for every M > 0, we

conclude that Condition C2 holds.
In order to prove Condition C1, we first need to prove the following preliminary results

Lemma 8.2. Under the same assumptions of Theorem 3.6, for every p ≥ 1 we have

sup
ǫ∈ (0,1)

E sup
s∈ [0,t]

‖Xt,x
ϕǫ,ǫ(s)‖

p
H ≤ c(t,M, p)

(

1 + ‖x‖pH
)

. (8.3)

Proof. We have

Xt,x
ϕǫ,ǫ(s) := esAx+

∫ s

0
e(s−r)Ab(Xt,x

ϕǫ,ǫ(r)) ds +

∫ s

0
e(s−r)AΣt,ǫ(r,X

t,x
ϕǫ,ǫ(r))ϕǫ(r) dr

+
√
ǫ

∫ s

0
e(s−r)AΣt,ǫ(r,X

t,x
ϕǫ ,ǫ(r)) dW (r),
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where Σt,ǫ is the operator defined in (4.2). Hence, for every s ∈ [0, t] and p ≥ 1 we have

‖Xt,x
ϕǫ,ǫ(s)‖

p
H ≤ cp ‖x‖pH + cp

∫ s

0
‖Xt,x

ϕǫ,ǫ(r)‖
p
H dr + cp,M

(
∫ s

0
‖e(s−r)AΣt,ǫ(r,X

t,x
ϕǫ ,ǫ(r))‖2L(H) dr

)
p
2

+cp

∥

∥

∥

∥

∫ s

0
e(s−r)AΣt,ǫ(r,X

t,x
ϕǫ ,ǫ(r)) dW (r)

∥

∥

∥

∥

p

H

+ cp,t.

(8.4)
According to Hypothesis 3, for every τ > 0, s ∈ [0, t] and x ∈ H we have

‖eτAΣt,ǫ(s, x)‖2L2(H) ≤ c (τ ∧ 1)−
1
2
(

‖x‖2H + |uǫ(t− s, x)|2 + 1
)

.

Moreover, according to (6.1), we have

sup
(s,x)∈ [0,t]×H

|uǫ(s, x)| ≤ ‖g‖0, ǫ ∈ (0, 1),

so that
sup

ǫ∈ (0,1)
‖eτAΣt,ǫ(s, x)‖2L2(H) ≤ c (τ ∧ 1)−

1
2
(

‖x‖2H + 1
)

. (8.5)

In particular,

E sup
r∈ [0,s]

(
∫ s

0
‖e(s−r)AΣt,ǫ(r,X

t,x
ϕǫ ,ǫ(r))‖2L(H) dr

)
p
2

≤ cp,t

(

E sup
r∈ [0,s]

‖Xt,x
ϕǫ,ǫ(r)‖

p
H + 1

)

. (8.6)

Now, if we fix p > 4, we can find α < 1/4 such that (α − 1)p/(p − 1) > −1. By using a
stochastic factorization argument, we have

∫ s

0
e(s−r)AΣt,ǫ(r,X

t,x
ϕǫ ,ǫ(r)) dW (r) = cα

∫ s

0
e(s−r)A(s − r)α−1Yα,ǫ(r) dr,

where

Yα,ǫ(r) :=

∫ r

0
e(r−ρ)A(r − ρ)−αΣt,ǫ(ρ,X

t,x
ϕǫ,ǫ(ρ)) dW (ρ).

Then, we obtain
∥

∥

∥

∥

∫ s

0
e(s−r)AΣt,ǫ(r,X

t,x
ϕǫ ,ǫ(r)) dW (r)

∥

∥

∥

∥

p

H

≤ cα,p

(
∫ s

0
(s− r)

(α−1)p
p−1 dr

)p−1 ∫ s

0
‖Yα,ǫ(r)‖pH dr,

so that, thanks to (8.5) and to the fact that α < 1/4

E sup
r∈ [0,s]

∥

∥

∥

∥

∫ s

0
e(s−r)AΣt,ǫ(r,X

t,x
ϕǫ,ǫ(r)) dW (r)

∥

∥

∥

∥

p

H

≤ cα,p,t

∫ s

0
E‖Yα,ǫ(r)‖pH dr

≤ cα,p,t

∫ s

0

(

E

∫ r

0
(r − ρ)−( 1

2
+2α)

(

‖Xt,x
ϕǫ,ǫ(ρ)‖2H + 1

)

dρ

)
p
2

dr

≤ cα,p,t

(

∫ s

0
E sup

ρ∈ [0,r]
‖Xt,x

ϕǫ,ǫ(ρ)‖
p
H dr + 1

)

.

