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Abstract

Wireless Sensor Networks typically consist of a large number of sensor nodes with constrained resources. Cluster-based
routing algorithms for WSNs try to preserve battery power by grouping nodes into multiple clusters: a single node in
each cluster, the Cluster Head (CH), communicates with a Base Station on behalf of the others. In an ideal collaborative
setting, sensor nodes should alternate in the role of CH. However, the cooperation of nodes is not granted in WSNs with
more than one governing authority, where sensor nodes can behave selfishly, in order to save their own resources. In this
paper, we propose a novel evolutionary cluster-head determination algorithm called GREET, based on an Evolutionary
Game Theory (EGT) approach. In the proposed algorithm, individual nodes adapt their strategies on the basis of the
outcomes of the interactions with other nodes and converge to an Evolutionary Stable Strategy (ESS) equilibrium. We
show that this ESS corresponds to one of the desired behavioral outcomes. This outcome is obtained without the support
of external cooperation enforcement mechanisms. In the study, we use an analytic model of the population evolution,
based on the so-called replicator dynamics, as a guide in the choice of the mechanisms, then we adapt the approach to
realistic more scenarios. We show, by means of a systematic simulation study, that the algorithm extends the network
lifetime and provides a better packet throughput, w.r.t other standard WSN algorithms, such as LEACH and CROSS.
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1. Introduction

Wireless Sensor Networks (WSNs) can consist of hun-
dreds of sensor nodes distributed over a geographical area.
Sensor nodes are capable of observing physical phenomena,
of processing data, and sometimes of taking appropriate
actions [1, 2, 3]. WSNs are typically used for tracking
and monitoring. Monitoring applications include environ-
mental monitoring, health monitoring, inventory location
monitoring and structural monitoring. These applications
are often made possible by the fact that a WSN has a
short system setup time and sensor nodes can be deployed
with acceptable cost. The versatility of WSNs and their
broad range of applications are increasingly attracting the
interest by the industry and by the research community.

Sensor nodes are low-power devices equipped with one
or more units devoted to sensing and processing, a mem-
ory unit, a power supply unit and a communication unit.
They can be either stationary or mobile [4]. The hard-
ware of a sensor node may also have additional application-
dependent components such as a location finding system,
a power generator or a mobilizer.

Sensor nodes collect and route information about the
observed physical phenomena – possibly through multiple
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hops – to a central node, called sink or base station (BS),
for further processing and decision-making. The BS has
a dedicated power supply and a higher processing capa-
bility and can be connected to other networks, like the
Internet. The WSN deployment can be either structured
or unstructured [2]. In an unstructured WSN, nodes are
deployed in an ad-hoc manner (for instance dropped from
a plane or randomly placed in a field) and then left unat-
tended to perform its monitoring and reporting functions.
In a structured WSN, all or some of the nodes are deployed
in a pre-planned manner, which results in lower network
management and maintenance cost. The latter modality
has a higher initial cost and it is not always feasible.
In general, WSNs are characterized by the following fea-
tures [2]: (1) sensor nodes are highly constrained in power,
computation, and storage capabilities; (2) sensor nodes
have a modest and sometimes non-renewable battery power;
(3) in most sensor network applications, the sensed data
flow from multiple source sensor nodes to a particular sink
(a many-to-one traffic pattern) or to few sinks; (4) sensor
nodes are densely deployed in a region of interest and col-
laborate to accomplish a common sensing task; (5) due to
the large number of sensor nodes deployed, it is usually
not possible to build a global addressing scheme for a sen-
sor network. Due to those peculiarities, designing resource
efficient routing algorithms is challenging.

An effective approach to routing – able to preserve
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communication resources – is the so called cluster-based
routing, which is based on sensor nodes grouping [5, 6, 7,
8, 9, 10]. A recent survey can be found in [11]. In such
routing algorithms, nodes are arranged into clusters. In
each cluster, the task of communicating to the base station
is delegated to a single node, called Cluster Head (CH).
The CH role is taken in turn by different nodes. The CH
aggregates the information collected from the nodes in its
cluster and forwards it to the base station. CHs can also
form multi-hop data transmissions, thus, after the head of
each cluster has been determined, the routing problem of
the WSN is reduced to a routing problem among CHs.

If the role of CH is fairly distributed among nodes, this
technique brings many advantages: (1) it reduces the to-
tal transmission power; (2) it can reduce redundancy by
aggregating data; (3) it balances power exhaustion among
nodes; (4) it makes bandwidth utilization more efficient;
(5) it increases the manageability and scalability of the
network and (6) it reduces routing and topology mainte-
nance overhead.

Cluster-based routing algorithms consist of a cluster
formation phase, followed by the steady-state operation,
subdivided into data aggregation and data transmission
phases. In the present work, we focus on the cluster for-
mation phase.

Most of the previous research work on cluster-based
routing algorithms of WSNs (it is the case of LEACH
[5] and HEED [6]) assumes full collaboration among sen-
sor nodes. However, this assumption does not hold for
WSNs with more than one governing authority, where sen-
sor nodes may be owned and supported by different stake-
holders or agencies. In that case, sensor nodes can be
viewed as selfish players: their primary goal is to maximize
the benefits to their agency and save their own resources,
such as power, even at the expenses of the other nodes. In
such conditions, guaranteeing fair spatial dispersion, rotat-
ing CHs, and having balanced cluster formation becomes
a challenge [12]. In such settings, a different method for
determining CHs is required.

A framework for modeling such interdependent and
possibly interactive decision landscape is offered by Game
Theory [13]. Game theory (GT) is used to model systems
that consist of selfish agents, or players, with non-aligned
interests and preferences, where each player, not only is de-
termined to choose the optimal move or strategy to attain
its goals, but (if endowed with the capability of strategic
reasoning) may also be aware that the others will do so and
take decisions consequently. The area of GT which models
fully rational players adopting strategic reasoning is com-
monly called Classical GT as opposed to other areas where
the player is endowed with lesser forms of rationality.

