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NONLINEAR RANDOM PERTURBATIONS OF PDES AND
QUASI-LINEAR EQUATIONS IN HILBERT SPACES DEPENDING ON A
SMALL PARAMETER

SANDRA CERRAI, GIUSEPPINA GUATTERI, AND GIANMARIO TESSITORE

ABSTRACT. We study a class of quasi-linear parabolic equations defined on a separable Hilbert
space, depending on a small parameter in front of the second order term. Through the nonlinear
semigroup associated with such equation, we introduce the corresponding SPDE and we study
the asymptotic behavior of its solutions, depending on the small parameter. We show that a
large deviations principle holds and we give an explicit description of the action functional.

1. INTRODUCTION

Consider the partial differential equation

dXxX®
7 (t) = AX*(t) + b(X* (1)), X*(0)=z¢€ H, (1.1)
defined on a separable Hilbert space H, endowed with the scalar product (-,-)y and the cor-
responding norm || - ||z. Here A : D(A) C H — H is the generator of a strongly continuous

semigroup and b : D(b) C H — H is some non-linear mapping. Next, consider the following
stochastic perturbation of (IL.1))

dXT(t) = [AXT(t) + b(XZ(8))] dt + Veo(XZ(t))dW;,  XZ(0) =z € H, (1.2)

where ¢ > 0 is a small parameter, Wy, t > 0, is a cylindrical Wiener process and o is a
mapping, defined on H and taking values in some space of bounded linear operators defined
on the reproducing kernel of the noise into H. We assume that the differential operator A, the
coefficients b and o and the noise W, are such that both ([LI]) and (L2]) are well-posed.

If the parameter € is small, the trajectories of the perturbed system (L2) remain close to
those of the unperturbed system (1) on any bounded time interval. In particular, if there
exist a domain G C H and a point xyp € G such that any trajectory of (LIl starting in G
remains in G and converges to g, as time goes to infinity, then with overwhelming probability
the trajectories of (L2)) starting from any = € G enter any neighborhood of z, before eventually
leaving the domain G because of the effect of the noise. As know, this is a consequence of the
large deviations of X (¢) from X (¢) which are described by the action functional

T
() = gt { [ ol dn s = x7e},

where we have denoted by X*% the solution of the controlled version of (L))
dXxX™®

dt
and by the quasi-potential

Vizo,x) = inf{Ir(f) : f e C(0,T]; H), f(0) =zo, f(T) =2, T>0}.

(t) = AX®2(t) + b(XTH(1) + o(XT2(@)p(t),  XT7(0) = =,
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It is known that the stochastic PDE (I.2)) is related to the linear Kolmogorov equation on the
Hilbert space H

Dyu(t,z) = %Tr [UO'*(JJ‘)Diue(t,JE)] + (Ax + b(z), Duc(t, )y, =€ H, t>0, 13
uc(0,z) = g(x), z€ H.

Actually, under suitable conditions on the operator A, the coefficients b and ¢ and the initial
condition g, equation ([3]) admits a unique classical solution u., which can be written in terms
of the linear transition semigroup Py associated with (L2). Namely

ue(t,x) = Pfg(x) = Eg(X(t,x)), t>0, z€ H.

In particular, the description of the small noise asymptotics of the solutions of equation (L2
provided by the theory of large deviations allows to give a detailed description of the long-time
behavior of the solutions of infinite dimensional PDE ([L3]).

In [], Freidlin and Koralov have considered more general stochastic perturbations of the
dynamical system ([I)), when H = R% A = 0 and b : R? — R? is a Lipschitz-continuous
mapping. They have introduced the following quasi-linear parabolic problem

d d
Bpue(t, x) = % 37 (@ uct,x) diuc(t,x) + Y () Gue(t,x), =€ RY ¢>0,
ij=1 i=1
u6(07$) = g($)7 WS Rda

(1.4)

where a;;(z,7) = (00*);;(z,r), and by invoking the classical theory of quasi-linear PDEs, they
have shown that, under reasonable assumptions on the coefficients f and o, equation (L4
admits a unique classical solution u.. Next, for every t > 0 and = € R¢, they have introduced
the following randomly perturbed system

dX{T(s) = D(XE®(5)) ds + Ve o (X7 (s), ue(t — s, XE%(s))) dBs, (L5)
Xe"(0) =, |

where By, t > 0, is a d-dimensional Brownian motion. As in the linear case, the PDE ([4]) and
the SDE (3] are related by the following relation

uc(t,z) = Eg(Xg* (1)) = Ty g(x), (1.6)

but now Tf is a non-linear semigroup. This is in fact reason why equation (LX) can be seen as
a non-linear perturbation of the deterministic system.

The study of the large deviation principle and of the quasi-potential for (I3l), has allowed
Freidlin and Koralov to study the long-time behavior of the solutions to equation (4]), restricted
to the domain G (that now is a bounded domain in R?) and endowed with the boundary condition
ue(t,x) = g(x), for every x € OG. In this case

ue(t, ) = Bg(XT(EATE)),

where 77 is the first exit time of X5 from the domain G. In particular, the asymptotic descrip-
tion of 7¥ in terms of the quasi-potential has made possible to study the asymptotic behavior
of u. on exponential time scales t(€) ~ exp(A/e€). Freidlin and Koralov’s idea is to introduce a
family of linear equations obtained from (I.4]) by freezing the second variable in oo* and putting
it equal to a constant c¢. This allows them to describe the asymptotics of u.(exp(A/e),x), for
different values of A € (0, 00), in terms of some function ¢(\) obtained from Vi (c), the minimum



of the quasi-potential in G for the linear problem corresponding to ¢, and from g(z*(c)), where
x*(c) is the point of G where the quasi-potential attains its minimum, for different values of c.

The present paper represents the beginning of a longer term project where we aim to develop
an analogous theory for infinite dimensional dynamical systems described by PDEs. As in the
finite dimensional case studied in [§], also here, as a first and fundamental step, we need to be
able to study the well-posedness of the following quasi-linear equations

Diue(t,x) = %Tr [00*(z, ue(t, ) D2ue(t, )] + (Az + b(z), Due(t,x))g, x€ H, t>0,

uc(0,z) = g(z), =€ H,
(1.7)
However, unlike in finite dimension, where a well-established theory of deterministic quasi-
linear PDEs is available, it seems that the current literature does not provide any Hilbert space
counterpart to such classical theory, and everything has to be done.
In our analysis we will proceed in several steps and here we are considering the case when
o : HxR — L(H) is Lipschitz continuous and there exist a bounded and non-negative symmetric
operator @), a continuous mapping f defined on H x R with values in the space of trace-class
operators and a constant ¢ > 0 such that

oc*o(x,r)=Q+46 f(z,r), x€ H, reR.
This allows to rewrite equation (7)) as
Diuc(t,z) = Leue(t, ) + %Tr (6 f(z,ue)(t,z) D2uc(t, z)] + (b(z), Duc(t, z))

u6(07$) = g(x), r € H,

where
Leplw) = 5T [QD2p ()] + (Ax, Dap(w))ir.

In particular, if we denote by R the Ornstein-Uhlenbeck semigroup associated with the operator
L, we can rewrite equation (L7 in mild form as

ue(t,x) = Ryg(x) +/0 R;_, (%Tr [6F (ue(s,-))D2uc(s, )] + (b(-), Duc(s, )>H> (x)ds. (1.8)

By assuming suitable conditions on A and @ (see Hypothesis [), the semigroup R{ has a
smoothing effect for every fixed ¢ > 0, and this allows to prove by a fixed point argument
that if § is sufficiently small there exists a local solution in a suitable space of smooth Holder
continuous functions. Moreover, we show that any mild solution u. defined on a given interval
[0,T] is in fact a classical solution. In particular, u(t,-) is twice continuously differentiable in
H for every t > 0 and QD?u(t,z) is a trace-class operator, u.(-,z) is differentiable in (0, 4+00)
for every x € D(A) and equation (LZ) holds. Finally, in order to prove that for every 7' > 0
and € > 0 the solution is defined on the whole interval [0,7] and is unique, we prove suitable
a-priori bounds.

Once we have proven the existence and uniqueness of a classical solution for equation (4],
we can introduce the stochastic PDE

dXP*(s) = [AXDE(s) + b(XE"(s))] ds + Ve (XE(s),uc(t — s, X" (s))) AW, (19)
X5(0) =z, ‘



where W is a cylindrical Wiener process in H, defined on some stochastic basis (Q, F, {F; }+>0, P).
Due to the regularity of the coefficients and of the function u., we can show that there exists
§ > 0 such that, for every § < § and for every t > 0 and € H, equation (L9) admits a unique
mild solution in L?(2; C([0,7]; H)). Moreover, we show that, as in the finite dimensional case,
the quasi-linear equation (L)) and the stochastic PDE are related through formula (L6]) and,
in particular, a maximum principle holds for equation (LT]).

It is worth noticing that as a consequence of the Markov property, the following relation holds

ue(t — 5, X¢7(s))) = E(g(XEV(t = 9))|,_xva() = E(g(XET(1))]F),
for every s € [0,] and = € H, so that equation () reads as
dX5(s) = [AXE(s) + b(XL2(s))] ds + Ve o (X2 (s), B(g(XE2())|Fs)) dWs,
P (1.10)

Setting Y% (s) := E(g(X5"(¢))|Fs)), the equation above can be further rewritten as a coupled
forward backward infinite dimensional stochastic system

CAXE(s) = [AXE(5) £ BXEH ()] ds + VEo (XL (), Y5 (9) AW, 0<s <t
—ds Y (s) = — 24 (s)dWs, 0<s<t

Yh(t) = g(Xo" (1))

\ X:’I(O) =x.
(1.11)
Coupled forward-backward systems of stochastic equations of the general form
(dX(s) =b(X(s),Y(s),Z(s))ds+ o(X(s),Y(s))dWs, 0<s<t
—dsY (s) =¢((X(s),Y(s), Z(s))ds — Z(s)dWs, 0<s<t
(1.12)

Y(t) = g(X(1))

\ XG(O) - .Z',

have been extensively studied in the finite dimensional case, see [14] where several results are
collected. Since [I], it has been clear that arbitrary forward-backward stochastic systems do
not always admit a solution. Different techniques have been developed to prove existence and
uniqueness both locally in time and in arbitrarily long time intervals. In particular the classical
theory of PDEs, applied to the corresponding nonlinear Kolmogorov equations, offers a wide
range of results stating well posedness of system ([LI12)) (see, for instance [14] [10] or [11]) that
include existence and uniqueness of a global solution to the finite dimensional analogue of system
(LII) when o is not degenerate. In the infinite dimensional case, in which large part of the
analytic techniques are not available any more, very few results on existence and uniqueness of a
solution to system ((L.IT]) in arbitrary time interval are at hand (for local existence and uniqueness
see [9]). It seems that the techniques more likely to be extended in infinite dimensions are the
ones introduced in [I5] where quantitative conditions on dissipativity of b and bounds on the
Lipschitz norm of ¢ and g are required. Such restrictions go in the same direction as the
condition on ¢ that we have to impose here, see above.



