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Abstract

Order-Sorted Feature (OSF) logic is a Knowledge Representation and Reasoning (KRR)
language originating in Hassan Ait-Kaci’s work on designing a calculus of partially ordered
type structures. The language was developed to model the notions of subsumption and
unification in inheritance-based KRR formalisms, and it has been applied in computational
linguistics and implemented in constraint logic programming languages and automated rea-
soners.

The language of OSF logic is based on function-denoting feature symbols and on set-
denoting sort symbols ordered in a subsumption (is-a) lattice. Reasoning with OSF logic
relies on the unification of set-denoting structures called OSF terms, a process that aims
to combine the constraints expressed by two OSF terms into a single term. An advantage
of OSF logic is that its unification algorithm takes into account the subsumption ordering
between sorts, which may enable a single unification step to replace several inference steps,
leading to more efficient computations.

This thesis deals with the theoretical development of approximate reasoning within the
framework of OSF logic. Two approaches are investigated: (i) a fuzzy generalization of
OSF logic that provides this language with the capability to represent graded subsumption
relations and vague concepts, and (ii) an extension of the language of OSF logic with a
similarity relation, leading to a flexible notion of OSF term unification that allows matching
different and disjoint sorts. Both strategies enable OSF logic to return approximate answers
to queries posed to a knowledge base.

The first key contribution of the thesis is the definition of fuzzy OSF logic, a fuzzy
generalization of the semantics of OSF logic where sort symbols denote fuzzy sets rather
than crisp sets, allowing to represent vague concepts. Moreover, the sorts symbols of fuzzy
OSF logic are ordered in a fuzzy subsumption relation (formally a fuzzy lattice) rather
than a crisp one, which provides more modeling flexibility by allowing to represent graded
subsumption relations. The fuzzy sort subsumption relation is given a special semantics
which generalizes Zadeh’s definition of inclusion of fuzzy sets, and which is then extended
to OSF terms.

We investigate whether several semantic and computational properties of crisp OSF logic
are preserved in the fuzzy setting. For instance, we show that OSF terms are ordered in
a fuzzy subsumption relation which extends the fuzzy ordering between sort symbols, and
we prove that the unification of two OSF terms yields their greatest lower bound. We also
define procedures to compute the subsumption degree between two sort symbols or between

two OSF terms, and study their computational complexity.



2 Abstract

The second key contribution of this thesis is the definition of similarity-based reasoning
with OSF logic. Approximate reasoning based on fuzzy relations — in particular similarity
relations — has been studied extensively in the fuzzy logic programming literature. Several
approaches consist in extending the Prolog language with a similarity relation, which enables
the definition of flexible notions of unification and SLD resolution, namely weak unification
and similarity-based SLD resolution.

Along these lines, defining similarity-based reasoning with OSF logic involves the devel-
opment of a flexible unification procedure for OSF terms that takes into account a similarity
relation between sort symbols. Since the sort symbols of OSF logic are ordered in a sub-
sumption relation, this procedure should also account for the interactions between the two
relations. Our proposed solution consists in a transformation that takes a sort subsumption
relation and a sort similarity as inputs, producing a fuzzy sort subsumption relation that
intuitively combines the information from both relations and their interactions. The ad-
vantage is that, as a consequence of this transformation, the same unification rules of fuzzy
OSF logic can be applied to this setting, and a single unification may be able to replace
several similarity-based SLD resolution steps.

With respect to practical applications of our approach, we discuss logic programming
languages based on fuzzy OSF logic and on similarity-based OSF logic, and a similarity-
based extension of the CEDAR reasoner, a Semantic Web reasoner based on OSF logic.
These applications rely on a fuzzy subsumption relation, or on a sort similarity relation, in

order to provide approximate answers to queries posed to a knowledge base.
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Introduction

Knowledge Representation and Reasoning (KRR) is the area of Artificial Intelligence con-
cerned with how knowledge can be explicitly represented by symbols and manipulated in
an automated way by reasoning algorithms in order to to solve complex problems [31, |57].
Over the years, the field has embraced a diverse range of approaches, starting from early
formalisms like frames [85] and conceptual graphs [108], to the most recent applications
integrating knowledge graphs with machine learning and language modeling techniques.

This thesis focuses on Order-Sorted Feature (OSF) logic |10}, a KRR language rooted
in Hassan Ait-Kaci’s work on designing a calculus of partially ordered type structures [2].
Originally, this language was meant to model the notions of subsumption and unification
in inheritance-based KRR formalisms such as Brachman’s structured inheritance networks
[2, 4, [65]. OSF logic and related formalisms — e.g., feature logic |106], or the logic of
typed feature structures |34] — have been applied in computational linguistics (e.g., |34} 46,
107}, /119]) and implemented in constraint logic programming languages such as LOGIN [§],
LIFE [10] and CIL [86]. OSF logic has also been proposed as a KRR language for the
Semantic Web by Ait-Kaci [4], and a Semantic Web reasoner based on OSF logic has been
implemented in the context of the CEDAR project [6, |15].

As the name of the language suggests, OSF logic is based on sort symbols (or sorts) and
feature symbols (or features). Features denote functional attributes of objects, while sorts
represent sets of objects. Sorts are ordered in a subsumption (is-a) relation that models
an inclusion relation between classes. Starting from sorts and features, OSF logic allows to
build OSF terms, record-like structures that denote complex classes of objects.

Closely related to OSF logic are Description Logics (DLs), a family of formal languages
that also descend from Brachman’s structured inheritance networks and from the effort to
overcome the lack of a formal semantics in earlier KRR formalisms like frames and semantic
networks [18, |19, |31]. DLs allow to represent knowledge by building concept descriptions
using a variety of concept and role constructors. Depending on the set of supported con-
structors, each DL can strike a different balance between the reasoning complexity and the
expressivity required by a given application. The most prominent application of DLs is
perhaps the Semantic Web, as they provide, by design, the semantics for the Web Ontology
Language developed by the World Wide Web Consortium [18].
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Due to their common origin, OSF logic and DLs share a few similarities. For instance,
both languages are based on set-denoting symbols and on symbols for expressing attributes:
sorts and features in OSF logic, concepts and roles in DLs. The sorts and the OSF terms of
OSF logic are ordered in a subsumption relation and, similarly, DL concepts are organized
in a subsumption hierarchy. In both languages, one of the main reasoning problems consists
in deciding whether two sorts, OSF terms, or DL concepts are subsumed by each other.
The two formalisms also exhibit several differences. Perhaps the most apparent one is that
the features of OSF logic denote total functions, while the roles of DL are interpreted as
binary relations. One of the most significant differences between the two languages is that
the semantics of OSF logic is based on the closed world assumption, while DLs adopt an
open world semantics.

There are several advantages that motivate the adoption of OSF logic for the develop-

ment of KRR applications.

e One convenient feature of OSF logic is the flexibility provided by its terms, record-like
structures that generalize the terms of first-order logic. OSF logic does not constrain
its terms to have a fixed arity or a fixed argument order [§]. For instance, an OSF
logic signature admits terms with the same root sort but possibly a different number
and order of arguments, such as movie(year — 1960, directed by — director) and
movie(directed__by — person). Because the arguments of an OSF term are identified

by feature names rather than positions, OSF terms are also easier to interpret.

o OSF terms also provide a natural way of representing partial information [34]. During
a computation, an OSF term like X : person, representing the class of people, can
become more specific by inheriting additional constraints, resulting, for instance, in the
term X : professor(works at — Y : university), representing the class of professors

working at some university.

e Since each subterm of an OSF term can be associated with a variable, it is possible
to express cyclic coreferences within a term, allowing the concise representation of

infinite structures [§], like in the term

last_name — Y :string,
X : person spouse - X,
spouse —  person
last_name — Y
e In a logic programming setting, replacing the first-order terms of Prolog with OSF
terms offers the advantage of integrating inheritance (an is-a subsumption relation)
into the unification process, rather than through a resolution-based inference mecha-

nism, which can result in more efficient computations [8} 37]. This is due to the fact
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that a sort subsumption relation is taken into account in the unification of two OSF
terms. This enables the unification, for instance, of terms such as X : professor and

X : person(works_at — Y : university).

e The implementation of OSF logic is based on graph encoding techniques that allow
to perform Boolean operations on sorts very efficiently [6, [13]. By leveraging these
techniques, the CEDAR Semantic Web reasoner based on OSF logic has been experi-
mentally demonstrated to be a highly efficient alternative to Semantic Web reasoners
based on DLs |15].

Research questions and contributions

This thesis deals with the theoretical development of approximate reasoning within the

framework of OSF logic, driven by the following research questions.

1. How can OSF logic be provided with a fuzzy semantics, enabling this language to

support vague concepts and real-valued truth degrees?

2. How can the language of OSF logic be extended with a similarity relation on sorts, so
as to define a flexible notion of unification that allows matching different and disjoint

sorts?

In order to address these research questions, the two key contributions of this thesis are the

definition of fuzzy OSF logic and of similarity-based reasoning with OSF logic.

Fuzzy OSF logic Fuzzy OSF logic maintains the basic syntax of OSF logic, but it gener-
alizes its semantics by interpreting sort symbols as fuzzy sets rather than crisp sets, allowing
to represent vague concepts. Moreover, the sorts symbols of fuzzy OSF logic are ordered in
a fuzzy subsumption relation (formally a fuzzy lattice) rather than a crisp one, which pro-
vides more modeling flexibility by allowing to represent graded subsumption relations. The
semantics of the fuzzy sort subsumption relation generalizes Zadeh’s definition of inclusion
of fuzzy sets [44], and it follows the intuition according to which, if the subsumption degree
of a sort s with respect to another sort s’ is equal to 5 (in symbols, (s, s") = [3), then every
instance of the sort s must also be an instance of s’, with degree of membership greater
than or equal to 8.

We investigate whether several semantic and computational properties of crisp OSF logic
are preserved in the fuzzy setting. For instance, we show that the fuzzy sort subsumption
ordering can be extended to OSF terms, and that formally this ordering constitutes a fuzzy
lattice such that the greatest lower bound of two OSF terms can be computed through their

unification.
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The generalization to a fuzzy semantics provides OSF logic with the capability to perform
approximate reasoning. In particular, we provide an algorithm for OSF term unification that
can be employed to decide whether two OSF terms are subsumed by each other, and to which
degree. We also define procedures to compute the subsumption degree between two sort
symbols or between two OSF terms, and study their computational complexity.

A potential application of fuzzy OSF logic is discussed, consisting of a fuzzy logic pro-
gramming language that is capable of providing approximate answers to queries by lever-
aging a fuzzy subsumption relation between sort symbols. The development of a fuzzy
semantics of OSF logic also enables the definition of similarity-based reasoning with this

language.

Similarity-based reasoning with OSF logic Approximate reasoning based on fuzzy
relations — in particular similarity relations — has been studied extensively in the fuzzy logic
programming literature (e.g., [64} |72} 74, [101} 118]). Several approaches extend the Prolog
language with a similarity relation, enabling the definition of flexible notions of unification
and SLD resolution, namely weak unification and similarity-based SLD resolution.

One motivation behind the similarity-based approaches is to model a form of reasoning
that may be referred to as reasoning by analogy or by similarity [101]. For instance, this
may be achieved by relaxing the equality constraint on two functor symbols to a flexible
constraint of similarity, when unifying two first-order terms. For example, if the functors
thriller and horror are assumed to be similar, then the term thriller (X) can unify with
the term horror ("Psycho") to some degree, leading to approximate solutions to queries
posed to a knowledge base.

Along these lines, defining similarity-based reasoning with OSF logic involves the devel-
opment of a flexible unification procedure for OSF terms that takes into account a similarity
relation between sort symbols. Since the sort symbols of OSF logic are ordered in a sub-
sumption relation, this procedure should also account for the interactions between the two
relations. Our proposed solution consists in a transformation that, taken as inputs a sort
subsumption relation and a sort similarity, outputs a fuzzy sort subsumption relation, which
intuitively combines the information of both relations, and how they interact. Informally,
this is achieved by applying the following inference, inspired by the similarity-based ap-
proaches to logic programming (e.g., [101]):

If the sort sg is subsumed by the sort s;

and sp is similar to the sort so with degree

then sg is subsumed by s, with degree .

For example, if slashers are horror movies, and horror movies are similar to thrillers with
similarity degree 0.5, then it is possible to conclude that slashers are also thrillers with

subsumption degree 0.5.
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One advantage of this approach is that, as a consequence of this transformation, the same
unification rules of fuzzy OSF logic can be applied to this setting, and a single unification
may be able to replace several similarity-based SLD resolution steps.

Two applications of similarity-based reasoning with OSF logic are discussed, namely a
fuzzy logic programming language based on OSF terms, and an extension of the CEDAR
Semantic Web reasoner. Both applications rely on a sort similarity relation to provide

approximate answers to queries posed to a knowledge base.

Outline of the thesis
The thesis is structured as follows.

o Chapter [I] provides the definitions from order theory and fuzzy set theory that are
necessary for the development of fuzzy OSF logic and of similarity-based reasoning
with OSF logic.

e Chapter [2] is a brief summary of KRR languages and approaches that are closely
related to OSF logic, so as to provide the context of our research, and a means of
comparison of our work with the current literature. In particular, we discuss DLs
and fuzzy DLs, the fuzzy generalization of DLs whose goal is to handle vagueness and
real-valued truth degrees. The chapter also discusses the research on approximate
reasoning with logic programming based on fuzzy relations such as proximities and

similarities, which has inspired our work in Chapter

 Chapter[3is a thorough overview of the syntax and semantics of OSF logic that sets the
foundations for our development of fuzzy OSF logic in Chapter [4 Two applications
based on OSF logic are reviewed: (i) the logic programming language LOGIN, an
extension of Prolog where first-order terms are replaced by OSF terms, and (ii) the
CEDAR Semantic Web reasoner. The chapter also provides an overview of the graph
encoding techniques that enable the efficient implementation of OSF logic, which are

also relevant for the implementation of fuzzy OSF logic.

o Chapter [4 develops fuzzy OSF logic, our fuzzy generalization of the semantics of OSF
logic where sorts and OSF terms are interpreted as fuzzy subsets of a domain of inter-
pretation. The semantics of fuzzy OSF logic is investigated thoroughly, generalizing
several results from crisp OSF logic. We provide procedures for the computation of
the subsumption degree between two OSF terms or between two sorts, and we dis-
cuss their complexity and implementation. A potential application of fuzzy OSF logic

consisting of a fuzzy logic programming language is introduced.
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o Chapter [5] deals with similarity-based reasoning with OSF logic. The language of OSF
logic is extended with a similarity relation on sort symbols. By combining this simi-
larity relation with the usual sort subsumption relation of this language it is possible
to define a fuzzy subsumption relation which intuitively combines the information of
both relations and their interaction. We start by combining the two relations into a
fuzzy subsumption preorder, which may however contain cycles. To address this issue,
we introduce a construction of a fuzzy partial order from a fuzzy preorder that gener-
alizes a well-known result from order theory. A definition of a completion of a fuzzy
poset into a fuzzy lattice is presented next, which finalizes the transformation of a sub-
sumption relation and a similarity into a fuzzy subsumption relation. The resulting
fuzzy subsumption is then taken into account when unifying two OSF terms, accord-
ing to the constraint normalization rules of fuzzy OSF logic. The chapter presents
two potential applications of similarity-based OSF logic: a fuzzy logic programming
language and an extension of the CEDAR reasoner which are capable of returning

approximate answer to queries.

