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ABSTRACT ARTICLE HISTORY
Creating autonomous robots that can actively explore the environment, acquire knowledge and Received 12 January 2023
learn skills continuously is the ultimate achievement envisioned in cognitive and developmental Revised 10 May 2023
robotics. Importantly, if the aim is to create robots that can continuously develop through inter- ~ Accepted 22 May 2023

actions with their environment, their learning processes should be based on interactions with their KEYWORDS
physical and social world in the manner of human learning and cognitive development. Based on this World model; cognitive

context, in this paper, we focus on the two concepts of world models and predictive coding. Recently, robotics; predictive coding;
world models have attracted renewed attention as a topic of considerable interest in artificial intel- free-energy principle; active
ligence. Cognitive systems learn world models to better predict future sensory observations and inference

optimize their policies, i.e. controllers. Alternatively, in neuroscience, predictive coding proposes
that the brain continuously predicts its inputs and adapts to model its own dynamics and control
behavior in its environment. Both ideas may be considered as underpinning the cognitive devel-
opment of robots and humans capable of continual or lifelong learning. Although many studies
have been conducted on predictive coding in cognitive robotics and neurorobotics, the relation-
ship between world model-based approaches in Al and predictive coding in robotics has rarely been
discussed. Therefore, in this paper, we clarify the definitions, relationships, and status of current
research on these topics, as well as missing pieces of world models and predictive coding in con-
junction with crucially related concepts such as the free-energy principle and active inference in the
context of cognitive and developmental robotics. Furthermore, we outline the frontiers and chal-
lenges involved in world models and predictive coding toward the further integration of Al and
robotics, as well as the creation of robots with real cognitive and developmental capabilities in the
future.

1. Introduction skills from sensorimotor information through physical
interactions with their environment and social interac-
tions with others (e.g. their parents or caregivers). Impor-
tantly, the aim is to build robots that can continuously
develop through embodied interactions, their learning
process must be strongly based on their own sensori-
motor experiences. This autonomous learning process
that occurs throughout development is also referred to
as continual or lifelong learning [1-3], and is considered
the foundation for the emergence of both individual and
social abilities necessary for robots with adaptive and
collaborative capabilities.

Recently, world models have attracted renewed atten-
tion in artificial intelligence [4-7]. Now, the term ‘world’

How can we develop robots that can autonomously
explore the environment, acquire knowledge, and learn
skills continuously? Creating autonomous cognitive and
developmental robots that can co-exist in our society has
been considered an ultimate goal of cognitive and devel-
opmental robotics and artificial intelligence (AI) since
the inception of these fields. Autonomous robots that
can develop in the real world and collaborate with us
may also be called embodied artificial general intelli-
gence (AGI). The recent success of artificial intelligence
depends primarily on large-scale human-annotated data.
However, human infants can acquire knowledge and
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does not indicate the objective world but rather refers to a
world understood from a robot’s point of view!. This idea
corresponds to that of Umwelt proposed by Uexkaiill [9].
Umwelt, literally around-world, meaning environment
or surroundings, refers to the self-centered world of an
organism perceived through its species-specific sensors?.
Therefore, notably, the world model is different from the
bird’s-eye model of the world that was aimed to build in
good-old-fashioned Al and criticized later [12]%. A cog-
nitive system learns a world model to predict its future
sensory observations better and optimize its policies, also
referred to as controllers. Note that although typically the
term ‘world model’ is used to denote the spatiotempo-
ral dynamics of the external environment, it could also
equally apply to bodily dynamics (including interocep-
tive signals from inside the body) and the social envi-
ronment. This world-model view entails previous ideas
and results, such as the effect of behavioral feedback on
sensory sampling and perceptual learning [14] and the
resulting acquisition of self-centered, yet efficient, repre-
sentations induced by an active perception strategy on
the part of an agent [15].

Predictive coding is another related theory that recently
has become more and more influential [16]. It is heavily
influenced by Helmholtz’s early theories of perception as
a process driven by learning, knowledge, and inference
[17]. Predictive coding proposes that the brain infers the
external causes of sensations by continuously predicting
its input through top-down signals and adapts to min-
imize prediction error [18, 19]. This substantiates the
idea that the brain might use an adaptive world model to
support perception. The free energy principle (FEP) also
proposes a similar vision. It argues that our brain sup-
ports both perception (perceptual inference) and action
(active inference) using a form of variational Bayesian
inference; in particular, using (variational) free energy,
it assesses the quality of the prediction and its confor-
mity to prior beliefs [20]. These ideas, which are currently
influential in neuroscience and cognitive science, are also
used in cognitive and developmental robotics, neuro-
robotics [21-23], and artificial intelligence to develop
neurodynamics realizing adaptive behaviors and social
perception [24].

Although such a learning-driven world model-based
approach is promising in cognitive and developmen-
tal robotics, the many applications and studies of world
models tend to be limited to simulation studies or
adopt an offline pretrained world model [25]. Mean-
while, many studies based on predictive coding have
been conducted in the field of cognitive robotics and
neurorobotics. However, the relationship between the
world model-based approach in AI and the predic-
tive coding-based approach in robotics has rarely been
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discussed in an integrated manner. We believe that clari-
fying the definition, relationship, current state of the art,
notable research gaps in work on world models, predic-
tive coding, free-energy principle, and active inference
in the context of cognitive and developmental robotics is
important for further progress in this field. Based on the
current status, we elucidate the frontiers and challenges
toward this holy grail in cognitive and developmental
robotics.

In this survey paper, we aim to build bridges and
clarify the challenges and frontiers of world models and
predictive coding in cognitive robotics. The remainder
of this paper is structured as follows. Section 2 pro-
vides a working definition of each key concept. Section 3
describes prior works related to the concepts and clar-
ifies state of the art. Section 4 describes some notable
challenges. Some additional discussion is provided in
Section 5, and we conclude the work in Section 6.

2. Working definition
2.1. World model

World models describe the internal models of an agent,
which encodes how world states evolve, respond to
agents’ actions, and relate to a given sensory input [4, 26].
The term world model dates back to the beginnings of
artificial intelligence and robotics [27]. Early research in
machine learning studied how an agent could indepen-
dently acquire and adapt a world model to [28, 29]. Cur-
rently, it usually refers to predictive models [30], which
are mainly encoded using deep neural networks.

In recent years, advancements in the studies on deep
neural networks have enabled self-supervised (or unsu-
pervised) learning* of large-scale world models directly
from observations (sensory inputs) [26, 31, 32], and
these models have been applied in various areas of artifi-
cial intelligence, including reinforcement learning (RL).
World models allow agents to perform a sample-efficient
prediction of the present state of the world and enable
the prediction of future states, which further enables effi-
cient planning (equivalent to model-based reinforcement
learning or control). A compact internal representation
further enables planning in an efficient low-dimensional
space.

The key elements of world models are prediction and
inference®. Prediction is the probabilistic process of gener-
ating the observation x given the state (or representation)
z, whereas inference is the process of obtaining a state
representation z from an observation x in a probabilistic
manner. In real-world settings, observations x are large
(high-dimensional, e.g. images) and provide only partial
information about the world (partial observability). At
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the same time, the latent representation z is assumed to
represent the internal state of the world. In a static case,
these can be summarized as the generative processes of

probability distributions as follows.
Prediction :

x~ p(x|z)

z~ q(z|x),

(1)

Inference :

where p is a generative model and gq is an infer-

ence (or recognition) model®. These models are con-

sidered parameterized in deep neural networks. When

these models are trained simultaneously, generative

approaches (e.g. variational autoencoders [38]) are

employed [26]. There are also cases where only an infer-

ence model is trained, in which case a discriminative
approach (e.g. contrastive learning [39]) is used’.

In the most common conditions, the state of the envi-
ronment (and agent body) and the observations evolve
over time in response to the agent’s actions. In such cases,
the state z is often assumed to satisfy Markov conditions.
In turn, due to typical sensory limitations such as limited
field of view or occlusions, the environment is assumed
to follow a partially observable Markov decision process
(POMDP) [34]. That is, when the current internal state
of the environment is z; (where the subscript represents
a discrete time step), performing an action a; causes the
internal state to transition to z;41 and the corresponding
X¢+1 is observed. In the POMDP case, the prediction and
inference models are given as follows.