(8.7)

Therefore, thanks to (8.4), (8.6) and (8.7),

E sup
r∈ [0,s]

‖Xt,x
ϕǫ,ǫ(r)‖

p
H ≤ ct,M,p

(

‖x‖pH + 1
)

+ cp,t

∫ s

0
E sup

ρ∈ [0,r]
‖Xt,x

ϕǫ,ǫ(ρ)‖
p
H dr,

and Gronwall’s Lemma allows to conclude.
�
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Lemma 8.3. Under the same assumptions of Theorem 3.6, we have

|uǫ(s, x)− g(Zx(s))| ≤ ct
√
ǫ (1 + ‖x‖H) , s ∈ [0, t]. (8.8)

Proof. Thanks to (6.1), we have

uǫ(s, x)− g(Zx(s)) = E (g(Xs,x
ǫ (s))− g(Zx(s))) ,

so that, since we are assuming that g is Lipschitz-continuous

|uǫ(s, x)− g(Zx(s))| ≤ cE ‖Xs,x
ǫ (s)− Zx(s)‖H .

Now, if we define ρxǫ (s) := Xs,x
ǫ (s)− Zx(s), we have

ρxǫ (s) =

∫ s

0
e(s−r)A (b(Xs,x

ǫ (r))− b(Zx(r))) dr +
√
ǫ

∫ s

0
e(s−r)AΣs,ǫ(r,X

s,x
ǫ (r)) dW (r),

where Σs,ǫ is the operator introduced in (4.2). Due to (8.3) and (8.7), we have

E‖ρǫ(s)‖H ≤ c

∫ s

0
E‖ρǫ(r)‖H dr + ct

√
ǫ (1 + |x‖H) ,

and Gronwall’s lemma allows to conclude.
�

Now, we are ready to prove condition C1. Let {ϕǫ}ǫ>0 be an arbitrary family of processes
in Λt,M converging in distribution, with respect to the weak topology of L2(0, t;H), to some
ϕ ∈ Λt,M . As a consequence of Skorohod theorem, we can assume that the sequence {ϕǫ}ǫ>0

converges P-a.s. to ϕ, with respect to the weak topology of L2(0, t;H). We will prove that this
implies that

lim
ǫ→0

sup
s∈ [0,t]

E‖Xt,x
ϕǫ,ǫ(s)−Xt,x

ϕ (s)‖2H = 0. (8.9)

If we define

ρǫ(s) := Xt,x
ϕǫ,ǫ(s)−Xt,x

ϕ (s), s ∈ [0, t],

we have

ρǫ(s) =

∫ s

0
e(s−r)A

[

b(Xt,x
ϕǫ,ǫ(r))− b(Xt,x

ϕ (r))
]

dr

+

∫ s

0
e(s−r)A

[

σ(Xt,x
ϕǫ,ǫ(r), uǫ(t− r,Xt,x

ϕǫ ,ǫ(r)))ϕǫ(r)− σ(Xt,x
ϕ (r), g(ZXt,x

ϕ (r)(t− r)))ϕ(r)
]

dr

+
√
ǫ

∫ s

0
e(s−r)AΣt,ǫ(r,X

t,x
ϕ,ǫ(r)) dWr =:

3
∑

k=1

Ik,ǫ(s).