o Appendix [A] contains the proofs of the main results of Chapters [4] and

Publications

The main contributions of this thesis are part of the following publications.

e Gian Carlo Milanese and Gabriella Pasi. “Conjunctive Reasoning on Fuzzy Tax-
onomies with Order-Sorted Feature Logic”. In: 2021 IEEE International Conference
on Fuzzy Systems (FUZZ-IEEE). Luxembourg, Luxembourg, 2021, pp. 1-7. DO
10.1109/FUZZ45933.2021.9494474

Discussed in Section specifically the computation of the subsumption degree of

two sorts, and the encoding of a fuzzy lattice or fuzzy partial order.

e Gian Carlo Milanese and Gabriella Pasi. “Fuzzy Order-Sorted Feature Term Unifica-
tion”. In: Federated Logic Conference. 36th International Workshop on Unification.
Haifa, Israel, 2022. URL: https://www.cs.cas.cz/unif-2022/Papers/UNIF_2022_
paper_3.pdf

Discussed in Sections [4.6| and specifically the syntactic definition of OSF term

subsumption, and the definition of fuzzy OSF term unification.

e Gian Carlo Milanese and Gabriella Pasi. “Fuzzy order-sorted feature logic”. In: Fuzzy
Sets and Systems 477 (2024), p. 108800. 1SsN: 0165-0114. DOI: https://doi.org/
10.1016/j.£ss.2023.108800
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https://doi.org/https://doi.org/10.1016/j.fss.2023.108800
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Introduction 13

Discussed in Sections [4.1] to involving the fuzzy generalization of the semantics of
OSF logic.

e Gian Carlo Milanese and Gabriella Pasi. “Similarity-Based Reasoning with Order-
Sorted Feature Logic”. In: IEEE Transactions on Fuzzy Systems (2024), pp. 1-14.
DOI: [10.1109/TFUZZ.2024.3362897

Discussed in Chapter [5 involving the definition of similarity-based reasoning with
OSF logic.


https://doi.org/10.1109/TFUZZ.2024.3362897




Chapter 1

Preliminaries

One of the distinctive feature of Order-Sorted Feature (OSF) logic is that its set of sort
symbols is ordered in a finite bounded lattice, which models an inclusion relation between
sets of objects. It is thus convenient to recall a few essential notions from order theory
before delving into the formal development of this language. The definitions of preorder,
partial order and lattice are recalled in Section where the order theoretic notation em-
ployed throughout the thesis is also fixed. This section also discusses the construction of a
partial order from a preorder (Proposition , and of a lattice from a partial order (Def-
inition . The two constructions are useful from the perspective of implementing OSF
logic, and fuzzy generalization of these two results will also be essential for the development
of similarity-based OSF logic in Chapter |5l The definitions of Section [1.1]are based on [41].

In Chapter {4 we develop fuzzy OSF logic, a fuzzy generalization of OSF logic in which
sorts symbols are interpreted as fuzzy sets. Similarly to how OSF logic is based on a lattice
of sort symbols, fuzzy OSF logic requires its sorts symbols to be ordered in a fuzzy lattice.
Chapter 5| on the other hand, deals with an extension of the language of OSF logic with
a similarity relation on its sort symbols, which is modeled as a fuzzy equivalence relation.
All the definitions needed for the development of fuzzy OSF logic and similarity-based OSF
logic are defined in Section which follows the theory of fuzzy sets from [44, 68].

1.1 Lattices and orders

We recall a few essential definitions from order theory that are needed for the development
of OSF logic in Chapter[3] We generally assume that the orders mentioned in this document

are finite.

Definition 1.1 (Preorder). A binary relation < on a set X is called a preorder if it

15



16 1.1. Lattices and orders

satisfies:

Vee X, z 2, (Reflexivity)

Ve,y,z € X, if x 2y and y < 2z, then z < z. (Transitivity)

A preorder constitutes the simplest ordering structure that may be given to a set. While
a preorder (X, <) may contain distinct elements z,y € X such that z <y and alsoy < z, a
partial order is a refinement of a preorder that imposes the additional constraint whereby,

whenever such a bidirectional relation occurs, the elements x and y must be identical.

Definition 1.2 (Partial order). A binary relation < on a set X is called a partial order

if it satisfies (Reflexivity|) and (Transitivity| and

Ve,y€ X, if t <y and y <z, then x = y. (Antisymmetry)

A partial order is bounded if 3T, L € X such that, for all z € X: L <2 < T. The pair (X,
=) is also called a partially ordered set (poset).

A preorder (X, <) can be represented as a directed graph (X, E) — where E C X? is a
set of edges on X — such that < is the reflexive and transitive closure of F. Analogously,
a poset (X, <) can be represented as a directed acyclic graph (DAG) (X, E) such that < is

the reflexive and transitive closure of E.

Definition 1.3 (Composition of two binary relations). Let RC X xY and S CY x Z
be two binary relations. The composition of R and S is the binary relation defined as
RoS ¥ {(z,z) e X xZ|3yeVY st (z,y) € R,(y,2) € S}. Let @Q be a binary relation
on X. The n-th composition of Q with itself is defined inductively by letting Q' %f @, and
Qn ¥ Qo™ ! forn > 1.

Definition 1.4 (Reflexive and transitive closure of a relation). Let R be a binary
relation on a set X. The transitive closure of R is the binary relation R | J ., R". The

reflezive and transitive closure of R is the binary relation R* & Rt u {(x,z) |z € X }.

Example 1.5 (Preorders and partial orders). Consider the graph (X, F) represented
in Fig. Its reflexive and transitive closure (X, E*) is a preorder, but it does not satisfy
antisymmetry since, for instance, (u,s) € E* and (s,u) € E*, but u # s. This can also be
verified visually, since the graph (X, E') contains a cycle involving the nodes u, r, and s. On
the other hand, the reflexive and transitive closure of the graph represented in Fig. [I.1D] is

an example of a bounded partial order with least element | and greatest element T. >

Given a subset S of a partial order (X, <) it is often convenient to consider the elements
of X that are above or below every element of S, i.e., the upper bounds and the lower
bounds of S.
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() ()
s XX
=) (D)
'@ 09

(a) Preorder (b) Partial order

Figure 1.1: A preorder and a partial order.

Definition 1.6 (Upper and lower bounds). Let (X, <) be a poset and S C X. The
set of lower bounds of S is defined as Slj L {r e X | Vs e Sz =< s}, ie, it is the set of
elements of X that are below every element of S. The set of upper bounds of S is defined
as 8% ¥ {z € X | Vs € S,s 2}, ie, it is the set of elements of X that are above every

element of S.

Analogously, it is also convenient to consider the set of elements that are above or below

some elements of S, i.e., the up-set and the down-set of S.

Definition 1.7 (Up-sets and down-sets). Let (X, <) be a poset. The down-set of an
element x € X is defined as x] &f {y € X | y < x}, while its up-set is defined as 1 % {y €
X |y = x}. The down-set of a subset S C X is defined as S| & {x € X | Is € S,z < s},
while its up-set is defined as ST {z € X | Is € S, s < z}.

Note that {:1:}1j =z, {z}% =21, SY =(),cgsT, and Slj =(Nses 54

OSF logic requires its set of sorts symbols S to be ordered in a finite bounded lattice
(S, <) which models a concept subsumption relation. In other words, for each pair of sorts
S0, 51 € S there must exist a sort s such that s < sy and s < s7 — that is, s is a lower bound,
or a common subsort, of sy and s; — and s is the most general sort with this property — that
is, s is the greatest lower bound (GLB) of sy and s;. Finding the GLB of two sorts is one of
the core operations in reasoning with OSF logic, as will be seen in Chapter [3| Lattices are

formally defined next.

Definition 1.8 (Greatest lower bound and least upper bound). Let (X, <) be a
poset and S C X. The greatest lower bound (GLB) of S, denoted A S, is the unique z € X
such that z € Slj and, for all y € Slj, y <X z. The least upper bound (LUB) of S, denoted
Y S, is the unique z € X such that z € S% and, for all y € 5%, x < y.

If S = {z,y}, then A S is also written as x A y, and Y S is also written as z vy. In a
partial order (X, <), GLBs and LUBs are not guaranteed to exist for every subset S C X.
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Figure 1.2: A lattice.

Definition 1.9 (Lattice). A partial order (X, <) is a lattice if the GLB x Ay and the LUB
x vy exist for every pair of elements z,y € X. A lattice is complete if the GLB A S and
the LUB Y S exist for every subset S C X.

Note that every finite non-empty lattice is complete.

Example 1.10 (Lattice). The poset represented in Fig. is not a lattice since, for

example, the nodes e and f do not have a GLB. An example of a lattice is represented in

Fig.[1.2 >

Although OSF logic formally requires its set of sort symbols to constitute a finite
bounded lattice, it is often more practical to simply work with a partial order. For instance,
when modeling a subsumption relation, the choice of a partial order may be convenient to
avoid explicitly specifying a GLB for each pair of sort symbols. While two sorts may not
have a GLB in a poset, it is nevertheless always possible to consider the set of their maximal
lower bounds (MLBs).

Definition 1.11 (Minimal and maximal elements). Let (X, <) be a poset and S C X.
The set of minimal elements of S is defined as | S| & {z € S |Vy € S(if y <z, then z =
y)}. The set of mazimal elements of S is defined as [S| & {x € S | Vy € S(ifx <
y, then x = y)}.

Definition 1.12 (Minimal upper bounds and maximal lower bounds). Let (X,
=) be a poset and S C X. The set of minimal upper bounds (MUBs) of S is defined as
Sg”“b def {S%J i.e., it is the set of upper bounds of all elements of .S that are minimal with
respect to <. The set of mazimal lower bounds (MLBs) of S is defined as S;’le def [Sg ie.,

it is the set of lower bounds of all elements of S that are maximal with respect to <.

Example 1.13 (Maximal lower bounds). Consider the poset (X, <) represented in
Fig. The set of maximal lower bounds of e and f is {c, d}. >
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The idea of considering MLBs when working with posets rather than lattices is made
formal by the construction of a lattice on the antichains of a partial order (X, <), where
the GLB of two antichains of shape {so} and {s1} corresponds exactly to the set of MLBs

of sp and s; in (X, <). The following definition of this construction is based on [13].

Definition 1.14 (Antichain). Let (X, <) be a poset. Two elements z,y € X are said to
be incomparable — denoted z || y —if z A y and y A x. An antichain is a subset C' C X
such that, for all z,y € C, z || y if x # y. The set of all antichains of (X, <) is denoted
Antichains(X).

Note that, for any S C X, | S| and [S] are antichains.
The set of antichains of a partial order (X, <) can be endowed with an ordering that
extends the one on (X, <).

Definition 1.15 (Antichain ordering). Let (X, <) be a poset. The partial order < on
X can be extended to a partial order < on Antichains(X) by letting, for all C,C" € Anti-
chains(X):

C=<C" ¥ vereC 3z e such that x < 2.

The same symbol =< is used for the partial order on X and the partial order on Anti-

chains(X), since its meaning is always clear from context.

Equivalent definitions of the ordering on Antichains(X) can be given as follows.
Proposition 1.16 (Equivalent definition of the antichain ordering). Let (X, <) be
a poset. For all C, D € Antichains(X):

(i)C <D & (i) CLCD| < (iii) C C D.

The following proposition states that (Antichains(X), <) is a completion of (X, <), i.e.,
(Antichains(X), =) is a complete lattice that extends (X, <) in the sense that there exists
an order embedding of (X, <) into (Antichains(X), <), that is, a function f : X — Anti-
chains(X) such that, for all z,y € X, x <y & f(z) < f(y).

Proposition 1.17 (Antichain lattice). Let (X, =) be a (bounded) poset.

1. (Antichains(X), =) from Definition|[1.15is a (bounded) lattice, where GLBs and LUBs
are defined by letting, for Cy,C1 € Antichains(X): Co A C1 & [ColnC1l] and
CQ v C def LC()T n CITJ

2. (Antichains(X), X) is a completion of (X, =) as witnessed by the order embedding
f X — Antichains(X) defined by letting f(x) = {x} for each x € X.

3. Ezisting GLBs and LUBs in (X, <) are preserved in (Antichains(X), <): for allz,y €
X, if z=x Ay, then {z} = {z} A {y}.
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Figure 1.3: The partial order and its antichain completion of Example

Example 1.18 (Antichain lattice). Consider the partial order (X, <) represented in
Fig. which is not a lattice since the elements ¢ and d do not have a GLB. Fig.
represent the completion (Antichains(X), X) of (X, <X) as defined in Definition Note
that, in particular, the GLB of {c¢} and {d} in (Antichains(X), =) is {a, b}, which is the set
of MLBs of ¢ and d in (X, <). >

We conclude the section by recalling a well known construction of a partial order from
a preorder (X, <), based on the idea of merging in an equivalence class [z] all the elements
y € X such that x < y and y < 2. A fuzzy generalization of this result will be a key
component in the development of similarity-based reasoning with OSF logic in Chapter

Definition 1.19 (Equivalence relation). A binary relation ~ on a set X is called an

equivalence relation if it satisfies (Reflexivity]), (Transitivity|) and

Vr,y € X, if x =y, then y ~ . (Symmetry)

The equivalence class of © € X is the set [z]® & {y € X | x =~ y}. The superscript in [z]~ is
dropped when = is clear from context. The set of equivalence classes X/ & {[z]¥ | z € X}

forms a partition of X.

Proposition 1.20 (Partial order on the quotient set of a preorder). Every preorder
(X, =) induces an equivalence relation =~ on X defined by letting, for all z,y € X, v =~y &
z 2y andy = x. The preorder = C X X X can be extended to partial order = C X/, X X/~
by letting, for all v,y € X, [2]® < [y]® & 32’ € [2]~, Ty € [y|¥ s.t. 2/ =y .

The same symbol = is used for the preorder on X and the partial order on X, since

its meaning is always clear from context.
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Figure 1.4: The preorder and partial order of Example

Example 1.21 (Partial order on the quotient set of a preorder). Fig. represents
the partial order constructed on the equivalence classes of the elements of the preorder
represented in Fig. according to Proposition [1.20 >

1.2 Fuzzy set theory and fuzzy orders

In this section we recall the basic definitions of fuzzy set theory [44, |68] that are necessary
for the development of fuzzy OSF logic and similarity-based OSF logic in Chapter [4] and
Chapter |5l Whenever possible, we employ the same notation for fuzzy sets and fuzzy orders
as the one used for crisp sets and orders, but with the addition of a small dot (-) to avoid
ambiguity. For example, the symbol for the intersection of two crisp sets is n, while the

symbol for the intersection of two fuzzy sets is m.