Prediction (transition) : z; ~ p(z¢ | zt—1, ar—1)
x¢ ~ plxe | z¢) (2)

zr ~ q(z¢ | X145 A1:4-1)5

Prediction (generation) :
Inference :
where x1.; denotes the set of observations from the first
step (x1) to step t (x;). To learn a state space model
(SSM) on the time interval 1 to T, a variational approach

can be adopted that maximizes the following objective
6, 30, 41]:

log p(x1.1 | a1.7-1)

T
= Z EQ(Zt | xrari—) 108 p(xe | 2¢)]

t=1

(Negative) prediction error

_ Eq(zt—l [ X1:4—1,81:t—2)
[Dxv[q(ztlx1:45 are—DIp(zelze—1> ar—1)]]

Regularization

T
> L (3)
t=1

where Dxy, is the Kullback-Leibler divergence. The first
term in Equation (3) represents the prediction error (or
reconstruction error) of the observation, and the second

term represents the regularization for the state represen-
tation (so that the transition model and the inference
model yield the same state representation).

2.2. Predictive coding and the free-energy principle

The original predictive coding model provided by Rao
and Ballard [18] was proposed as a model of visual pro-
cessing in the brain. The model assumes a hierarchically
organized neural network, and top-down and bottom-up
interactions at each hierarchical level are considered. In
the top-down process, higher levels generate predictions
about lower-level neural activities, and the lowest level
generates sensory predictions. In the bottom-up process,
residual errors between the predictions and actual activi-
ties (or sensory inputs) are computed and used to correct
the originally generated predictions at each level. Predic-
tive coding models learn spatial and temporal statistical
regularities at each level for efficient coding and to reduce
the redundancy of the predicted activity of lower lev-
els [42, 43]. The main principle behind this hierarchical
predictive coding cortical organization in the brain is
prediction error minimization (PEM) [19, 44, 45]. This
idea based on the principle of PEM has been extended to
various cognitive processes, and this framework is usu-
ally referred to as predictive processing [16, 46-48]. This
approach is being recently used also in machine learning
to learn robust generative models of data [49].

The principle of PEM can be situated within a
more general principle of free-energy minimization
because the amount of variational free energy, the core
information measure used in the FEP, can be under-
stood, under simplifying assumptions, as the amount
of prediction error [19, 45, 50]. The variational free
energy F;, which is an upper bound on the surprise
—log p(x¢ | x1:4—1, a1.4—1), is the negative value of the evi-
dence lower bound (ELBO) L; introduced in Equation (3)
as follows.

—Li=F;
= _Eq(zt Lxvnary 1) [10g p(xe | 2¢)]

Prediction error

IEq(Zr—l Lxra—vare—2) [PRLIG(Ze| %16 a1:6-1)

+ lp(ztlzr—1r ar1)]

Regularization

= Dxr[q(ztx1:6 ar:e— )Pz |x1:6, A1:0—1) ]

Divergence

—log p(xt | x1:4—1,a1:4-1)

Evidence

Surprise



> —logp(x¢ | x1:4—1, A1:4-1). (4)

Note that the difference between the evidence and the
surprise is only the sign. The evidence and the surprise
tend to be used in machine learning studies, e.g. vari-
ational inference, and the FEP literature, respectively.
From the second line of Equation (4), when observations
are assumed to follow a diagonal Gaussian distribution
with a fixed variance, minimizing the variational free
energy is equivalent to minimizing the sum of mean
squared errors and a regularization term.

The FEP is a mathematical formulation of how self-
organizing systems, such as biological agents, brains, and
cells, are able to maintain an equilibrium with their envi-
ronment by means of minimizing variational free energy,
or the surprise associated with sensations® [44, 51, 52]. In
the FEP, different cognitive processes such as perception
and action can be understood as different ways to mini-
mize the variational free energy in terms of probabilistic
inference called active inference [53-55] as detailed in the
next subsection.

2.3. Active inference and exploration

Active inference is a normative framework that derives
from the FEP and provides a unifying account for per-
ception, control, and learning in terms of minimization
of the variational free energy in the past, present, and
future. This unification is important in neuroscience as
it reflects neural mechanisms and on a computational
level because it offers new perspectives and the possibility
of sharing algorithmic solutions between all these func-
tions and transforming them into sophisticated robotic
behaviors [23]. For example, perception aims to mini-
mize the variational free energy in the past and present by
inferring the latent representations of observed sensory
inputs’, e.g. when an orange appears in the field of view
instead of the apple as currently encoded in the inter-
nal representation, the representation state can change
toward that of an orange [19]. Conversely, actions try
to minimize the variational free energy in the present
by actively sampling sensory inputs'’, e.g. by moving the
gaze away from the orange toward an apple. In addition
to selecting an action in the present, agents can infer
a sequence of future actions (or policy) that elicit the
most plausible future states [54-58] by considering the
minimization of expected free energy, as detailed below.
While active inference introduces an important per-
spective towards an understanding of adaptive and
autonomous behaviors, an obvious behavioral impera-
tive, the exploration-exploitation dilemma, seems in con-
flict with this idea because exploration, i.e. observing
an uncertain aspect of the environment, would result
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in obtaining an unpredictable outcome [59, 60]. Indeed
exploration and active perception have a central role in
robot control and learning. Several tasks focus on robots’
ability to explore an unknown environment [61-63]. Fur-
thermore, in social contexts, unobservable factors such as
others’ intentions must be actively considered to allow for
efficient human-robot collaboration [64-67].

However, in [20, 55, 68], the authors showed that
active inference can easily support exploratory behaviors
and that it can provide an elegant formal solution for the
exploration-exploitation dilemma.

In fact, we must consider that planning behaviors for
an extended period of time requires anticipating future
data. More specifically, to infer the best action sequences
(policies), one must also predict the future observations
they would produce. This is realized in the active infer-
ence framework by minimizing the expected free energy
over a time interval T. We can express this as the sum
of two terms, including (i) the variational information
gain term [64, 69-71], or epistemic value [55], defined
as the expected KL divergence between the distribution
of the latent states conditioned on the expected obser-
vations q(z¢y1.7 | Xr4+1.7> arT—1) and the prior distribu-
tion on the latent states q(z;+1.7 | ar.T—1) that represents
the reduction in uncertainty on the latent states z;y1.7
provided by the expected observations x;y;.7, and (ii)
the extrinsic or pragmatic value log p(x¢y1.7 | C), where
C denotes the agent’s preferences, which is a parame-
ter of the distribution p(x;y1.7 | -)!'. This results in the

following expression!2.

Eq(zt+1:T,Xt+1:T larT—1) [DxLlg(zt41:7]

G(arr—1) = —
(@7-1) X171 aeT—Dq(Ze 1.7l arT—1)]]

Epistemic value

- E‘Z(XHLT larT—1) [logp(xt-H:T (O] (5)

Pragmatic value

where G(ayr—1) is the expected free energy of the future
action sequence ar7—1. The epistemic value term favors
obtaining observations that disambiguate the world state
such as obtaining the address for the best apple shop
in town, versus observations that correspond to multi-
ple (aliased) states such as corridors in a mall. With-
out the factor of variational information gain, asking
the address of the shop would not be preferred to any
other action that would not immediately result in obtain-
ing an apple. Thus, minimizing expected free energy
corresponds to maximizing the sum of epistemic and
pragmatic values over an extended period and defines
the optimal trade-off between exploration and exploita-
tion. The similarity between the epistemic value term in
Equation (5) and the divergence term in Equation (4)
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with an inverted sign may be noted. This is due to the
different role that observations play in expected free-
energy formulation, where they comprise not observed
data but expected observations. Finally, the close con-
nection between variational free energy (Equation (4)),
expected free energy (Equation (5)), used in this con-
text to define behaviors with exploration capabilities, and
ELBO (Equation (3)), used to model learning processes
objectives, shows the versatility of this type of formu-
lation, the extension and refinement of which currently
a promising field of research that aims to develop an
autonomous system with the ability to efficiently acquire
and execute complex skills [71]. For a more advanced and
detailed presentation, we refer to [20, 55, 71, 72].

Another important framework that considers behav-
iors as inference is planning or control as inference (Cal)
[73-77]. The main difference between Cal and active
inference is that Cal introduces a binary optimality vari-
able Oy that represents whether an action a; in state z; is
optimal (or preferred) [77, 78]. If the reward for taking
action a; in state z; is (2, a;) ', the conditional distribu-
tion of the optimality variable is defined as follows.

p(Or =1]z,a:) = exp (r(zs,ar)) . (6)

Thus, unlike active inference, Cal can introduce the value
of the reward at each time explicitly and independently of
the observation’s generative model!*.