We finally notice that, if we show that system (LII]) is well posed, then we can define a
candidate solution to the PDE (L)) by setting

Ge(t — 5,6) = E(YH(5)| X5 (s5) = &)

but, unless we have a satisfactory analytic theory for equation (LIIJ), the proof that . is
the unique solution of (LI (in which formulation?) is still to be done and does not seem
obvious at all. Once such relation would be understood, it could also be possible to study the
large deviations principle, see below, for more general nonlinear perturbations of (ILII) defined
through systems like (LI2)) (see [5] for a similar approach in the finite dimensional case where
the connection between 4. and equation ([LIT]) is a straight-forward consequence of existence
and uniqueness of a regular solution to (LII]) and Ito rule).

As we mentioned at the beginning of this introduction, we are interested in applying our
results to the study of the asymptotic behavior of (L9) and (L7), as € | 0. This is a multi-step
project and here we are addressing the problem of the validity of a large deviation principle for
the trajectories of the solutions of equation (I.9). Thus, in the last section of our paper we prove
that the family {X>"} .. (0,1) satisfies a large deviation principle in the space C'([0,t]; H), which
is governed by the action functional

1a3) = 5t { [ leolfrds + X(6) = X7(0), s € .4

where Xfp’x is the unique mild solution of problem
X'(s) = AX(5) + b(X(5)) + 0(X(s), 9(Z¥D(t = 5)))p(s),  X(0) =,
and for every y € H

ZY(s) = ety + / e A(ZY(r)) dr.
0

2. NOTATIONS AND PRELIMINARIES

Throughout this paper, H is a separable Hilbert space, endowed with the scalar product
(-,-)g and the corresponding norm || - ||g. In what follows we shall introduce some notations
and preliminary results (we refer to [2], [0] and [12] for all details).

2.1. Operator spaces. We denote by £L(H) the Banach space of all bounded linear operators
A: H — H, endowed with the sup-norm

IAllcry = sup ||Az|g.
llll e <1
An operator A € L(H) is symmetric if it coincides with its adjoint A*, that is if (Az,y)g =
(x, Ay) g, for all z,y € H. Moreover, it is non-negative if (Az, )y > 0, for all z € H. We shall
denote by L1 (H) the subspace of all non-negative and symmetric operators in £(H).
An operator A € L(H) is called an Hilbert-Schmidt operator if there exists an orthonormal
basis {e; }ien of H such that

o0
Z | Aes||% < oo.
=1
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The subspace of Hilbert-Schmidt operators, denoted by L£o(H), is a Hilbert space, endowed with

the scalar product
o

(A, B) g,y = Y _{Ae;, Bei)p.

i=1

As know, for every B € L1 (H) there exists a unique C' € £(H), denoted by v/ B such that
C? = B. Thus, for any A € £L(H) we can define

A| := VA*A.

We recall that an operator A € L(H) is compact if and only if |A| is compact. Moreover, if A
is a symmetric compact operator, then there exists an orthonormal basis {e;};cn of H and a
sequence {a; }ien converging to zero such that Ae; = «ye;, for all i € N. With these notations,
we say that a compact operator A € L(H) is nuclear or trace-class if there exists an orthonormal
basis of H consisting of eigenvectors of |A| corresponding to the eigenvalues {a; }ie 1, such that

00
E o; < 00.
=1

In particular, if the operator A is symmetric, it is nuclear if and only if there exists an orthonor-
mal basis of H consisting of eigenvectors of A corresponding to the eigenvalues {;}ien, such
that

o0

Z\ai\ < 0.

i=1
We denote by £1(H) the set of nuclear operators.
It is possible to prove that for every A € £1(H) the series

TrA := Z<A€Z‘, ei>H
=1

does not depend on the choice of the orthonormal basis {e; };c y. Moreover, a symmetric operator
A belongs to £1(H) if and only if the series above converges absolutely for every orthonormal
basis {e; }ien. The space £1(H) is a Banach space, endowed with the norm

I Alle, )y = Tr | Al
and
ITr Al < [|Allg, (a)- (2.1)
It is possible to prove that £1(H) C Lo(H) C L(H) with
[All ey < N1 Alleomy < ANy
and for j = 1,2 it holds
IAB|g; ey < Alle; 1 Blley,  NABlle;y < WBlle, e | Al -
Moreover, if A, B € Lo(H), then AB € £L1(H), with
IABlly (m) < [1Alleo (eI Blles (-
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2.2. Functional spaces. If F is an arbitrary Banach space, endowed with the norm | - ||z,
we denote by By(H; E) the space of Borel and bounded functions ¢ : H — E. By(H;E) is a
Banach space, endowed with the sup-norm

[ello = sup [l(2)]e.
xe H

Moreover, we denote by Cy(H; E) the closed subspace of uniformly continuous and bounded
functions.

For every integer n > 1, we denote by C}'(H; E) the space of all functions ¢ € Cy(H; E) which
are n-times Fréchet differentiable, with uniformly continuous and bounded Fréchet derivatives
Dly: H — LM(H; E, for all [ < n. We have that Cf(H; F) is a Banach space, endowed with
the norm

n
l
lelln = llello + Y 1D @llo-
=1

Next, for every ¢ € (0,1) we denote by C’l’f (H; E) the space of all functions ¢ € Cy(H; F) such
that

plz) —eW)E

o = sup 1@ =Wl _
syl lz—yly
zFY

C’l’f (H; E) is a Banach space, endowed with the norm

llells = llello + [©lo-

Finally, for every integer n € N and ¢ € (0,1), we denote by C’Z””g(H ; E) the space of all
functions ¢ € CJ'(H; E) such that

D"p(w) = D"o(y)|en
[D"p]y := sup | D" () 90(3)”[, (H;E)
MJ;H Hx_yHH
7Y

C’Z)H'ﬂ(H ; E) is a Banach space, endowed with the norm

lellnts = liello + > 1D ello + [D"¢lg = llplln + [D™¢ls.
=1

Notice that in case E' = R, we simply write B,(H) instead of By(H; E), and for every o > 0 we
write Cp'(H) instead of Cf'(H;R).

Now, we want to see how classical interpolatory estimates for functions defined on R™ are
still valid for functions defined on the infinite dimensional Hilbert space H. To this purpose,
we recall that, as shown in [6, Theorem 2.3.5], for every 0 < o < 8 < -y there exists a constant
¢ = c(ao, B,7y) > 0 such that for every p € C/(H)

Y—pP [e3

B B=—a
lellg < cllella™ [lelly ™ (2.2)

However, in what follows we will need the following additional interpolatory estimates.

(DWe denote by LZ(H;E) the space of I-linear bounded operators A : H' — E. When [ = 1, we identify
L'(H;R) with H and when [ = 2 we identify £?(H;R) with £(H).



Lemma 2.1. Let us fix ¥ € (0,1). Then, for every ¢ € CL(H) we have

[elo < cro llellg™ I1DllG.- (2.3)

Moreover, for every ¢ € Cg'w(H) we have

9 1
ID*¢llo < 2,0 |1 Dellg™ [D20]57, (2.4)

and
I1Dello < esllepllg™ Dl - (2.5)
Proof. Let us fix p € C}(H) and z,y € H. Then, for every ¥ € (0,1) we have

9

1
lp(z +y) — (@) < 2]l /0 (Do(z + ), yymdA| < 2]lells™” 1DlIS Iyl %,

so that (2.3) follows.
Now, if we fix p € CZTV(H), for every > 0 and =,z € H, with ||z]|z = 1, we have

2
pla+pz) = o)+ u(Dp(e). 2)m + - (D*p(@)z 2)u
1 (2.6)
2 /0 (1= (D (x + ruz) — DXo()]z, =) dr.

By proceeding as in [0, proof of Theorem 2.3.5], we use (2.6)) to prove (2.4]). Actually, thanks to
[26]) we have

p? 1
5 [(D*e(@)z,2)n | < lp(w+ p2) — p(z) = u(Dp(), 2)u| + p* (Dl /0 (1—r)r”dr,

so that
2
ID%pllo < . IDello + co 1” [D*¢ly,  p> 0.

If we take the minimum over p > 0, we get ([2.4)).
Finally, by using again (2.6]), we have

2 1
i D(o).2) 1] < (o -+ a2) = (o) + i [(D2e(o)z b |+ (Dl [ (1=

so that, in view of ([2.4]), we get

Co 9l
2

2 0 1
[Dello < B llollo + I1Dellg ™" [D%¢]y ™ + cou' TP [D¢ly

2 1
m llello + §||D90H0 + copu' T [D2g)y.

This implies that
4
ID¢llo < liello + cop' T ID% gy, >0,

and if we minimize once again with respect to > 0 we obtain (2.5]). O
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Remark 2.2. As a consequence of ([2.3), (24) and (2.1]), we have that for every ¥ € (0,1) there
exists some ¢y > 0 such that for every ¢ € C§+’9(H )

[els [1D*ello < co llello [D*¢lo. (2.7)
Actually, from (24]) and (2.5, we have

9
1+9 1 1

1+9 _1
|uﬂ¢m)<c2ﬁ(@ﬁuwu+ uﬂ12”> DT < erp el IolT7 D%0T7. (28)

Moreover, thanks to ([23) and (ZX]) we have

9
[ely < cro llllo™ <C3ﬁ|!so|!“” [D? ]2“’> —61790319\\@\2“’ [D? ]“”

Therefore, if we combine together this last inequality with (2.8]), we obtain (Z1).

2.3. The Ornstein-Uhlenbeck semigroup. By following [6, Chapter 6], we recall here some
results about the Ornstein-Uhlenbeck semigroup and the associated Kolmogorov equation.