1.2.1 Fuzzy sets

Every subset C' of a set X is associated with a characteristic function 1¢ : X — {0,1}

defined by letting
1 ifzxeC,
1o(x) &
0 otherwise.

A fuzzy subset generalizes this definition by letting the value of a membership function range

in the unit interval [0, 1].

Definition 1.22 (Fuzzy subset, support and f-cut). A fuzzy subset F of a (crisp) set
X is determined by its membership function pp : X — [0,1]. A fuzzy subset F' of X can

also be represented as

F = {8/a| up(x) = B}.
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Name t-norm t-conorm
Godel Bo A B1 & min(Bo, B1) Bo V 1 & max(Fo, £1)
Product Bo Np B1 & Bo - B Bo Vp B1 ¥ Bo + B1 — Bo - b1

Lukasiewicz Bg A B1 & max(ﬁo + 61 —1, 0) Bo Vi B1 def mil’l(ﬁo + b1, 1)

Table 1.1: Examples of t-norms and t-conorms.

The support of F'is |F| & {x € X | pup(z) > 0}, while the ﬁ—cuﬂ of F (B € [0,1]) is
Fly 2z € X | np(a) > B).

The fuzzy generalizations of the intersection and the union of crisp subsets are based
on operations known as triangular norms (t-norms) and triangular conorms (t-conorms).
Common examples of these operations are given in Table [I.I} In this thesis we adopt the

Godel t-norm A (minimum) and t-conorm V (maximum).

Definition 1.23 (Intersection and union of fuzzy subsets). Let X be a set and F be
a set of fuzzy subsets of X. The intersection [\ F and the union ) F of F are defined by
letting

i (@) = nf({up(e) | F € F}) and gy #(2) = sup({ur(x) | F € F}).

Note that the latter definition employs inf and sup rather than min and max in order

to be applicable to sets of fuzzy subsets of arbitrary cardinality. If F is finite, then clearly

par@) =\ pr@) =min({up(z) | F € F}), and
FeFr

(@) =\ we(e) = max({ur(@) | F € F}).
FeF
The literature on fuzzy sets also provides several definitions of the complement of a fuzzy
set, based on a fuzzy negation operator. Two examples are the standard (or Lukasiewicz)

negation and the Gddel negation, which are defined, respectively by letting

1 ifB=0,
0841~ 8 and @gﬁd_ef{ it 5

0 otherwise.

Definition 1.24 (Complement of a fuzzy subset). Let X be a set, let F' be a fuzzy
subset of X, and let © be a fuzzy negation operator (e.g., ©4 or ©;). The complement X \ F'
of F' is defined by letting, for all x € X, ux\p(r) & Spur(r).

!Note that in the literature this is usually refereed to as an a-cut, but we prefer to use the name B-cut
so as to avoid notational clashes in later chapters, where « is used as the symbol for variable assignments.
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Name Implication
1 if By <
Godel Bo =4 f1 H Po _.ﬁl
[1  otherwise
1 if 5 <
Goguen (or product) Sy =>p f1 & { 5 i fo _,ﬁl
5—(1) otherwise
YLukasiewicz Bo =1 b1 ¥ min(1 — By + f1,1)
Kleene Dienes Bo = kd 1 & max(1 — Bo, f1)

Table 1.2: Examples of fuzzy implication operators.

Finally, an implication operator can be defined starting from a t-norm, or from a t-
conorm and a fuzzy negation operator, generalizing analogous formulas from crisp proposi-

tional logic.

Definition 1.25 (R-implication and s-implication). Let A; be a t-norm, let V; be a
t-conorm, and let © be a fuzzy negation operator. The r-implication = with respect to A
is defined by letting, for all g, 81 € [0, 1]:

Bo = B1 L sup{B | oAt B < Br}.

The s-implication = with respect to V; and © is defined by letting, for all 5y, 81 € [0, 1]:
Bo = B1 <€ SPo Vi Pi-

A few examples of fuzzy implication operators are shown in Table The implication
=14 1S an s-implication based on ©; and V, while =; is an s-implication based on ©; and V;.
The implications =4, =, and =, are r-implications based on A, A;, and A, respectively.

We adopt the convention of identifying a fuzzy subset F' with its membership function

pr in order to make the notation less cumbersome.

Remark 1 (Fuzzy set notation). The membership function of a fuzzy subset F' of a set
X is simply written F': X — [0, 1] rather than pp : X — [0, 1].

1.2.2 Fuzzy orders

Fuzzy OSF logic is based on a fuzzy subsumption relation, i.e., a fuzzy binary relation that

associates a subsumption degree in [0, 1] with every pair of sort symbols.

Definition 1.26 (Fuzzy binary relation). A fuzzy binary relation R between the sets X
and Y is a fuzzy subset of X x Y, i.e., it is a function R: X x Y — [0, 1].

Fuzzy preorders and fuzzy partial orders are generalization of preorders (Definition 1.1
and partial orders (Definition [1.2)).
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Definition 1.27 (Fuzzy preorder). A fuzzy binary relation R on a set X is a fuzzy

preorder if it satisfies:

Ve e X, R(x,z) =1, (Fuzzy Reflexivity)
Ve,y,z € X, R(z,2z) > R(x,y) A\ R(y, z). (Max-Min Transitivity)

Equivalently, (Max-Min Transitivity|) can also be defined as follows:

Va,z € X, R(x,z) > \/ (R(x,y) AN R(y, z)).
yeX

Definition 1.28 (Fuzzy partial order). A fuzzy binary relation R on a set X is a fuzzy

partial order if it satisfies (Fuzzy Reflexivity)) and (Max-Min Transitivity|) and

Ve,y € X,if R(z,y) > 0 and R(y,z) > 0,then x =y.  (Strong Fuzzy Antisymmetry)

The pair (X, R) is called a fuzzy partially ordered set (fuzzy poset).

A fuzzy preorder (X, R) can be represented as a weighted directed graph (X, E,Ag)
(where E C X2 is a set of edges and A\g : E — [0,1] labels each edge with a value in [0, 1])
such that R is the reflexive and transitive closure of Ag. Analogously, a fuzzy poset (X, R)
can be represented as a weighted DAG (X, E, Ag) such that R is the reflexive and transitive

closure of A\g.

Definition 1.29 (Composition of fuzzy binary relations). The (max-min) composition
of two fuzzy binary relations R and @ on a finite set X is the fuzzy binary relation R e @)
defined by the membership function

RoQ(z,2) = \/ (R(z,y) A Q(y, 2)).

yeX

The n-ary composition of a fuzzy binary relation R with itself is defined by letting R' & R
and R" % Re R" ! for n > 1.

Definition 1.30 (Reflexive and transitive closure of a fuzzy binary relation). The
transitive closure of a fuzzy binary relation R is defined as RY d<f ),,>1 R™. The reflexive
and transitive closure R® of a fuzzy binary relation R is obtained by lezting R®(x,y) & 1if
x =y and R®(z,y) & R®(z,y) otherwise.

Example 1.31 (Fuzzy preorder and fuzzy partial order). Consider the weighted
directed graph (X, E, \g) of Fig. Edges with no weight are assumed to be implicitly
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(a) Fuzzy preorder (b) Fuzzy partial order

Figure 1.5: A fuzzy preorder and a fuzzy partial order.

labeled with a 1. Let R: X x X — [0, 1] be defined by letting, for all z,y € X:

R(l‘,y) -

0 otherwise.

et {/\%(fﬂ,y) if (z,y) € B,

The pair (X, R) is a fuzzy preorder. Note that antisymmetry is not satisfied, since, for
instance, R(r,u) = 0.5 and R(u,r) = 1, but r # w. This can also be seen from the graph
representation of (X, R), since u and r are part of a cycle together with the node s.

In a similar way, the weighted graph of Fig. represents a fuzzy partial order. >

We introduce the following conventions regarding infix notation for fuzzy binary rela-

tions.

Remark 2 (Infix notation). If R is a fuzzy binary relation, then z R,y stands for R(z,y) =
a, and xRy stands for R(x,y) > 0.

1.2.3 Fuzzy similarity relations

Several approaches to approximate reasoning based on fuzzy relations such as prorimities
and similarities have been proposed in the fuzzy logic programming literature. The goal
of this research, which is briefly reviewed in Section is to make query answering from
knowledge bases more flexible, by allowing the retrieval of approximate (not exact, but
similar) solutions to a query. In Chapter [5| we develop an extension of OSF logic based on a
similarity relation on the set of sort symbols, which will enable approximate reasoning with

this language. Proximity relations and similarity relations are defined next.

Definition 1.32 (Proximity relation). A fuzzy binary relation ~ on a set X is a prozimity



26 1.2. Fuzzy set theory and fuzzy orders

Figure 1.6: Representation of a proximity or a similarity relation.

if it satisfies (Fuzzy Reflexivity|) and

Ve,y € X, ~(z,y) = ~(y,x). (Fuzzy Symmetry)

Definition 1.33 (Similarity relation). A fuzzy binary relation ~ on a set X is a similarity

if it satisfies (Fuzzy Reflexivity|), (Fuzzy Symmetry|) and (Max-Min Transitivity]).

A proximity relation ~ can be represented as a weighted directed graph of which ~ is the
reflexive closure. A similarity relation ~ can be represented as a weighted directed graph,

of which ~ is the reflexive and transitive closure.

Example 1.34 (Proximity and similarity relations). Consider the weighted directed
graph (X, E, Ag) of Fig. Let ~: X x X — [0, 1] be defined by letting, for all (z,y) € X:

1 if x =y,
N(.T,',y) d:ef )\E<x7y) elsea if (x7y) € E:

0 otherwise.

Then ~ is a proximity relation on X. Note that ~ does not satisfy transitivity since, for
instance, ~(a,b) = 0.3 and ~(b,c) = 0.4, but ~(a,c) = 0. The transitive closure ~® of ~ is

a similarity relation such that, for example, ~®(a,c) = 0.5. >

The following propositions provide a connection between the fuzzy binary relations de-

fined in this section and their crisp counterparts of Section [1.1

Proposition 1.35 (Crisp and fuzzy properties of binary relations). Let R be a fuzzy

binary relation on a set X.

1. If R satisfies (Fuzzy Reflexivity|), then |R| satisfies (Reflexivity]).

2. If R satisfies (Max-Min Transitivity|), then |R| satisfies (Transitivity]).

3. If R satisfies (Strong Fuzzy Antisymmetry|), then |R| satisfies (Antisymmetry]).

4. If R satisfies (Fuzzy Symmetry|), then |R| satisfies (Symmetry]).
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Corollary 1.36 (Support of fuzzy binary relations). Let R be a fuzzy binary relation

on a set X.
1. If R is a fuzzy preorder, then |R| is a preorder.
2. If R is a fuzzy partial order, then |R| is a partial order.

3. If R is a fuzzy similarity, then |R| is an equivalence relation.

1.2.4 Fuzzy lattices

Finally, we recall the definition of a fuzzy lattice 36, 79, 80|, which will be central in our

fuzzy generalization of OSF logic in Chapter [4]

Definition 1.37 (Lower and upper bounds in a fuzzy poset). Let (X, <) be a fuzzy
poset and S C X. The set of lower bounds of S is defined as S 2 {z € X | Va/ € S,z <2'},

and the set of upper bounds of S is defined as S/ &f {x € X | Va' € S, 2’ < x

Definition 1.38 (Maximal elements and down-sets in a fuzzy poset). Let (X, <)
be a fuzzy poset and S C X. The set of mazimal elements of S is defined as [S| & {z €
S| Ve € S(if x <2, then © = a')}. The (fuzzy) down-set of S is defined as the set
Spef{re X |32 € S,z =<a'}.

Definition 1.39 (Fuzzy GLB and LUB). Let (X, <) be a fuzzy poset and S C X. The
GLB of S is the unique x € Sﬁ such that, for all 2’ € Sﬁ, 2/ <= x. The LUB of S is the
unique z € S such that, for alf z' e S =g’ If the GL_B of S exists, it is denoted A S,
or simply z A 2’ in case S = {z,2'}. Similarly, if the LUB of S exists, it is denoted Y S, or

simply z v 2’ in case S = {x,2'}.

Definition 1.40 (Fuzzy lattice and bounded lattice). A fuzzy poset (X, <) is a fuzzy
lattice if every pair of its elements has a GLB and a LUB. A fuzzy lattice (X, <) is bounded
if there are elements L, T € X such that, for all x € X, (L, z) =1 and <(x, T) = 1.

Example 1.41 (Fuzzy lattice). Fig. depicts the weighted graph representation (X,
E,\g) of a fuzzy bounded lattice (X, <), where edges with no weight are assumed to be
implicitly labeled with a 1. The fuzzy lattice can be formally defined by letting, for all
z,y € X,
1 ifr=lory=T,
=(z,y) & A8 (z,y) else, if (x,y) € B,

0 otherwise.

*Recall that z <z’ is an abbreviation for <(x,2’) > 0.
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Figure 1.7: A fuzzy lattice.

This definition ensures that the boundedness condition is satisfied by =, without the need
to add extra edges to its graph representation, as simply taking the transitive closure of Ag

might not be sufficient in general. In this case, for instance, A% (L,d) < 1. >

The following proposition states that the support (X, |=|) of a fuzzy lattice (X, <) is a
lattice. Additionally, if x is the GLB of 2y and z; in (X, <), then z is also the GLB of z
and z; in (X, |H|), and vice versa. This property ensures that the computation of GLBs
in a fuzzy lattice can be reduced to the crisp setting. For instance, it would be possible
to employ the techniques of [5 13| on the weighted graph representation of a fuzzy lattice
simply by ignoring the edge weights, thus preserving the same computational complexity.
The computation of GLBs in a fuzzy lattice and of the subsumption degree <(z,z’) will be
discussed in Section in the context of fuzzy OSF logic.

Proposition 1.42 (Fuzzy and crisp lattices). If (X, <) is a fuzzy lattice, then (X,|=])
is a (crisp) lattice. Moreover, if A is the GLB operation for (X,|<|), then A\.S = A\ S for
every subset S C X.
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Related Work

Order-Sorted Feature (OSF) logic is one of many logical formalisms that have been re-
searched in Knowledge Representation and Reasoning (KRR), the area of Artificial Intelli-
gence concerned with how knowledge can be explicitly represented by symbols and manipu-
lated in an automated way by reasoning algorithms in order to solve problems [31},57]. This
chapter provides a brief overview of a few KRR languages and approaches that are closely
related to OSF logic and the research presented in this thesis. The presentation is meant
to provide the necessary context for Chapters|3|to |5l and to facilitate comparisons, and it is
not intended as a comprehensive survey.