Cal aims to obtain the optimal policy p(a¢|z;) for infer-
ence. If the variational inference is chosen as a solution to
the intractability of exact inference (as with active infer-
ence), we seek the policy that maximizes the following
ELBO".

logp(OhT) = ]Enz;lp(at|Zt)P(Zt|Zt—1>at71)

T
X |:Z r(z,a) + H (p (ar | Zt)):| » (7)

t=1

where H represents the entropy. This corresponds to the
entropy-regularized expected reward, and reinforcement
learning with this as the objective is called entropy-
regularized reinforcement learning [80].

3. Prior works

3.1. World models and model-based reinforcement
learning in Al and robotics

In this section, we describe world models used in model-
based reinforcement learning in the context of artificial
intelligence and robotics.

In this research field, variational autoencoders
(VAE) [38] and recurrent neural networks (RNN) are

frequently used to learn from large-scale spatiotemporal
observation data obtained from the external environ-
ment. VAE is a type of deep generative model consisting
of an encoder that maps inputs to a compact repre-
sentation called the latent variable and a decoder that
generates inputs from the latent variable. These corre-
spond to the inference and prediction in Equation (1)
and are trained to maximize the ELBO as shown in
Equation (3). RNN is a type of neural network with
a recurrent structure that processes temporal data by
calculating the next state from the input data at each
point in time and the state at the previous point in
time. It has been used in various temporal processing
fields such as natural language processing and speech
recognition.

Time-series world models conditioned on behavior
have been studied for policy learning for some time.
Schmidhuber proposed learning an agent’s policy (util-
ity) via an RNN-based world model obtained by self-
supervised learning [28]. Based on this idea, Ha et al.
introduced a large-scale world model consisting of a
VAE and an RNN that learned directly from observa-
tions (time-series images) from the external world [5].
They showed that the policies of agents trained only on
this world model, which learns a game environment,
can work properly in real game environments. Since this
study, research has been conducted on self-supervised
learning of models of an environment directly from
observations, along with ideas referred to as ‘world mod-
els’. However, the authors trained spatial compression
(VAE) and temporal transitions (RNN) separately; thus,
the perspective of learning state representations was not
considered.

Subsequently, VAE-based models that simultaneously
learn time transitions and spatial compression have been
proposed. Kaiser et al. proposed a VAE-based world
model with discrete latent variables designed to pre-
dict the next frame and reward from the stacked frames
of the previous four steps and the current action and
showed that model-based reinforcement learning using
this model performed adequately in an Atari video game
environment with high sample efficiency [83]. One lim-
itation of this model is that it does not include RNNs
and cannot account for long-term prediction. Moreover,
the measures are learned from the observation space,
so the learned representation is not fully exploited. Ke
et al. showed that learning long-term transitions using
a stochastic RNN-based world model contributes to
high performance on tasks that require long-term pre-
diction [84]. All of these models, however, are autore-
gressive, requiring the generation of a high-dimensional
observation space every step for long-term prediction,
and are unable to transition within the latent space.



Recently, models that learn transitions in latent space
without requiring autoregressive generation have been
widely used. Hafner et al. introduced a recurrent state
space model (RSSM) that includes RNNs in SSM and
showed that it could be used for long-term prediction and
model-based reinforcement learning with higher perfor-
mance than model-free learning [41].

While PlaNet [41], the first study using RSSM, used an
existing model-based planning method (cross-entropy
method) for planning in the latent space!®, Dreamer [30],
a subsequent method, explicitly modeled the policy and
value function in neural networks and learned a world
model through gradients in an actor-critic framework,
resulting in a better performance than PlaNet. This
model has been further developed by replacing the latent
variables with discrete values, which significantly outper-
formed model-free performance in Atari game environ-
ments (Dreamer V2 [6]), and by using contrastive learn-
ing instead of reconstruction, which resulted in higher
performance on tasks that were difficult to reconstruct
(Dreaming [81], see the left side of Figure 2). They were
also combined and compared (Dreaming V2 [86]).

In terms of obtaining a good state representation for
control, enforcing explicit constraints on transitions is
preferable. For example, NewtonianVAE was able to form
PD-controllable state space [87]. However, to develop
such a model, what kind of state representation the world
model should acquire (as a good representation for con-
trol) should be considered, which remains as yet relatively
unclear (see Section 4.1 for details).

These world models have been shown to be effective
in learning using real robots. Okumura et al. success-
fully applied the NewtonianVAE to a robot and enabled
it to perform a precise socket insertion task [82](see the
right side of Figure 2). Wu et al. showed that Dreamer
V2 enabled real robots to perform online learning with
very high sample efficiency and performance, which
includes a pipeline of acquiring data through interac-
tion with the external world, learning a world model, and
controlling the robot using the model [7]. However, all
of these results are for a single environment and task,
and what kinds of world models should be acquired for
robot control in diverse environments and tasks remains
unclear.

3.2. Predictive coding and active inference in
cognitive and developmental robotics

In recent years, an increasing body of research has con-
sidered predictive coding models for perception and
action in robotics. Recent comprehensive reviews on
active inference and predictive processing in robotics
can be found in [21, 23], respectively. These ideas aim
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to provide a general mathematical account of behav-
ior. Importantly, they incorporate adaptation and robust-
ness to current methods in cognitive and developmental
robotics.

Since the early works of Tani et al. using hierarchi-
cally organized RNNs [88], a variety of methods have
been proposed to exploit this idea of prediction-error-
minimization or propagation. ‘Higher levels’ (internal
representation) generate predictions about the dynam-
ics of the ‘lower levels’ up to the sensorimotor level.
Prediction errors at the sensorimotor level, given the
observations, are then propagated ‘upwards’ in the hier-
archy correcting the internal state and thus minimizing
the errors. Extensions of Tani’s approach allow multiple
time scales [89-92] (see the left side of Figure 3), stochas-
ticity [93, 94] and stochastic latent representations [95].
In particular, a precision-weighting mechanism for the
PEM enabled robots to extract stochastic or fluctuat-
ing structures of temporal sensorimotor sequences and
utilize the extracted structures for their action genera-
tion [94]. Interestingly, this mechanism is related to the
precision account in psychiatric disorders [96] (espe-
cially autism spectrum disorder [97, 98]) and several
works have proposed cognitive robot models based on
aberrant-precision to model unusual perception and
action [99-101].

Aside from hierarchical RNN, active inference con-
trollers for robotic manipulators [103, 104] and
humanoid robots [22, 102] have also been developed
based on Lanillos’s initial work on predictive coding
adaptive perception and learning [105, 106] for both
low-dimensional and high-dimensional inputs (see the
right side of Figure 3). These methods have widespread
applications such as object manipulation [107], imita-
tion [107], language acquisition [108], social interac-
tion [109] and navigation [110].

Cognitive robots benefit from predictive coding
mechanisms to infer others’ actions [111]. The reuse
of common circuits for both movement generation and
action estimation seems to be a key principle in sen-
sorimotor organization. Recently, the authors of [112]
proposed deep modality blending networks (DMBN)
designed to create a common latent space from the multi-
modal experience of a robot by blending multi-modal
signals with a stochastic weighting mechanism. Using a
state-of-the-art skill-encoding system referred to as Con-
ditional Neural Movement Primitives (CNMPs) [113],
they showed that deep learning could facilitate action
recognition and produce structures to sustain anatom-
ical (mirror-like) and effect-based imitation capabilities
when combined with a novel modality-blending scheme.

Current state-of-the-art research is focusing on
scaling active inference in planning tasks [52] with
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Figure 1. Overview of challenges and relationships between topics described in this survey. A robot, similar to a human, receives sen-
sations x, infers internal states z, exhibits actions a, and affects causes E in the social and physical environment. The initial problem is
determining the models and architecture that a robot uses to efficiently and effectively learn latent representations. An approach to this
problem uses a neuro-symbolic predictive model, which combines neural network and symbolic models. The notion of object affordance
highlights the importance of object-centric representation learning and the coupling of action and perception. Social interaction with
other agentsis also an important area of research. Developing artificial intelligence for cognitive and developmental autonomous robots

based on knowledge of neuroscience, i.e. brain-inspiredworld models, is promising. Creating cognitive architecture and developing and
sharing software frameworks for this purpose will also be an important frontier.
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high-dimensional inputs [32, 114] and improving repre-
sentation learning through multimodal common latent
space [112] or introducing structural inductive biases,
such as objects [115]. Whilst active inference is a promis-
ing framework for robotics [116], current works are still
limited to a particular aspect of cognitive and develop-
mental processes. Therefore, in addition to extending
the scalability of computational frameworks, continual or
lifelong learning for developing abilities from low-level
sensorimotor skills to higher-order cognitive functions
should also be considered.