Let A: D(A) C H — H be the generator of a Cy-semigroup e/ and let @ be an operator in
LT(H). For every t > 0 we define

t
Qy ::/ e*AQe* A" ds,
0

and we assume that Qy € L£1(H), for every t > 0. Thus, we can introduce the centered Gaussian
measure Ng, defined on H with covariance @, and we can define

Rip(x) = /Hcp(e“‘w +y)Ng,(dy), xe€ H, t>0, (2.9)

for every ¢ in By(H). Ry is the Ornstein-Uhlenbeck semigroup associated with A and Q. In
what follows, we assume that

MAH) c QYAH), t>o0. (2.10)

and we define
A= Qe >0,

As shown e.g. in [6] Theorem 6.2.2], as a consequence of assumption (ZI0) we have that
Ryp € Cy°(H), for every ¢ € By(H) and t > 0, and for every n € NU {0} there exists some
¢y, > 0 such that

10" Regpllo < e 1Al iy I lo- (2.11)

Moreover, if we fix @ € (0,1) and assume ¢ € C{*(H) we have
(D" Rl < en |8l any e 15 o [ (212)
so that we conclude that for all @ € [0,1) and ¢ € C*(H)
D" Replla < en [Acllg oy ol £>0, (2.13)

where, for every ¢ > 0 and a € (0,1),
Il = (lipllo + e 12 ey [Pla ) (2.14)

9



By the interpolation inequality ([2.2), for every n € NU{0} and 0 < o < 8 < 1 and for every
Y E C’f(H) and t > 0, we have

n n —« n 1-(f—«
1D Rglliva < D" Rl | D" R )

(B—a)

_ 1-
= D" Replly™ (IID" Regllo + | D" Reo )
Hence, thanks to (ZI3), we get

o n n n 1-(B—a)
ID"Regliea < e l8ell3lon™ Nolf5 (en IAelEr) Iollo + nsn NACNZE oles )

+1
< capn ol (HAtHL I8 A7),

In particular, this allows to conclude that for every n € N and 0 < a < 8 < 1 and for every
v € Cy(H)

10" Rugla < e (I8 + IAIEGE™) Tlhs. (215)
Next, we recall that in [6, Proposition 6.2.9] it is shown that for every p € CL(H) and x € H

T [QD Ryp(a)] = /H (@7 2y, M Qe Dip( + ) Noy (dy),

so that, if we assume that
MQeN € Lo(H), (2.16)
we have
sup 1QD*Ryp() |z, 11y < [M:Qe™ |l oyary | Dello, > 0.
S
Therefore, thanks to the semigroup law and (ZI5]) we conclude that for every ¢ € C’bﬁ (H)
Sélg”QD2Rt90( Mewq) < ellhe2Qe™ 2|y A2l gmllells, ¢ >0. (2.17)
Moreover, we recall that in [6, Proposition 6.2.5] it is shown that if the operator A;A has a
continuous extension AyA to H, for every ¢t > 0, then for every ¢ € By(H) and x € H
DRyp(z) € D(A*), ||A*DRipllo < [|AeAllgmy llello, > 0. (2.18)

Now, we introduce the parabolic equation in H
1
Dyu(t,xz) = ETr [QD2u(t,x)] + (v, A*Dyult,x))g,  u(0,z) = p(z). (2.19)

Definition 1. A function u : [0,4+00) x H — R is a classical solution of problem (2I9)) if

1. w is continuous in [0,+00) x H and u(0,-) = ¢.

2. u(t,") € C}(H), for allt >0, and QD?u(t,z) € L1(H), for allt >0 and x € H.
3. Dyu(t,x) € D(A*), for allt >0 and z € H.

4. u(-,x) is differentiable in (0,4+00) for every x € H and u satisfies equation (219)).

In [6] Theorem 6.2.4] it is shown that if we assume conditions (ZI0) and ([2.I6]) and we assume
that the operator A;A has a continuous extension to H, then for every ¢ € By(H) the function

u(t, z) = Rp(x)

is the unique classical solution of equation (2.19)).
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3. ASSUMPTIONS AND MAIN RESULTS
3.1. Assumptions. In what follows, we shall make the following hypotheses.

Hypothesis 1. (1) The mapping o : HxR — L(H) is Lipschitz continuous and there exist
an operator Q € L1(H), a continuous mapping f : H x R — L1(H) and a constant
6 > 0 such that

oco(x,r)=Q+ 4 f(x,r), xe€ H, reR (3.1)

(2) For every fized x € H, the function f(z,-) : R — Ly(H) is differentiable. Both f
and Oy f are Lipschitz continuous in both variables, uniformly with respect to the other.
Moreover

sup 1f @ r)lleymy <c@+r]),  reR (3.2)
BAS

Remark 3.1. Let H = L?(0), for some smooth and bounded domain O C RY, with d > 1.
Let {e;}ien be an orthonormal basis of H and let {\;};cn be a sequence of non-negative real
numbers. We assume that e¢; € L*(0), for every i € N, and

D il ooy < 00 (3.3)
i=1
For every z,y € H and r € R, we define
£ Zf, Xily ey mei(§), €€ 0,

for some continuous functions f; : R xR — R such that f;(s,-) : R — R is differentiable, for every
s € R and i € N. We assume that both f; and 0,f; are Lipschitz continuous in both variables,
uniformly with respect to the other variable, and uniformly with respect to i € N. Moreover,
we assume that

sup sup [fi(s,7)| < c(1+|r|), re R. (3.4)
€N seR

With this choice of H and f, we have that condition 2 in Hypothesis [ holds.
Actually, since f;(-,7) : R — R is Lipschitz continuous, uniformly with respect to » € R and
i € N, for every z,y € H and r € R we have

Y Nf(,r) = flyr)eiedn| = ZA [([FiCz () ) = Fiy (), r)] eis ei) |
i=1

[e.9]
< Z @) m) = Fi ) lllledll e < clle —yla S Aslledll e o)-
i=1
In particular, thanks to (3.3]), we can conclude that f(-,r) : H — £1(H) is Lipschitz continuous,
uniformly with respect to » € R. In view of our assumptions, the same is true for 0, f.
The Lipschitz continuity of f(z,-), 0,f(x, ) : R — L£1(H), uniform with respect to x € H, is
proved in a similar way. However, in this case (B.3)) is not required and we only need the weaker

condition
[ee]
Z A < o0.
i=1

Finally, (3:2) is an immediate consequence of (3.4)).
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Now, we see some consequences of Hypothesis [
Lemma 3.2. For any function ¢ : H — R we define

F(e)(z) = fz,0(x)), xe€ H. (3.5)

Then, under Hypothesis 0l we have that F maps C{(H) into CY(H;L1(H)) and for every ¢ €
Cy (H)

[E(@)lls < e+ lells) - (3.6)
Moreover for every p1, @2 € CI?(H) it holds
[F(p1) = F(p2)llo < c(L+ [leallo + lle2llo) lor — 2llo- (3.7)
Proof. Due to [B.2), if ¢ € CP(H) we have
[E(e)llo < iggllf(%w(fﬂ))llal(m <c(1+lello)- (3.8)

Moreover, for every z,y € H

1f (z, (@) = f (@, eW)ller ()

< (@, 0(@)) = £ @)U, ) 1 @ 0(2) = £ 0@ T
@) = £ e @)l < clle =yl (1+101577) +clp@) - o)

-9
<clle =yl (1+ el +[elo) < clle =yl 1+l + o),

so that
[F(@)ly < c (L+lelo+ [¢lo) - (3.9)
This, together with (B8] allows to conclude that F(p) € CY(H) and (B8] holds.
Concerning ([B71), for every ¢1, @2 € le(H) we have

[F (1) = F(p2)llo < ¢ sup I1f(z, 01(2)) = f(z, 02(2)) e,y < cllor — w2l (3.10)

Moreover, for every x,y € H we have

(f(z,p1(z)) — [z, 02(2))) — (f(y, 01 (y) — f(y, 92(y)))

1
= /0 [Y(sp1 + (1 = 8)p2)(2) (1 — w2)(x) — (51 + (1 — 8)p2)(y)(p1 — p2)(y)] ds,

where we have defined

V(p)(x) = 0rf(z,0(2)), x€ H.
This implies that

1
[f (1) = F(w2)lo < /0 [v(ser + (1 = s)p2)llo ds o1 — @2llo-

Since, we are assuming that 0, f, like f, is Lipschitz continuous with respect to each variable, uni-
formly with respect to the other, and is clearly uniformly bounded, by using the same arguments
we have used to prove [B.8)) and (3J]), we have

[v(sr + (1 = 8)p2)lly < c(1+sleally + (1 = 5) [l@2lls)

12



and hence
[F'(p1) — F(p2)lo < c(1+[lp1llo + lwz2llo) o1 — e2lls-

This, together with (BI0]), implies (B.7).
U

A

Hypothesis 2. (1) The operator A : D(A) C H — H generates a Cy-semigroup e'* and

there exist M,w > 0 such that
ey < Me™", (3.11)
(2) If Q is the operator introduced in Hypothesis [l and if we define

¢
Q= / Qe ds, t>0,
0

we have that Q; € L] (H), for every t > 0.
(3) For every t >0, we have

A (H) ¢ QY (H). (3.12)
(4) If we define
A= Qe 10,
there exists some X\ > 0 such that
Al gy < c(tA1)TH2e 0t >0 (3.13)

or every t > 0 we have that AiQe € Lo ana for every v € (0, there exist
5) F 0 we h hat AyQetY € Lo(H) and f 9 € (0,1) th
By < 1 and ay > 0 such that

Ro(t) = [AeQe™ [leyan IAe gy < c(EAT) et >0, (3.14)
Hypothesis 3. For every (z,r) € H xR andt > 0 we have
eo(x,r) € Lo(H).
Moreover,
le' o @, )lley ) < c(tAD)TF U+ llalla + 1)), >0,
and for every (x,r),(y,s) € H xR
le o, r) = e oy r)lesm < c@ALTT (lr—yllu+Ir—s), ¢>0.

Remark 3.3. Let {e;}icny be an orthonormal basis in H and assume that Ae; = —aje; and
Qe; = 7ie;, for every i € N, with a;, 7; > 0, and «; T +00, as i — co. By proceeding as in [0,
Example 6.2.11], we have that

Qie; = 2702 (1 — 6_2‘1”) e, 1€ N,

so that Qy € L1(H) if and only if

L < 0. (3.15)

Moreover,

2 it e~ it 1/2 Y
Ave; = <—’y : ) t=12e=%te;, i€ N.
i



In particular, if v; > 9 > 0, we have
”At”L(H) S Ct_1/2€_a71t, t> 0,
so that (3.13) holds. Furthermore,
[e.9]
A* (67} ’Y e
1A Qe 12,1y =2~
i=1

—2ait

e —] = ctle2ont, (3.16)

When A is the realization of the Laplace operator in an interval, endowed with Dirichlet
boundary conditions, we have that «; ~ i? and (B.I5]) is satisfied, for every choice of Q € L(H).
If we assume that @) = I, we have that (3I3]) holds. Moreover, thanks to ([B16]) we have

aq(1—0)t ap(3—9)t
_1f o Ct_(l_ﬁ/g)e_lf

1A Qe™ [l | Adllpyy < et emont e~ (=002

and Condition (5) in Hypothesis 2] holds for every ¥ € (0,1). Notice also that in this case
Hypothesis Bl is satisfied.

Hypothesis 4. The mapping b: H — H is Lipschitz continuous and bounded.