Closely related to OSF logic are Description Logics (DLs) [18], as both languages are
descendants of Ron Brachman’s structured inheritance networks and were developed to over-
come the lack of a formal semantics in earlier KRR formalisms such as frames and semantic
networks [4, (18, |19} [31]. DLs allow to represent knowledge through concept descriptions,
expressions built by applying concept and role constructors starting from unary predicates
called atomic concepts, and from binary relations called atomic roles. One advantage of
DLs is the possibility of choosing among a variety of constructors to build new concepts
and roles starting from the atomic ones in order to achieve the desired trade-off between
the reasoning complexity and the expressivity needed for the intended application. A brief
overview of DLs is provided in Section [2.1.1

In addition to addressing challenges related to complexity and scalability, several real-
world applications need to handle uncertain, imprecise, or ambiguous knowledge, or could
benefit significantly from this capability. Classical two-valued logic is inherently inadequate
for addressing inconsistencies, uncertainty, or fuzziness. Extensions of DLs that can handle
imperfect knowledge are being researched extensively (e.g., [30, [77] are two surveys on
the matter), including probabilistic, possibilistic, and fuzzy DLs. Fuzzy DLs are briefly
discussed in Section in order to aid the comparison with our fuzzy generalization of
OSF logic introduced in Chapter [4

Another approach to approximate reasoning that is related to our research of Chapter

29
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is similarity-based reasoning in logic programming. In general terms, this approach con-
sists in enhancing the ordinary (crisp) representation of a Prolog knowledge base with the
addition of a similarity relation between symbols. This allows, for instance, to relax the
equality constraint on two functor symbols to a flexible constraint of similarity when unify-
ing two first-order terms (FOTs). This kind of relaxed unification is generally referred to
as weak unification (e.g., [101]). A similarity relation can also be considered between pred-
icate symbols in order to perform similarity-based SLD resolution [101]. A few approaches

to approximate reasoning in logic programming based on fuzzy relations are recalled in

Section 2.21

2.1 Description logics and fuzzy description logics

2.1.1 Description logics

DLs are a family of KRR languages that can be employed to represent the terminological
knowledge of an application domain in a structured and formally well-understood way [1§].
The knowledge of a domain can be captured in DL through concept descriptions, expressions
built from unary predicates called atomic concepts (like Person or Animal) and binary
relations called atomic roles (like hasChild or hasParent). More complex concepts and roles
are built from the atomic ones by applying concept and role constructors. For instance, the
expression JFhasChild. T denotes the class of entities who have a child.

Depending on which constructors are allowed by a specific DL, a different trade-off
between expressivity and computational complexity can be achieved. Indeed, most DLs
restrict the language of FOL in order to be decidable [76]. The DL AL was introduced as a
minimal language that is of practical interest |19} [100]. Negation in this DL is restricted to
atomic concepts, and only the top concept T, representing the whole application domain,

is allowed under the scope of an existential quantification.

Definition 2.1 (The DL AL). The concept descriptions of AL (denoted C,D,...) are

defined inductively as follows.

Top and bottom The top concept T and the bottom concept L are AL concepts.
Atomic negation If A is an atomic concept, then A and —A are AL concepts.
Conjunction If C' and D are AL concepts, then so is C' M D.

Universal restriction If R is an atomic role and C is an AL concept, then VR.C' is an

AL concept.

Limited existential restriction If R is an atomic role, then dR.T is an AL concept.
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For instance, in AL it is possible to represent the class of people who have a child, with
the expression Person M 3hasChild. T.

The meaning of the concept descriptions of AL is provided by structures called inter-
pretations. A DL interpretation is a tuple T = (AZ,-7) such that A’ is a non-empty set
(the domain of the interpretation) and -Z is an interpretation function that assigns a subset
AT of AT to each atomic concept A, and a binary relation RZ C AT x AT to each atomic
role R [19].

Definition 2.2 (Semantics of AL [19]). Let Z = (AZ,-Z) be an interpretation. The

T

interpretation function -~ is extended to AL concept descriptions according to the following

inductive definitions:
o TTdf AT and 17T &),
o (RA)T 4 AT\ AT
« (Cn D) &t nDE
o (VR.O) & {z € AT | RE(x) C CT}, and
o BRT)L & {z e AT | RE(x) # 0},
where R (z) ¥ {y € AT | (x,y) € R%}.

In DLs, the knowledge about a domain is usually organized in an ontology (or knowledge
base) K = (T, .A), consisting of a terminological component 7 and an assertional component
A. The terminological component, also called the T-Box, involves axioms of shape C C D
(concept inclusion) or C' = D (concept equivalence or definition). A concept inclusion
C C D and a concept equivalence C' = D are satisfied in an interpretation Z if, respectively,
CT C DT and C% = DT,

The assertional component of a DL knowledge base, or the A-Box, involves assertions
about specific entities of the domain of interpretation. Assertions are expressions of shape
C'(a) (concept assertion) and R(a,b) (role assertion), where C' is a concept, R is a role, and
a and b are individuals. Individuals are interpreted as objects of the domain, i.e., aZ € AT
and bT € AT, An interpretation Z = (AZ, 1) satisfies a concept assertion C(a) if at € CZ,
and it satisfies a role assertion R(a,b) if (a”,b%) € RZ.

Example 2.3 (AL knowledge base). Consider the atomic concepts Mowvie, Horror,
Comedy and ComedyHorror, the individuals alinda, celeste, psycho, and city_ lights, and
the atomic role likesMovie. Let K = (T,.A) be the AL knowledge base defined as follows.

The assertional component A of K contains the facts

likesMovie(alinda, psycho), likesMovie( celeste, city__lights),
Horror(psycho), Comedy(city_lights), ~Horror(city_lights),
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while the T-Box T contains the concept inclusions Horror & Movie and Comedy & Movie,
and the concept definition ComedyHorror = Horror 1M Comedy.

An example of an AL concept description constructed with the language of this knowl-
edge base is VilikesMovie. Horror. The denotation of this concept under any interpretation
7 that satisfies K is the set containing all the elements of the domain that only like horror
movies. For instance, it could contain the element alinda®, but it may never contain the el-

ement celeste?, since (celestez , cityilz'ghtsz ) € likesMovie® and cz'tyilightsz ¢ Horror®.

Reasoning with DLs allows one to infer implicit knowledge from the knowledge that is
explicitly expressed in the knowledge base [19]. The inference patterns supported by DLs
are related to the classification of concepts and individuals, i.e., they consist in determin-
ing whether a concept C' is a subconcept of another concept D, or verifying whether an
individual a belongs to a given concept C. Concept classification allows to structure the
terminology in a subsumption hierarchy, while individual classification provides information
on the properties of an individual [19]. More specifically, the following are a few of the most

common reasoning tasks related to DLs [18, 19].

e Deciding the consistency of a concept C' with respect to a knowledge base K, which
amounts to deciding whether there is a model Z of K such that C* # (.

e Deciding the subsumption of two concepts C and D with respect to I, which amounts
to deciding if CT C D? for all models Z of K.

e Deciding the equivalence of two concepts C' and D with respect to I, which amounts

to deciding their subsumption in the two directions.

e Deciding whether an individual a is an instance of a concept C with respect to K,
which amounts to deciding whether a € C7 holds for all models Z of K.

o Deciding whether a pair of individuals (a, b) is an instance of a role R with respect to
IC, which amounts to deciding whether (aZ,b%) € RT holds for all models Z of K.

The complexity of these reasoning tasks varies depending on the concept constructors
supported by a DL. For instance, in ALC — the extension of AL that supports the comple-
ment of any concept, not just atomic ones, and that also allows any concept under the scope
of an existential restriction — concept satisfiability, concept subsumption, and A-Box con-
sistency are PSPACE-complete problems [18]. In the same DL, deciding satisfiability with
respect to a general T-Box is EXPTIME-complete, while the problem becomes PSPACE-
complete if the T-Box is definitorial, i.e., it contains only unique and acyclic definitions
[18]. As an example of how adding constructors to a DL can affect its reasoning complexity,
deciding concept satisfiability in ALC with either transitive roles or role hierarchies is in
PSPACE, but the problem becomes ExpTIME-hard with both constructors [18].
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DLs have been implemented in several reasoners — such as FACT++ [116], HERMIT
[52, [102], PELLET [105], TROWL [115], RACERPRO [56], and SNOROCKET [75]. The most
notable application of DLs is possibly the Semantic Web [18], an extension of the World Wide
Web in which “information is given well-defined meaning, better enabling computers and
people to work in cooperation” [25]. Indeed, by design, DLs provide the formal semantics
for the Web Ontology Language (OWL), the ontology language developed by the World
Wide Web Consortium [18]. An OWL ontology describes a domain of interest in terms of
classes and properties, which correspond to DL concepts and roles, respectively, together
with a set of azioms that assert, for example, inclusions between classes, like in a DL T-Box
[18]. DLs and OWL have found applications in various fields, such as software engineering,
medicine, biology, natural language processing, and database management [18, [19]. Several
biomedical ontologies have been developed using DLs 18], such as the Biological Pathways
Exchange ontology [98], the Galen ontology [92], the Foundational Model of Anatomy [53],
and the National Cancer Institute thesaurus [58]. More details regarding the applications
of DLs and OWL can be found, for instance, in [18, |19, 21].

2.1.2 Fuzzy description logics

Fuzzy DLs are extensions of DLs whose purpose is to model vagueness and imprecision in
the real world, and to characterize notions that cannot be properly defined with a crisp
predicate, such as the class of tall people [18| 30]. The following presentation of fuzzy DLs
is based on [18, 130, |77, |113].

Fuzzy DLs maintain the same basic syntax of DLs, but the semantics of DL expressions is
now defined through t-norms, t-conorms, fuzzy negations and implications (see Section.
A fuzzy interpretation T = (AT, 1) assigns a fuzzy subset AT : AT — [0,1] to each atomic
concept A, and a fuzzy binary relation RT : AT x AT — [0, 1] to each atomic role R. The
interpretation of an individual a is the same as in crisp DLs, i.e., aZ € AT. The semantics

is extended to the concept descriptions of the DL ALC as follows.

Definition 2.4 (Fuzzy semantics of ALC). Let T = (AZ,-Z) be a fuzzy interpretation,
let Ay be a t-norm, let & be a fuzzy negation, and let = be a fuzzy implication. The

T

interpretation function -* is extended to ALC concept descriptions according to the following

inductive definitiond™
o T1df1 7 and 1791
o (mO)(z) & ©C(x) for all z € AT,

o (CN D) (x) % CT(x) Ay DX(x) for all x € AT,

!The symbol 1p denotes the characteristic function 1p : AT — {0,1} of the set D C AT, which is defined
by letting, for all d € AT, 1p(d) ¥ 1 if d € D, and 1p(d) & 0 otherwise.
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o (VR.C) () & inf, e Az RE(x,y) = C%(y) for all z € AT, and
e« (AR.C):(x) & SUDye AT RE(z,y) Ay C%(y) for all 2 € AL,

The terminological component 7 of a fuzzy ALC knowledge base L = (T,.A) is composed
of fuzzy concept inclusion axioms of shape (C' C D, [3), i.e., concept inclusions associated
with a truth degree 8 € [0, 1]. Such an axiom (C' C D, (3) is satisfied by a fuzzy interpretation
T = (A%, D) if, for every x € AZ, it holds that C%(x) = D*(x) > B. The assertional
component A of K is made up of fuzzy concept assertions of shape (C(a), 3), and fuzzy role
assertions of shape (R(a,b), ), where C' is a concept, R is a role, a and b are individuals,
and 3 € [0,1]. A fuzzy concept assertion (C(a),3) is satisfied in a fuzzy interpretation Z if
C%(a?) > B, and a fuzzy role assertion (R(a,b),3) is satisfied in Z if RZ(a”,b?) > B.

Example 2.5 (Fuzzy DL concept inclusion). Consider the atomic concepts Movie,
Horror, Slasher, and Thriller, and the individuals halloween, memento, and psycho. Sup-
pose that Z = (A%, .T) is a fuzzy interpretation such that AT = {h,p,m}, halloween® = h,

psycho® = p, mementor = m, and
o Thriller®(h) = 0.5, and Horrorf(h) = Slasher® (h) = 1;
o Thriller® (p) = Horrort(p) = 1 and Slasher® (p) = 0.7;
o Thriller(m) = 1;
o Movier (x) = 1 for every 2 € AT; and
e all the remaining membership degrees are equal to 0.

Adopting =, (see Table [1.2)) as the fuzzy inclusion operator, the interpretation Z satisfies

the following fuzzy concept inclusion axioms:

« (C T Movie, 1) for C € {Thriller, Slasher, Horror}, since C*(x) =, Movier (z) = 1
for all z € AL;

o (Slasher C Horror, 1), since Slasher” (x) =, Horror*(z) = 1 for all z € AZ;

(Slasher T Thriller,0.5), since in particular Slasher” (h) =, Thriller* (h) = 0.5
e (Horror C Thriller,0.5), since in particular Horror (h) =, Thriller* (h) = 0.5.
o (Thriller C C,0) for C € {Slasher, Horror}, since Thriller® (m) =, C%(m) = 0. >

Fuzzy DLs support several reasoning problems, including the following generalizations

of decision problems of crisp DLs |113].
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e Deciding the consistency of a concept C' with respect to a knowledge base K, which
amounts to deciding whether there is a model Z = (AZ, 1) of K such that C%(z) > 0

for some z € AT.

e Deciding whether the subsumption degree of two concepts C and D with respect to K
is always greater than a given truth degree 8, which amounts to deciding if (C' C D, j3)
is satisfied in all models Z of K.

e Deciding whether the degree of membership of an individual a to a concept C' with
respect to K is always greater than a given truth degree 5, which amounts to deciding
whether C7(a?) > B holds for all models Z of K.

o Deciding whether the degree of membership of a pair of individuals (a, b) to a role R
with respect to K is always greater than a given truth degree 8, which amounts to
deciding whether RZ(a”,b) > 3 holds for all models Z of K.

Other reasoning problems that have been introduced for fuzzy DLs include finding the best
entailment degree of an axiom with respect to a knowledge base I, or computing the best
satisfiability degree of an axiom with respect to IC [113].

The complexity of deciding these reasoning problems depends not only on the expressiv-
ity of a given fuzzy DL (i.e., on which concept constructors are supported), but also on the
adopted t-norms, t-conorms, fuzzy negation and fuzzy implication operators. For instance,
deciding the consistency of a knowledge base in the fuzzy DL MALC (where 9 stands for an
additional concept constructor called residual negation) with the Godel t-norm A and im-
plication =, is EXPTIME-complete. However, the problem in general becomes undecidable
if the product t-norm A, and implication =, or the Lukasiewicz t-norm A; and implication
=, are employed instead [30].

Fuzzy DLs have been implemented in a number of reasoners, such as FIRE |104, |110],
SorTFAcTs [114], DELOREAN [26], FuzzyDL [28| [29], and LiFR [117]. Several fuzzy
extensions of OWL have been proposed (e.g, [50,(111},/112]), along with a method to represent
fuzzy DL ontologies using OWL 2 annotation properties [27].

2.2 Similarity-based reasoning in logic programming

Approximate reasoning based on fuzzy relations, similarities in particular, has been re-
searched extensively in fuzzy logic programming. Early work includes Ying’s logic for ap-
proximate reasoning [118] and the first papers on similarity-based logic programming |17,
48| 151, 101]. One motivation behind the similarity-based approaches is to model a form of
reasoning that may be referred to as reasoning by analogy or similarity |L01]. For instance,
this may be achieved by relaxing the equality constraint on two functor symbols to a flex-

ible constraint of similarity, when unifying two first-order terms (FOTs). For example, if
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the functors thriller and horror are assumed to denote similar concepts, then the term
thriller (X) can unify with the term horror ("Psycho") to some extent (degree), leading
to approximate (not exact but similar) solutions to a query posed to a knowledge base. This
kind of relaxed unification is generally referred to as weak unification (e.g., |101]).