(8.10)
For I1,ǫ(s), due to the Lipschitz continuity of b, we have

‖I1,ǫ(s)‖2H ≤ ct

∫ s

0
‖ρǫ(s)‖2H ds. (8.11)
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Concerning I2,ǫ(s), it can be written as
∫ s

0
e(s−r)A

[

σ(Xt,x
ϕǫ,ǫ(r), uǫ(t− r,Xt,x

ϕǫ ,ǫ(r)))− σ(Xt,x
ϕ (r), g(ZXt,x

ϕǫ,ǫ(r)(t− r)))
]

ϕǫ(r) dr

+

∫ s

0
e(s−r)A

[

σ(Xt,x
ϕ (r), g(ZXt,x

ϕǫ,ǫ(r)(t− r)))− σ(Xt,x
ϕ (r), g(ZXt,x

ϕ (r)(t− r)))
]

ϕǫ(r) dr

+

∫ s

0
e(s−r)Aσ(Xt,x

ϕ (r), g(ZXt,x
ϕ (r)(t− r))) (ϕǫ(r)− ϕ(r)) dr =:

3
∑

k=1

Jk,ǫ(s).

According to (8.8), we have

‖J1,ǫ(s)‖H ≤ c

∫ s

0

(

‖ρǫ(r)‖H + ct
√
ǫ
(

1 + ‖Xt,x
ϕǫ,ǫ(r)‖H

))

‖ϕǫ(r)‖H dr,

so that

‖J1,ǫ(s)‖2H ≤ ct,M

∫ s

0
‖ρǫ(r)‖2H dr + ǫ ct,M

(

1 + sup
r∈ [0,t]

‖Xt,x
ϕǫ,ǫ‖2H

)

. (8.12)

Moreover, thanks to (8.2), we have

‖J2,ǫ(s)‖2H ≤ ct,M

∫ s

0
‖ZXt,x

ϕǫ,ǫ(r)(t− r)− ZXt,x
ϕ (r)(t− r)‖2H dr ≤ ct,M

∫ s

0
‖ρǫ(r)‖2H dr. (8.13)

Finally, for I3,ǫ(s), thanks to (8.3) and (8.7) we have

E sup
s∈ [0,t]

‖I3,ǫ(s)‖2H ≤ ctǫ
(

1 + ‖x‖2H
)

. (8.14)

Therefore, if we plug (8.11), (8.12), (8.13) and (8.14) into (8.10), in view of (8.3) we obtain

E ‖ρǫ(s)‖2H ≤ ct,M

∫ s

0
E‖ρǫ(r)‖2H dr + ct,M ǫ

(

1 + ‖x‖2H
)

+ E‖J3,ǫ(s)‖2H ,

and the Gronwall lemma gives

E ‖ρǫ(s)‖2H ≤ ct,M ǫ
(

1 + ‖x‖2H
)

+ ct,M

∫ s

0
E‖J3,ǫ(r)‖2H dr. (8.15)

Now, due to the P-a.s. convergence of ϕǫ to ϕ in L2
w(0, t;H), since {ϕ}ǫ∈ (0,1) ⊂ Λt,M and

ϕ ∈ Λt,M we can apply the dominated convergence theorem and we get

lim
ǫ→0

∫ s

0
E‖J3,ǫ(r)‖2H dr.

Therefore, by taking the limit as ǫ goes to zero in both sides of (8.15) we obtain (8.9).
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equations in infinite dimension, arXiv: 2111.05421.
[5] A. Cruzeiro, A. Gomes de Oliveira, L. Zhang, Asymptotic properties of coupled forward-backward stochastic

differential equations Stochastics and Dynamics 14, 2014.

37



[6] G. Da Prato, J. Zabczyk, Second order partial differential equations in Hilbert spaces, Cambridge
University Press, 2002.

[7] G. Da Prato, J. Zabczyk, Stochastic equations in infinite dimensions, Cambridge University Press,
second edition, 2014.

[8] M. Freidlin, L. Koralov, Nonlinear stochastic perturbations of dynamical systems and quasi-linear parabolic
PDE’s with a small parameter, Probability Theory Related Fields 147, 2010, pp. 273–301.

[9] G. Guatteri, On a class of forward-backward stochastic differential systems in infinite dimensions, Journal of
Applied Mathematics and Stochastic Analysis, 2007.

[10] G. Guatteri, F. Delarue, Weak existence and uniqueness for forward-backward SDEs, Stochastic Processes
and Applications 116, 2006, pp. 1712–1742.

[11] G. Guatteri, A. Lunardi, Smoothing of quasilinear parabolic operators and applications to forward-backward
stochastic systems, Advances in Differential Equations 10, 2005, pp. 65–88.

[12] H. Kuo, Gaussian measures in Banach spaces, Springer Verlag, 1975.
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