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Figure S1. Overview of the experimental workflow. Tears are non-invasively collected from ALS
positive patients and healthy controls (HCs) and drop-casted onto a BaF2 window. When allowed
drying under controlled conditions, a net flux of solution is driven towards the drop edge by the
so-called coffee-stain effect1. This spontaneous process yields the peripheral deposition of the
colloids and the formation of an external amorphous ring, where proteins tend to segregate2. At the
centre of the drop, instead, a dendritic crystallisation occurs in fern-like patterns, where proteins,
urea and salts accumulate preferentially 2,3. Consequently, drop-coating is particularly advantageous,
because it spontaneously results in analyte partitioning of the fluid. After drop-casting, samples are
analysed through FTIR and Raman spectroscopies and the classification carried out by means of
dedicated multivariate analyses, in particular partial least square discriminant analysis (PLS-DA),
neural networks (NNet), and extreme gradient boosting (xgbTree). Owning to this process flow, we
can identify the most significant spectral changes responsible for the discrimination between ALS
positive and HC tears.
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Figure S2. Overview of the FTIR spectra analysis. For a few measured spectra it was necessary to
perform a correction for the vapour absorption. In particular, the presence of small positive or
negative very sharp peaks observed at specific and well known wavenumbers was taken as an
indication of vapour interference. Several peaks in the 1750-1500 cm-1 spectral range - in particular
the ~ 1653 cm-1 peak - were considered. The vapour spectrum was subtracted from the sample
spectra until a smooth profile around these peaks was observed. After water vapour subtraction, the
spectra were corrected for Mie scattering using the algorithm developed by Bassan and colleagues 4,
where the spectral range (originally between 4000-1000 cm-1) was extended in our laboratory down
to 800 cm-1. For a better comparison, the corrected spectra were normalized at the Amide I band
area and the second derivative analysis was performed (after a 13-point smoothing of the measured
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spectra) by the Savitzky-Golay method (3rd polynomial, 9 smoothing points), using the GRAMS/32
software (Galactic Ind. Corp., Salem, NH, USA).
One hundred randomly selected raw spectra were reported in (a) and after the correction procedures
in (b).
The average absorption (c) and second derivative (d) spectra obtained from the fern-like
morphology of all the analysed tear samples are also reported.

Figure S3. Tear morphologies. Optical images of tear samples after deposition on a BaF2 IR
window and water evaporation. The top image displays fern-like morphologies, below the lipid
granules. On the right, the average FTIR absorption spectra of fern-like morphologies (F-L) and
lipid granules (L.G.) of tears from ALS positive (red spectra) and HC (blue spectra) subjects are
shown. For comparison, the absorption spectra of phosphatidylcholine (PC) and of bovine serum
albumin (BSA) are reported as, respectively, phospholipid and protein standard. The assignment of
the main bands to protein (Amide A, I, II) and lipid (CHx and C=O) moieties is indicated.
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Figure S4. CH2/CH3 intensity ratio from second derivatives of the FTIR spectra of tears from ALS
positive and HCs. F-L, fern-like morphologies; L.G., lipid granules.
Before performing the T-test analysis of the differences between the ALS and HC groups, the
normality assumption and the variance homogeneity were verified by the Shapiro-Wilk test and the
Levene test, respectively. Since the normality assumption and the homogeneity of variance could
not be verified in all cases, the non-parametric test Wilcoxon rank sum test was also performed. In
all cases, the two populations have different means at the significance level of 0.01.
F-L: T-test P-value 1.928e-12; Wilcoxon rank sum P-value 8.338e-15;
L.G.: T-test P-value 0.0006072; Wilcoxon rank sum P-value 0.001379.
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SUPPLEMENTARY MATERIALS AND METHODS

ALS patients and healthy controls

All the demographic and clinical features were collected, including the Amyotrophic Lateral

Sclerosis Functional Rating Scale–revised (ALSFRS-r) total and domain scores, the disease

duration expressed as the time from onset to tear collection, the disease progression rate calculated

as (48 minus ALSFRS-r total score)/disease duration, the site of onset (limb or bulbar), and the use

of invasive ventilation (Table S1).

The following inclusion criteria were applied for patients enrollment: diagnosis of definite/probable

ALS (El Escorial Diagnostic Criteria); age 18-90 years.

The following exclusion criteria were applied: severe clinical conditions limiting the compliance to

the study; the presence of other severe comorbidities; patients taking drugs (e.g. anticholinergic)

that could negatively influence the tear sampling. Compared to the ALS group, healthy subjects

were matched by age and gender.