This research line has been extended in several ways, including approaches that sup-
port multiple similarity relations [45], proximity relations |61}, 64, [74], or related operations
like matching and anti-unification |71} 72, [73]. Moreover, weak unification has been im-
plemented in fuzzy logic programming systems such as FASILL [60] and Bousi~Prolog [62,
63], which has been employed in several applications such as text classification |94} |99], lin-
guistic feedback in computer games |97, decision making [32, 33|, and knowledge discovery
[96]. Ait-Kaci and Pasi [9] have presented a procedure for weak unification that, besides
tolerating different (but similar) functor symbols, also allows the unification of FOTs with
a different number and possibly a different order of arguments. This work has been gener-
alized to proximity relations [90], and a possible incorporation in Bousi~Prolog has been
proposed [38].

In this section we briefly review weak FOT unification and similarity-based SLD reso-
lution, following [9, (62, [101]. The presentation — which mainly serves as the background
and as a means for comparison with Chapter 5| where similarity-based reasoning with OSF
logic is introduced — is mostly kept informal and carried out through examples.

For the rest of this section, it is assumed that V is a countably infinite set of variables
denoted X, Y, X1, and so on. For each n > 0, 3, is a set of n-ary functor symbols (denoted
f, g, fi, and so on), and ¥ %f Un>0 ¥,. If a functor symbol has arity 0, it is called a
constant. For each n > 0, II,, is a set of n-ary predicate symbols (denoted p, ¢, p;, and so
on), and IT &f Un>0 IT,,. A O-ary predicate symbol is also called a propositional symbol. The
set Tsp of FOTSs is defined as usual: variables in V are terms, constants in ¥ are terms,
and f(t1,...,t,) is a term whenever f € ¥, and t1,...,t, are terms, for each n > 1. A FOT
is denoted by ¢ or t; for some ¢ € N. If p € II,, and t1,...,t, are FOTs, then p(t1,...,t,) is
an atom. The set of variables occurring in a term t is denoted Vars(t). A substitution is a
function from V to 7y that is the identity except for a finite subset of 1, and it can also
be represented as a set {t1/X1,...,t,/X,}. Substitutions are denoted by 6,6, and so on,
and the result of applying a substitution 6 to a FOT ¢ is denoted t6.

2.2.1 Weak unification

Unification is a fundamental operation upon which many methods for automated reasoning
are based [20]. Given two FOTs ¢; and t9, their unification consists in finding the most
general substitution 6 such that ¢;0 = t20, called their most general unifier (MGU). Several
FOT unification algorithms have been proposed in the literature (e.g., see [69] for a survey

on the matter). Along the lines of [9], a unification procedure for FOTs consisting of
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Term Decomposition Variable Erasure

n > 0]

EU{f(Sl,...7Sn)if(tl,...7tn)} EU{X:X}
EU{Slitl,...,Snitn} E

Variable Elimination Equation Orientation
[X ¢ Vars(t), X occurs in E] [t ¢ V]

Eu{X =t} Eu{t=X}
E[t/X]u{X =t} Eu{X =t}

Figure 2.1: Herbrand-Martelli-Montanari FOT unification rules.

transformations of sets of equations is presented in Fig. This procedure is dubbed
Herbrand-Martelli-Montanari unification, as [9] tracks the origin of these rules back to
Herbrand’s PhD thesis [59] and Martelli and Montanari’s work [78|. Each unification rule

is of the form

Rule name
[Side condition]

Premise

Conclusion

and it expresses that, whenever the optional side condition is true, the set of equations in the
premise can be transformed into the set of equations in the conclusion. A set of equations is
denoted by F, and the notation E[t/X] stands for the set of equations resulting after every
occurrences of the variable X in E has been replaced with the term ¢. The unification of
two FOTs t; and to can be performed by applying the rules of Fig. starting from the
set {t1 = ta}, until no rule applies, resulting in a set of equations E’. If all equations in E’
are of the form X = t, with X occurring nowhere else in E’, then these equalities provide
a most general unifying substitution (modulo variable renaming) 0 = {t/X | X =t € E'}
such that t160 = t20, otherwise there is no solution. As a simple example, according to the
rules of Fig. 2.1] the unification of the FOTs

t1 = mouwie(hitchcock, psycho) and to = film(hitchcock, X)

immediately fails, as no rule is applicable to the set of equations {mowvie(hitchcock, psycho) =
film(hitchcock, X )}, since the functors movie and film are different.

The weak unification procedure presented in [101] is a generalization of the standard
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Weak Term Decomposition Variable Erasure

[n > 07 f ~pB1 g]

(E U {f(sh B Sn) = g(th S 7tn)})50 (E U {X = X})ﬁ
(EU{Sl =t1,...,8, = tn})ﬁo/\ﬁ1 (E)ﬁ

Variable Elimination Equation Orientation
[X ¢ Vars(t), X occurs in E| [t ¢ V]

(BEu{X =t})g (Buft=X})g
(E[t/X]u{X =1})g (Eu{X =t})g

Figure 2.2: Weak FOT unification rules [101].

unification algorithm for FOTs based on a similarity relatiorﬂ ~: 3 x X — [0,1] between
the functor symbols of a first-order signature. The similarity relation enables to perform
approximate reasoning at a syntactic level rather than at a rule level, by allowing to match
different but similar functor symbols. In other words, the equality constraint on functor
symbols is replaced by a flexible constraint of similarity. The similarity on functor symbols

is extended to a similarity relation on FOTs by letting [101]:
o ~(X,X) %] forall X €V
o ~(X,t)%0and ~(t,X) 20 for all X € V and t € Ty y such that ¢ # X;

o Forall f,g € ¥, and s;,t; € Txy such that f ~5 g and s; ~3, t; (for 1 <i < n):

~(f(s1yeay8n),g(t1, .. ty)) LB A /\ Bi.
i=1

Fig. shows the weak unification rules of Sessa |101]. The main differences with
respect to the standard FOT unification rules are that (i) the weak unification rules as-
sociate an approximation degree S € [0, 1] to each set of equations E, and (ii) the rule
Weak Term Decomposition allows the simplification of the equation f(s1,...,s,) = g(t1,

..,ty) even in cases where f and g are different, provided that they are similar to some
degree 3. The unification process starts from the set of equations ({¢; = t2})1 with asso-
ciated approximation degree 1, and it terminates when no more rules are applicable. The
approximation degree associated with a set of equations can possibly only decrease before

the end of the unification process. If the procedure is successful, the result of applying the

2Similarity relations are defined in Section
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rules of Fig. to two FOTs ¢; and g is a substitution 6 such that ~(¢10,t260) = ( for some
g€ [0,1].

Assuming, for instance, that ~(movie, film) = 0.8, then the weak unification procedure
of [101] allows to unify the terms t; = movie(hitchcock, psycho) and to = film(hitchcock, X)
with the substitution 8 mapping X to psycho. The terms t10 and t96 are deemed to be

similar with degree 0.8.

As preliminary work towards the definition of similarity-based reasoning with OSF logic,
Ait-Kaci and Pasi [9] have proposed a generalization of Sessa’s weak unification that allows
matching two FOTs even if they have a different arity or if their argument positions are in
a different order, besides tolerating different, but similar, functor symbols. Indeed, relaxing
these constraints makes the setting more similar to that of OSF logic, where terms do not
have a fixed arity or argument order (see Chapter |3). For instance, with the approach of [9]

it is possible to weakly unify the FOTs
ts = mowie(hitchcock, psycho,1960) and t4 = film(X, hitchcock).

While the unification rules of Fig. or the weak unification rules of Fig. would clearly
fail to unify these two terms, the approach of [9] is to consider, for each f € ¥,, and
g € ¥, with m < n, an injective function pyrg : {1,...,m} — {1,...,n} (satisfying a few
consistency conditions), called an argument alignment mapping. A similarity relation ~
between functor symbols can then be extended to a similarity ~ on 7y ). The definition of

~ on variables is the same as Sessa’s |101], while the definition on complex terms becomes:

e Forall f € 3,,, g € 3, and s;,t; € Ty p such that f ~g g and s; ~g, ¢
I1<i<mand1l<j<n):

Bfg (Z) (Wlth

A (51 5m)s gt 1)) 2 B A\ B

i=1

The weak unification procedure of [9] consists of the rules of Fig. together with the
rules Variable Erasure, Variable Elimination and Equation Orientation of Fig. yielding a
unification procedure that tolerates functor arity and argument position mismatches, besides
different but similar functor symbols. For instance, consider the terms t3 = mowvie(hitchcock,
psycho, 1960) and t4 = film(X, hitchcock), and assume that movie g film and that the
argument alignment mapping fifim, movie i such that g movie(1) = 2 and @ gim, movie(2) = 1.
The weak FOT unification rules with non-aligned arguments of [9] would find the substi-
tution # mapping X to psycho as the unifier of the two terms. The terms t36 and t460 are

deemed to be similar with degree 0.9.
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Fuzzy Non-Aligned-Argument Term Decomposition
[Ogmgnvf%ﬁ1 g}

(EU {f(sla . . *7Sm) = g(tla . 7tn)})50

(E u {81 = t,uf,g(l)’ ceySm = tuf,g(m)})ﬁo/\ﬂl

Fuzzy Equation Orientation
[0 <m < n]

(BEu{g(ts, - tn) = f(s1,-- - 8m)})s

(EU {f(sla .. *7Sm) = g(tla cee 7tn)})5

Figure 2.3: Weak FOT unification rules with non-aligned arguments [9].

horror(X) :- slasher(X).
slasher ("Psycho") .
thriller ("Memento").

Figure 2.4: The logic program of Example

2.2.2 Similarity-based SLD resolution

The weak unification rules of |[101] are instrumental in defining similarity-based SLD res-
olution, a generalization of the SLD resolution procedure where the classical unification
algorithm is replaced by the weak unification procedure of Fig. One of the motivations
behind the definition of similarity-based SLD resolution is to model a form of reasoning
that may be referred to as reasoning by analogy or similarity [101]. An example would
be inferring “Alinda likes thriller movies” from the premises “Alinda likes horror movies”
and “horror movies are similar to thrillers”. An advantage of this approach is that it en-
ables flexible query answering: besides exact solutions, a query may return similar solutions,
both in a semantic sense (for instance, by returning movies of a genre that is similar to the

requested one) or syntactically (for example, by tolerating spelling mistakes).

Example 2.6 (Similarity-based SLD resolution). Consider, for example, the Prolog
program of Fig. and assume that horror and thriller are similar to degree 0.5. If
similarity-based SLD resolution is adopted, the query ?- thriller(X) will return, besides
X = "Memento", also the solution X = "Psycho" with approximation degree 0.5. This is due
to the fact that, thanks to the similarity relation, the query will resolve with the first clause
of the program, leading to an approximate solution. Intuitively, since "Psycho" is a horror
movie as a consequence of the first rule, and horror movies are similar to thrillers, then,

to some degree, "Psycho" is also a thriller. >
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% Subsumption rules

person(X) :- director(X).
horror(X) :- slasher(X).
movie(X) :- horror(X).

movie(X) :- thriller(X).

% Similarity relation

thriller ~ horror = 0.5.

% Instances

person(alinda).

director (hitchcock) .

director (carpenter) .
director(nolan).

horror (psycho) .
slasher(halloween) .

thriller (memento) .

% Facts

director_of (hitchcock, psycho).
director_of (carpenter, halloween).
director_of (nolan, memento).

% Rules

likes(alinda, Y) :- thriller(Y), director_of (X, Y).

Figure 2.5: The Bousi~Prolog program of Example

Weak unification and similarity-based SLD resolution have been implemented, for in-
stance, in the fuzzy logic programming language Bousi~Prolog. Bousi~Prolog extends the
syntax of Prolog by allowing to specify similarity declarations of shape a ~ b = 3, where
a and b are functor (or predicate) symbols, and 8 € [0,1]. Bousi~Prolog also generalizes
Sessa’s approach by supporting proximity relations [62, 63| (i.e., reflexive and symmetric
fuzzy binary relations, which can be more appropriate in some modeling contexts [61}, |67,
103]), and linguistic variables [95]. The following example shows a Bousi~Prolog program
and the computation of approximate solutions to a query through similarity-based SLD

resolution.

Example 2.7 (Bousi~Prolog program). Consider the Bousi~Prolog program of Fig.
The syntax is essentially the same as that of Prolog, except for a similarity declaration
stating that the predicate symbols horror and thriller are similar to degree 0.5. The
query ?- likes(alinda, Y) will return, for instance, a solution mapping Y to halloween

with approximation degree 0.5, through the following steps:

¢ By resolving against the last rule, the query ?- likes(alinda, Y) simplifies into
?- thriller(Y), director_of (X, Y).

e Since horror and thriller are similar, by similarity-based SLD resolution the first
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goal thriller(Y) resolves against the rule horror(X) :- slasher(X), so that the
query becomes ?- slasher(Y), director_of (X, Y). The approximation degree as-

sociated with the computation becomes 0.5.

e The first goal slasher (Y) now resolves with the fact slasher (halloween), so that Y

is mapped to halloween, and the query becomes ?- director_of (X, halloween).

e The remaining goal resolves with the fact director_of (carpenter, halloween), and

the computation terminates successfully.

Through similar steps, the program will also return a solution mapping Y to psycho with

approximation degree 0.5, and a solution mapping Y to memento. >

Chapter [5| will deal with the development of similarity-based reasoning with OSF logic,
by extending its language with a similarity relation on sort symbols. One challenge that
arises in this context is how to reconcile the similarity relation with the sort subsumption
ordering on which OSF logic is grounded. Our solution will be to combine these two relations
into a single fuzzy subsumption relation, shifting the setting to that of fuzzy OSF logic, which
is developed in Chapter [l This strategy allows to seamlessly integrate the sort similarity
relation into the unification algorithm of fuzzy OSF logic. As will be discussed in Chapter
an advantage of this approach is that a single fuzzy OSF term unification can replace several
similarity-based SLD resolution steps (Example .



Chapter 3
Order-Sorted Feature Logic

Order-Sorted Feature (OSF) logic is a Knowledge Representation and Reasoning (KRR)
language that originates in Hassan Ait-Kaci’s work [2]. At the core of OSF logic are two
kinds of symbols that are employed to represent concepts and properties: sort symbols
(or sorts) are used to denote conceptual classes such as person or director, and feature
symbols (or features) are used to describe functional attributes of objects, like directed_ by,
written_ by or name. Sorts are ordered in a subsumption relation < that denotes inclusion
between classes. For example, the subsumption director < person means that every director
is a person.