A special area of GT, assuming limited rationality is
Evolutionary Game Theory (EGT) [14, 15, 16, 17, 18].
There, each player is assumed not to use strategic reason-
ing, but just to learn from recent experience and adapt its
strategy consequently, pursuing a short-term selfish goal.
As a result, sub-populations of interacting players evolve

their behaviors: the percentage of players adopting any
specific strategy evolves with time. In some cases, the
percentages of the different strategies in a population can
become stable. This situation is referred to as an evolu-
tionary equilibrium or Evolutionary Stable Strategy (ESS)
profile. In designing a protocol, a designer normally aims
at setting up rules, such that the ESS outcome is a desir-
able state of the system. The advantages of EGT models
is that they are more realistic than those postulating full
rationality: they count upon the use of little computation
by the player and assume decisions are made based only on
local information. In a WSN setting, EGT requires each
sensor node to simply observe its neighbor nodes’ behavior
and to change its own strategies based on those observa-
tions. The outcomes of the collective behaviors do not rely
on any cooperation enforcement mechanism, but rather on
the benefits obtained by individual sensor nodes.

Classical GT models [19] and EGT models [7, 20, 21]
are becoming a reference tool for modeling of WSN pro-
tocols (for a survey see [22]). Based on an EGT model,
in this work, we introduce a novel evolutionary Cluster-
Head determination algorithm for sensor networks, called
GREET (evolutionary Game theoRy based Energy Effi-
cienT cluster-head determination algorithm). The algo-
rithm takes into account both the positive incentives to
the node – resulting from successfully spending its own
resources for communicating its own information – and
the negative incentives – consisting in spending power for
routing other players’ messages.

A common tool adopted in EGT for analytically mod-
eling the population evolution is the so-called replicator
dynamics [17]. This model of the dynamics posits that –
from a round of interactions to the next – the proportion
of sensor nodes using a certain strategy increases propor-
tionally to the relative advantage provided by the strategy
w.r.t. the average payoff of the population. Replicator dy-
namics is one of the stylized models that use the so-called
population approximation. This approximation assumes
that the ensemble of individuals participating to the pro-
cess is so well-mixed, that any individual has the same
probability of meeting any other individual. The popula-
tion approximation does not take into account the fact that
individuals are bound by physical constraints to specific
regions of space and interact only with neighbors; how-
ever, it can provide a ”first-order” analytic model of the
phenomena, especially good if the individuals are charac-
terized by a high mobility. The addition of physical space
to the picture is most of the time achieved by giving up
the analytic tractability and passing to simulative models.

In this work, by modeling a system of sensor nodes, first
through replicator dynamics, then by a more realistic WSN
simulation, we show that GREET guides the overall state
of the system towards one of the desired behaviors, which
can be set by the network designer. Simulation results
show that GREET extends network lifetime and yields
better packet throughput when compared to other cluster-
based algorithms such as LEACH [5] and CROSS [7].
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In order to challenge the capabilities of the algorithm,
we consider – both in the analytic model and in the simu-
lation – the worst case scenario, where each node belongs
to a distinct agency. As a complement, in the Appendix,
we model analytically the case where more sensors can be-
long the same agency. In that case, the selfish player is
the agency: nodes from the same agency behave collabo-
ratively, forming a coalition whenever they happen to be
in the same cluster.

The remainder of this paper is organized as follows.
Section 2 reviews the related works both for collabora-
tive and non-collaborative sensor nodes. The description
of the network model and the evolutionary cluster game
are presented in Section 3. In Section 4 we analyze the
replicator dynamics model for the developed evolutionary
cluster game and find its evolutionary stable strategies.
A description of GREET is presented in Section 5. The
simulation setup and the results are presented in Section
6. Conclusions are drawn in Section 7. The Appendix
describes the case where the number of agencies is lower
than the number of sensors.

2. Related Work

Clustering in sensor networks is an active research area
[11]. While the ultimate objective behind all the algo-
rithms is to extend the network lifetime and enhance net-
work performance, each algorithm focuses on improving
the clustering attributes in a specific phase. Here, focusing
on the cluster formation phase, we review representative
cluster routing algorithms for WSNs, some not using GT,
and some based on GT.

LEACH (Low Energy Adaptive Clustering Hierarchy)
[5] is one of the first hierarchical routing protocols used
for WSNs. It performs self-organizing and re-clustering
functions for every round. A CH is randomly self-elected
and rotated in a probabilistic way. It incorporates data
fusion into the routing protocol in order to avoid send-
ing redundant information to the base station. However,
in LEACH only a single hop cluster is formed that might
lead to a large number of clusters and it is assumed that
all CHs should directly transmit data to the sink. The
protocol does not address the problem of the optimization
in the CH selection. In order to overcome this issue, the
LEACH-C (LEACH-Centralized) algorithm [23] allows the
base station to determine the CH and to notify the infor-
mation of head node selection to every node in a network.

The PEGASIS (Power-Efficient Gathering in Sensor
Information System) [24] protocol was developed to pro-
vide improvements over LEACH. PEGASIS builds chains
of nodes instead of clusters to address the overhead caused
by the cluster formation in LEACH. A greedy algorithm
is used to perform the construction of the chain: nodes se-
lect their closest neighbors as next hops node. Each node
keeps track of its previous and next neighbors in the chain.
It uses the assumption that nodes have a partial global
knowledge of the network: construction starts from the

nodes that are farthest from the sink. During the commu-
nication along the chain, each node aggregates data from
its neighbors so that eventually all the data are aggre-
gated at one of the sensor nodes, called chain leader. In
this protocol the role of chain leader is taken by a single
node, hence bottlenecks may be an issue.

In general, the works over the protocols LEACH [5],
HEED [6], LEACH-C [23] , PEGASIS [24], BCDCP [25],
WCA [26] and BCSP [27] assumed that sensor nodes are
fully collaborating (i.e., sensor nodes are acting honestly
toward cluster routing algorithm). This is not always the
case in practical settings. Selfishness is one of the key prob-
lems that confront developers of cooperative distributed
systems: selfish behaviors are performed by participants
that benefit from the system without contributing their
fair share to it It has the potential to severely degrade sys-
tem performance in several scenarios [28]. The problem of
building selfish-resilient systems is often approached using
Game Theory [29, 30, 31].

Also in WSNs the performance of cluster routing al-
gorithms can be highly affected by selfish nodes, as we
demonstrated in a previous study [12]: the network life-
time and packet throughput decrease, the Quality of Ser-
vice (QoS) deteriorates, and so on. Also in the design
of WSN cluster routing protocols Game Theory has been
extensively used [7, 19, 32, 33, 34].

In [33] the authors proposed ACHGT (Adaptive Clus-
tering Hierarchy based on Game-theoretic Techniques), a
Game Theory based algorithm where individual sensor
nodes are modeled as players, but the CH selection and
the number of clusters are mediated by the base station.
The selection is based on the information of location and
residual power of every node. The authors show that this
approach is more efficient than a random one followed by
LEACH. However, no theoretical analysis is provided and
the ultimate decisions are centralized: this requires exces-
sive overhead and energy costs.