4. Frontiers and challenges
4.1. Latent representations for action planning

One of the most important challenges in world-model
approaches of any kind is that of efficiently perform-
ing planning, in the sense of generating meaningful
actions to solve a sequential task [117]. Working in the
high-dimensional space of the sensorimotor manifold
is very computationally expensive and provides local
optima solutions [102]. In fact, current approaches in
planning use a compressed encoded representation of
the world dynamics, which aids in the process of pre-
dicting future states and in action generation [26]. In
reinforcement learning, state representation learning is
tied to learned tasks to achieve high performance because
it depends on the actions needed to obtain the max-
imum expected reward [30]. However, this sometimes
prevents generalization across tasks. Decoupled action-
representation world models are an interesting work-
around [39]. In deep active inference [23] amortized
methods have also been considered [32, 118], in addition
to contrastive [119] and iterative amortized inference
approaches [115].

However, the key question cannot be narrowed down
to that what type of architecture or method should
be used. Rather, what type of information should be
encoded in the latent representation and how this infor-
mation is processed must be a key focus so that infor-
mation is not uncoupled from the sensorimotor process,
particularly from motor control, which is a key limita-
tion of existing endeavors in robotics. There has been
considerable discussion as to what would comprise an
appropriate state representation of a world model; that
is, what inductive bias or prior knowledge should be
given [120-122]. Here, we list the properties of this prior
knowledge we consider important.

e Low dimensionality. Observations obtained from the
environment are high-dimensional, and compress-
ing this information into a low-dimensional space is
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critical for efficient data handling, abstraction, and
planning. This approach is the most frequently con-
sidered in state representation learning. The chal-
lenge is how best to represent observations in a
low-dimensional encoding while retaining the nec-
essary task-dependant information. Recent literature
focused on generative and discriminative approaches
to tackle this.

Meaningful abstraction and disentanglement. Low-
dimensional representations should have scene-
understanding and task meaning, such as objects
[115], locations [123] and temporal events [124]. Rep-
resentation disentanglement proposes that factors of
variation with different semantics should be separated,
contributing to the requirements for sufficiency and
efficiency in state representation. Object-centric rep-
resentation learning is related to this hypothesis, [115,
125], in which every observed object is encoded inde-
pendently.

Compositionality. Although disentanglement aims to
separate independent factors, the agent should also
acquire their relationships and hierarchy. In the case of
object representations, there should also be relations
or implication relations among objects. Currently,
methods such as those using graph neural networks
are being considered, but they do not provide an
essential solution. This idea of the compositionality of
representation is also relevant to the neuro-symbolic
approach.

Dynamics prediction. These three properties are
important not only for learning representations in
static environments but in dynamic worlds, e.g.
they consider a transition model that depends on
external factors and agent actions. The best latent
representation is one that allows transitions to be eas-
ily predictable for given actions. Many recent mod-
els use RNNs to learn transitions, which incorporate
information on long-term dependence [30, 41]. One
way to make transitions more predictable is to incor-
porate prior knowledge of the physical world (e.g.
dynamics following Newton’s laws of motion [87]).
Furthermore, by learning to separate representations
that are not related to control from state representa-
tions, representations that are easier to control can be
acquired [126].

Values are sufficiently encoded. To perform rein-
forcement learning on the state representation of
the world model, the value of the state representa-
tive to the agent must be known. For example, a
recurrent state representation learns to predict the
reward from the state so that the reward is embed-
ded in the representation [30]. However, because the
value of the state changes depending on the task, it
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remains unclear whether this hypothesis should be
introduced in a world model that should acquire a
prediction model that is as task-independent as pos-
sible. Alternatively, in active inference approaches,
the agent value function cannot be modified, and it
is defined by expected free energy. Here, the chal-
lenge becomes learning the state preferences and being
able to predict the transitions that may yield those
preferences.

e Task-agnostic. Representations should be informative
to solve narrow problems where the agent is trained
but also sufficiently general to be reused in tasks with
different kinds of variability or new tasks that the agent
has never encountered.

e Fusion of multiple-types multimodal information.
Robots inevitably face a variety of events with
their multimodal sensorimotor systems. Observations
given to world models are from multiple sources (e.g.
social non-social, sensorimotor purely sensorial, and
linguistic and non-linguistic). They can have different
reliability and volatility and represent various aspects
of the world. Therefore, the world models must prop-
erly encode the internal representation in a stable and
efficient manner.

These are some of the elements that we identified
that a latent representation should be fulfilled to provide
a smooth connection with real-world interaction and
provide power for solving cognitive tasks. Importantly,
abstract representation and disentanglement, such as
objects or events encoding, may be important to achieve
efficient planning, reducing the gap for neuro-symbolic
solutions.

In the case of planning actions in the latent space
captured by world models, this can be done using for-
ward samples (simulations) from the transition model in
that space, especially for simple tasks [127]. For long-
term action planning, since the latent space is lower-
dimensional than the observation space, guided policy
search [128] and evolutionary strategy algorithms such
as the covariance matrix adaptation evolution strategy
(CMA-ES) [129] and the cross entropy method [130] can
be used efficiently [26, 41, 131]. There are also methods to
explicitly learn policies for action planning, such as using
simulated trajectories to learn policies [132]. In such
planning, the transition model of the latent space is not
always complete, leading to a problem called the planning
horizon dilemma [133], i.e. the dynamics must be accu-
rately modeled over long horizons for proper planning,
but planning over long sequences often results in poor
performance as transition errors accumulate. Therefore,
various approaches have been proposed, such as using
deep neural networks to extract and utilize only useful

information from simulations with transitions [132]. It
is also proposed to learn a latent space that models the
inverse dynamics, making good future action planning
conditioned on the goal of an arbitrary task [134]. Recent
studies have attempted to mitigate this problem by learn-
ing policies through the gradient of the value function in
simulations over multiple steps of the world model [6,
30], which allows for long-term action planning, such
as mining diamonds in Minecraft (where various items
need to be acquired before mining diamonds), without
human demonstrations [135].

Thus, various studies on learning latent represen-
tations and planning actions have been conducted,
and significant progress has been made. However,
some challenges remain, such as how to connect
between the low-dimensional (and hierarchical) encod-
ing and the synchronization with the sensorimotor
control.

4.2. Neuro-symbolic predictive models

In this section, we provide an overview of state-of-
the-art techniques in which symbols and rules are dis-
covered and used by robots through neuro-symbolic
approaches. The term symbols, here, refers to manipula-
tive discrete representations used in symbolic Al and cog-
nitive science. The neuro-symbolic approach attempts
to integrate conventional symbolic and modern neural
network-based Als.

Both biological and artificial agents benefit from
predictive coding mechanisms for reasoning, decision-
making, and planning. Predictive forward models are
used to generate plans that involve a sequence of actions.
For example, chimpanzees are known to generate multi-
step plans that include stacking a number of boxes on
top of each other, grabbing a long stick, climbing on
top of a stack of boxes, and using the stick to reach the
object that was initially out of reach [136, 137]. While the
underlying cognitive mechanisms for high-level planning
remain unknown, different specific brain regions have
been shown to become active in inductive and deductive
reasoning in humans [138] while predicting the effects of
actions [139]. In artificial agents, on the other hand, stan-
dard search and planning rely heavily on manually coded
or learned state transitions and prediction models [140,
Ch. 3-6,10-11].