Together with wvariables, also named coreference tags, sorts and features can be used
to construct record-like structures called OSF terms that can represent complex concepts,
similarly to the defined concepts of Description Logic (DLs). The following OSF term, for

example, denotes the class of movies that are written and directed by the same person:

. directed_by — Y :person,
t1 = X1 : movie .

written_by — Y]

Reasoning in OSF logic is based on the unification of OSF terms, a procedure that
aims to combine in a single term the constraints expressed by two terms. For instance, the

unification of the term ¢; with the term

, directed_by — Y5 :director,
to = X9 : movie

genre —  Zy : thriller

results in the term

directed_by — Ys:director,
t3 = X3 : movie ritten_by —  Ys,
genre —  Zs :thriller

43
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The unification procedure takes the sort subsumption relation into account: for example,
assuming that director =< person, since the feature directed_by in t; points to the sort
person, and the same feature in ¢y points to the sort director, then the value of this feature
in the unifier t3 must be of sort director, i.e., the most specific of the two sorts. Moreover,
the sort subsumption ordering < can be extended to an ordering between OSF terms, and
the unification algorithm for such structures provides an efficient way to decide whether two
OSF terms are subsumed by each other (for instance, t3 is subsumed by t; and t3), and,
in general, for finding the most general OSF term that is subsumed by both terms, thus

offering an efficient calculus of partially ordered types [8].

Similarly to DLs, OSF logic was initially meant as a formalization of Ron Brachman’s
structured inheritance networks [4, |18]. Indeed, due to their common origin, the two lan-
guages share a few similarities, as well as several distinguishing aspects. For instance,
both formalisms are subsets of first-order logic designed to simplify its language in order to
achieve computational tractability, while still providing enough expressive power for effective
knowledge representation and reasoning. DLs and OSF logic are both based on set-denoting
symbols (concepts and sorts, respectively), and on symbols for expressing attributes: rela-
tional roles for DL, and functional features for OSF Logic. While the feature symbols of
OSF logic denote total functions, which may appear less versatile than the relational roles
of DLs, versions of this language that support partial functions or relations have also been
defined [4, 34} |106]. The OSF sort subsumption relation is also comparable to the inclusion
axioms of a DL T-Box. One of the most significant differences with respect to DLs is that
the semantics of OSF logic is based on the closed world assumption: for instance, if two
sorts do not share a common subsort, then they are assumed to be disjoint. The relationship
between OSF logic and DLs has been explored thoroughly in works such as [4, 70|, 87, |88].

OSF logic and related formalisms, like feature logic [106] or the logic of typed feature
structures [34], have been applied in computational linguistics [34] and implemented in
constraint logic programming languages such as LOGIN [8], LIFE [10] and CIL [86]. On
the other hand, DLs have found one of their primary applications in the Semantic Web, as
they provide, by design, the formal semantics for the Web Ontology Language (OWL), the
ontology language developed by the World Wide Web Consortium [18]. More recently, OSF
logic was proposed by Ait-Kaci as an alternative formalism for the Semantic Web [4], and
the language has been implemented in the CEDAR Semantic Web reasoner (6} |15].

The goal of this chapter is to provide a comprehensive overview of OSF logic, setting the
foundations for our development of fuzzy OSF logic in Chapter [] and of similarity-based
OSF logic in Chapter [5] We start by presenting the main syntactic objects of this language
in Section namely sorts, features, OSF terms and OSF clauses. These objects are then

given a meaning in structures called OSF algebras, which are discussed in Section

Besides terms and clauses, OSF logic also enjoys a third syntactic representation, namely



Chapter 3. Order-Sorted Feature Logic 45

OSF graphs. These are rooted directed graphs whose nodes are labeled by sorts and whose
edges are labeled by features. OSF graphs are the elements of the domain of an OSF algebra
that is of core importance for the development of OSF logic, the OSF graph algebra, which is
presented in Section [3.3] In Section [3.4 we explore OSF algebra homomorphisms, structure-
preserving mappings between OSF algebras that are essential for proving several results
regarding the satisfiability of OSF clauses. OSF algebra homomorphisms are also central
in Section which is devoted to proving that the subsumption ordering between sort
symbols can be extended to the other syntactic objects of OSF logic and, in particular, we
show that OSF terms form a lattice. The greatest lower bound of two OSF terms can be
computed through a unification procedure which is presented in Section [3.6]

The integration of OSF term unification in the logic programming language LOGIN
is then outlined in Section followed by an overview of the Semantic Web reasoner
CEDAR based on OSF logic in Section The implementation of OSF logic in LO-
GIN and CEDAR is based on techniques that exploit the specificity of concept taxonomies
[15], and in particular on graph encoding techniques that allow to efficiently perform lattice
operations. These techniques are discussed in Section

While our presentation of OSF logic closely follows Ait-Kaci’s development of this lan-
guage [10], we have taken the opportunity to make a few adjustments. For example, Def-
inition [3.12] redefines the procedure to translate OSF constraints into OSF terms, as the
original one can lead to an infinite loop. We also refine a few theorems and definitions,
such as Theorem [3.49] and Definition [3.50] since the original ones are susceptible to coun-
terexamples, as discussed in Remark [4l Moreover, we define a syntactic notion of OSF term

subsumption and prove that it is equivalent to the semantic one of [10].

3.1 Syntax

In this section we provide the definitions of OSF signature and of two formal languages that
are used to represent knowledge with OSF logic: OSF terms and OSF clauses. As discussed
in the introduction, OSF terms are comparable to the defined concepts of DLs, and they are
interpreted as subsets of the domain of an interpretation. An OSF clause is an equivalent
representation that can be seen as a logical reading of an OSF term, and for which a notion
of satisfiability is defined. In OSF logic, both syntactic representations are important from
an implementation perspective, as OSF terms are the abstract syntax employed by an user,
while OSF clauses are used in the constraint normalization rules needed for OSF term
unification [10].

We begin our overview of the syntax of OSF logic by introducing the concept of an OSF
stgnature, a tuple that specifies the sets of sort and feature symbols that may be used to

construct OSF terms. Additionally, an OSF signature also prescribes a lattice ordering for
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Figure 3.1: The OSF signature of Example

the sort symbols.

Definition 3.1 (OSF signature [10]). An OSF signature is a tuple (S, F, <) such that
1. S is a finite set of sort symbols,
2. F is a finite set of feature symbols,
3. (S, =) is a bounded lattice with least element L and greatest element T.

Elements of S and F are also simply called sorts and features, respectively. For a sort s € S,
the set s 2 {s" € S | s < '} is the set of supersorts of s, while the set s %' {s' € S | &' < s}
is the set of subsorts of s. The greatest lower bound (GLB) s A s" of two sorts s and ' is
also called their greatest common subsort. The least upper bound (LUB) s v s’ of two sorts

s and s’ is also called their least common supersort.

Example 3.2 (OSF signature). An example of an OSF signature in the domain of movies
is the tuple (S,F, <) such that (S, =) is the lattice represented in Fig. and F &f
{written__ by, directed_ by, title} - >

Starting from sorts and features it is possible to construct record-like syntactic structures

called OSF terms, which serve as representations for complex concepts.

Definition 3.3 (OSF term [10]). Let V be a countably infinite set of variables (or coref-
erence tags, or simply tags), and (S, F, <) be an OSF signature. Let X € V, s € S and
fi,---s fn € F. An OSF term is defined recursively as follows.

e A sorted variable X : s is an OSF term.

o An attributed sorted variable ¢t = X : s(fi — t1,...,fn — t,) is an OSF term

whenever t1,...,t, are OSF terms.
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We let Tags(t) & {X} ulJ,<,<, Tags(t;). The variable X is called the root tag of t and is
denoted RootTag(t), and the sort s is called the root sort of t.

Example 3.4 (OSF term). The following OSF term denotes the class of movies that are

written and directed by the same person:

. [ directed_by — Y : person,
X :movie .
written_by — Y

The variable Y is used as a coreference tag, i.e., it specifies that the values of the features
directed by and written_ by should be the same. The variables in an OSF term are often
left implicit unless they are necessary to express this property, as in the following OSF term:
title —  string,

. . ) name  — string,
t = movie | directed by — X :director )

spouse — Y

written_by — Y :writer < spouse — X )

OSF terms generalize the terms of first-order logic in several ways. First of all, they lack
a fixed number of arguments, so that they are convenient to represent partial information.
For example, an OSF logic knowledge base could include terms of shape movie(title —
“Psycho”,year — 1960) and also of shape movie(title — “Halloween”)m Moreover, the
arguments of an OSF terms are identified by features rather than positions, which helps the
interpretability of a term. For instance, consider the OSF term movie(title — “Adaptation”,
directed_by — “Spike Jonze",written_ by — “Charlie Kaufman") and the first-order term
movie( “Adaptation’, “Spike Jonze", “Charlie Kaufman"). Features can also be left implicit
in an OSF term by considering s(X,Y,s’) as an abbreviation for s(1 — X,2 — V,3 —
s'), where the features 1, 2 and 3 take on a positional meaning. An additional fea-
ture of OSF terms is their capability to express cycles, as exemplified by the term X :
person (name — “Celeste", spouse — Y : person (spouse — X)), thus enhancing the flexi-
bility of this language.

The definition of OSF terms given above does not rule out the presence of redundant
or even contradictory information (e.g., consider the OSF term s(f — so, f — s1), which
is contradictory if so A 51 = L). OSF terms that are well-behaved to this regard are called

normal OSF terms and are defined as follows [10].

Definition 3.5 (Normal OSF term, or i-term [10]). An OSF term ¢t = X : s(f; —

ti,..., fn = tp) is in normal form (or normal) if the following conditions are satisfied.

1Strings such as “Psycho” and “Halloween”, and integers such as 1960, are treated as singleton sorts, i.e.,
sorts that denote a single element.
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1. The root sort s is different from _L.
2. The features f1,..., fn, € F are pairwise distinct.
3. Each ¢; is in normal form.

4. For all Y € Tags(t), there is at most one occurrence of Y in ¢ such that Y is the root
variable of an OSF term different from ¥ : T.

OSF terms in normal form are also called -terms and denoted ), v;, and so on. For an
OSF term # in normal form and X € Tags()), we let Sort,(X) be the most specific sort
s such that X : s appears in ¥. The notation X iw Y indicates that there is a feature f
pointing from a subterm of ¢ with root tag X to a subterm of ¢ with root tag Y. We let
U denote the set of all normal OSF terms.

A method for transforming an OSF term into a normal one is more easily presented as

a constraint normalization procedure for OSF constraints, which are defined next.

Definition 3.6 (OSF constraints and clauses [10]). Let V be a countably infinite set
of variables, and (S, F, =) be an OSF signature. An OSF' constraint is an expression of the
form X : s, X = X' or X.f = X', where X, X' €V, se€Sand f € F. If ¢1,¢9,...,¢, are
OSF constraints, then their conjunction ¢ = ¢ & ¢2 & ... & ¢y, is an OSF clause. The set
of variables occurring in ¢ is denoted Tags(¢), while ¢[X /Y] is the OSF clause obtained by

replacing all occurrences of the variable Y with X.

Informally, the constraint X : s means that the value assigned to X is of sort s, X = X’
means that the same value is assigned to the variables X and X', while X.f = X’ means

that applying the feature f to the value assigned to X returns the value assigned to X'.

Example 3.7 (OSF clause). Let ¢ be the following OSF clause.

Xy : movie & Xo.title= X1 & Xj:string & Xo.directed by = X &
X : director & X.name = Xy & Xo: string & X.spouse =Y &
Xo.written_by =Y & Y : writer & Y.spouse = X.

Note that ¢ is simply a translation of the term ¢ from Example into an OSF clause.
The variables that were left implicit in Example [3.4 must be written explicitly in the OSF

clause. >

We thus specify formally a way to translate an OSF term into an OSF clause. An anal-
ogous mapping will be provided for the opposite direction, and, in Section procedures
will be defined to translate OSF terms and OSF clauses into OSF graphs, and back. The
definition of these mapping is necessary, as they allow us to move effortlessly between the

three representations, depending on which one is more convenient at a given moment.
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Definition 3.8 (Mapping from normal OSF terms to OSF clauses [10]). The map-
ping ¢ from normal OSF terms to OSF clauses is defined as follows [10]: if 1 = X : s(f; —
tiyoooy fn— tn), then ¢(¢p) & X 1 s & & (X.f; = RootTag(t;) & ¢(t;)).

1

<i<n
Note that the same symbol ¢ is used to denote an OSF clause and the function mapping
an OSF term to a clause, as its meaning is always clear from context.
While every OSF term can be rewritten as an OSF clause, the converse is in general

only true for the class of rooted solved OSF clauses [10], which are defined next.

Definition 3.9 (Rooted OSF clause and maximal subclause rooted in X |[10]).
Given an OSF clause ¢, the binary reachability relation 2 C Tags(¢)? is defined as follows,
for all X,V € Tags(p): (i) X 2 X, and (ii) X 2V if there is a constraint X.f=Zin
¢ and Z 2 V. A rooted OSF clause ¢x is an OSF clause ¢ together with a distinguished
variable X (its root) such that every variable Y occurring in ¢ is explicitly sorted (possibly
as Y : T) and reachable from X (i.e., X 2 Y). Given an OSF clause ¢ and a variable
X € Tags(¢), the mazimal subclause of ¢ rooted in X is denoted ¢(X).

Definition 3.10 (Solved OSF clause [10]). An OSF clause ¢ is called solved if, for each
variable X, ¢ contains (i) at most one sort constraint of the form X : s (with s # L), (ii) at
most one feature constraint of the form X.f =Y for each f, and (iii) no equality constraint
of the form X =Y. The set of all OSF clauses in solved form is denoted ®, and the subset
of rooted solved OSF clauses is denoted ®p.

Example 3.11 (Rooted and solved OSF clauses). The OSF clause ¢ of Example

is a solved clause rooted in the variable X. On the other hand, the clause

¢ = Xo:movie & Xo.title= X, & Xi:string &
Yo : movie & Yy.directed by =Y, & Yi:person

is solved, but not rooted. The maximal subclause of ¢’ rooted in Xy is ¢'(Xy) = X :
movie & Xg.title = X1 & X1 : string. The clause

¢" = X :movie & X.directed by =X; & X;:person
& X.directed by =Y, & Y :director

is rooted, but not solved. >

We are thus ready to define the syntactic mapping that translates rooted solved OSF

clauses into normal OSF terms.

Definition 3.12 (Mapping from rooted solved OSF clauses to normal OSF terms).

Assume without loss of generality a total ordering on JF, which induces a lexicographic
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ordering on F* (the set of all sequences of elements of 7). The mapping 1y : P — ¥
from rooted solved OSF clauses to normal OSF terms is defined as follows. Suppose that
¢x contains the constraint X : 5E|, and that X.f; = Y1,..., X.f, = Y, are all the other
constraints in ¢ with an occurrence of the variable X on the left-hand side. The OSF term

1 = 1y(dx) is constructed as follows:

1. X and s are the root tag and the root sort of v, respectively;

2. for each 1 <4 < n, if the variable Y; in the constraint X.f; = Y; has not yet occurred
in the construction of ¢ (in the predetermined ordering of F*), then the subterm f; —
Yy (0(Y;)) is added to 9, and the construction continues recursively from 14(¢(Y5)).
Otherwise, the subterm f; — Y; : T is added to % instead.