Another game theoretic approach for CH selection is
proposed in [34] based on distance and power as parame-
ters. A fuzzy clustering approach is applied to find initial
clusters along with the member nodes. The Euclidean dis-
tance from the base station to each static node is calcu-
lated followed by the estimate of power consumption for
sending and receiving messages. For every reference time
interval, the total cost to benefit ration of different nodes
in each cluster is recomputed to grant that the system
is game-theoretically stable with those elected CHs or to
trigger a new CH selection phase. In terms of network
lifetime and optimal CHs selection, this approach is bet-
ter than the one of the LEACH and HEEDs algorithms.
In this approach, GT is not used in the clustering phase.

Few works used Game Theory to model the cluster-
ing phase. Among them are those that proposed the pro-
tocols CROSS [7], CORE [9], LGCA [10] and the works
[32, 35, 36]. Before describing shortly the most relevant
ones, we recall that models of competition and collabo-
ration by selfish agents endowed with non-aligned prefer-
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ences are called Social Dilemmas. There are three qualita-
tive classes of social dilemmas involving symmetric players.
Those are players who have the availability of the same set
of strategies – conventionally termed Collaborate (C) and
Defect (D) – and similar costs and benefits, assigned to
their joint strategy choices [13]. We identify the strategy
Collaborate with the action of volunteering/bidding as CH
for a period, and the strategy Defect as not bidding.

The three classes are conventionally called Prisoner
Dilemma, Stag Hunt and Snow Drift. They can be charac-
terized based on two criteria that, for the sake of simplicity,
we express for the case of two-player games, where there
can be only 4 possible outcomes: CC,DC,DC,DD. The first
criterion is whether the outcome CD (the first player vol-
unteers as CH, the second does not) is more beneficial to
the first player than mutual defection DD: if this is the
case, the class is Snow Drift; if not, it is one of the other
two games. The second criterion is whether the outcome
DC (the first player does not volunteer, the second does) is
more beneficial to the first player than mutual collabora-
tion CC: if this is the case the game is a Prisoner Dilemma,
otherwise, it is a Stag Hunt.

In the model proposed in this paper, we considered
that, if everyone else played Defect, is much better for a
node to have chosen Collaborate and be the CH for that
period, rather than to have chosen Defect. In the former
case, its messages reach the BS, in the latter the node
saves power, but it does not accomplish its mission. This
feature situates our game model in the Snow Drift class.

In Classical Game Theory the equilibrium state (a joint
behavior determined by the spontaneous individual choice
of the fully rational players) is achieved in the Snow Drift
game by a suitable randomization of the strategies.

This is the model adopted in CROSS (Clustered Rout-
ing for Selfish Sensors) [7], where a clustering mechanism,
is proposed based on a Snow Drift game. CROSS achieves
also a relatively uniform power consumption distribution
by reselecting CHs in every round, thus it extends the
network life-time w.r.t. LEACH. Nonetheless, the mech-
anisms of CROSS are based on some ideal assumptions,
among them, that all nodes are simultaneously playing
the game. This makes the game too large and inefficient.

In [10] a Localized Game-theoretical Clustering Algo-
rithm (LGCA) for WSNs is proposed, so as to overcome
the shortcomings of CROSS. In LGCA each node selfishly
plays a localized clustering game only with its neighbors
within a communication radius Rc to select the poten-
tial CHs. During this time it is likely that more than two
nodes in close proximity happen to be selected as potential
CHs. Then the contention procedure based on CSMA/CA
mechanism is carried out to announce only one real CH in
one region. The network lifetime under LGCA is better
when compared with CROSS and LEACH. However, both
under CROSS and LGCA, since the CH selection is ran-
dom and does not take into account residual power, one
might select as CH a node having low residual power and
eventually discontinue network operation.

A repeated game theoretical approach with limited pun-
ishment mechanism for clustering in mobile ad hoc net-
works is proposed in [32], in order to prevent a node from
playing non-honest strategies by reporting deceitful self-
description values. By doing so, all nodes will act hon-
estly and further guarantee correctness and fairness of CH
selection. In this model, each node is assigned a random-
ization probability taking into account residual power, av-
erage moving speed and connectivity with its neighbors.

A GT based clustering algorithm called COst and RE-
ward based clustering (CORE) is proposed in [9]: it inte-
grates a virtual reward to the CROSS clustering game to
improve its performance. To support energy preservation
as well as to extend network lifetime, the cost is coupled
with the residual power, so that sensor nodes with high
residual power experience a low cost for being CH and
sensor nodes with low residual power experience a high
cost for being CH. The mechanism of CORE is only appli-
cable under the ideal assumptions that all deployed sensor
nodes have large enough communication radius to play in
the same game simultaneously. Such assumption is partic-
ularly inefficient when nodes are scattered in a large area.

All the works [7, 9, 10, 32, 34, 35, 36] adopted assump-
tions from Classical GT: complete knowledge about the
game, complete information of opponents’ type, and full
rationality of players. However, such assumptions are un-
realistic in a WSN setting [20]. In the present work, we
overcome this issue by using EGT [20, 21, 32] as a sounder
model for ensembles of selfish sensor nodes.

We assume each node updates its own strategies based
on the benefit obtained in the latest rounds of interac-
tions with peers. In many multi-agent systems of practical
relevance, this is expected to bring the population of sen-
sor nodes towards an Evolutionary Stable Strategy profile,
or ESS. If all members of the population adopt the ESS,
then the statistical distribution of the strategies does not
change. In other words, no mutant strategy could invade
the population. The approach taken by the present work
towards nodes’ selfishness consists of designing an evolu-
tionary mechanism that brings them to collaborate, so as
to improve the global network performance.

As mentioned, the game discussed in the present paper
is an instance of the Evolutionary Snow Drift game [17].
More specifically, we develop along the lines of [37, 38]
a generalization of the standard version of the game. In
all the standard evolutionary games one assumes that the
interactions take place between pairs of players (randomly
drawn from a very large and well-mixed population, so
that the probability of meeting a player of a given kind
matches the proportion of that kind in the population).
In the present work case, we consider interactions of sets
of M players at time (each player being randomly and
independently drawn from the population): the M players
represent, in a stylized way, the members of a cluster.