The study obtained the University (july 2019, n. 484) and NEMO-Milano Area 3 (september 2019,

n. 479-092019) ethics committee’s approvals.

Additional information on the performed multivariate analyses

Multivariate analysis has been performed using R version 3.6.3 (https://www.R-project.org/,

https://cran.r-project.org/package=nnet (Brian Ripley, William Venables, 2021),

https://cran.r-project.org/package=caret (Max Kuhn, Jed Wing, Steve Weston, Andre Williams,

Chris Keefer, Allan Engelhardt, Tony Cooper, Zachary Mayer, Brenton Kenkel, R Core Team,

Michael Benesty, Reynald Lescarbeau, Andrew Ziem, Luca Scrucca, Yuan Tang, Can Candan, Tyler

Hunt, 2021)).

PLS-DA is a widely used multidimensional linear regression method, which is a variant of the

classical partial least square method when the dependent variable is categorical 5. NNet is a single

hidden layer feed-forward neural network 6 implemented in the R package "nnet" version 7.3-13.

Neural network parameter size (number of units in the hidden layer) and decay (regularization

parameter to avoid over-fitting) have been tuned using a tuning grid with size varied from 1 to 5 by

1 and decay varied from 0.05 to 0.3 by 0.05. Spectra have been center-scaled (normalized in order

to have 0 mean and variance 1) to allow faster convergence of the training algorithm 7.
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The xgbTree belongs to the family of the boosting methods, i.e. classification methods that produce

classification models from an ensemble of weak classifiers, classification trees in this case. The

extreme adjective refers to the algorithmic tricks implemented in order to increase the

computational performances 8,9. In all training cases, the XgbTree parameters eta (shrinking

parameters used to avoid over-fitting) and max-depth (maximum depth of a tree) have been set to

0.1 and 6 respectively.

In order to assess the predictive discrimination and avoid over-fitting, for each method a 10-time

repeated 5-fold cross-validation was applied. So for each method 50 models were trained. Since

each individual has multiple spectra, folds have been created at the individual level, ensuring that

all spectra for a given individual are either in the training or in the test set. More specifically, having

N individual each with m_N spectra, on every round of cross-validation, the individuals have been

partitioned into 5 folds. Four folds (containing N*4/5 individuals) have been used to train the model

and the remaining fold (containing N*1/5 individuals) was used to test the model. Folds are

complementary (i.e. no repeated individuals in different folds) and the individuals are randomly

chosen. The training of the model is repeated five times, each time varying the test partition. The

5-fold cross-validation is then repeated 10-times in order to lower the risk of partition-dependent

artifacts. The best model has been selected using the “one standard error rule”. In this case, the

model with the best performance value is identified and, using resampling, we can estimate the

standard error of performance. The final model used was the simplest model within one standard

error of the (empirically) best model10. As a performance measure, the area under the curve (auc)

was used. The auc is computed from the receiver operating characteristic curve (ROC curve) that is

created by plotting the true positive rate (i.e. sensitivity) against the false positive rate (i.e.

specificity) at various threshold (value that discriminates between positive and negative outcome)

settings. When using normalized units, the auc is equal to the probability that a classifier will rank a

randomly chosen positive instance higher than a randomly chosen negative one (assuming

"positive" ranks higher than "negative") 11. For all trained models the sensitivity and specificity

have been also computed. The sensitivity is computed as true positive / (true positive + false

negative), while the specificity as true negative / (true negative + false positive). For the PLS-DA

method the variable importance measure here is based on weighted sums of the absolute regression

coefficients10.

Neural networks, despite reaching a high predicting power, can be unable to find stable relations

between explanatory variables and dependent variables12. Similarly, in boosting trees a correct
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interpretation of variable importance may also be an issue 13. PLS-DA is a linear method which may

not reach a predicting power comparable to NNet or xgbTree. However, because of its linear nature

and its intrinsic robustness it allows a more straightforward interpretation of variable importance

and a greater stability 14. For this reason, we decided to rely on the PLS-DA analysis to identify the

most important spectral components in the discrimination between tears from HCs and ALS

patients (Table S2).
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INFRARED ABSORPTION OF LIPID GRANULES

After tear deposition on a BaF2 IR window and excess water evaporation, besides the fern-like

morphologies we identified also round granules (Fig. S3) that resulted enriched in lipids, as clearly

indicated by their FTIR spectra (Fig. S3). In consideration of the observed typical dimension of

lipid granules (several tens of microns), they likely formed as a consequence of water evaporation.

These granules were analyzed separately from the fern-like morphologies. These structures

displayed different spectral features in ALS positive and healthy controls, further supporting that

lipids deserve to be studied as potential biomarkers of the pathology. As shown for the fern-like

structures, we analyzed the second derivative spectra - with the support of PLS-DA, xgbTree and

NNet - in different spectral ranges.