The lexicographic ordering on F is needed to ensure that t4(¢x ) is unique.

Example 3.13 (Mapping OSF terms to and from OSF clauses). Let ¢ = X :
s&X.f=Y &Y : T &Y.f =X and note that ¢(X) = ¢(V) = ¢.
Following Definition we construct ¢ = ¢4(¢x) as follows.

e The root tag and the root sort of ¥ are X and s, respectively.

e Because ¢x contains the constraint X.f = Y and the variable Y has not appeared
in the construction yet, then we add the subterm f — 94(¢(Y")) to 9. So far, the
construction has yielded the term X : s(f — ¥g(6(Y))).

 The construction continues recursively from ¢’ = 94(¢(Y)). The root tag and root
sort of 9’ must be Y and T, respectively. Next, because we have the constraint
Y.f = X, but X has already appeared in the construction of ¢, then v’ only contains
the subterm f — X : T. Thus ¢/ =Y : T(f — X : T).

This concludes the construction, yielding the term

Po(9(X)) = X2 s(f = ¢p(o(V))) = X :s(f =¥V T(f = X T)). >

Remark 3. Our definition of the mapping 14 differs from the original one [10], where
g(opx) is instead given as Yy(dx) & X 1 s(fi = Yp(d(Y1)),..., fn = Ys(d(Yn))). The
issue with this definition is that it can lead to infinite loops. For example, applying this
mapping to the clause ¢x of Example results in

Vg (dx) X os(f = y(0(Y)))
= X:s(f =Y :T(f —=9g(0(X))))
X :

s(f =Y T(f = X s(f = ¥(o(Y)))))

20therwise, we can assume the implicit existence of X : T.
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Sort Intersection Feature Functionality
P& X :s& X : 8 P& X.f=Y&X.[f=Y'
p& X :sns P& X.f=Y &Y =Y/
Inconsistent Sort Tag Elimination
& XL & X =Y
pLX: ¢ [Y € Tags(¢)]
X1 XY & X =Y

Figure 3.2: OSF constraint normalization rules.

Definition [3:12] is inspired by the mapping that translates OSF graphs to OSF terms from
[10] (also see Definition |3.33)).

Proposition 3.14 (Bijections between normal OSF terms and rooted solved OSF
clauses [10]). The mappings ¢ : ¥ — ®r and g : P — ¥ are bijections, i.e.: idp, =
¢O¢¢ and idq; :w(bogb.

Finally, we report the constraint normalization rules that are needed to transform an

OSF clause into a solved form [10]. Each rule is of the form

Rule name

Promi
remise ¢ [Side condition]

Conclusion ¢’

and it expresses that, whenever the (optional) side condition holds, the premise ¢ can be

simplified into the conclusion ¢'.

Proposition 3.15 (OSF clause normalization [10]). The rules of Fig. are finite
terminating and confluent (modulo variable renaming). Furthermore, they always result in a
normal form that is either the inconsistent clause or an OSF clause in solved form together

with a conjunction of equality constraints.

The constraint normalization rules also provide a procedure for transforming an OSF
term ¢ into an equivalent normal form, by applying the constraint normalization rules to
¢(t) and translating the result back into an OSF term.

Example 3.16 (OSF clause normalization). Consider the clause ¢” from Example

An application of the rule [Feature Functionality| to this clause leads to the clause

X :movie & X.directed by =X, & Xi:person
& Xi1=Y] & Y] :director
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Applying the rule [Tag Elimination| then yields the clause

X :movie & X.directed_by = X1 & Xi :person

& X1 =Y & X :director
Finally, an application of the rule|Sort Intersection|results in the OSF clause in solved form
X : movie & X.directed by = Xy & X : director together with the equality constraint
X1 = Yl. >

3.2 Semantics

The meaning of the symbols of OSF logic is given by an OSF algebra, a structure that spec-
ifies the denotation of sort symbols as sets and of feature symbols as functions. Moreover,
a sort subsumption lattice is interpreted in an OSF algebra as a set inclusion relation that
must ensure that the denotation of the GLB of two sorts corresponds to the intersection of

their respective sets.

Definition 3.17 (OSF algebra [10]). An OSF algebra (or interpretation) for a signature
(S, F,=) is a pair Z = (A%, -T) such that

1. A7 is a non-empty set, called the domain or universe of the algebra,
2. for each s € S, s? is a subset of AZ,
3. for each sg,s1 € S: if s < s1, then sg - s{,

T = st nst, and

4. for each sp,s1 € St (s A s1)
5. for each f € F: fT is a function fZ: AT — AL,

Going forward, we refrain from explicitly specifying the OSF signature and instead
assume that the syntactic objects of OSF logic are interpreted in OSF algebras for the

relevant signature.

Example 3.18 (OSF algebra). Consider the signature of Example Let T = (A%, 1)
be the OSF algebra for this signature defined as follows.

¢ The domain is

AT = {psycho, vertigo, hitchcock, coppel, stefano, “ Psycho”, “ Vertigo”, null}.

e The interpretation of the sort symbols is defined by letting

— string® = {“Psycho”, “ Vertigo”}, 1.7 =0, TL = AL;
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T

— directort = {hitchcock}, writer? = {coppel, stefano}, persont = directort u

writert; and

— thriller? = {vertigo}, horrort = {psycho}, movier = thrillert u horrort.

e The interpretation of the feature symbols is defined by letting

— directed_by*(psycho) = directed_ by* (vertigo) = hitchcock;
— written_ by* (psycho) = stefano, written_ by (vertigo) = coppel;

— title? (psycho) = “Psycho” and titlet (vertigo) = “ Vertigo”; and

all the remaining feature applications are equal to null. >

Since features are interpreted as total functions, in the last example the feature title had
to be defined also for elements of sort person such as hitchcock. While we can circumvent
this issue by assigning title? (hitchcock) = null, there are versions of OSF logic that interpret
features as partial functions instead [4, |34} 106].

In Section [3.1] we presented OSF terms and OSF clauses as two alternative, but syn-
tactically equivalent, data structures for representing knowledge with OSF logic. We thus
define the denotation of an OSF term as a subset of the domain and the satisfaction of an
OSF clause, and show that these two notions are also semantically equivalent.

The denotation of an OSF term in an interpretation Z = (AZ,-) is derived from the
interpretation of the sorts, features and variables it contains. The meaning of variables
is given by a variable assignment o : V — AZ, and the set of all variable assignments is
referred to as Val(Z).

Definition 3.19 (Denotation of an OSF term [10]). Let t = X : s(f1 — t1,..., fn —
t,) be an OSF term and Z = (A%,-Z) be an OSF algebra. Let a : V — AT be a variable

assignment. The denotation of t in the algebra T under the assignment « is defined as

[t17* < {a(X)}nsPa () (AT (I
1<i<n
where, for a subset D C AT, (f2)~Y(D) & {d € AT | f£(d) € D}. The denotation of t in
the algebra T is defined as

e U [

a:V— AT

Note that, for any OSF algebra Z, assignment o and OSF term ¢, the set [t]Z* is always

a singleton or the empty set.

Example 3.20 (Denotation of an OSF term). Continuing from Example consider
the term ¢t = X : movie (directed by — X : director) and the assignment « : V — AT such
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that o(X) = psycho and a(Xy) = hitchcock. The denotation of the term ¢ in Z according

to « is

[t]%® = {a(X)} n moviet n (directed_by*) [ X, : director]®®
= {psycho} n {psycho, vertigo} n (directed_by?)~1({a(X0)} n director?)
= {psycho} n (directed_ by*)~({hitchcock})

= {psycho} N {psycho, vertigo} = {psycho}.

It is also easy to see that [t]Z = {psycho, vertigo}.

As another example, let Z be an arbitrary OSF algebra, let t1 = X : s(fo =Y : T, f1 —
Y :T),and let to = X : s(f — X). Then [t1]? = {d € AT | d € sT and fZ(d) = f£(d)},
and [t2]? = {d € AT | d € sT and f%(d) = d}. >

We now provide the definition of the satisfaction of an OSF clause in an OSF algebra 7

under a variable assignment o : V — AL,

Definition 3.21 (Satisfaction of an OSF clause in an OSF algebra [10]). The
satisfaction of an OSF clause ¢ in a OSF algebra T = (AT, T) under the assignment « :
V — AT (notation: Z,a = ¢) is defined recursively by letting

T,aE=X:s & a(X) e s,
ZT,aEX=Y <& oX)=a),
T,aEX.f=Y & fHa(X))=a(Y), and
T,aE=¢ & ¢ & T,aEg¢and Z,a E ¢

If Z,a = ¢, then « is called a solution for the clause ¢, and ¢ is said to be satisfiable in Z.

Example 3.22 (OSF clause satisfaction). Continuing from Example consider the
OSF clause ¢ = X : movie & X.directed by = X & X : director. Let o be an assignment
a:V — AT such that a(X) = psycho and a(Xy) = hitchcock. Tt follows that Z,a = ¢,

since every constraint of ¢ is satisfied in Z under the assignment o.

e T,a = X : movie, since a(X) = psycho € moviel.

e I,a | X.directed_by = X, since directed_by*(a(X)) = directed_by* (psycho) =
hitchcock = a(Xy).

e I,a = Xy : director, since o Xo) = hitchcock € director”. >

Besides being syntactically equivalent, an OSF term t and its corresponding OSF clause
¢(t) are also semantically equivalent, in the sense that the denotation of ¢ in an OSF algebra

Z can be derived from the solutions for the clause ¢(t) in Z.
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Proposition 3.23 (Equivalence of term denotation and constraint satisfaction
[10]). For every OSF term t = X : s(fi — t1,...,fn — tn), for every interpretation
T = (AT, 1) and for every assignment o=V — AL:

e {{a(X)} i T.0 k= 6(t)

0 otherwise

and therefore
[t]* = {a(X) | @ € Val(T) s.t. T,a = p(t)}.

An important property of the constraint normalization rules is that the clause ¢’ resulting
from the application of a rule of Fig. [3.2to an OSF clause ¢ is semantically equivalent to the
original clause ¢, meaning that they share the same solutions across all OSF algebras. As

we will illustrate in Chapter [4], this property is only partially retained in the fuzzy setting.

Proposition 3.24 (Solution-preservation of OSF clause normalization [10]). The
rules of Fig. are solution-preserving, i.e., for any rule with premise ¢ and conclusion
@', for any OSF interpretation T and assignment o: I, o0 = ¢ if and only if T, = ¢'.

We conclude this section by exploring subalgebras of OSF algebras.

Definition 3.25 (Subalgebra of an OSF algebra). An OSF algebra Z = (A%, 1) is a
subalgebra of an OSF algebra J = (A7,-7) if AT C A7 and for all d € AT, s € S and
feF: st =57 nAT and f1(d) = f7(d).

It is easy to see that, if 7 is a subalgebra of J, then the denotation of an OSF term ¢
under a valuation o : V — A7 is the same in the two algebras. Similarly, an assignment

a:V — A7 is a solution for a clause ¢ in T if and only if it is a solution for ¢ in 7.

Proposition 3.26 (Denotation and satisfaction in subalgebras). Let Z be a subalgebra
of an OSF algebra J. For every OSF term t, every OSF clause ¢, and every assignment
a:V— AL (i) [P = [t]Y and (ii) T,a f= ¢ if and only if T, o |= é.

In the next sections we will often consider specific subalgebras of a given algebra 7 =
(A%, 1), namely those that can be generated by applying every possible feature composition
to the elements of a subset D of AZ.

Definition 3.27 (F-closure [10]). Let Z be an OSF interpretation. For each sequence
w= f1...f, € F*of features let w? = fZo...ofZ be the corresponding function composition

on AZ. For any non-empty subset D of AT the F-closure of D is the set

F*(D) & g w?(D) = gﬁ{wz(d) |de D}.

In other words F*(D) is the smallest set containing D and closed under feature applications.
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Definition 3.28 (OSF subalgebra generated by a set [10]). Let Z = (A%, -Z) be an
OSF interpretation and D C A be nonempty. The OSF subalgebra generated by D is the
structure Z[D] = (F*(D), LIPl) such that, for each s € S, sZPl & sT 1 F*(D), and for each
f e F, fHPlis defined as the restriction of fZ to F*(D).

When D = {d} is a singleton we write Z[d] instead of Z[{d}].

Proposition 3.29 (OSF subalgebra generated by a set [10]). Let Z = (A%,-Z) be
an OSF interpretation. For any non-empty subset D C AT the structure I[D] is the least

subalgebra of I containing D.

3.3 The OSF graph algebra

This section covers the OSF graph algebra G, an OSF algebra that is essential for proving
several semantic properties of OSF logic. The elements of this algebra are rooted directed
labeled graphs called OSF graphs.

Definition 3.30 (OSF graph [10]). An OSF graph is a directed labeled graph g = (N,
E, AN, Ag, X) such that

e NCVand X € N is a distinguished node called the root of g;

e Ay : N — § is a node labeling function such that each node of ¢ is labeled by a
non-bottom sort, i.e., An(N) € S\ {L};

o Ap:E — Fisan edge labeling function that assigns a feature to each edge (Y, 7) € E
in such a way that no two edges outgoing from the same node are labeled by the same
feature, i.e., if Ap(Y,2) = Ag(Y,Z’) then Z = Z’; and

e every node lies on a directed path starting at the root.

The set of all OSF graphs is denoted AY.

Example 3.31 (OSF graph). Let g = (N, E, An, Ag, Xo) be the OSF graph such that
o N={Xp, X, X5, X,Y}
o B ={(Xo,X1),(Xo,X),(Xo,Y),(X,Y), (X, X), (Y, X)};
o Ay = {(Xo,movie), (X1, string), (Xs, string), (X, director), (Y ,writer)}; and

Ao — ((Xo, X1),title), ((Xo,X),directed_by), ((Xo,Y),written_by),
B ((X,Y), spouse), ((X,X2),name), ((Y, X), spouse) .
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Figure 3.3: The OSF graph of Example

The OSF graph g is depicted in Fig. [3.3] where the root node is identified with a double

ellipse, and the node identifiers (i.e., the variables) are omitted. >

OSF graphs can also be seen as an alternative syntax for normal OSF terms, and con-
sequently for rooted solved OSF clauses. Each of the three syntactic representations is
valuable for different purposes, and being able to switch between them depending on the
context is highly convenient. For instance, OSF terms offer a more concise representation,
OSF clauses are essential for the constraint normalization procedure, and OSF graphs are
often more practical for establishing results about this language. From an implementation
perspective, Ait-Kaci argues that “the three views are important since the term view is the
abstract syntax used by the user; the clausal view is the syntax used in the normalization
rules presenting the operational semantics of constraint-solving; and, the graph view is the
canonical representation used for implementation” |10].

The mappings between normal OSF terms and OSF graphs are defined as follows.