This model is an instance of an Evolutionary Snowdrift
game with M -person interactions [37]. To the best of our
knowledge, no other work on the application of this game
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Figure 1: Common Base Station scenario for sensor nodes belong-
ing to two authorities. Circles: first authority. Diamonds: second
authority. Solid circles and diamonds: Cluster Heads. Solid lines:
intra-authority communication. Dashed lines: inter-authority com-
munication

to Cluster Head determination in WSN is available. We
study the game first in terms of analytic models depicting
a large and well mixed population (a mean-field model)
using the two-player interaction, then the many-player in-
teraction. Those scenarios are not realistic and would be
appropriate only in the limit of an ideal very-high mo-
bility scenario. Therefore, we pass subsequently to struc-
tured population assumptions by studying the evolution of
the WSN after deployment within a physical space. In a
structured population setting it is not granted that all the
desirable properties of the well-mixed population model
are preserved [39, 40]. We develop a detailed algorithm
for CH determination and study its effectiveness by sim-
ulation in a structured population setting: we check that
the system converges to equilibrium. Finally, we quantify
the overall efficiency of the algorithm by using standard
networking performance metrics.

3. Network Model and Evolutionary Cluster Game

3.1. Network Model

We consider a model of a static WSN consisting in N
sensor nodes that are randomly distributed over a region
and adopt the following simplifying assumptions: all nodes
have the same initial battery power; the BS is not power
constrained; sensor nodes are self-configured in that, they
dynamically adjust the radio power according to the com-
munication distance to the destination; the communica-
tion channel is an ideal channel without packet loss (the
latter occurs only due to misbehavior of sensor nodes); two
sensor nodes are able to communicate with one another if
they reside within one’s another transmission range; inter-
operability is ensured by the device manufacturers.

An schematic illustration of this setting, with two au-
thorities, is shown in Figure 1. Hereafter, we consider the
worst-case setting in which each node represents a different
authority.

3.2. Evolutionary Cluster Game Definition

We model the system using Evolutionary Game Theory
(EGT) [17]. EGT has a dynamic nature and can model

the adaptation of players, that change their strategies by
reacting to simple observation.

We define an Evolutionary Cluster Head game as a
triplet G ≡ {N ,S,U}. The players of the game are self-
ish sensor nodes, denoted by N = {1, 2, 3, . . . , N}. Let us
assume the actions of the nodes are organized in rounds.
Each sensor node player, at each round, can adopt a strat-
egy from the strategy space S = {sC , sD} ≡ {C,D}, where
C corresponds to bidding, i.e. announcing oneself as a can-
didate CH, and D corresponds to not bidding. At a given
time a node adopts either strategy C or strategy D. For
the sake of brevity, hereafter, those adopting strategy sC

are called C-nodes, those adopting strategy sD are called
D-nodes.
U represents the utilities or payoffs to the sensor nodes.

The payoff to a node depends on its strategy and on the
strategies of the other nodes it interacts with. For in-
stance, if the data sensed by a node and then sent out
are successfully relayed by the other nodes to the BS, the
source node experiences a positive payoff. The utilities U
relevant to our model are specified in Section 4.

3.3. Evolution Dynamics

The nodes try different strategies in each round and
learn from the interactions with other nodes. During this
process, the percentage of sensor nodes using a certain
strategy may change. The objective, in studying the game,
is to predict the dynamics of the system in terms of relative
proportions of strategies [17]. We wish to set up the system
so that the evolution, in terms of strategy proportions,
tends asymptotically towards a desirable behavior.

To obtain a preliminary model the evolution of the sys-
tem and use it as a hint of the much complex behavior
of the real-world systems, it is customary to use replica-
tor dynamics, a simplified representation of the evolution
mechanisms, where interactions are assumed to take place
between any pairs of players, with no regard to actual lo-
cations nor to the restrictions they would imply [17, 38].

Given an evolutionary game, players use pure strate-
gies taken from a set S = {s1, . . . , si, . . . , s|S|}. Let us
denote by ni the number of sensor nodes that, during
a given round, use strategy si then xi = ni/N is the
portion of population playing strategy si. The overall
state of the population is described by the vector x =
(x1, . . . , xi, . . . , x|S|).

Let us indicate by Usi
(x) the average payoff to a player

resulting from the adoption of a specific strategy si, when
the overall population state is x (the average is taken over
all the players adopting strategy si), and let Uavg(x) the
average payoff to a player computed over the whole popu-
lation when in state x.

The core of replicator dynamics is the following as-
sumption. If adopting a strategy represents an advantage,
in terms of payoff Usi

(x), with respect to the average pay-
off Uavg(x) of the whole population, then the players will
tend to adopt that strategy: as a consequence its share will
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increase in the next round (the converse also holds). Go-
ing to the continuous time limit, we obtain the following
evolution equation, where x′i represents the time derivative
of the proportion of the population adopting strategy si

x′i = xi

(
Usi(x)− Uavg(x)

)
(1)

The above equation is called Replicator Dynamics Equa-
tion [17]. It expresses the fact that at time t the propor-
tion of sensor nodes using strategy si increases (decreases)
when their payoff is larger (smaller) than the average pay-
off in the sensor nodes population.

An Evolutionary Stable Strategy (ESS) is a fixed point
of the evolution (i.e. at ESS x′i = 0, for all i) at which also
some stability conditions (expressed in terms of second
derivatives, specified below) are fulfilled.

4. Analytic models of the dynamics

In this Section, we address first the problem of find-
ing the Steady State of the Replicator Dynamics equation
for our two-strategy game. This corresponds to studying
the problem within a population dynamics approximation
(where any player is assumed to interact with the same
probability with any one other player in the large popula-
tion). Then, we refine the analysis using a slightly more
accurate (though still approximate) model, which takes
into account that, in practice, players interact with a small
set of neighbors. To this purpose, we use a (finite) many-
player game. The simulative study in Section (6) provides
the final validation of the approach.

4.1. Replicator Dynamics for the two-strategy game

Since the strategy space of our Evolutionary Cluster
Game is S = {C,D}, the proportions in the population
are indicated by xC and xD, with the normalization con-
dition xC + xD = 1. The overall state of the population is
described by the vector x = (xC , xD).