The learning of discrete representations of predictive
models, specifically dynamic Bayesian networks, to plan
goal-directed arm/hand control involved the seminal
work conducted by [141]. Ahmetoglu et al. showed that
the units generated by slow feature analysis with the low-
est eigenvalues resemble symbolic representations that
highly correlate with high-level features, which might be



precursors for fully symbolic systems [142]. Konidaris
etal. studied methods to discover useful symbols that can
be directly utilized in problem and domain definition lan-
guage (PDDL) for various agent settings [143, 144]. In
simulation and the real world, the discovered symbols
were directly used as predicates in the action descrip-
tions to generate deterministic and probabilistic symbolic
plans. James et al. focused on learning symbols in the
ego-centric frame of the agent for transferability to new
settings [145]. Ugur et al. combined several machine
learning algorithms such as X-means clustering and
support vector machine (SVM) classification to enable
robots to discover symbols in the continuous percep-
tual space for PDDL-based manipulation planning [146,
147]. Although the robot discovered the symbols without
human intervention, the authors manually encoded the
continuous perceptual features. Towards an end-to-end
framework, Ahmetoglu et al. developed a deep predictive
coding neural architecture that directly used raw cam-
era images and pixel values to discover symbols [148]. In
detail, they proposed a deep encoder-decoder network
with a binary bottleneck layer designed to take a cam-
era image and an action as input and output the action
effects in pixel coordinates. The binary activations in
the bottleneck layer encode object symbols that not only
depend on the visual input but are also shaped based on
action and effect. In other words, the objects that provide
the same affordances [149] were automatically grouped
together as object symbols. A decision tree was trained
to reproduce its decoder function to distill the knowl-
edge represented by the neural network into rules useful
for symbolic reasoning. Probabilistic rules were extracted
from the effect predictor / neural decoder and encoded
in the probabilistic PDDL, which the off-the-shelf Al
planners can directly use. In follow-up work, Ahmetoglu
introduced a multi-head attention mechanism to enable
robots to learn symbols to encode affordances of various
objects [150].

Asai et al. implemented a neural framework where a
state autoencoder with a discrete bottleneck layer was
trained first, and preconditions and effects of actions
were learned next [151]. In follow-up work, [152] com-
bined the previous two systems and discovered action
preconditions and effects together with visual sym-
bols. These works were realized in visual environ-
ments such as 2-D puzzles and achieved visualized plan
executions. An important aspect of pure visual neuro-
symbolic systems and studies on neuro-symbolic robotics
is that in robotics, predictive coding over object symbols
takes actions and effects into account in addition to the
features of objects and the environment, which facilitates
the formation of symbols that are likely to capture object
affordances [153-156].
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However, in the context of world models, meth-
ods to integrate prior symbolic knowledge into VAE
and SSM-based world models are still being explored.
The bottom-up formation of symbolic representations is
closely related to disentanglement and compositionality
discussed in Section 4.1. Moreover, leveraging linguistic
knowledge in world modeling is a challenge in relation to
neuro-symbolic predictive models.

4.3. Affordance perception

Affordance perception has often been discussed inde-
pendently of world models, but in fact, it is closely
related. According to the original definition provided
by Gibson [153, 157, 158], an affordance is an action
possibility offered to the agent by the environment. A
stable surface may afford to be traversed; a stone may
afford the possibility of being used as a hammer; a
door handle may afford the possibility of being opened.
The concept of affordances and affordance perception
has then been further analyzed and revisited in psy-
chology, neuroscience, cognitive science, artificial intel-
ligence, and robotics (see [155] for a recent survey). The
ability to perceive affordances is crucial for any biolog-
ical or artificial agent to interact successfully with the
environment.

Central to the idea of affordances is that the action
possibilities depend on both the agent and the environ-
ment; the same environment would offer different action
possibilities to different agents, depending on their sen-
sorimotor capabilities. A stable surface affords the pos-
sibility of traversal to an agent that is able to locomote
and whose body dimensions fit the size of the surface
borders; a stone affords the possibility of being used as
a hammer to an agent who is able to pick it and who
has enough force to lift it; a door handle affords to open
to an agent who knows how to open doors, assuming
it is well-designed [159]. Therefore, those affordances
must be learned autonomously by the agent. In fact, the
agent must learn how to perceive them. The means by
which agents perceive affordances are those of ecolog-
ical perception, powerfully illustrated by Eleanor Jack
Gibson [160-162]: ‘narrowing down from a vast mani-
fold of (perceptual) information to the minimal, optimal
information that specifies the affordance of an event,
object, or layout’ [162, p.284]. The agent must learn what
minimal information is to be picked; this happens both
through evolution and development, leveraging the sen-
sorimotor exploration of the environment by physical
interaction.

Interestingly, while exploring the action possibilities,
the agent can learn the effects of those actions as well.
This is crucial for biological agents and turns out to be
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extremely useful for artificial systems as well. In fact, most
computational models of affordances in robotics rely on
representations that include not only the action but also
the effects (or in other terms, the goal) of the action
[111, 113, 149, 163-173]; therefore, the perceived pos-
sibilities for actions (and for achieving certain effects)
can be used for action planning, leading to problem-
solving [174]. Such comprehensive models of affordances
are, in fact, world models; they are internal models of
how the world behaves ‘in the eyes’ of the learning agent,
and they can be used by the agent to make predictions
about how the world will change if certain actions are
performed. Therefore, it is not surprising that the compu-
tational techniques used for learning affordance models
often overlap with those used for learning world models
[175]. It is worth noting that, in world model approaches,
a robot only receives raw sensory information and needs
to extract the relevant semantics from such data flow;
therefore, to successfully integrate affordance perception
in these systems, the challenges of meaningful abstrac-
tion/disentanglement and object-centric representation
learning, described in Section 4.1, are particularly rele-
vant.

4.4. Social interaction

Robots’ ‘worlds’ consist not only of physical objects but
also of social entities, i.e. people who give robots social
guidance and try to cooperate with them. World mod-
els should enable agents to understand and predict the
social dynamics of human behavior by identifying latent
variables such as intentions and emotions. This under-
standing can allow agents to collaborate with humans to
influence and shape social outcomes.

Safe human-robot interaction and efficient collabora-
tion are some of the major research goals in robotics and
have important practical applications [176-182]. The-
ory of mind is the cognitive ability to associate beliefs,
intentions, or mental states with other agents, or in other
words, to predict the internal state of another agent’s
world model and to understand its activities and con-
text [183]. This ability is an essential component of
human interaction [184-186] and has attracted attention
in robotics [187].

World models can play an important role in mutual
understanding under challenging conditions for agents’
perceptual systems, where interactions or just observed
behaviors are complex and lead to conflicting
interpretations. A prototypical example is the false belief
task, where an agent with sensory limitations fails to
detect environmental changes and behaves according to
its outdated beliefs [188, 189]. It is also crucial when dif-
ferent levels of knowledge and expertise induce different

representations of a domain, as well as different points of
view, which may induce different support strategies [190]
or even conflictual interactions [191]. For example, the
perspective of an automotive mechanic and that of an
ordinary car user differ considerably, so collaboration
may be difficult if one cannot properly infer others’
knowledge level.

The recent progress in machine learning methods has
resulted in substantial improvement in action recogni-
tion methodologies [67, 192-194]. However, most work
has focused on using shallow and purely perceptual rep-
resentations to interpret observed activity. This approach
often results in limited flexibility in terms of context,
task, and observed actors. These methods require sig-
nificant retraining time and large amounts of data that
are difficult to collect and transfer to relatively similar
conditions [195].

Alternatively, approaches such as goal recognition
as planning or inverse planning [177, 196-198] have
shown significant advantages in terms of flexibility, using
a model of the environment to understand the activ-
ities of others by computing plans that would lead to
the observed actions. These approaches have demon-
strated the advantages of incorporating a world model
into intention recognition. Several works have extended
this approach. The problem of dealing with behaviors
generated under partial observability, which may require
inferring both the plan and the beliefs, the mental state
[187, 189], of the observed actor, was studied with both
classical planning [199] and Bayesian approaches [188,
200]. The impact of missing observations for the observer
agent has also been analyzed [199]. A further step has
been proposed by active methods for activity recogni-
tion [64, 201, 202] that use the same world model both
to interpret others actions as well as selecting actions
that would improve the recognition process, e.g. by giv-
ing access to the most informative observations [65] and
allow the completion of a joint task [190]. While even
the initial formulations of this approach were compu-
tationally aware [196], their efficiency is often affected
by the length of the observed behavior and the environ-
ment complexity, resulting in methods that can seldom
be applied online on a robot. Several models proposed
a pre-compile approach that transformed the world into
a form that would allow efficient plan recognition [195].
The adoption of hierarchical world model representa-
tions has also been applied to limit computational and
modeling costs of the process [203-205]. Precomputed
and robust local plans, in the form of the same motor con-
trollers that the robot uses to perform its own actions,
have also been adopted to allow active perception for
action recognition and prediction on humanoid robots
(64, 183].