3.2. Main results. As we have done in Section [ for the linear Kolmogorov equation (ZI9I),
we introduce here the notion of classical solution for the quasi-linear problem

Dyu(t,z) = %ﬂ [0%0 (2, uc(t, 2)) D2uc(t, 2)] + (Ax + b(x), Duc(t,2)), x€ H, t>0,

ue(0,2) = g(x), x€ H.
(3.17)
Definition 2. A function ue : [0,400) x H — R is a classical solution of problem (B.IT) if the
following conditions are satisfied.
1. It is continuous in [0,+00) x H and uc(0,-) = g.
uc(t,") € C¢(H), for allt >0, and QD?uc(t,x) € L1(H), for all (t,z) € (0,+00) x H.
3. u(-,x) is differentiable in (0,+00), for every x € D(A).
4. It satisfies equation [BIT), for every (t,z) € (0,+00) x D(A).
In what follows, for every e € (0,1), 0 < ¥ <n < 1, o € (0,1/2) and T > 0, we denote

by Ce o ((0,T]; CF™(H)) the space of all functions u € C([0,T]; C}(H)) N C((0,T); C2 (H))
such that

1 1
lullcamoi= sup (el + e APt o+ 5 A DR o) < o
te (0,7

o

Theorem 3.4. Assume Hypotheses [ to[4), and fix an arbitrary g € C}/(H), for some n > 1/2.

Then there exists § > 0 such that for every § < & and € € (0,1) there exists a unique classical
solution u, for equation BIT). Moreover, if we fix ¥ € (0,(n —1/2) A1) and we define

_1-(n-17)
0= 9 )
we have that u. € Ce,,((0,T]; CF(H)), for every T >0 and e € (0,1), and
l[telle,om0,1 < cellglln, e€ (0,1), (3.18)

for some constant c. > 0 independent of T > 0.
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Once proved the existence and uniqueness of a classical solution u. for problem (B.I7), for
every € > 0, we fix arbitrary ¢ > 0 and x € H and we introduce the following stochastic PDE

dX(s) = [AX(s)+b(X(s)) + o(X(s),uc(t —s,X(s))) ¢(s)] ds

+vea(X(s),uc(t — s, X(s))) dWs, (3.19)

X(0)= =z
Here Wy, t > 0, is a cylindrical Wiener process on H, defined on the filtered probability space
(Q,3,{Ft}+>0,P), such that for every h,k € H and t,s > 0
E Wi, h)u(Ws, kyg = (t A s)(h, k) u,
and ¢ is a predictable process in L?(2; L?(0,¢; H)).

Definition 3. An adapted process X3% € L*(Q;C([0,t); H)) is a mild solution for equation
@BI9) if for every s € [0,t]
S

Xtr(s) = e+ / eS=PAB(XET (1)) dr + /0 e~ (X2 (1) ug(t — v, X2 (1)) () dr

0
Y / A (X2 (1) ug(t — 1, XL (1)) W
0
(3.20)

Theorem 3.5. Suppose that Hypotheses [ to [4 hold, and fir any g € C(H), with n > 1/2,
e (0,1) and 6 € [0,0), where ¢ is the constant introduced in Theorem [34] Moreover, fix an
arbitrary predictable process in L*(Q; C([0,t]; H)) such that

t
/ o (s)||% ds < M, P— a.s. (3.21)
0

for some M > 0. Then, if we assume that b : H — H is Lipschitz-continuous, equation (3.19])
admits a unique mild solution X3% € L*(Q; C([0,t]; H)), for every x € H and t > 0.

In what follows, the solution of the uncontrolled version of equation ([3I9), corresponding to
¢ = 0, will be denoted by X7

Once proved Theorem [B.5, we are interested in studying the limiting behavior of X5 as
e | 0. More precisely, we want to prove that for every fixed t > 0 and z € H the family
{L(XE)} e (0,1) satisfies a large deviation principle in the space C([0,]; H) (with speed ¢) with
respect to a suitable action functional I; , that we will describe explicitly.

In order to state our result, we have to introduce some notations. First, we introduce the
unperturbed problem

Z'(s) = AZ(s) +b(Z(s)), Z(0)=y€ H. (3.22)

Since we are assuming that b : H — H is Lipschitz continuous, for every T' > 0 and y € H there
exists a unique Z¥ € C([0,T]; H) such that

ZY(s) = ey +/ e Ap(ZY (1)) dr-.
0

Next, for every z € H,t > 0 and ¢ € L?(0,t; H) we introduce the controlled problem
X'(s) = AX(s) + b(X (5)) + (X (s), g(Z¥ O (t = 9)))e(s),  X(0) = x. (3.23)
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In Section § we will see that under the same assumptions of Theorem B.5] equation (3:23]) admits
a unique mild solution X3* € C([0,]; H). This will allow to state the last main result of this
paper.

Theorem 3.6. In addition to the conditions assumed in Theorem [30, suppose that g : H — R
is Lipschitz-continuous. Then, for every fized t > 0 and x € H the family {L(Xﬁ’x)}ee(o’l)
satisfies a large deviation principle in the space C([0,t]; H), with speed e, with respect to the
action functional

1. ! .
1) = 5 it { [ el ds : X(6) = X17(5) s € 0.1} (3.24)
0
where X5* is the unique mild solution of problem ([B23).

4. THE WELL-POSEDNESS OF THE STOCHASTIC PDE (B.19)

In this section we will assume that, for some 7' > 0,7 > 1/2, 9 € (0,(n —1/2) A1), 0 < 1/4,
and € € (0,1) there exists a mild solution u. € C¢ ,,((0,T]; C2+7(H)) for equation BIT). We
will show how this allows to prove Theorem for every t € (0,7].

We fix t € (0,7 and a predictable process ¢ € L%(Q; L%(0,t; H)) satisfying (32I) and we
consider the stochastic equation

dX(s) = [AX(s)+b(X(s)) + (X (s),uc(t — 5, X (s)))p(s)] ds
+Vea(X(s), uc(t — s, X(s))) dWs, (4.1)
X(0) = z.
For every e € (0,1), s € [0,t] and x € H, we define
Sie(s, 1) 1= o(, uc(t — s,2)). (4.2)

A process X € L?(;C([0,t]; H)) is a mild solution of equation () if it is a fixed point of the
mapping A defined by

Are(X)(s) = ea+ /0 ) eTA(X (1)) ds + /0 ) eETAS, (r, X (r)) o(r) dr

S
+\/E/ e(S_T)AZtvg(r,X(r))dW(T).
0
According to Hypothesis B], for every 7 > 0, s € [0,t] and z,y € H we have
_1
€™ (Sre(5,2) = Sie(5,9)) leoqry < ¢ (T AT (o = ylla + [ue(t — 5,2) — uc(t — 5,9)]) -
Since ue € Cc o5((0,T]; C’g+ﬂ(H)), we have
ue(t = s,2) —ue(t = s,9)| < |[[Daue(t —s,)llo |z — ylla
< e 2 ((t = s) A1) Cluelle,omv,7ll® — yllH,
so that

_1 _ _
€™ (See(5,2) = See(5,9)) leaqmry < c(r AD) T3 (L4 2((t = ) A luelle,omor) 2 =yl
(4.3)
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Now, for every § > 0 we denote by Xz .(H) the Banach space of all H-valued predictable
processes X such that

X1, ) = sup B E|X(5)]% < oo.
’ s€[0,t]

If X1,Xo € Kpg(H), in view of ([3]) we have

2
|

/O A, (1 X1 (1) — Salr, Xa(r)] o(r) dr

s
<k |
0

< CME/ (s =) AD)7E (L €2t = 1) AL 22 w2 o) X2 (r) = Xo(r) |3 dr
0

H
(s—m)A 2 ° 2
A Xy (1) = Zoclr Ko O] e [ e dr
2(H) 0

S
_1 _ _
<ecM|| X — X2||§<B,t(H) /0 (s=r)AL)72 (L+e?(t—1)A1L) 2g||ue||§7g,n7ﬁ7’f) P dr.
Since we are assuming that ¢ < 1/4, for every s € [0, ]
S
/0 ((s=m) A2 (14 e722((t = 1) A1) 2 fucl? yp0) €07 dr < ccpals),

for some continuous increasing function ¢, g : [0,¢] — [0, 400) such that

lim sup c.4(s) =0.
=00 s¢ [0,¢]

Therefore, we pick 51 = 51(€,t) > 0 such that

1
Sup ce,ﬂl,t(s) S 67
s€ [0,
we have
s 2
sup e_BlsE‘ / els—mA [Et,e(r, X1(r)) = Bg.e(r, Xo(r))] @(r) dr
se[0,t] 0 H

1 2
< 5 1% = Xallxe, -

Moreover, we have

2
|

/s eCTIAS, (r, X1(r) — Sie(r, Xa(r))] dW (r)
0 H

<o [ (s = AT (W ) A el 1) EIX ()~ Xa () dr

s _1 — — r
< el = Xalfey ) [ (G5 =) ADE (20 =) Al 0) €

17



Then, by proceeding as above

2
sup e PR
s€ [0,t]

/Os e(s—r)A [Em(r’ X, (T)) — Et,e(T, X5 (T))] dW(T)

H

1 2
< 5 1% = Xallx, -

Finally, due to the Lipschitz-continuity of b, we have that there exists B2 > 0 such that that

s 2
sup e‘ﬁQsE‘ /0 es—m)A [b(X1(r)) — b(Xa(r))] dr

s€[0,t]
Therefore, is we take 5 := 31 V B2 , we have that At is a contraction in K BJ(H ) and its fixed
point is the unique mild solution Xfp’fi of equation (..

Finally, by using a stochastic factorization argument, it is possible to prove that Xfp’x belongs
to L2(Q; C([0,t]; H)) (for all details about stochastic factorization see [7, Subsection 5.3.1]).

1 2
<3 X0 = Xoll,, -

H

5. LOCAL EXISTENCE OF MILD SOLUTIONS FOR THE QUASI-LINEAR PROBLEM

In this section we will prove that the quasi-linear problem (B.I7) admits a local mild solution,
for every € € (0,1).

In view of (1)) and ([B.3]), problem (BI7) can be rewritten as
Dyu(t,z) = Leue(t,x) + %Tr 6 F(ue)(t,:E)D:%ue(t,:E)] + (b(x), Due(t, z)) m,

(5.1)
uc(0,z) = g(x), =z € H,

where L, is the linear Kolmogorov operator
€
Lep(z) = 5 1r [QD2o(x)] + (A, Dpp(x)) -

As we have recalled in Subsection 23] for every ¢ € By(H) the unique classical solution of
the linear problem
Dve(t,x) = Leve(t, z), ve(0,2) = ¢(x),
is given by the Ornstein-Uhlenbeck semigroup

velt, ) = Ripla) = /H (e 1 y)Neg, (dy).