The replicator dynamics equations are

x′C = xC

(
UC(x)− Uavg(x)

)

x′D = xD

(
UD(x)− Uavg(x)

)

However – thanks to the normalization condition – the
whole dynamics can be expressed in terms of a single de-
gree of freedom xC = (1− xD) as

x′C = xC

(
UC(xC)− Uavg(xC)

)
(2)

The normalization condition grants that other equation
will be given by x′D = −x′C .

4.2. Two-player interaction

Now we formalize our assumptions about the utilities
UC and UD. We assume that they are determined by the
two parameters, b and c: b is the benefit experienced by a
node when its data reach the BS, and c is the costs in which

a node incurs when sending data to the BS. That cost is
always lower than the benefit coming from a successful
message delivery: 0 < c < b < 1. The payoff matrix for
2-player interactions, from the point of view of a player, is

A =

[
ACC ACD

ADC ADD

]
=

[ (
b− c

2

)
(b− c)

b 0

]
(3)

The value of the matrix element ADD expresses the fact
that, if both nodes decide to play D, then no data is relayed
and each player gets a payoff 0. The value of ACC tells
that if both nodes play C (and then choose at random the
CH) each of them obtains an expected payoff (b − c/2).
The off-diagonal elements tell that if a node decides to
play C when the other node chooses to play D, then the
latter succeeds in sending its data to the BS at no cost and
gets a payoff b, while the former gets a payoff (b− c).

Thus, when a C-node meets another C-node, which
happens with probability xC , it obtains a payoff aCC =
(b−c/2), whereas if it meets a D-node, which happens with
probability xD, it obtains aCD = (b − c). The expected
value is the following utility

UC(xC) = (1− xC)(b− c) + xC

(
b− c

2

)

Similarly, the expected payoff for a D-node is

UD(xC) = xCb

Using the average payoff for the whole the population

xC U(sC , x) + xD U(sD, x)

the replicator dynamics equations can be developed as

x′C = xC

(
UC(xC)− Uavg(xC)

)

= xC

(
UC(x)− xCUC(xC)− xDUD(xC)

)

= xC

(
(1− xC)UC(xC)− xDUD(xC)

)

= xC(1− xC)
(

UC(xC)− UD(xC)
)

(4)

This first derivative vanishes at three points, that we

denote by x
(0)
C , x

(1)
C and x

(∗)
C . The first two are trivially

x
(0)
C = 0 (no one plays C) and x

(1)
C = 1 (everyone plays

C); the reminder corresponds to

(UC(xC)− UD(xC)) = 0 (5)

or, explicitly,

(1− xC)(b− c)− c

2
xC = 0 (6)

which yields

x
(∗)
C =

2(b− c)

2b− c
(7)

The stability analysis can be performed by differentiating
(4) to get the second derivative x′′C : a positive value of the
second derivative corresponds to stable points. Substitut-

ing each of the three points one can check that x
(0)
C and

x
(1)
C are unstable equilibrium points. The point x

(∗)
C , on

the contrary, is stable. Thus, in the population approxi-

mation, x
(∗)
C is an ESS point.
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4.3. Many-player interaction

In practice, the nodes of a sensor network do not in-
teract pairwise, but rather group-wise, with a restricted
number of neighbors. Thus, a more accurate game model
is be defined by the collection of a number of independent
sensor node games, each involving only a finite number M
of nodes. In an M -node game, a sensor node competes
against the other M − 1 sensor nodes (the complement
set), and its payoff depends on the number of C-nodes in
the complement set. The replication dynamics of such a
game has been studied in [41], building on the works in
[38, 37]. Here, along the lines of those works, we redevelop
those results that apply to our case.

If at least a sensor node, plays the C strategy, then all
the nodes in that sensing region will get a benefit b; within
them, the C-nodes will incur in a cost. Since only one of the
volunteering nodes is chosen at random as CH, that cost in
average will be shared equally among the C-nodes: if there
is only a C-node, its payoff is (b − c); if there are two C-
nodes in the same sensing region, then the payoff is (b− c

2 ),
and so on. Let the number of C-nodes, in a cluster of M
nodes, be indicated by h, with h ∈ {0, 1, . . . ,M} and let
us denote by A(si, h) the payoff to a node playing strategy
si in a cluster containing exactly h C-nodes. Then

A(C, k) = b− c

h
As to A(D,h), if h = 0 the payoff to the node playing D
is zero, but as soon as h > 0 one has A(D,h) = b. The
overall payoff matrix A(M) (where the apex indicates the
fact that the player set contains M players) is

A(M) =

[
A(C,M) ∙ ∙ ∙ A(C, k) ∙ ∙ ∙ A(C, 1) A(C, 0)
A(D,M) ∙ ∙ ∙ A(D, k) ∙ ∙ ∙ A(D, 1) A(D, 0)

]

=

[
b− c

M ∙ ∙ ∙ b− c
h ∙ ∙ ∙ b− c

b ∙ ∙ ∙ b ∙ ∙ ∙ b 0

]
(8)

(9)

The element A(C, 0) does not apply: if the node plays
C there is at least a C-node in the cluster. Notice, in
passing, that the payoff matrix (3) is a special case of (8):
it corresponds to A(M=2).

Now we can compute the average payoffs UM
C (xC) and

UM
D (xC) of each strategy (with the usual meaning of the

apex M). Consider the former. If the strategy of a node
is fixed to C, then the number k of other C-nodes in the
subset of M nodes chosen at random from a population
where the fraction of C-nodes is xC , is a Binomial vari-
able: such variable has probability parameter p = xC and
multiplicity parameter n = (M − 1). The expected utility
UM

C (xC) of the C-node is obtained averaging over k

UM
C (xC) =

n∑

k=0

(
n

k

)
xk

C(1− xC)n−kA(C, k + 1)

= b− c

n∑

k=0

(
n

k

)
xk

C(1− xC)n−k 1

k + 1

As to UM
D (xC) one has

UM
D (xC) =

n∑

k=0

(
n

k

)
xk

C(1− xC)n−kA(D, k)

=
n∑

k=1

(
n

k

)
xk

C(1− xC)n−k b

=

n∑

k=0

(
n

k

)
xk

C(1− xC)n−k b−
[

b(1− xC)n
]

= b−
[

b(1− xC)n
]

= b
[

1− (1− xC)n
]

The second last simplification comes from the normaliza-
tion condition of the Binomial. The average utility is
UM

avg(x) = xCUM
C (x) + (1 − xC)UM

D (x). Notice that for
M = 2 the above utilities equal the utilities of the game
in the previous subsection.