One of the main problems with inverse planning is
that implementations often assume that observed behav-
iors are rational or, in terms of reinforcement learning
and planning, optimal. In addition to being expensive
to compute, optimal behaviors may differ substantially
from the suboptimal or bounded rational behaviors that
human collaborators may perform [206, 207]. When a
human partner makes a mistake that can lead to failure,
the difference between optimal and sub-optimal behav-
iors can lead to misinterpretations in a context where
the human partner is more in need of assistance from
the robot. Some approaches attempt to address this con-
dition by allowing for random noise in action selec-
tion [208] or by using simplified punishment strategies
for sub-optimality, e.g. increased expected plan length
[199]. However, human errors and behavioral subop-
timality often depend on environmental features that
determine the complexity of the underlying cognitive
processes [206] or induce habits [207]. An interesting
approach to plan recognition that accounts for human
cognitive limitations uses a symbolic world model to
implement online Bayesian inference about the inter-
play between incomplete plan execution and online
planning or replanning when incomplete plans lead to
failure [209].

The additional flexibility provided by world mod-
els in social interaction skills is likely relevant beyond
activity recognition. It is easy to imagine that shallow
purely supervised models may be limited in terms of
perspective-taking and the ability to reason based on the
world structure may help to adapt to partners with dif-
ferent sensory systems [187, 210-212]. Similarly, world
models are likely to help with imitation learning by deal-
ing with embodiment mismatch between the observed
actor and the learner [213]. Finally, physical coopera-
tion [214, 215] and signaling [216, 217] would also be
more flexible when integrating world and partner models
in the equation, for example, to account for the trust of
the human cooperator towards the robot [218]. Finally,
a world model may also be learned through socially
rich experiences and sources of information (e.g. imi-
tation [213] or verbal instructions) in addition to the
results of autonomous exploration. However, develop-
ing a robust, efficient, and flexible enough representa-
tion may prove to be one of the main challenges in this
effort.

4.5. Brain-inspired world models

In cognitive science, it has long been postulated that
the brain learns small-scale models of the world and
uses these models for various cognitive functions, such
as perception, planning, and imagination [16, 46-48,
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219]. For example, theories of perception-as-inference
described perception as an inferential process, which
works by ‘inverting’ a generative model of how the per-
cepts are generated [220, 221]. As discussed above, these
ideas (and others) have been recently formalized under
the label of the Bayesian Brain [222] and extended by
Active Inference from the domain of perception to other
domains, such as action planning and interoception [20].

In parallel, there have been many attempts to describe
mathematically and to assess the neuronal underpinnings
of world models and of inference processes empirically
(e.g. [223, 224]). One question that has received a great
deal of attention is how the brain might encode inter-
nal world models in the neuronal substrate. Given that
the brain models are often assumed to be probabilis-
tic, various formal schemes have been proposed that
describe plausible neuronal implementations of proba-
bilistic variables and of Bayesian inference over these
variables, such as, for example, probabilistic population
codes [225] and sampling schemes [226]. These attempts
show that (probabilistic, generative) world models could
be at least potentially implemented in neuronal substrate
[227, 228] - and updated after statistical learning [229]
- but the specific scheme(s) that the brain might use for
this remain to be fully assessed.

Another relevant question is what algorithms the brain
might use to perform inference over world models. A
strong candidate in neuroscience is predictive coding
[18, 19]. Several studies have aimed to validate its key
empirical predictions, showing that under the appropri-
ate conditions, it is possible to observe predictions [230],
prediction errors [231] and other signatures of infer-
ence in brain signals [232] and that neural activity in
lower visual areas in the absence of bottom-up inputs
could be explained by the top-down, feedback dynamics
postulated by predictive coding [233]. These and other
studies (see [234, 235] for recent reviews) lend some sup-
port for predictive coding, but the theory remains under
development.

At yet another level, one may ask what the systems-
level architecture that supports world models and
whether different parts of the brain might model dif-
ferent aspects of the world is. Anatomical considera-
tions suggest that the brain is not a monolithic entity
but rather is composed of several areas and networks
[236]; however, the extent to which these areas or net-
works are modularized and how they exactly influence
each other is heavily discussed [237]. One interesting
consideration is that cortical brain areas in humans and
monkeys appear to be organized along principal gradi-
ents (defined by functional connectivity); in one of these
gradients, heteromodal areas (e.g. prefrontal cortex) are
placed at the top, and unimodal areas (e.g. primary visual
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area) at the bottom, recapitulating the structure of a
putative hierarchical generative model [238]. Another
interesting consideration is that there seems to be a
‘division of labor” between brain pathways that perform
complementary computations, such as the two visual
pathways for processing ‘what’ and ‘where’ informa-
tion [239]. These anatomical and functional separations
might be potentially interpreted as useful factorizations of
the brain generative models. A whole-brain probabilis-
tic generative model (WB-PGM) approach attempts to
build a cognitive architecture for cognitive and develop-
mental robots integrating probabilistic generative model
(PGM)-based modules referring comprehensive knowl-
edge of human and animal brain architectures and their
anatomy [240].

The above studies indicate that at a general level, both
neuroscience and machine learning / AI conceive world
models and inference in similar ways. However, at a
more detailed level, there might be profound differences
between the ways these two disciplines use the same con-
cepts. Predictive coding and other biological schemes
proposed in neuroscience exploit top-down dynamics
(and recurrences) in ways that are rarely used in machine
learning. Furthermore, brain information processing is
heavily based on spontaneous brain dynamics, which are
largely absent in machine learning systems; see [241-243]
for a detailed discussion of putative computational roles
of spontaneous dynamics. Furthermore, biological brains
are energy efficient, whereas the cognitive, metabolic, and
other costs of learning and inference [244] are rarely
considered in the design of contemporary Al systems.
Moreover, it is plausible to assume that different parts of
the brain might be specialized (or might have different
inductive biases) to process different statistical regulari-
ties, rendering them able to learn and model (for exam-
ple) slower or faster dynamics of the visual scenes, one’s
own body, the actions of other agents, or extended tem-
poral events [245]. It is also worth highlighting here that,
although prediction errors have a central role in learn-
ing, the brain might also use other forms of statistical
learning that are not error-driven [246]. It remains to
be understood how to best endow our more advanced
machine learning systems with the ability of the brain to
perform (apparently) specialized computations but also
orchestrate them coherently. Finally, it is important to
remember that the brain is an evolved system, and our
more advanced cognitive abilities are grounded in (the
neuronal mechanisms supporting) simpler sensorimotor
skills [247, 248]. Trying to develop advanced cognitive
systems without the necessary requirements for embod-
ied interaction and ‘phylogenetic refinement’ might lead
to solutions that differ completely from how the brain
works — or that fail altogether.

4.6. Cognitive architectures

Truly cognitive and developmental robots, i.e. embod-
ied AGI, that behave autonomously and flexibly in the
real environment would have a wide range of sensors
and exhibit multiple functions. That requires a large-scale
world model that deals with multimodal sensory obser-
vations and multilayered state representations. Consider-
ing the discussion in Section 4.5, such world models may
be factorized in a proper manner from engineering and
biological viewpoints. To realize embodied AGIs, further
frameworks and architectures to factorize a total world
model into cognitive modules and to integrate individual
cognitive capabilities into a cognitive system are required.
The idea is related to cognitive architectures, which have
been studied in cognitive science, artificial intelligence,
and robotics [249, 250].

In cognitive science, cognitive functionalities such as
perception, and decision-making are
implemented as modules in the cognitive architectures
studied, and the specific task can be solved by activat-
ing these modules coordinately. ACT-R [251] and Soar
[252] are representatives of cognitive architectures. It has
been shown that the model implemented by ACT-R can
explain the time to solve the task by humans, and acti-
vation patterns of the brain can be predicted by activa-
tion patterns of the modules [253]. Furthermore, Soar
has been used for controlling robots [254] and learn-
ing games [255]. However, complex machine learning
methods that have rapidly advanced in a decade are not
introduced yet. Sigma [256, 257] is a newer cognitive
architecture that introduces the generative flow graph,
a generalized probabilistic graphical model. Therefore,
the model can be implemented using probabilistic pro-
gramming techniques [258-260]. Furthermore, the con-
cept of the standard model of the mind is discussed
through a synthesis across these three cognitive architec-
tures [237]. Particularly, cognitive architectures based on
first principles, e.g. with a general computation scheme,
such as free energy minimization [19], are especially
attractive. The architecture for social cognition has also
been proposed [261]. The authors point out that these
architectures explained above are incomplete in deal-
ing with the social aspect of cognition and describe
the elements of architecture for social cognition. Clar-
ion [262] is another cognitive architecture based on
dual process theory [263]. In this architecture, each
subsystem is composed of explicit and implicit pro-
cesses, and it is shown that the interaction between
implicit-explicit processes can explain psychological
phenomena.