Before proceeding with the study of equation (&.1l), we show how, in view of Hypothesis [2]
the properties of the Ornstein-Uhlenbeck semigroup described in Subsection apply to the
semigroup 1.

Thanks to 311 and BI3)), inequality (ZI3]) gives for every n € NU {0} and « € (0,1)

ID"Ri@|la < Cnae 2(tA1) 2™ |gllia, t>0, €€ (0,1), (5.2)

where
lellea = (lello + e [¢la) -
In the same way, inequality (2.15]) gives for every n € Nand 0 <a < <1
n—(B—a) n—(B—a)

ID"Riplla < cnape 2 (EAL1)" 2

Finally, since

e ol t>0, e€ (0,1). (5.3)

IRS¢llo < llello.  [Riwls < e “P[gls, e>0,
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and
1—a

[Rigla < HDthpH [thp]é :
thanks to (£.2) and (B3] we get
[Repla < cape T (t A1) Fre st plrg, t>0, ce (0,1), (5.4)

for some w, 3 > 0, and
_a=B _a=B
|Riolla < cape 2z (AL 2 |oltpg, t>0, e (0,1). (5.5)

Now, we introduce the notion of mild solution for equation ([B.IT).

Definition 4. A function u. € C([0,+00); H) such that uc(t,-) € CZ(H), for everyt >0, is a
mild solution for problem BIT) if for every (t,z) € [0,+00) x H

t
ue(t,x) = Ryg(x) +/0 Ry (2Tr [6F (ue(s, ) D2uc(s, )] + (b(-), Duc(s, )>H) (x)ds.
For every R > 0 we define
Yomy = {4 € Copn(O.TCEH(H)) -+ Jlulegmor < R},

and for every v € 92’ 0T and § > 0 we define

t
Les(v)(t, x) ::/ R;_~es(v,s)(x)ds, te [0,T], ze€ H,
0
where
€
7&,5('07 S)(.Z') = §TI' [5F(U(87 ))(‘T)D:%U(S7 .Z')] + <b(.’1’), DU(S7 x)>H
In particular, u, is a mild solution for problem (B.I7)) if and only if
ue(t,r) = Rjg(x) + I’ 5(u€)(t,x).

First, we investigate the dependence of 7.5 on v € Y 0 17779 T
Lemma 5.1. For every v € HZ”};&T and 6 > 0
[1Ve.s(v, )|l < ce2 95R (1+ R) (s A 1)_(9"‘%) +ce R(sN1)7°, se (0,7). (5.6)

Moreover, for every vi,vs € Y5 "y and § >0

gnﬂ

Yes(01,8) = Yes(va,8) |9 < ¢ €272 R(1+ R) (s A1)~ @52 Juy (s, ) — vals, )|

+ced(1+ R)||D2vi(s,-) — D2vy(s,-)||lg + ¢ || Dyvi(s,-) — Dgvals,-)|s-
Proof. In view of (8.6]) and Hypothesis Bl we have
Ies(v,8)lo < ced|[F(u(s,)lo 1DZu(s.)llo + [1bllo [1Dzv(s,)llo
< ced (L+ JJo(s, o) |1 D3u(s, )llo + ¢l Dav(s, ) o,

. . 57R .. .
and since we are assuming that v € Y, this implies Ea).
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Next, if v1,v9 € %;’gﬁT and § > 0 we have

1Yes(v1,8) = Yes(v2,8) o < ced || F(vi(s, ) = Flui(s,)llo [ D3vi(s. )l

+eed[|F(va(s, )l | Diva(s,-) — D3va(s, )|l + [[bllo | Devi(s, ) = Dava(s, ).
Thus, according to ([B.6) and (B7),

17e.5(v1,8) = Ye,5(v2, ) o

< ced|lor(s,) —vals, Yo (L+ or(s, )l + lla(s, o) [1Dv1(s, )|

+eed (14 |loa(s, o) | DFvi(s, ) = Diva(s, )|l + ¢l[Davi(s, -) = Dyva(s,)|lo-
Recalling that vi,vy € ‘j;’ﬁﬂj, this implies (&.71).

O
Remark 5.2. If for every fixed €,5 > 0 we define
aes(R,s) == €2 %R(1+R)(sA1)"@2) 4 e 2R(sA1)%,  s>0, R>0,
and X )
acs(R,s) == €25(1 4+ R?(s A1)7€F3) e ¢(sA1)72,  s>0, R>0,
due (6] and (B.7) we have that for every v, v, v9 € %;’ﬁﬁ’T and s € (0,7]
||’7575(’U,8)H19 < Cae,(S(Rv 8)7 (58)
and
1Ves(v1,8) = Yes(v2, 8)llo < cacs(R,s) [vr = valle,om,0,7- (5.9)

Notice that for all 5 <1 and x> 0 and for all t > 0

t
/ ((t —s) A1) Pemmt=%)q_5(R, 5)ds
0

(NI

t
<e —@53(1+R)/ ((t = 5) A1) Beht=3) (5 A 1)~(e+3) g
0

t
LR / ((t— 5) A1) Pe0=5) (s A 1)=2 ds,
0
and this implies that there exists some constant ¢ > 0 only dependent on S and p such that
t
/ ((t—s) A1) Be =) 5(R,s)ds < c(t AN1)2~(@FFez—e) (T, 1), (5.10)
0

where ) )
Aes(R,t) :=0R(1+ R) +e2R(tN1)2.

In an analogous way
t
/ (t — 5)PemVa, (R, s)ds < c(t A1)3~ @S0l 5(R, 1), (5.11)
0

where X )
les(R,t) :=0(1+ R)* +e2(tA1)2.
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Next we prove the following estimates for I'c 5 on 'j;’ﬁﬁ’T.

Lemma 5.3. For every v € Yo r and €,0 € (0,1) it holds

€,0,1n,9
ITes(@)le.omot < € Aes(R.T) [617(27#)_9 TA)=F2 vy +1].  (512)
Proof. Step 1. We have
1-(n=9) 1-(n—9)
ITes()(@)|ly < ce 2 Aes(R,t)(tAN1)T 2 °(tv 1), t e [0,7T). (5.13)

Proof of Step 1. In view of (&.3)), for every t € [0,T]]

! a0 [1 =2
ITes(v) ()l S/O IR e (v, )|y ds < ce 2 /0((t—8)/\1) T Ye,s (v, 8)|lo ds

— t —
< ce ' / ((t—s)A 1)_¥a575(R, s)ds.
0

Then, by adapting (.10) to the case p = 0, we get

1—(n—"2)

||F5,6(U)(t)”?7 < CE_geé_g)\sﬁ(R’ t)(t A 1) 2 e (t \% 1)7

and (B.I3) follows.
Step 2. We have

(t A1) [IDTes(v)(t)]lg < ce® [5 R(1+R)+ e 2R(t A 1)%] . (5.14)
Proof of Step 2. According to (5.2]), we have that

t t
[ IDRE esteollods < ot [ (¢ = 5) A E NI (v, ds.
0 0
Then, thanks to (5.8 and (5.I0) we conclude
t
/ IDRS_Tus(v,8)llg ds < ce5(t A 1)"0e30x, 5(R, 1),
0

and (B.14) follows.
Step 3. We have
(A 1)2F2 | DT 5(v)(t) ]9 < ce @O 4(T' ). (5.15)
Proof of Step 3. By proceeding as in the proof of Step 2, we have

t
DT s(v)(t)]lo < ce'F2 / (t—s) A1) e 290 5 (R, 5)ds
0

9 9
<ceTRaT(t A1) T DI S(R 1),
and this implies
3

(t A D)2FR [ DPTeg(v) ()0 < ce™GTOFEN (R, 1)(EA L)
Now, for every x,h € H and t € [0,T], we have

(5.16)

1

(t A1) Z| DT s(0)(t @ + h) — D*Tes(v)(t, @) | eary < ce”GHOFEN (R, ) (¢ A1)

9
2.
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Hence, if we assume that ||h||%, > et/2 we get
(EA)FE | D0 s(v) (@ + h) — DXes(0) ()|l o) < ce”FFONS(RO) [R][fy. (5.17)

When ||h]|% < et/2 we have
L ¢
D2Fe,5(v)(t7 ‘T) = / D2R§f}/6,5(va t— 8)(‘T) ds + / D2R§f}/6,5(07 t— 8)(‘T) ds
0 e Ihl%

=:ac5(h,t,x) + bes(h,t, ).
Due to (£3), from (B.8) we have

—
lacs(hty +h) — as(h t,2)| < ce+5 / (s AL 5 e 5o, — 8)lo ds
0

(5.18)
o eIl ’ . . 9
<ce Mz / s 2eMa (R, s)ds < ce_(5+9))\675(R,t) t A1) | p)|Y,.
0
As for be 5(h,t,-), we have
t
bes(h,t,x + h) —bes(h,t,z) = / [D*R&yes5(v,t — s)(x + h) — D*Réye 5(v,t — s)(z)] ds.
S L

Hence, due again to (5.3)), we have
HbE,é(}L tu T+ h) - b6,5(h7 tu ‘T)HL(H)

t
g/ D2 R (0.t — )(& + h) — D*Rére (.t — 8)()l|eqan d

—HinliE

t
gc/ IR0t — 3)][3 ds|bll
e~ hl%4

¢
< 66_32196%_9/ (s A 1)_¥6_2)\5((t —S)A 1)_(9+%))\675(R,t —s)ds.
el
Since we assuming ||h|%, < et/2, we have
t 3—v 2\ 1
/ (s A1)~ (1 — 5) A 1)~ (eHD) s
e HIRlI%

t/2 - . i
— [ A e (@ a D asy [ 5T n ) et ds
e nl /2

< et~ (@ a) |p|| Y 4 et Tt = et O (e% Al + t‘#)
<ceT(t A1) @) |p)
Moreover, in the same way we have

t
/ s e (t—s) A1) eds < etz (EA 1) ||,

el
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so that ) )
(tAL)2 2 ||beg(h,t,x + h) = beg(hyt, )| ooy < ce”2TONS(R,)||A]Y.
This, together with (5.I8]) and (5I7), implies that for every h € H
(t A1)PF 2| D*Te(v)(t,x + h) — D*Tes(v)(t,2) ey < ce TN s(R, 1) [[Al|%-
Thus, thanks to (5.I6), we obtain (B.I3]).

Conclusion. Estimate (5.12]) is a consequence of (5.13), (514) and (G15). O
Remark 5.4. From the proof of the previous lemma, we easily see that for every t € (0,7] and
ee (0,1)

n—19

€7 [Ce5(0) ()] + €2(t A 1)2[ DT 5(0)(1)lg + €272t A 1) 2| DT 5(0)(1)l
(5.19)

—(n—1) —(n—9)
< eAes(R,t) ((Ml)1 e “-’+1>,

for some constant ¢ > 0 independent of T' > 0. Actually, in view of (54]) and (5.8]), we have

n—9

Ces()(®)]y <ce 'z /0 eI (8= 5) A1) [re5(v, 8]0 ds

- t —
< ce '3 / et (1 — ) A 1)_¥a675(R, s)ds
0

1—(n—9) 1—(n—9)
< cAes(R,t) <e T O(tAl) T 4 1) .
This, together with (5.14]) and (5I5]), implies (G.19I).
Now we are ready to prove the existence of a local mild solution.