We have all the elements to write the evolution equa-
tion. We have two competing strategies in the population,
as in the game of the previous section, therefore, starting
from the standard replicator dynamics equation (1), we
can obtain an equation of the form

x′C = xC(1− xC)(UM
C (xC)− UM

D (xC)) (10)

Also this equation, as equation (4), has three critical points:

two, with x
(0)
C = 0 and x

(1)
C = 1, both associated to unsta-

ble equilibria, and one non-trivial, in x
(∗)
C such that

(
UM

C (xC)− UM
D (xC)

)
= 0 (11)

Also in this case, by appropriate stability analysis [38] one
can check that this is a stable equilibrium. This equation
can be expanded as

bxC − b + c

n∑

k=0

(
n

k

)
xk

C(1− xC)n−k 1

k + 1
= 0 (12)

One can check that for M = 2 (i.e. n = 1) one recovers
the same solution of the previous section (equation (7)).

Since the behavior depends not on the absolute values
of the costs and benefits, but on their relative value, we can
re-write this equation introducing, the parameter w ≡ c/b,
representing the cost-to-benefit ratio.

xC − 1 + w

n∑

k=0

(
n

k

)
xk

C(1− xC)n−k 1

k + 1
= 0 (13)

The solution x
(∗,M)
C to this equation (hereafter, for brevity

x
(∗)
C ) can be worked out analytically for lower degrees n

and numerically for higher degrees: Figures 2 and 3 show

the dependence of the solution x
(∗)
C from w and M . The

curves in Figure 2 show x
(∗)
C vs. w for different values of M ,

while the curves in Figure 3 show x
(∗)
C vs. N for different

values of w. The equilibrium probability x
(∗)
C decreases

with the growth of w and increases with M .
Notice, for later use, that those equilibrium probabili-

ties can be pre-computed as a function of the relevant pa-
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Figure 2: Equilibrium probability x∗C (probability of volunteering as
candidate Cluster Head) as a function of the cost to benefit ratio w.
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Figure 3: Equilibrium probability x∗C (probability of volunteering as
candidate Cluster Head) as a function of the number of nodes N .

rameters (number of neighbors, cost-to-benefit ratio) and
efficiently stored in a node memory. Every node will know,
given the parameters, what probabilities to adopt keep the
overall system on a statistically stable state.

5. The Algorithm

In this Section, we present the proposed Cluster Head
determination algorithm, the GREET algorithm, inspired
to the evolutionary cluster game studied above. In the
next Section, we demonstrate, by simulation, that this al-
gorithm takes the system to an equilibrium, in analogy to
what happens with the replicator dynamics.

5.1. Algorithm scope

The algorithm is part of a specific operational phase
of the sensor nodes life cycle. Such a life cycle – starting
after node placement over the field – is typically struc-
tured into a self-organized initiation phase followed by a
number of cyclic operational phases. The latter phases, in
cluster-based algorithms, are the cluster set-up phase and
data communication phase, as shown in Fig. 4. The set-up
phase is subdivided into candidate CHs bidding, CH deter-
mination, and cluster formation. The data-transmission
phase consists of data aggregation and transmission.

GREET operates within the CH bidding sub-phase and
the CH determination sub-phase. We focus on those two
sub-phases. For the remaining sections of the life-cycle,
we adopt standard assumptions, which are recalled here-
after. In particular, we do not focus on the details of the
initialization phase and give for granted some conditions
such as the synchronization (see Section 5.5).

5.2. Initiation Phase

After the deployment of the sensor nodes, which we
assume uniform random, the set of sensors has to undergo
a self-organization phase [42]. We assume each node can
broadcast its data in low-power consumption short-range
mode or in high-power consumption long-range mode. The
latter is used when the node is CH and sends data to
the BS, the former in the other cases. For the sake of
simplicity, we assume all the nodes have the same power
value for the short-range mode and the same high power
value for the long-range mode. In ideal conditions this
translates into all the nodes having the same short-range
distance Rc and the same long-range distance Lc.

At the end of the self-organizing phase, each node is
aware of the neighbor nodes within short-range distance.
We denote by Nh(ni) the number of neighbor nodes of ni,
that the node can sense during a round.

5.3. Set-up Phase: the GREET algorithm

A node can be in one of the following states, w.r.t.
the CH determination goal: CH-enabled, CH-disallowed,
candidate CH, non-candidate-CH, appointed-CH, normal
state and loner state. A the beginning of every Set-up
phase, all the nodes are in CH-enabled state, except for
the ones that served as CH in the previous rounds, that
are CH-disallowed.

5.3.1. Bidding for the CH role

As the set-up phase starts, each CH-enabled node can
explicitly announce the C strategy (and become candidate
CH ) or tacitly adopt the D strategy (and become non-
candidate CH ).

Those nodes are in a M = Nh+1 node game, as the one
described in the previous section, which admits an ESS. In
the well-mixed population hypothesis, we have seen that
whatever the xC adopted at the start would lead to the
stable ESS equilibrium. Here we posit that, since the be-
ginning, the sensor nodes adopt the collaborative strategy

with probability x
(∗,M)
C . However, even if this is not the

case, the mechanism of learning from interaction with the
neighbors drives system towards equilibrium. This finding
is confirmed by simulation.

5.3.2. Determining the actual CH

If only one sensor node plays C, that node becomes CH
(and passes to the state of appointed CH ). If two or more
sensor nodes play C the node to be designed CH is the one
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Figure 4: Phases of the GREET algorithm: we focus on CH Candidates Announcement and CH Determination.

Figure 5: State diagram for the sensor node.

with the highest residual power. In hypothetical case of a
tie, the contention can be resolved by randomization.

Notice that, since appointed CHs are at least at a dis-
tance Rc meters away from each other, the GREET algo-
rithm can reasonably uniformly distribute CHs over the
sensor field (provided that, as we assume, the sensors are
scattered approximately uniformly over the field).

5.3.3. Cluster Formation

At this point, the appointed CH advertises itself as
such. The nodes receiving the advertisement go back to
normal state and prepare to subscribe to that CH. In case
of reception of more than one CH advertisement a node
will prepare to subscribe to the one with the higher resid-
ual power. Now, normal state nodes and CH disallowed
nodes send a message to their CH to subscribe as mem-
bers. The appointed CH creates a time slot schedule and
broadcasts it to all of its candidates, that – from this point
on – become its cluster members.