In robotics, several types of cognitive architecture have
been proposed. One of them is ArmarX [264], which

memory,



has three layers, including a middleware layer, a robot
framework layer, and an application layer. This three-
layered structure simplifies the development of robotics
software easier. (Neuro-)Serket [265, 266] is another
approach to integrating cognitive modules!”. In (Neuro-
)Serket, modules are described by the (deep) PGM and
trained mutually by exchanging messages between mod-
ules. To make it easy to develop large-scale models, the
modules in Neuro-Serket are weakly connected through
the Serket interface. (Neuro-)SERKET is closely related
to the world model-based approach because SERKET
requires each module to be a PGM, i.e. a model based on
prediction and inference as Equation (1), and integrate
modules into a large PGM. This architecture does not
provide any restrictions regarding the functionalities of
modules. Therefore, it has high flexibility but brings high
dimensional design space at the same time. To reduce
the large degree of freedom in the design space, a brain-
inspired approach, WBA-PGM, was proposed [240]. In
this approach, a cognitive model was constructed by con-
necting PGM-based modules utilizing knowledge from
neuroscience. By referring to the brain studies, WBA-
PGM constrains the function of modules and their con-
nection and reduces the design space of the cognitive
model.

There are two crucial requirements for cognitive archi-
tecture for cognitive and developmental robots, which
can be used along with the approach based on world
models and predictive coding. The first is the engineer-
ing aspect which is seen in (Neuro-)Serket and ArmarX.
The scale of cognitive models that enables the robots
to behave flexibly in the real environment is very large,
and many modules must be connected and work col-
laboratively. Furthermore, the model needs to introduce
machine learning techniques that are not only existing
as well as those will be developed in rapid progress. The
development of such a model would require a massive
engineering effort, and this is considered a notable obsta-
cle to realizing such robots. Therefore, architecture is
needed to simplify development. Another requirement is
that of the scientific aspect seen in ACT-R, Soar, WBA-
PGM, and Clarion. Developing AGI, which is human-
like intelligence, referring to the knowledge regarding
humans obtained in cognitive science and neuroscience,
can accelerate its development. However, meeting these
two aspects completely is very challenging. All machine
learning techniques and module connections might
necessarily be not reasonable from the point of view of
cognitive science and neuroscience. On the other hand,
entire humans are not understood yet. Therefore, find-
ing common ground between engineering and science
aspects and developing a novel cognitive architecture is
a current challenge. Developing a large-scale cognitive
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architecture and overcoming the problems described in
the previous subsections is also a challenge.

5. Discussion

As we described, world models and predictive coding
are promising approaches in cognitive and developmen-
tal robotics. We summarize the references we mentioned
in Sections 3 and 4 in Tables 1 and 2, respectively.

Before closing this paper, we will mention some
remaining issues which have not been addressed in the
main body sufficiently.

5.1. Language and world models

Umwelts, i.e. worlds from first-person views, of bio-
logical systems are not monolithic but have some sort
of structure. Notably, language and symbolic systems
have syntactic structures. The interaction between high-
level cognitive capabilities, e.g. language and reasoning,
and low-level cognitive capabilities, e.g. perception and
action, is essential in world modeling. Recently, large-
scale language models (LLMs) have been replacing many
natural language processing methods [270, 271], includ-
ing reasoning tasks, which have been conducted solely
by symbolic AI by the end of 2010s [272, 273]. Recently,
the use of LLMs in robotics has been attempted, e.g.
[274]. It is clear that language learning and understand-
ing by robots is itself a frontier [275]. To leverage the
symbolic knowledge in LLMs, integration of LLMs and
world models will be an important challenge.

This shift from models of artificial symbols in con-
ventional Al to models of natural language, i.e. a human
symbol system, is resonating with the discussion in
symbol emergence in cognitive and developmental sys-
tems [276-279]. An important topic is then considering
not only the integration of human language into robots’
world models in a top-down manner but also the bottom-
up formation of symbol systems, including language in
relation to world models.

Table 1. Summary of references in Section 3.

World models and model-based reinforcement learning in Al and robotics

Early work in world models [5, 28]
Autoregressive world models [83, 84]

World models with latent space transitions [6, 30, 41, 81, 85, 86]
World models in robotics [7,82,87]

Predictive coding and active inference in cognitive and developmental
robotics

Reviews on active inference and predictive [21,23,116]
processing in robotics

Predictive coding models and extensions [88-95]

Applications of predictive coding and active [22,99-113, 267]

inference

Scaling and improvements of active inference [32,52,112,114,115]
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Table 2. Summary of references in Section 4.

Latent representations for action planning

Deep active inference and related
methods

Discussion on state representation
learning and its inductive bias

Meaningful abstraction and
disentanglement

Dynamics prediction

Action planning methods in latent
representation

[23,32,115,118,119]
[115,120-122]
[115,123-125]

[30, 41,87, 126]
[6, 26, 30,41,127,131-135]

Neuro-symbolic predictive models

Biological and artificial predictive
coding mechanisms

Continuous representation and symbol
learning

Discrete representation and symbol
learning

Neural frameworks and integration

[136, 138, 139]
[142, 150, 164, 268, 269]
[141,143-148]

[115, 148, 151, 152, 156]

Affordance perception

Ecological perception
Computational models
Affordance models in robotics

[153,157, 158, 160-162]
[137,149, 154, 155, 159]
[111,113,163-175]

Social interaction

Human-robot collaboration and [176,177,179-182, 195]
interaction

Theory of mind and mental states

Activity recognition and machine
learning methods

Goal recognition and planning
approaches

Active methods for activity recognition

Computational efficiency and world
model representations

World models in social interaction skills

[177,183-189]
[65,67,192-195]

[177,187-189, 196-201, 203, 205]

[64-66, 190, 201, 202]
[64, 183, 196, 204, 209]

[187, 190, 205, 209-218]

Brain-inspired world models

Theories of world models and
perception-as-inference

Putative neuronal implementations of
world models

Predictive coding in the brain

Brain architecture potentially
supporting world models

Bridging the gap between
neuroscience and machine
learning

[4,16, 20, 46-48, 219-222]
[223-229]

[18,19,230-235]
[236-240]

[241-243, 245-248]

Cognitive architectures

Cognitive architectures overview and [237, 249, 250]
perspective

Traditional cognitive architectures

Modern cognitive architectures and
techniques

Robotics cognitive architectures

[251-255]
[19, 256-263]

[240, 264-266]

5.2. Policy representations

How should the policies of robots be represented? Con-
ventionally, policies are described as feedback controllers
7w (zp,ar) = p(ar|z;) in reinforcement and imitation
learning. Even though one direction of world model
approaches is to explore task agnostic representations
(Section 4.1), the decomposition of world modeling and
policy learning can be controversial. In a conventional
approach of world models, policies (7 = p(a;|z;) or

arr) and world models (p(z¢y1 | zt, a¢) and p(o¢ | z¢)) are
decoupled. In contrast, a series of studies about predic-
tive coding in neuro-robotics have been intentionally
entangling policies and world models and making robots
directly learn p(0s41, at+1 | 01:1> a1:¢) and exhibiting many
successful results in robotics, e.g.[24, 280, 281]. As the
notion of affordance also suggests, actions and percep-
tions are not independent and entangled, generally. The
question ‘to what extent should we decouple world model
and policy representations?” should be investigated.

5.3. From artificial cognition to human cognition

Cognitive and developmental robotics are also construc-
tive approaches to human developmental cognition. Not
only learning from neuro-, cognitive and developmen-
tal sciences but also provide with scientific feedback to
them is also an important mission. Building a virtuous
circle between studies on human and artificial studies is
a challenge.