Theorem 5.5. Fizxn > 1/2 and ¥ € (0,(n —1/2) A1) and define

1—(n—2
0:= % (5.20)
Then, there exist 61,1y > 0 such that for every e € (0,1) problem (B.I7) has a mild solution u.

in Ce,on((0,T1]; C’EJFI?(H)), for every 6 < d1.

Proof. A function . is a mild solution of equation (BI7) if and only if it is a fixed point for the
mapping I'Y ; defined by

I ()(t) = Rig + Tes(v)(t), te [0,T].

Thus, we will prove the existence of a local mild solution for equation ([BIT) by showing that
there exist some T, R > 0 and d; > 0 such that Ff 5 maps HZ’?TI into itself as a contraction,

for every § < 4.
Thanks to (5.5]) we have

IR glly < cllglly- (5.21)
Moreover, thanks to (5.3)
_1-(n=9) _1-(n=9) _
IDRig()(®)llg S ce =2 (tAL)™ = e Mgy, (5.22)
—(1—1=2 —(1=n=%y _ '
ID?Rig(v)(t)llg < ce = A 1) "0 2 g,
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Therefore, if we define p as in (5.20), we have that ¢ € (0,1/4) and from (5.2I) and (5.22)) it
follows

1 1 .
IR glly + €2t A1) DRig()]|o + €272(t A1)F2 | D*Rig(t) ]9 < cllglly- (5.23)

With o defined as in (5.20)), together with (5.12]) this implies that for every v € Y* o 17779 T
1025 leomor < ellgly +e |6 RO+ R) + e 2R(T A2 | (TV1).

In particular, if we first take R := 3c||g||, and ¢’ > 0 small enough such that

R
cd R(1+R) < 3
and then fix 77 < 1 small enough so that
e 2R(T' A1)2 < ?,

we conclude that for every 6 < ¢ and T < T’

HFZJ(U)”&QJLﬂ,T <R,

so that Ff 5 maps yelt o into itself.

om0 R
E’
Now, if we fix vy, v9 € 39777,191’ we have

T
_n=9
1T 5(v1) — Fg,g(W)Han,ﬁ,Tgc/ (t=5)""7 [[7e,5(v1,8) = Ye,s(v2, 8)[[o ds
0

t
+e? sup (tA 1)9/ e 2((t = 5) A1) 2e M |y 501, 8) — Ye5(v2,8) o ds
te (0,7 0

t
et sap (#A 1)e+s / =D (¢ — 50D =291y (01, 5) — 7e5(v2, 5) g ds
te (0,T 0

tezte s}lp}(t/\l)g"' (DT s(v1)(t) — DT (va) (1)) =: ZL;,
te (0,1

Then, according to (59) and (EI0)), we have
I51(€) < cles(R,T) [lor — valleom.7- (5.24)

In the same way,

t
Iso(e) <ce? sup (tA 1)9/ 6_%(t — S)_%e_)\(t_s)ae,5(R7 s) ds [lvr — vale,omw,r

te (0,7 0 (5-25)
<cles(R,T)||v1 — 02”679777,193'
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and

I53(€)

t
S<m%+@sup<tA1W+%/PE*L*Qat—s>Alr“—%%—”“—”%ﬁuaswmnvl—vﬂu@maT
te (0,7 0

4 4
<cez(TA1)2 Ies(R,T) |lvr — valle,omw, -
(5.26)
As for I54(¢), due to (5.20), if we fix any z,h € H and assume ||h||% > et/2 we have
1 1
T (t A1)2T2 ||D2Ff’5(v1)(t, x+h)— D2F'Z§(v2)(t, )| o (rr
(5.27)
9 9
<ceZ(tAD)Tles(R )] — vallegmor < cles(Rot) o1 — v2leqmorllhls

On the other hand, if we assume that ||h||%, < et/2 we write
D2I\Z,5(U1)(t7 ‘T) - D2F§,5(U2)(t7 .Z') = ae,5(h7 t, .Z') + be,é(ha t, .Z'),
where
e HInlI%
a5,5(h7 L, $) = / D2R; (/}/5,5(2}171t - 8) - 7676(,027 t— S)) d87
0
and

¢
bes(h,t,x) =: / D2R§ (Yes(v1,t — 8) = Yes(v2,t — 5)) ds.

il

Then, thanks to (5.9) and (5.I0]), we can proceed as in Step 3 of the proof of Lemma [5.3] and
we obtain that (5.27)) holds also when ||h||% < t/2. In particular, we obtain that

3t A1)2TE (DT 5(01)(1) = DT g(02) (D)o < cles(RoD)ljon = vallegmo.r
so that
I54(€) < cles(R,t)||vr — valle,om0,1- (5.28)
Therefore, if we combine (5.24]), (5.25), (5:26]) and (5.28]), we obtain that
I 5(v1) = T7 s(2)lle.om0.7 < cles(Ryt)[[v1 — v2lle 0.0,
This means that if we first choose §; < ¢’ such that
¢6 (14 R)? < %

and then 77 < T such that

[V

ce 2 (Ty A1)z < =,

NN

we can conclude that I's ;, maps ‘jgﬁ 7, into itself as a contraction, for every § < ;. O
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6. FURTHER PROPERTIES OF MILD SOLUTIONS OF THE QUASI-LINEAR PROBLEM

We will show that any mild solution u, of equation (BI7) that belongs to C. ,,((0, T]; C2+V (H))
is in fact a classical solution in the sense of Definition Moreover, by using its probabilistic
interpretation in terms of equation ([BI9), we will prove that a maximum principle holds for
equation ([B.I7)). This will imply that the local mild solution we have found in Section [l is the
unique global classical solution of Theorem [3.4]

We start by proving that QD?u.(t, ) is a trace-class operator.
Lemma 6.1. For everyt € (0,T] and x € H, we have that QD>u(t,z) € L1(H).
Proof. If u. is a mild solution, with the notations we have introduced in Section B we have
ue(t,z) = Rig(x) + e 5(ue)(t, ).

According to (ZIT) we have that QD2RSg(t,z) € L£1(H), for every e € (0,1),¢t>0and z € H,
and thanks to (ZI7) and (3I4)

IQDZRg(t)llo < ke (t/2) llgly-
As far as T'c 5(u) is concerned, if R = ||uc||¢,on9,7, thanks to (ZIT), (314) and (E.8), we have

t t
Hmﬁammmm@sﬁHmwaﬂwmmmmwngme@mame

t
(t=s)
<ce P / ((t—s) A1) Poem e
0

+l=

e @D (s A1) TFIN 5(R, 5) ds < co(R.T).

This allows to conclude that QD2u.(t,z) € L£1(H) for every e € (0,1), t € (0,7] and x € H.
O

Next, we show that w, is differentiable with respect to ¢t € (0,7] and z € D(A) and is a
classical solution of equation ([BI7]). In Subsection 23] we have seen that for every ¢ € By(H)
and x € D(A) the mapping

t € (0,400) — Rip(x) € R,
is differentiable and
DiRip(x) = LcRjp(x).
Hence, since

Uﬁw)ZE%wﬁAEﬂgﬂwﬂm@%%m@N+W%&M&MOM%

= Rig(z) + e 5(ue)(t, ),

thanks to Lemma [6.1] for every x € D(A) we can differentiate both sides with respect to t > 0,
and we get

Dyuc(t,z) = L Rig(x)+ %Tr [0 F(ue(t, x))Diue(t, x)] 4+ (b(z), Duc(t,x)) g + Ll 5(t)(t, x)

= Leue(t,x) + %Tr [6 F(ue(t, z))D2uc(t, )] + (b(z), Duc(t,z))m.

Thus, we have proven the following result.

26



Theorem 6.2. Under Hypotheses[D to[]), if ue is a mild solution of equation [BIT) that belongs
to Ce,on((0,T7; C’g+ﬂ(H)), then it is a classical solution.

Next, we show how any solution of equation ([B.I7]) is related to the stochastic PDE (B.19).

Theorem 6.3. Assume Hypotheses [l to[§ Then if u. € CE,Q,,]((O,T];CI?J”S(H)) is a solution
of equation BIT) and X0* € L2(Q; C([0,t]; H)) is a solution of equation BI9), we have

ue(t, ) = Eg(X(t)). (6.1)

Proof. The natural way to prove (6.)) is by applying the It6 formula to the function (s,z) €
[0,8] x H — uc(t — s,z) and to the process X" (s). However, we cannot do this directly first
because u. satisfies equation ([B.I7) in classical sense only for z € D(A) and second because
X5 s only a mild solution of equation (8:19]), and not a strong solution, as required when It6’s
formula is used. To overcome these difficulties, we introduce a suitable approximation of u, and
X5 by adapting an argument introduced in [7, Proof of Theorem 9.25].

For every m € N we define .J,,, = m(m — A)~! and

Uem (b, @) = ue(t, Jmz), (t,z) € [0,T] x H.
Since Jp,x — x, as m — 00, and ue € C¢ ,,((0,77]; C’g+ﬁ(H)), we have that

lim  sup ||ue,m(t7 ) - u(t7 )HO = 0. (62)
0 te [0,7)

Moreover,
Dottem(t,x) = J5Dou(t, Jpx),  D2ucpm(t,x) = Jf D2u(t, Jpnx) Jpm. (6.3)
Next, for every m € N we introduce the stochastic PDE

dXEn(s) = [AXER(s) + Tmb(XEm(5))] ds + TnBer(s, XE () AW,
(6.4)
XH7(0) = Jpx,

where X ; is the operator introduced in ([£.2)) and W/™ is the projection of the cylindrical Wiener
process W onto H,, := span{eq,...,en,}. By proceeding as in Section Ml we can prove that
equation (B4) admits a unique mild solution X{7, € L2(Q;C([0,T); H)). Since J,, maps H
into D(A) and W{" is a finite dimensional noise, it is immediate to check that X%, is a strong
solution. Namely

XE2 () = T + / AXEE () dr + / Tnb(XEE () dr + / T Sea(r, XU2,(r)) W™ (7).
0 0 0

At the end of this section we will prove that

lim sup E|X!7(s) — X"(s)||lg = 0. (6.5)

M=00 s (0,1
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Now we apply It6’s formula to ue ,, and Xﬁjﬁb and thanks to ([G.3]) we get
dstem(t — s, Xéfn(s)) = —Dyu(t — s, JmXﬁ”,fl(s)) ds

1
—|—§Tr [Tr Dt — s, T X 05 (8)) T (T St (1, X5 (1)) (T S (r, Xk (r)))*] ds

(AT X2 (5) + JED(XEE (3)), Dpu(t — s, Jm X5 (5))) o ds

(T2 S (r, X2 () AW (), Dyu(t — 8, Jin X5 (3))) ar -

Therefore, recalling that u(t, z) satisfies equation (5.1)), for every z € D(A), since J,, Xt (s) €
D(A) we have
dsue,m(t -5, X::zz(s))
(6.6)
= (JnZea(r, XEm(5)) AW™ (), Dyu(t — s, T X () i1 + L1 (8) + L2 (s) s,
where

m,1(8) = gTr [T D3ult — s, Jm X (8)) i (Tin Sep(r, X (1)) (T D (r, X, (1)) 7]

—%TT [DZult = s, Jm X () (et (1, S X e (1)) (B (ry T X (1)) ]

and
m2(8) = (Jnb(XEn(s) = b(Jm X (5)), Dault — s, Jn X (5))) ar-
If we take the expectation of both sides in ([6.0]) and integrate with respect to s € [0,t] we get

t
Eg(JmXé’,fl(t)) = U (t, Jmx) + / E (If,1(s) + If,0(s)) ds. (6.7)
0
In view of (62) and (G3]), we have that
lim Eg(JmnX{n () = Eg(X" (1)), i ven(t, Jn) = ult, ).