Analysis of the 3050-2800 cm-1 spectral range: lipid absorption

As reported in Fig. S5a, the IR second derivative spectra of lipid granules from ALS positive and

HC tears between 3050 and 2800 cm-1, mainly due to the CHx group of the lipid hydrocarbon

chains, display different spectral features15. In general, the relative lipid content appears

significantly more intense in the positive samples compared to healthy controls, and characterized

by longer hydrocarbon chains. As indicated in Fig. S5c, the PLS-DA identifyed as relevant for

discrimination between the two classes the bands at ~ 2965 cm-1 and ~ 2871 cm-1, both assigned to

CH3 groups, with a contribution of the CH2 component at ~ 2850 cm-1 (Table S2). The PLS-DA,

xgbTree and NNet reported high accuracy and specificity values, while the sensitivity was lower,

indicating a significant number of false negatives (see Fig. S6 for details).
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Figure S5. Average second derivative spectra of ALS positive samples and HCs in the CHx
stretching range (a) and in the Amide I and Amide II bands (b). Wavenumber importance (domain
0-100) for PLS-DA method in the CHx stretching range (c) and the Amide I and Amide II bands
(d).

Figure S6. Multivariate analysis of lipid granules FTIR second derivative spectra. Overall
performances of NNet, xgbTree and PLS-DA methods in all the analyzed spectral ranges, as in
Figure 2.

Analysis of the 1800-1500 cm-1 spectral range: protein absorption

In Fig. S5b, we reported the lipid granule second derivative spectra of ALS positive and HC tears,

between 1800-1500 cm-1, where the proteins of these structures mainly absorb16–18. The spectra are

characterized by a few well resolved bands of different intensity in the two classes. These
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components, almost all relevant to discriminate between ALS positive and negative controls, as

indicated by PLS-DA analysis (Fig. S5d, Table S2), are: ~ 1657 cm-1, mainly assigned to α-helix

and random coil structures, of higher intensity in negative controls; between ~ 1643-1631 cm-1 and

at ~ 1694 cm-1, mainly due to β-sheet structures 16–18, both of higher intensity in ALS positive

samples, and ~ 1738 cm-1 - mainly assigned to the ester C=O groups15 - that appears of higher

intensity in ALS positive samples. Interestingly, the PLS-DA classification performance (Fig. S6) is

good, with accuracy 0.88-0.89, sensitivity 0.71, and specificity 0.92. As reported in Fig. S6, the

classification performances of xgbTree and NNet methods were similar to those obtained by

PLS-DA.

Analysis of the 1500-1200 cm-1 spectral range: lipid absorption

The PLS-DA analysis of the spectral range between 1500-1200 cm-1 (Fig. S7a,c and Table S2)

indicated as the most important component for the discrimination between ALS positive and HC

tears the band at ~ 1470 cm-1 (Fig. S7c), which is mainly due to the hydrocarbon chain CH2 and

CH3 groups 15,19. As it can be seen, this component displays a significant higher intensity in ALS

positive tears compared to HCs (Fig. S7a), in agreement with the results obtained between

3050-2800 cm-1. Noteworthy, the classification performance of this spectral range is high, as

reported in Fig. S6.

Figure S7. FTIR analysis of lipid granules. Average second derivative spectra of ALS positive
samples and healthy controls in the 1500-1200 cm-1 (a) and 1200-900 cm-1 (b) spectral ranges.
Wavenumber importance (domain 0-100) for PLS-DA in the 1500-1200 cm-1 (c) and 1200-900 cm-1

(d) ranges.
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Analysis of the 1200-900 cm-1 spectral range

As discussed for the fern-like structures, the spectral range 1200-900 cm-1 is very complex, being

dominated by the overlapping contributions of different vibrations ascribable mainly to

carbohydrates and phosphates.

In particular, the PLS-DA (Fig. S7d) reported as the most significant spectral differences between

ALS positive and HC tears - with a satisfactory classification performance (Fig. S6) - the

components at ~ 1065 cm-1 (C-O, C-C mainly from glyco(sphingo)lipids; P-O-C mainly of

phospholipids)20-21, negligible in healthy controls, and at ~ 1030 cm-1 (C-O/C-C carbohydrates and

P-O-C in some phospholipids)20-22, of higher intensity in ALS positive tears. The classification

performance obtained in this spectral region by the three multivariate methods is reported in Fig.