There can be also nodes that did not bid for CH and
that did not receive any CH advertisement: those nodes
will not be able, during the current round, to route their

messages through a CH: we call them loner nodes. They
will remember this info and use it to play C in the following
round. As to the current information to be sent by the
loner nodes, any implementation of the algorithm should
specify whether they should wait until the next round for
trying to route the information or they should send the
information to the BS directly. In the simulation below,
we adopted the latter option.

At the beginning of the next round, all the nodes in
normal state will become CH-enabled, while those that
served as CH will become CH-disallowed. A node that
served as CH in a round, will return CH-enabled only when
its residual power is not the minimum of its neighborhood;
in the meanwhile it will stay in the CH-disallowed state.
The corresponding state diagram is shown in Figure 5.

5.4. Data Transmission Phase

After cluster formation, the data transmission phase
starts. The non-CH nodes start to send data to their CH
according to the assigned time slot in the TDMA schedule.

5.5. Synchronization and scheduling

GREET is an algorithm that can work under different
settings and can be supported in different ways by infras-
tructural services: it is organized in phases and commu-
nication rounds, thus it assumes that a synchronization
mechanism and a scheduling schema are provided. The
choice of those depends on how constraining are the re-
quirements of the application setting. A synthesis of the
tradeoffs among the main synchronization schemas is pro-
vided in [43]. For the sake of simplicity, in the simulation,
we assumed that synchronization is provided by broadcast
signals from the BS. The results of the power consumption
comparisons in the next section are expected to hold even
under different synchronization schemas, provided that the
the involved cluster based algorithms use the same schema.

As to scheduling, it depends on the varying degrees of
structural organization available in the network during the
different sub-phases. In the simulation, we assumed that,
after the cluster has been formed, the scheduling can be
coordinated by the CH, within a TDMA schema (as in
LEACH): this avoids collisions and saves power. In the
other less structured sub-phases, nodes should resort to
contention-based schemas. As to the CH-to-BS communi-
cation, we assumed that scheduling is responsibility of the
BS.
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Table 1: Simulation Parameters

Size of the region L× L = 100 ∗ 100 m2

Nodes’ placement uniform random
Number of Nodes Deployed 100

Av.distance node from BS dtoBS = 0.765×xm

2

Av.distance node close CH dtoCH = L√
2 π a

Number of iterations 2500
Packet Size k = 4000 bits
Energy to receive a bit Eelec = 50 nJ/bit
Initial Battery Power E0 = 0.5 J
Data Fusion Energy cost EDA = 5 nJ/bit/signal
Free space power loss Efs = 10 pJ/bit/m2

Multi path fading power loss Emp = 0.0013 pJ/bit/m4

Parameter w 0 ≤ w ≤ 1

6. Simulative Model

A simulation using MatLab has been carried on to com-
pare study the performance of GREET and to compare
it to the cluster-based algorithms LEACH, CROSS. The
GREET simulation results are in good qualitative agree-
ment with the replicator dynamics results.

6.1. Simulation Setup Parameters

We randomly deployed 100 sensor nodes over a sim-
ulation field of 100 × 100 m2. The BS, is placed at the
center of the field, and accessible by all sensor nodes in
their high-power long-range transmission mode. Table I
shows the parameters of the simulation: in order to ease
the comparison, we used, wherever possible, the same val-
ues as the LEACH study [23].

6.2. Power Dissipation

The power dissipated for data transmission and recep-
tion is modeled using the first order radio model described
in [5, 23]. Denoting the distance by d, we assume d2 free-
space power loss when propagation is in the line of sight,
and d4 power loss for long-distance communication, due to
multi-path fading. Each sensor node consumes an amount
of energy ET to transmit a k-bits packet over a distance
d as shown in equation (14). Let us define the critical
distance d0 =

√
Efs/Eamp, where Efs and Emp represent

the transmitter energy of free space and multi-path fad-
ing, respectively. Let Eelec be the power dissipated per bit
by the transmitter or receiver circuit. The transmission
energy is

ET (k, d) =

{
k (Eelec + Efs d2) d <= d0

k (Eelec + Emp d4) d > d0
(14)

Where k is the number of bits in the packet. To receive a
k-bit packet, a sensor consumes an amount of energy ER

ER = kEelec (15)

The total energy, Eround, consumed in the network during
a round is expressed as follows

Eround = k [2×N Eelec + N EDA+

+ Emp a d4
toBS + Efs N d2

toCH

]

where a is the number of CHs, N the total number of
sensor nodes, EDA is the energy for data aggregation spent
by the CHs, dtoCH is the average distance between CH and
its member nodes and dtoBS the average distance between
CH and BS. The average energy Eavg of the network at
the rth round is computed as

Eavg =
1

N
Etotal

(
1− r

rmax

)
(16)

where rmax denote the number of iterations, and Etotal

is the total energy of the network at initial deployment
Etotal =

∑
i Ei, where Ei the initial energy of node i.

6.3. Simulation Results and Discussion

The simulation results confirm the qualitative findings
of the analytic model. In the latter, the main parame-
ter was the cost-to-benefit ratio w. In the simulation we
selected the representative values w = {0.1, 0.2, . . . , 0.9}.
According to the results obtained as w tends to one, the
equilibrium probability of the candidate CHs decreases:
selfish sensor nodes tend to wait for some other nodes to
perform the task of sending data on behalf of them. The
lower the number of nodes available as a candidate CH, the
fewer CHs are present. Thus, each sensor consumes much
communication power by directly communicating with the
BS. As a result, the performance of GREET deteriorates
as w increases. This is also the case for the CROSS algo-
rithm. To evaluate GREET, we used the metrics measur-
ing network lifetime, network residual power, and number
of data packets successfully sent to the BS.

We took note of the network lifetime of the node that
first runs out of power (First Node Dead time, or FND)
and the lifetime of the last node whose power is depleted
(Last Node Dead time, or LND). The FND of LEACH,
CROSS, and GREET for different values of w is shown
in Fig. 6 (left). Notice that in LEACH, by construction
the FND is not a function of the parameter w; on the
contrary, it depends on w in CROSS and GREET. With
respect to this metrics, it is apparent that GREET outper-
forms both LEACH and CROSS. This happens because,
in GREET, the sensor node that served as CH during the
previous round is exempted from the current CH deter-
mination process until its residual power is not similar to
that of its member nodes. The fact that, broadly speak-
ing, all the sensor nodes in an area have to serve as CH
before being considered for a further turn, makes GREET
better than the other algorithms in terms of FND.