Moreover, since u. € Ce,,((0,T]; CET(H)), by using again ([6.2) and (63) it is not difficult to
check that .
tim [ E (115, () + [I5,0(5)]) ds = 0.
m—oo g ’ ’

Therefore, if we take the limit of both sides in (6.1]), as m — oo, we obtain (6.1)).

Remark 6.4. Thanks to the representation formula (6.1I]) of u., we have that
sup ||uc(t,-)llo < gllo- (6.8)
te (0,7
Now, we conclude this section with the proof of (G.5]).

Lemma 6.5. If X', is the solution of problem ([6.4), we have
lim sup EHXE%(S) — Xﬁx(s)H%{ =0. (6.9)

M= s 10,1
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Proof. If we denote pem(s) := Xim(s) — X&%(s) and W, (r) = W(r) — W™(r), we have

pem(s) = €A (Jnr —x) + /O T ls—n)A (Jmb(XEE (1)) — b(XE"(r))) dr
+ / ) T (T Bt (r, XEZ (1)) — Seo(r, XI5 (r))) dW™ (r)
0

+ / eSTIAS (r, XET (1)) AW (7).
0

Therefore, since ||J | ¢y < 1, we have

Elpem()|% < cllme — 3 + /0 Ellpen(r) % dr
o / E | Junb(X5% (1)) — b(X () |3 dr
0
te / B[l el Ty (Ses(r, X2, (1)) — S, X2 (1)) 12,
0

te / Bl e A5, o (r, XE7(7)) — €O ATy (r, X2 (1) |2, )
0

s 6
b [ BT X0 (1) S0y = D T,
0 =1

where S,, := I — P,, is the projection of H onto span{e;,+1,€m+2,---}-
By proceeding as in Section [ we have that

s _1 _

) < (€) [ (G5 =) ADTE (U4 (=) A 1)) Ellpen0)]y
so that

El|pe;m ()3 < (e) / (s = ) A1)~ CEDE| pe ()} dr + Acm(s),

0
where
Aen(s) =I5, 1(8) + 15, 3(s) + I 5(s) + I, 6 ().
Since 20 + 1/2 < 1, thanks to a generalized Gronwall’s inequality (see [16]), this implies that
E”ps,m(S)H%—[ S Ce,t Ae,m(s) S Ce,t Ae,m(t)y s € [O,t],

and (6.9)) follows if we can prove that

nlglloo Ag,m(t) =0. (6.10)
It is immediate to check that
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Moreover, according to Hypothesis [l and to the fact that u is bounded in [0,t] x H, for every
m € N we have

T e Ay (r, X0 (r)) = A8 (r, XEP (1) o)

1
< 2| e (X (r), ue(t — 1, XE" () | eaan) < (=) 73 (L4 | X7 () [ar) -
Then, since

lim || S8 (r, X0 (1) — TS (r, X0 (1)) ]| = 0,

m—0o0

and since the mapping
s € [0,8] = (t— )77 (1L+ | X5%(s)||m) € R,

belongs to L?(Q; L?([0,1])), by the dominated convergence theorem we have that

Tim I, (1) = 0. (6.12)
In the same way, by the dominated convergence theorem we have also that

TimIf,6(t) = 0. (6.13)
Therefore, combining together (G.I1]), (G12]) and (6I3]), we obtain (GI0) and (6.9]) follows. O
7. EXISTENCE AND UNIQUENESS OF GLOBAL CLASSICAL SOLUTIONS FOR THE QUASI-LINEAR

PROBLEM

In Theorem [5.5] we have proved that for every n > 1/2 and ¥ € (0, (n — 1/2) A 1), there exist
91,11 > 0 such that problem ([B.I7) has a mild solution u in C¢ o, ((0,71]; C’g+’9(H)). In Section
we have shown that such mild solution is in fact a classical solution. Our purpose here is first
proving that u,. is defined on the interval [0, 7], for every T" > 0, and then proving that it is the
unique solution.

We start with the following a-priori bound.

Lemma 7.1. There exists 62 € (0,01], that depends only on ||g|l,, such that if u. is a mild
solution of BIM) for some § < b2, belonging to Ce o,((0,T7; C’g+ﬂ(H)), then

Hu”679777ﬂ97T S CE ”an7 € E (07 1)7 (7'1)

for some constant c. independent of T > 0.
Proof. In what follows, for any function v : [0,7] x H — R we define

Ne(v()) = [u(t, )]y + €2(t AT Du(t, Yl + €72 (E A1) 2 [ D20(t, ) ly-
With the notations we have introduced in Section [, thanks to (6.8]) we have

Hus(t7 )HO + Ne(ue(t)) < ”gHO + NG(REQ) + Ne(rg,l(us)(t)) + NE(PE(UG)(t))7 (72)
where
Tate) = [ R sgaws)@ds = § [ R 5P ) (s D2 (s, 0] 2) ds
and

S (u)(t, z) ::/0 Ry va(u, s)(z)ds ::/0 R;_ (b, Du(s,-)) g (x) ds.
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In (5:23]) we have already shown that

sup Ne(Rig) < cllglly- (7.3)
te (0,7

Thus, in order to prove ([ZI) we need to estimate Ne(I'§ ; (ue)(t)) and Ne(I'(ue)(t)).
Thanks to (88) and (G.8]), we have

17 (ue(s, )llo < e (1 + [[ue(s, )o) < e(1+llgllo),
and then
1751 (e, $)llo < c€dl1F (uc(s, ))llol|D*uc(s, )llo < ced (1+ [|gllo) [ D?ue(s, )llo- (74)
Moreover, due to B3) and (G8) we have
[F(ue(s,)lo < (14 Jue(s, o + [ue(s, )]o) < (14 llgllo + [ue(s, )la)
so that

5. (ue, s)lo - < ced[F(uc(s, )]allD?ue(s, o + ced||F(ue(s, ) llo[D?ue(s, o

< ced (1+ |gllo) [1D*uc(s, )llo + ced [ue(s, ol D?ue(s, )lo-
According to (2717) and (G.8]), this implies

51 (ue,9)ly < ced (14 [lgllo) 1D uc(s, ) lo + ced |uc(s,-)lo[D?uc(s, )]s
(7.5)
< ced (14 gllo) [ D>ue(s,-)|ls-

Therefore, if we combine together ((T4]) and (5]) we conclude that
17951 (ues s)llo - < ced (1 +[lgllo) [ D?ue(s. )l
< ced (L4 glo) e @2 (s AL)TEHD) Ne(ue(s, ).
By proceeding as in the proof of Lemma [5.3] (see also Remark [5.4]), this allows to conclude

Ne(T 1 (ue)(t) < e (1+lgllo) o Ne(ue(s,-)), t€[0,T]. (7.6)

Now, let us estimate N (I'§(uc)(t)). We have

2 (ue) )l < e (| Due(t, )llo + |1 D?ue(t, o) -

Thus, according to (23] and (2.8)), thanks to (6.8]) for every o > 0 there exists £, > 0 such that

2 (ue) ()l < @ [D?uc(s, )]y + Kallue(s, ) o- (7.7)
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In view of (2.I5]) and (7.7), there exists some Ay > 0 such that for every ¢t € [0, 7]

Ne(Ty(u)(t) < O‘/O e NI [Duc(s, g ds
+ae? (tN1)° /t e_A”(t_s)e_g((t —3)A 1)—% [D?u(s,-)]g ds
0

t
paerth(ean)ers [ (- s) A1y (DR, o ds (7.8)
0

t
ﬂm/e”wﬂkiyw—QAUJ¥dﬂNo
0

<cae 2 sup Ne(ue(s,)) +crac 2 |lglo-
se [0,t]

Hence, if we plug (7.3)), (Z.6]) and (78] into (2], we obtain
[[ue (t, <)l + Ne(ue(t, )

_ 149 _ 149
< cllgly +¢ |5(1+ llglo) + ae 2]?%NMM&W+C%E2IMM
se[0,t

In particular if take d9 < 1 such that

cd2 (24 [lgllo) < 1/2,

and a = 56#, we obtain ([Z.1]) for every § < ds.
U

7.1. Conclusion of the proof of Theorem [B.4. Thanks to (1), by standard arguments we
have that for every e € (0,1) the local solution we found in Theorem 55 is in fact a global
solution. Moreover, this global solution is unique. Actually, if w1, us € Ce o, ((0,T); CEY (H))
are two solutions of equation (B.1I), for some fixed § < d9, we assume that

to:=sup{t € (0,7] : ui(s) = ua(s), s€ [0,t]} <T.
With the same notations we have used in Section 5], we introduce the problem
u(t) =T75(u)(t) = Rjp +Tes(u)(t), ¢ > to, (7.9)
where ¢ := uq(tg) = ua(tg). Due to (1)), we have that

l[elln < cesllglln,

for some constant c. s > 0 independent of 7" > 0. -
As shown in Section Bl there exist R, 7 > 0 and § < 5 such that the mapping Ff 5 maps

9;1; P into itself as a contraction, for every § < S, where
&R L 1 24D ' -
omitor = {u € Ceonl(to,to + 7L G (H)) = [ulleomiior < R} ;
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and Ce  p((to, to+7; C’E+’9 (H)) is the space of all functions u belonging to C([to, to+7]; Cy/(H))N
C((to,to + 7; C’g+ﬁ(H)) such that the norm

l[wlle,0,m,9,t0,7

1
 sup (Jlt )l + 2 — t0) A DEIDau(t Yo + 2+ (2 — t0) A DEHD2u(t, o)
te (to,to—l—f’]

is finite. ~
In particular Ff’ s has a unique fixed point in ygﬁ,ﬂ,toi or, equivalently, equation (Z9) has a
unique solution on the interval [tg,to + 7]. This implies that

ui(s) = ua(s), s € [0,tg + 7],

violating the definition of [0, #9] as the maximal interval where u; and ug coincide.