S6.
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RAMAN ANALYSES

Experimental details

The investigated spectral range was 900-1800 cm-1 and was obtained by collating neighboring

spectral windows, with a 60 x 5 seconds time of measure each. For every sample, different spectra

were measured at various locations to account for concentration gradients and inhomogeneities

caused by proteins and lipid segregation during water evaporation. At visible excitations,

fluorescence is typically reduced in dried tears compared to other biological environments, i.e.

tissues and liquids, however, Raman spectra with an excessive luminescence-related background

were discarded from the successive analysis to avoid invasive numerical treatment of the raw data

and consequent spurious results.

During the measurements, an automated algorithm was applied to remove cosmic ray spikes using

the native software of the Raman spectrometer. Baseline correction and area-under-the-curve

normalization were performed using the Bioinformatics Toolbox™ of Matlab and functions like

msbackadj. Comparable results were obtained by normalizing the spectra for both the Amide I and

phenylalanine bands.

Assignment of Raman bands

The peaks observed in Figure 4a of the main text at 1001 cm-1, 1010 cm-1 and minor structures in

the 1030-1040 cm-1 range can be assigned to aromatic amino acids, predominantly phenylalanine 23.

Moreover, the presence of tryptophan is explicitly pointed out by weaker peaks at 960 and 981 cm-1

23. The spectral features around 1160 cm-1 are due to C-C stretching in fatty acids 24. The presence of

methylene groups of lipids is evidenced by a twisting mode at 1298 cm-1 and a skeletal stretching at

1127 cm-1, although stretching of the C-N bond in peptide groups can also contribute to the latter.

It should be noted that C=C stretching in cholesterol esters and fatty acids can contribute to the

Amide I band at about 1660 cm-1 24. The band at ~1250 cm-1 is assigned to the Amide III, i.e. N-H

bending vibrations of the peptide groups, while the broad but intense feature in the 1320 -1340 cm-1

range is due to stretching vibrations of the aliphatic side-chains 23.

C-H vibrations in proteins and lipids, like the methylene scissoring motion, contribute to the wide

band observed at about 1450 cm-1 23,24, whereas the vibrational mode at about 1550 cm-1 arises from

ring vibrations of tryptophan 23. Finally, the weak feature at ~1770 cm-1 is ascribed to the C=O

stretching of lipids 24,25.
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Figure S8. Raman spectrum of the bare BaF2 substrate. The characteristic Raman mode of BaF2

occurs as a sharp peak at 243 cm-1. Consequently, the substrate does not interfere with the
investigation of proteins and lipids composing the biofluid since their atomic mass and bond
stiffness result in higher energy phonons.

Figure S9. Ratio of Amide I/Phe peak area from Raman spectra of ALS and HC tears. The
statistical analysis of the differences between the ALS and HC groups was performed as described
in Figure S4. The two populations have different means at the significance level of 0.01:
T-test P-value 7.995e-07; Wilcoxon rank sum P-value 4.12e-06.
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Table S1. Descriptive analysis of ALS patients and HCs. Data are n (%) or median [interquartile

range] values. Abbreviations: ALSFRS-r, Amyotrophic Lateral Sclerosis Functional Rating Scale –

Revised; IV, Invasive Ventilation.
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Peak position (cm-1)
from IR second
derivative spectra

Assignment Ref.

2965, 2959 ν-asym CH3 mainly from lipid hydrocarbon chains 15

2922 ν-asym CH2 mainly from lipid hydrocarbon chains 15

2898 Lipid and protein moieties (mainly CH2) 26

2871 ν-sym CH3 mainly from lipid hydrocarbon chains 15

2850 CH2 ν-sym mainly from lipid hydrocarbon chains 15

1738 C=O mainly from esters 15

1694 Proteins, β-sheets 16–18

1658, 1657 Proteins, α-helices/ random coils 16–18

1643-1631, 1637 Proteins, β-sheets 16–18

1615 amino-acid side chains 16

1470, 1469 δ CH2/CH3 mainly from lipid hydrocarbon chains 15,19

1455 δ CH3 mainly from lipid hydrocarbon chains 15,19

1128, 1110 Carbohydrate and phosphate moieties 20

1065 νC-O, νC-C mainly from glyco(sphingo)lipids; P-O-C
mainly of phospholipids

20-22,27

1044, 1032, 1030 νC-O, νC-C from carbohydrates /
glyco(sphingo)lipids; P-O-C of phospholipids

20-22

Table S2. Assignment of the relevant IR components. In the Table, the peak positions from second
derivative spectra have been reported for the spectral components identified by PLS-DA as relevant
for the discrimination between tears from ALS patients and HCs . In addition, the main assignment
to the tear biomolecules has been indicated.
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