The constructive approach may give us a novel
approach to scientific and philosophical hard problems
like self-awareness [282] and consciousness. The rela-
tionship between the multimodal world model and global
workspace theory was suggested [283]. Extending the
discussion between world models and consciousness
using robots may be an exciting challenge. Moreover, the
relationship between predictive coding and emotion is
worth exploring to build emotional robots and under-
stand the emotions of biological systems [284-286].

5.4. Software frameworks for implementation

To accelerate the studies on world models and predictive
coding in robotics, the development framework for cog-
nitive and developmental robotics is crucially important.
In robotics, not only Al ‘software’ frameworks but also
middle-ware is important. Recently, ROS has been widely
used in the robotics community for bridging hardware
and Al software layers. Developing and sharing such soft-
ware frameworks as a community will be important, e.g.
[287]. Moreover, the world model involves many types of
knowledge, and the knowledge can be used for achiev-
ing multiple functions via active inference. The software
framework should allow the world model to efficiently
organize the knowledge and to perform (cross-modal)
active inference. A great initiative is the discrete state-
space active inference python library [288]. However,
it can only be used for toy examples due to scalability
issues and to be useful in cognitive and developmental
robotics. It needs further development. For instance, the
support for high-dimensional input observations and the
possibility of combining discrete and continuous action



and state representations are something that has been
addressed in robotic approaches [23].

5.5. Data-efficient and autonomous learning

A generalist agent called GATO was developed based
on Transformers and shown to be able to solve vari-
ous tasks with one neural network [289]. Although the
approach is superficially different, the approach is really
related to the world models and the predictive cod-
ing approach. However, the learning system is hugely
data-hungry. It is very questionable if the model can be
regarded as a model of human intelligence. Moreover, to
train the generalist agent, researchers need to prepare a
large dataset and simulation environment. Human chil-
dren can autonomously explore their environment and
acquire data through active exploration. Moreover, they
use heuristics and biases in their developmental process.
Learning and considering the human developmental pro-
cess will give us the inspiration to build real generalist
agents. Developing a data-efficient autonomous learning
architecture with world models and predictive coding at
its core is the key to a truly cognitive and developmental
system.

Online adaptation to the non-stationary environment
is one of the keys to realizing autonomous robots. Pre-
dictive coding can enable robots to adapt to the non-
stationary environment by minimizing prediction errors.
Although the world model itself can continuously learn
the environmental dynamics in an online manner, the
policy learning will suffer from the non-stationarity if
the world model-based approach relies on RL, because
RL assumes the stationary environment. However, if the
world model-based approach uses other planning meth-
ods that are robust to non-stationarity, the world model
may also allow the robots to adapt to the non-stationary
environment. This is also an important issue to investi-
gate.

5.6. Emergence of behaviors

Should an agent have a completely internal model of its
world? Lastly, we raise fundamental speculation about
the world model-based approach. Behaviors are not
externalization of internally designed trajectories but
something to emerge through the interaction between
the body and the environment. For example, it has been
proven by passive walking machines that the behavior
of walking emerges only from the interaction between
the body and the environment, without any computa-
tion by the brain [290]. About three decades ago, Brooks
famously advocated the physical grounding hypothesis
together with subsumption architecture, saying the world
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is its own best model [291]. The robots behaved smoothly
and flexibly without any explicit world models. This is
also referred to as morphological computation, which
means the body itself implicitly processes information
dynamically [292, 293]. Soft robotics emphasizes these
points nowadays. Combining the viewpoints of the emer-
gence of behaviors with complex physical dynamics and
the world model-based approach is another important
challenge.

6. Conclusion

In this survey paper, we have aimed to clarify the fron-
tiers and challenges of world models and predictive cod-
ing in cognitive and developmental robotics. Creating
an autonomous robot that can actively explore the real
environment, acquire knowledge, and learn skills con-
tinuously is the ultimate goal of cognitive and develop-
mental robotics. To make the robot continuously develop
through active exploration, the robot’s learning process
should be based on sensorimotor information obtained
through physical and social interactions with the physical
and social environment. Following the motivation, this
paper reviewed studies related to world models and pre-
dictive coding in cognitive and developmental robotics
and related Al studies. We clarified the definition of world
model and predictive coding in robotics, in conjunction
with those of FEP and active inference, and discussed
the relationship between them. We also introduced state-
of-the-art and research gaps of studies on world models
and predictive in robotics. We described six frontiers and
challenges, i.e. latent representations for action planning,
neuro-symbolic predictive models, affordance percep-
tion, social interaction, brain-inspired world models, and
cognitive architecture. Through the survey and clarifi-
cation of challenges, we provided future directions for
developing cognitive and developmental robots based on
world models and predictive coding.

Notes

1. This viewpoint may be called a robot’s subjective point
of view of the world. Philosophically, however, whether
robots can have a ‘subjective’ point of view remains contro-
versial [8]. Therefore, we describe this point of view simply
as ‘a robot’s point of view’.

2. Importantly, the relationship between Umwelt and world
modeling was suggested in semiotics. Sebeok pointed
out that the closest equivalent of Umwelt in English
is ‘model’ [10]. An Umwelt is created and constructed
through a functional cycle, which includes (1) anticipa-
tion of a perceptual cue, (2) perception, (3) working out
a relation between the perception and action (either sim-
ply executing a habit or using representation, or modeling
anew), and (4) action (operation) [11].
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3. Also, notably, the world-model approach is different from
behavior-based robotics [13], which does not learn world
models.

4. Self-supervised learning is a type of unsupervised learning
that aims to accomplish a task by learning to predict or clas-
sify any part of unsupervised data from any other part. In
contrast to self-supervised learning, unsupervised learning
includes clustering.

5. The use of these terms is sometimes incongruent in the
literature on statistics and machine learning; the word
inference is also used to describe prediction or substituted
by other concepts, such as encoding and decoding in the
literature on (variational) autoencoders.

6. In classical formulations of control theory [33], AI [34],
and probabilistic robotics [35], the inference step is per-
formed by exactly inverting the prediction probability p
using the Bayes theorem. However, this poses several com-
putational challenges and is often intractable. For dealing
with such complexity, sampling-based approximate infer-
ence can be performed using Monte Carlo methods [36,
37]. In the context of world models and predictive cod-
ing, variational Bayes approaches are often preferred [20].
Variational Bayes involves the definition of an approxi-
mate inference distribution g. Amortized inference allows
us to approximate the q(x) using a neural network, which is
called an inference network, and obtain an inference model
g(xa) [38].

7. However, recently, studies have also shown that contrastive
learning can be interpreted as a generative approach [40].
Therefore, the boundary between generative and discrim-
inative approaches is, to a certain extent, blurred.

8. In contrast to states of surprise, free-energy can be mea-
sured because it is a function of sensory input and the
inferred state [45]

9. This perception can be regarded as a variational Bayesian
version of the original predictive coding that employs a
maximum a posteriori (MAP) estimation [44].

10. More specifically, the prediction error in the variational
free energy in Equation (4) is the difference between sen-
sory predictions and sensory inputs. Perceptions help make
sensory predictions more closely match sensory inputs,
while actions help make sensory inputs more closely match
sensory predictions.

11. Usually, C is given as a hyperparameter. However, it is pos-
sible to train it, for example, by maximizing log-likelihood.

12. Note that in the literature on active inference, a sequence
of actions ayr—_; is referred to as a policy m. This pol-
icy is different from a policy in reinforcement learn-
ing, where it represents a statistical mapping from states
to actions (m(as|s¢)). Using this notation of the pol-
icy # and mean-field approximation, the general for-
mulation of the expected free energy can be described
by the following more practical formulation. G(w) =
— Yttt Bo 1 DKL [q(e Ixe, ) g (e [)]] —

Eq(x, |m)[log p(x; | C)], where the time step T > ¢ used
here is a future time step.

13. Weassume r(z;, a;) < 0.If M = max;, 4, (r(z:, ar)) > 0, we
can redefine the reward function r(z;, a;) < r(zs,a;) — M
to satisfy the inequality without losing generality. See [79]
for more details.

14. Therefore, unlike active inference, Cal does not require the
assumption of POMDP.

15. Here, MDP is assumed, i.e. state z; is an observed variable
rather than a latent variable; if POMDP is assumed, infer-
ence and generative models for observations are added to
this ELBO.

16. PlaNet was extended to be uncertainty-aware on the basis
of Bayesian inference [85].

17. Neuro-SERKET is an updated version of SERKET.
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