8. THE LARGE DEVIATION PRINCIPLE

In this last section we give a proof of Theorem We follow the well-known method based
on weak convergence, as developed in [3]. To this purpose, we need to introduce some notations.

For every ¢ > 0, we denote by P; the set of predictable processes in L2(Q x [0,]; H), and for
every M > 0 we introduce the sets

Sia = {p € Ly(0,6: H) : |lll2um < M},
and
Myv={peP : o8y, P—as.}.
In Theorem we have shown that for every M,t > 0 and ¢ € A s and for every x € H
and € € (0,1) there exists a unique mild solution X5% € L2(€; C([0,t]; H)) for equation (3IJ).
Next, we consider the problem
dX
ds

where, as we did in Section [3] for every y € H we denote by Z¥ the solution of equation (3.22)).
In what follows, we show that the following result holds.

(5) = AX(5) + b(X(s)) + 0 (X (), 9(Z¥O(t = 9)))p(s),  X(0) =, (8.1)

Proposition 8.1. Assume that g : H — R is Lipschitz-continuous. Then, under the same
assumptions of Theorem [Z3, for every t > 0 and ¢ € L?(0,t; H) and for every x € H, there

exists a unique mild solution X5* € C([0,t]; H) for equation (&I).

Once proved Theorem and Proposition Bl we introduce the following two conditions.
C1. Let {¢c}es0 be an arbitrary family of processes in A such that

lin% @e =, in distribution in L2 (0,t; H),
€—>

where L2 (0,t; H) is the space L?(0,t; H) endowed with the weak topology and ¢ € Ay .
Then we have

lim X% = Xf;’x, in distribution C([0,t], H).

e—0  Poc
C2. For every t, R > 0, the level sets ®; p = {I;, < R} are compact in the space C([0,t]; H).

As shown in [3], Conditions C1. and C2. imply that the family { X/} . (0,1) satisfies a Laplace
principle with action functional I; ; in the space C([0,t]; H) for the . Due to the compactness
of the level sets ®; g stated in C2. this is equivalent to the validity of Theorem
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8.1. Proof of Proposition For every y € H and s € [0,t] we define

Sy, s) == o (y, 9(Z2(t - s)))-
With this notation, a function in C([0,t]; H) is a mild solution for equation (81 if it is a fixed
point of the mapping A; defined for every X € C([0,t]; H) by

Ay(X)(s) == Ao + /Os eTAX (r)) dr + /Os eSTIAS (X (1), 7Y @(r) dr, s € [0,1].

It is immediate to check that there exists a continuous increasing function k(s) such that for
every y1,y2 € H

127 (s) = 22 (s)lr < K(s) lyr —wallm, s =0. (8.2)

Hence, since we are assuming that g : H — R is Lipschitz-continuous, according to Hypothesis
[ for every y1,y2, h € H we have

1By, 7) = Ba(yz, )bl < ¢ U+ w(E =) [y = g2llullbla, e [0,

In particular, for every X3, Xy € C([0,t]; H) and s € [0,t] we have
[A+(X1)(s) = Ae(X2)(s)[[ln <c /O (L4+ @+ rE=7)) le)a) 1 X1 (r) = Xao(r)|[ g dr

<t (llell 2, + 1) 1X1 = Xolleom)-
This implies that A, : C([0,t]; H) — C([0,t]; H) is Lipschitz continuous and by standard argu-

ments we conclude that A; has a unique fixed point.

8.2. Proof of the validity of Conditions C1 and C2. It is enough to prove Condition C1.
Actually, from the proof of Condition C1 we will see that the mapping

@€ L5(0,t; H) — YL*
is continuous and
Oy p={L. <R} ={Y}" : o€ A m)}

for some ¢(R) > 0. Therefore, since the set A; ;s is compact in L2 (0,¢; H) for every M > 0, we
conclude that Condition C2 holds.
In order to prove Condition C1, we first need to prove the following preliminary results

Lemma 8.2. Under the same assumptions of Theorem [30, for every p > 1 we have

sup E sup [ X5 (s < e(t. M,p) (1+ []) - (8.3)
ec(0,1) s€[0,]

Proof. We have

XLT (s) = ea+ /0 e(s_’")Ab(Xfo’je(r))ds—l— /0 e<S—T>Azt,E(r,ngE(r))(,pﬁ(r)dr

/€ / IS, (r, X5T (1)) AW (r),
0
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where ¥, . is the operator defined in (£2]). Hence, for every s € [0,¢] and p > 1 we have

[Nl

IX5 (L < p el + cp / 152 ()| dr+cpM< / et TAztﬁ<r,X$ie<r>>||%<H>dr>

s p
+cp / e(s_’")AEt,e(r, Xfp’:e(r)) aw (r)|| +cpe.
0 H
(8.4)
According to Hypothesis B, for every 7 > 0, s € [0,¢] and € H we have
1
745 (s, @) |2y ) < ¢ (T AD)TZ (|21 + [uct = s,2)]> + 1)
Moreover, according to (G.1I), we have
Sup ’uE(‘S?x)‘ < Hg”07 €< (07 1)7
(s,2)€[0,t]xH
so that )
sup |75 (s, @) |17, < (T AD)TE (||2]|FH + 1) . (8.5)

€€ (0,1)
In particular,

P
s 3
E sup (/0 =A%, ((r, X:;ze(r))H%(H) d7‘> < Ot (E sup ||X$f,e(7")”z]){ + 1) . (86)

re0,s] re [0,s]

Now, if we fix p > 4, we can find a < 1/4 such that (o« — 1)p/(p — 1) > —1. By using a
stochastic factorization argument, we have

/ e(S_T)AEt,E(T7 X@:G(T)) dW (r) = Ca/ e(S—T’)A(s — r)Oé—lYa,e(T) dr,
0 0

where

Then, we obtain

Ye(r) := /0 ePA(r — p) =%, (o, X5 (p)) W (p).
/ esIAS, (r, X5F (r)) dW (r)

P S (afl)p p_l S
< Cap ( [s-n dr) | Wl
0 H 0 0

so that, thanks to (X)) and to the fact that oo < 1/4

/ esMAY, (r, XEE (r)) dW (r)
0

p

E sup
re[0,s]

P
S ™ 1 §
< Copi /0 <E /0 (r—p)~ @2 (| XE2 ()|} + 1) dp) dr (8.7)

< Cape ( [ = s xez oy 1) .
0 pe [0,r]
Therefore, thanks to (84), (86]) and (81,

s
E sup | Xg7 () < conrp (Il +1)+Cpt/ E sup [ X57 (o)l dr,
re [0,s] pe [0,r]

< g [ ElYodr)lfy dr
H 0

and Gronwall’s Lemma allows to conclude.
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Lemma 8.3. Under the same assumptions of Theorem [3.0, we have
jue(s,2) = g(Z"(s))| < et Ve(L+ |z]|u), s € [0,2]. (8.8)
Proof. Thanks to (G.I]), we have
uc(s, ) — g(Z%(s)) = E(9(X2*(s)) — 9(Z2%(s))) ,
so that, since we are assuming that ¢ is Lipschitz-continuous
|ue(s, z) — g(Z%(s))| < cE[|X2"(s) — Z2%(s)|ar-

Now, if we define p*(s) := X2 (s) — Z%(s), we have
pe(s) = / A DX (r) = b(Z7(r))) dr + ﬁ/ IS (r, X2 (r)) W (r),
0 0
where X . is the operator introduced in (£2]). Due to (B3] and (1), we have

Ellpe(s)llm < C/O Ellpe(r)lla dr + ce Ve (1 + |2]lm)

and Gronwall’s lemma allows to conclude.
O

Now, we are ready to prove condition Cl. Let {¢}c~o be an arbitrary family of processes
in Ay converging in distribution, with respect to the weak topology of L?(0,t; H), to some
@ € Ay . As a consequence of Skorohod theorem, we can assume that the sequence {¢c}eso
converges P-a.s. to o, with respect to the weak topology of L?(0,t; H). We will prove that this
implies that

lim sup E[[X}” (s) — Xfox(s)H%{ =0. (8.9)
e=05e (0,
If we define
pe(s) = X5l (s) — X5™(s), s € [0,1],
we have

pe(s) = /0 elrmna [B(XZc(r) = b(XG"(r))] dr

o [ o (X ) et = r X)) ) = (X092 O = ) ()]

s 3
- / eCTIA, (r, XE (1) AWy = Ty o(s).
0 k=1

(8.10)
For I; ((s), due to the Lipschitz continuity of b, we have

IMAM%S@AHm®MM& (8.11)
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Concerning I ((s), it can be written as

/0 A [ (XU ) uelt — 1, XE(r) — o (X (), (2550 (¢ — )] oulr) dr

+ [ o (X)X =) = oK), (2 Ot = )] el

s 3
t,x
+ [ ). (25 O = ) () = o) =5 D (o),
k=1
According to (B.8]), we have

[1e(s)llm < C/OS (el + ce Ve (L4 1XGE ()| 1)) llope ()| dr,

so that

S
[J1e()lI7 < Ct,M/ lpe(r)II; dr + € cin (1 + sup, HXg?f,eH?{> : (8.12)
0 re [0,t

Moreover, thanks to (8.2]), we have
S S
e ()% < cons / 125550 (¢ — vy = ZXE O )| dr < cons / loe(r) | dr.  (8.13)
0 0

Finally, for I3 (s), thanks to (83]) and (87) we have

E sup [|I(s)|F < e (1+ [|=lf3) - (8.14)
s€[0,t]

Therefore, if we plug (811), ®I2), ®I3) and [®I4) into [BIM), in view of ([B3) we obtain
E[lpe(s)IIF < Ct,M/O Ellpe(r)|If dr + cpr e (14 |l7r) +Ell Js.e(5)l3,

and the Gronwall lemma gives
E|lpe(s)lIE < ceare (L+[lzl1) + Ct,M/O E||J3,e(r) |3 dr- (8.15)

Now, due to the P-a.s. convergence of ¢ to ¢ in L2(0,¢ H), since {¢}ee01) C Ayn and
¢ € Ay pr we can apply the dominated convergence theorem and we get

S
. 2
tim [l (r) .
Therefore, by taking the limit as € goes to zero in both sides of (810 we obtain (83I).
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