The LND for LEACH, CROSS, and GREET is shown
in Fig. 6 (right), for different values of w. Again GREET
outperforms both LEACH and CROSS. An interesting ob-
servation is the following: GREET achieves a maximum
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for different values of the parameter w
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LND for a value around w = 0.4, i.e. approximately where
the simplified population game of the previous section was
reaching an equilibrium state.

For smaller values of w, LND decreases, since the aver-
age number of candidate CHs per round is increasing. In
other words, the smaller the cost-to-benefit ratio of being
a CH, the higher the number of sensor nodes bidding for
the CH role, the higher the expected number of appointed
CHs per round. Conversely, for larger values of w, LND
degrades: fewer sensor nodes are willing to be a candidate
CH. In such cases sensor nodes have to communicate di-
rectly with the BS, thus reducing their lifetime. All sensor
nodes being CHs and no nodes being CHs is the same as
direct communication with the BS.

Fig. 7 shows the algorithms’ performance in terms of
the number of sensor nodes with some residual power. This
metrics measures the total number of sensor nodes still
alive, which is evaluated at each transmission round of
the algorithm. As for the equilibrium probability in the
population game, GREET has the highest power saving
around w = 0.4. Obviously, the power expenditure rate
of GREET is more uniform than the one of LEACH and
of CROSS, since we have incorporated residual power as
a parameter to determine the actual CH. Moreover, the
actual CHs are approximately uniformly scattered over the
whole area, because every CH is at least Rc meters away
from any other. As a consequence, the power of all nodes
is used more fairly.

Lastly, as shown on Fig. 8, the average number of
data packets sent to the BS has been used for evaluation.
Both for the values of w = 0.4 and w = 0.1, GREET
has a higher throughput than LEACH and CROSS. This
happens because around the former value, GREET has
achieved better network life time, while around the latter
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Figure 8: Average data sent to the BS (number of packets).

value, it has the highest number of candidate CHs. How-
ever, around the value w = 0.9, GREET features a lower
throughput due to the highest cost of collaboration: selfish
nodes do not forward the other nodes’ data packets.

7. Discussion and Conclusions

We have introduced GREET, an energy-efficient Clus-
ter Head determination algorithm for selfish nodes in a
WSN. The algorithm is inspired to an Evolutionary Game
Theory (EGT) approach with M-player interactions.

We point out that the structure of this game is rather
general and applies to many contexts in the real world,
where the costs of an achievement are shared by the con-
tributors only, while the benefits of the achievement are
shared among contributors and non-contributors alike. How-
ever, to the best of our knowledge, this is the first work
in which the EGT form of the game is applied to Cluster
Head determination in WSN and studied by simulation in
a realistic context.

As to the EGT model, we adopted the worst case sce-
nario, in which each node belongs to a different (selfish)
agency. The EGT model with a finite number of selfish
agencies each owning more than one sensor node is dis-
cussed in the Appendix. Its simulative study will be the
object of a future work.

Furthermore, in the simulation here, we assumed that
nodes were endowed with homogeneous characteristics (they
would differ only in position and residual power); we plan
to extend the study to heterogeneous networks.

Appendix: Players grouping in agencies

Form the point of view of the number of controlling
authorities or agencies, so far we have assumed the worst
case scenario, where each sensor node represents an agency
by itself. We can generalize the model to the case where an
agency can own more than one sensor node. Here we out-
line such a generalization in terms of the analytic model.
This setting is not covered by the simulation Section 6.
The change w.r.t. the previous setting is that if two or
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more sensor nodes belonging to the same agency meet in a
region, they must collaborate with one another, i.e. form
a coalition, adopting a coordinated strategy behavior. We
denote coordinated coalition strategies with a hat sign. A
coalition can play Ĉ or D̂. Playing D̂ for the coalition
means that all the members play D; playing Ĉ at coali-
tion level means that only one chosen member plays C and
the remainder play D.

Let us indicate by G the number of agencies – each
agency being indexed by g – and let Ng the number of
sensor nodes of agency g; let the total number of sensor
nodes be N =

∑G
g Ng. So far, we had assumed Ng = 1,

i.e. G = N . Now we allow 1 ≤ Ng < N .
Hereafter we compute the payoffs in those scenarios,

furthermore, we discuss the impact of the payoff on the
replicator equation and on the equilibria. Notice that in
the payoff computation we take the point of view of the
agency (as, in fact, we already did in Sections 3 and 4,
where N = G).

An important point is that the dynamics of the system
can depend on whether we are assuming that the play-
ers are aware of each other’s affiliation before announcing
their choice (informed choice) or not (uninformed choice).
The former case corresponds to the setting where the in-
formation about the owning agency is broadcasted with
the Hello message, which precedes the announcement; the
latter case corresponds to a setting where that information
is broadcasted at the same time of the announcement.

Hereafter we assume that the nodes broadcast their
agency affiliation with the Hello message, i.e. we are in
the informed choice setting. It follows that nodes can
adopt some form of inter-agency collaboration before mak-
ing their choice. A simple collaboration model consists in
assuming that sensor nodes have some way of agreeing on
a common strategy with the members of their agency (ei-
ther by predetermined rules or with a round of further
information exchange or negotiation). In this case, each
coalition can behave as a single (”extended”) player.

What counts, thus, is how many extended players, i.e.
distinct coalitions meet in a round: we fall back to the case
of many-player interactions, discussed in Section 4, except
for the fact that the number of players is equal to the
number of non-empty coalitions involved in the interaction
and that this number fluctuates from one round to the
next. A formal statement of the solution strategies follows.

Assume that, at each round, clusters are formed by
drawing M players at random from the population. The
fact that they are owned by distinct agencies determines
a partition of the M -player set: each partition block is a
coalition with kg elements belonging to the same agency g.
Let K = card({ g ∈ {1, 2, . . . , G} | kg > 0 }) the number
of the agencies actually represented in the M interacting
player set of a round.

Let us consider the point of view of a coalition g′, rep-
resented by at least a player. The nontrivial equilibrium
strategy for a player belonging to agency g′ is the following
conditional strategy. At the beginning of the round, find

out kg′ and K; if kg′ = 1, i.e. there are no agency-fellows,

play C with probability x
(∗,K)
C , solution of equation (13);

if kg′ > 1, i.e. there are agency fellows, agree with them a

common strategy, so that the coalition plays Ĉ with prob-

ability x
(∗,K)
C (equation (13)).
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