Definition 3.32 (Mapping from normal OSF terms to OSF graphs [10]). The
mapping G : ¥ — AY from normal OSF terms to OSF graphs is defined as follows.

o Ifp = X : s, then G(v) & ({X},0,{(X,s)},0, X), i.e., G(¢) is the graph consisting
of a single node X labeled s.

o If 1,[) =X S(f1 — @ZJl,...,fn — 1/}71) and, for each 1 <7 < n, G(wz) = (NZ',EZ‘,)\NZ.,
Mg, Xi), then G(¢) & (N, E, An, Ag, X ) where:

- N={X}u U1§i§n Ni,

- b= {(XaXZ) | 1 Sign}UUISiSnEi’

() = S ifYy =X,
w0 Y e N\ (X uUr g N,
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B )\E(e) _ {fz lf e = (X,Xi),
Mg, (e) ifee E;.

Definition 3.33 (Mapping from OSF graphs to normal OSF terms [10]). Assume
without loss of generality a total ordering on F, which induces a lexicographic ordering
on F*. The mapping 1q : A9 — U from OSF graphs to normal OSF terms is defined as
follows. Let g = (N, E, AN, A, X) be such that Ay (X) = s and let fi,..., f,, with n > 0,
be the (pairwise distinct) features in F labeling all the edges outgoing from X. Then 9g(g)
can be constructed as the OSF term X : s(f1 — 91,..., fn, = ¥y) where, for each 1 < i < n:

e if the root Y; of g; = fig (¢9) has already occurred earlier during the construction (in

the predetermined ordering of F*), then ¢; &Y, : T,

o otherwise, ¥; %< g (g:) = Ya(f9(g)).

Proposition 3.34 (Bijections [10]). The mappings
Vo :Pp =V, ¢: V= dp Yg: A9 >V, and G:V — AY
are bijections between the sets U, A9 and ®p. More precisely,

1‘PR:¢O¢¢7 1‘I’:¢¢°¢:¢GOG’ and 1,6 = Gog.

To improve readability, we simplify the notation by using expressions like ¢(g) instead
of ¢(1a(g)), or G(¢) instead of G(¢4(¢)). We will also simply write ¢(g) for c(g), and
¥(¢) for 1g(6).

Example 3.35 (Mappings between OSF graphs, normal OSF terms and rooted
solved OSF clauses). Consider the OSF term ¢ from Example the OSF clause ¢ from
from Example and the OSF graph ¢ graph from Example then g = G(¢) = G(¢),
¥ =1v(g) = ¢(¢) and ¢ = ¢(g) = (). >

Having introduced OSF graphs and explored how they are syntactically related to OSF
terms and clauses, we can proceed to examine how this collection of graphs can be endowed

with an OSF algebraic structure.

Definition 3.36 (OSF graph algebra [10]). The OSF graph algebra is the structure
G = (AY,.9), where AY is the set of all OSF graphs, and where the interpretation of sorts

and features is defined as follows.

o Foreach s € S: s9 % {g=(N,E,\y, g, X) | An(X) =< s}.
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o For each f € F and g = (N, E,\n, g, X) € AY, the function f9 : AY — AY is

defined as follows:

g e

where g|Y is the maximally connected subgraph of g rooted in Y, and G(Zy4 : T)
denotes the trivial OSF graph ({Z;4},0,{(Zf4, T)},0,Z¢,4) whose only node is the
new variable Z¢, € V\ N —labeled T — uniquely determined by the feature f and

the graph g (i.e., if f # f' or g # ¢/, then Z; o # Z 1 o).

Example 3.37 (Interpretation of sorts in the OSF graph algebra). The interpre-
tation of the sort symbols in the OSF graph algebra is straightforward: for each s € S,
the set s9 contains any graph whose root is labeled by a sort s’ such that s’ < s. Consid-
ering the sort signature of Example for instance, the denotation of the sort movie is
movie¥ = {movie(title — string), horror(directed_by — director), horror(written_ by —

writer, directed__by — person),...}. >

Example 3.38 (Interpretation of features in the OSF graph algebra). Consider
a signature where & = {so,...,s3} and F = {fo,..., fa}. Fig. shows how features
are interpreted in the OSF graph algebra for this signature. OSF graphs are represented
inside boxes. For a feature f, the application of 9 to a graph g is represented as an arrow
originating from the box containing ¢ and pointing at the box containing f9(g). The figure

shows the iterative application of a few features to the graph g corresponding to the term

S0 fo — X:Sg('
f3 — s

f1 — Y:Sg<f4 — X)

Note that the result of applying the function f9 to a graph that does not contain this feature
results in a trivial graph (e.g., the application of fdg to g or to flg (9)). >

Proposition 3.39 (OSF graph algebra). The OSF graph algebra G is an OSF algebra,

i.e., it satisfies the conditions of Definition |3.17,

A key property of the OSF graph algebra is that every solved OSF clause ¢ is satisfiable
in a subalgebra of G, namely the subalgebra generated by the graphs corresponding to the

maximal rooted subclauses of ¢.
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Figure 3.4: Feature applications in the OSF graph algebra.

Definition 3.40 (Canonical graph algebra ) Let ¢ be a solved OSF clause. The
subalgebra G[A99] of the OSF algebra G generated by the set A9 & {G(p(X)) | X €
Tags(¢)} is called the canonical graph algebra induced by ¢.

Theorem 3.41 (Satisfiability in the canonical graph algebra ) Any solved clause
¢ is satisfiable in G[AY?] under any assignment a = V — A9A9) such that a(Y) =G(o(Y))
for allY € Tags(¢).

As a corollary of Proposition [3.26] we obtain that every solved OSF clause ¢ is satisfiable
in G under any assignment that maps each variable Y € Tags(¢) to the graph G(¢(Y)). For

this reason, such a mapping is called a canonical solution for the clause ¢ in G.

Corollary 3.42 (Canonical solution in the OSF graph algebra ) Every solved
OSF clause ¢ is satisfiable in the OSF graph algebra G under any assignment o : V — AY
such that, for each Y € Tags(¢), a(Y) = G(¢(Y)).

3.4 OSF algebra homomorphisms

In this section we present OSF algebra homomorphisms, which constitute an essential tool

for proving several results regarding OSF algebras.
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Figure 3.5: The OSF algebra morphism of Example m

Definition 3.43 (OSF algebra homomorphism [10]). An OSF algebra homomorphism
v : T — J between two OSF algebras Z and J is a function v : AT — AJ such that

o forall f € Fand d e AT: v(f%(d)) = f7(y(d));

o forall s €S: y(st) C 87, ie., forall d e st, y(d) € s7.

In other words, an OSF algebra homomorphism is a function from an OSF algebra
7 into another OSF algebra J that preserves the structure of Z. The first condition of
Definition means that the morphism v must commute with fZ and f7 for each f € F,

while the second one states that v must preserve the sort of each element of the algebra 7.

Example 3.44 (OSF algebra homomorphism). Consider the fuzzy interpretation Z,
the assignment « and the term t = X : movie (directed by — Xy : director) from Exam-
ples and Consider the subalgebra of G generated from the element G(t) and
define a function v : A9CM]I 5 AT by setting, for g = w9(G(t)) € AYCH] ~(g) df
wt (psycho), where w € F*. In particular v(G(t)) = psycho and v(G(Y : director)) =
y(directed by9(G(t))) = directed_ by* (psycho) = hitchcock. This is easily verified to be an
OSF algebra homomorphism: for instance, G(t) € movieY, and v(G(t)) = psycho € movier.
The two algebras and the homomorphism are depicted in Fig. (where trivial graphs are

not shown, and some names have been shortened). >

Since an OSF algebra morphism ~ : Z — J preserves the structure of Z in J, it seems

intuitive that any clause that is satisfiable in Z must also be satisfiable in 7.

Theorem 3.45 (Extending solutions through homomorphisms [10]). Let Z and J
be two OSF algebras and v : T — J be a homomorphism between them. For every OSF
clause ¢ and assignment oV — AL, if T, o |= ¢, then J, o' = ¢, where o/ = 7o a.

More interestingly, it is possible to show that any solution for a clause ¢ in any OSF

algebra Z can be obtained as the homomorphic image of the canonical solution for ¢ in G

(see Corollary [3.42]).
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Theorem 3.46 (Extracting solutions through homomorphisms [10]). For any solved
OSF clause ¢, OSF algebra T and assignment o : V — AL such that T,o = ¢ there exists
an OSF algebra homomorphism v : GIAY?] — T such that a(X) = v(G(¢(X))) for each
X € Tags(p).

As stated in the following theorem, it is always possible to define a homomorphism ~
from any OSF algebra 7 into the OSF graph algebra G. Thus, as a corollary of Theorem [3.45
we obtain that any solution a for an OSF clause ¢ in some OSF algebra Z can be extended
to a solution for ¢ in G, meaning that any OSF clause is satisfiable if and only if it is
satisfiable in the OSF graph algebra.

Theorem 3.47 (Weak finality of G [10]). There exists a homomorphism ~ from any
OSF algebra T into the OSF graph algebra G.

Corollary 3.48 (Canonicity of the OSF graph algebra [10]). An OSF clause is
satisfiable if and only if it is satisfiable in the OSF graph algebra.

Because of the semantic equivalence between OSF terms and OSF clauses (Proposi-
tion [3.23)), the denotation of an OSF term in an OSF algebra Z can be characterized through

the existence of homomorphisms from the canonical graph algebra induced by G(v) into Z.

Theorem 3.49 (Interpretability of canonical solutions [10]). Let ¢ be a normal OSF
term, let ¢ = ¢(v), and let T be an OSF interpretation. Then

[W]F = {7 (GW)) | v : G[AY®] — T is an OSF algebra homomorphism}.

Remark 4. The original version of Theorem from [8] states that, for any normal OSF
term v and algebra Z:

[W]% = {7(G()) | v : G — T is an OSF algebra homomorphism}.

While this statement is less cumbersome to read, it is also imprecise, as the next counterex-
ample shows.

Consider § = {L,sp,s1, T} such that so As; = L, sopvs; = T, and F = {f}. Let
P =X :50(f - X)and T = (A%, -T) be such that AT = {a}, %(a) = a, st = {a}, and
st = 0. It follows that a € [¢]* (consider any assignment « such that a(X) = a).

Clearly there is no homomorphism v : G — Z such that a = v(G(¢))). If such a
homomorphism + existed, then it would also be defined on the graph g = G(Y : s1) € AY,
and, since g € 59, then by Definition it should hold that (g) € s¥, which is impossible
since s7 = ().

On the other hand, the function v : A949’l — AT (where ¢ = ¢(1p)) defined by

letting v(g) = a constitutes a homomorphism v : G[AY9?] — Z. To see this, note that
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A9¢ = {G(¢))}, where G(3)) is an OSF graph composed of a single node labeled sy and a
self loop labeled f, and thus A9A77] = F*(A99) = {G(y)}.
Theorem and Definition have been rephrased to account for this kind of coun-

terexamples.

3.5 Subsumption

In this section we show that the set ¥ of normal OSF terms, the set ®z of rooted solved OSF
clauses, and the set AY of OSF graphs can each be endowed with a partial ordelﬂ More
specifically, we define an approximation ordering on OSF graphs, an implication ordering
on OSF clauses, and a subsumption ordering on OSF terms.

Establishing a decidable subsumption ordering between OSF terms is crucial for effective
reasoning within OSF logic. This point is also underscored by Carpenter [34] with respect

to the related logic of typed feature structures:

“The primary goal in constructing our feature structures is to allow for the
representation of partial information. We do not think of a feature structure as
representing all that can be known about a domain object, but rather what is
known at some particular stage in a computation. When dealing with partial
information it is important to be able to tell when one piece of partial information

is more informative or specific than another.”

We start by presenting, for each OSF algebra Z, an approximation ordering on A% which
is defined according to the existence of homomorphisms relating subalgebras of Z generated

by singletons.

Definition 3.50 (Endomorphic approximation [10]). On each OSF interpretation Z a
preorder CZC AT x A? is defined by letting, for all d,d’ € AZ:

d =% d' if y(d) = d' for some homomorphism ~ : Z[d] — Z[d']

If d CT d' we say that d approzimates d'.
Proposition 3.51 (Endomorphic approximation preorder). For each OSF interpre-
tation I, the relation TT is a preorder on AZ.

The intuition behind this definition is more easily understood if we consider the approx-

imation ordering defined on the OSF graph algebra G.

3More precisely, we define preorders rather than partial orders on these sets, and show that antisymmetry
holds modulo an equivalence relation. This situation is analogous to the subsumption ordering of first-order
terms [91] 93], which is antisymmetric modulo variable renaming.
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Figure 3.6: The OSF algebra morphism of Example @

Example 3.52 (OSF graphs approximation ordering). Consider the OSF signature
of Example [3.2) and let

go = G(Xo : movie (directed_by — Yy : person)) and
g1 = G(X : thriller (directed_by — Y1 : director, title — Z; : string))

Define v : A99] — A9l91] by letting, for each g = w9(gg) in A9 (with w € F*):
v(g) % w9(gy). For example, v(go) = g1, and y(directed by9(go)) = directed_by9(gy).
This is depicted in Fig. [3.6| (where not all trivial graphs are shown, and a few feature
names are abbreviated). The function v is a morphism witnessing go CY g;. In particular,
go € movieY and g, = ~v(g0) € thriller9 C movieY, and the feature applications commute
with the function ~. Intuitively, the graph go approximates g; as it represents information
that is consistent with g; in a more general way: gg is a movie rather than a thriller, it is
directed by a person rather than by a director, and it does not constrain the feature title

to be of any sort more specific than T. >

Thanks to Proposition [1.20] we know that CY9 can be extended to a partial order among
equivalence classes of OSF graphs. As the next proposition illustrates, the elements of these
equivalence classes are OSF graphs that are essentially the same except for different variable

names or possibly the presence of trivial subgraphs.

Proposition 3.53 (OSF graph equivalence). Let gy and g1 be two OSF graphs. If
go CY g1 (as witnessed by a morphism o : Glgo] — Glg1]) and g1 CY go (as witnessed by a
morphism . : Glgr] - Glool), then
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Figure 3.7: The OSF graphs and morphisms of Example

1. for all g € Glgo], g and vo(g) are labeled by the same sort;
2. for all g € Glgi1], g and v1(g) are labeled by the same sort;

3. Yooy = id pglg) and 1 © Yo = id s6lg), and thus o and 1 are bijections.

Example 3.54 (OSF graph equivalence). Consider the OSF terms
vo=Xo:s(f—=Yo:s)and vy =Xy :s(f = V18, f = 2Z,:T)

and let go = G(vo) and g1 = G(¢1). Let 7o : G[go] — G[g1] be defined by letting, for all
g = w9(g0) € Glgo] with w € F*, y0(g) & w9(g1). Similarly, let 3 : Glg1] — Glgo] be
defined by letting, for all g = w9(g1) € Glg1] with w € F*, v1(g) % w9(go). In particular
Y (g0) = g1 and v1(g91) = go- These are easily verified to be homomorphisms witnessing
go CY g1 and g1 CY go. The OSF graphs and morphisms are depicted in Fig. [3.7] >

It is now possible to characterize the denotation of a normal OSF term ¢ in the OSF

graph algebra G as the set of OSF graphs that are approximated by G(v).

Corollary 3.55 (Denotation of an OSF term in G [10]). Let ¢ be a normal OSF term.
The denotation of 1 in the OSF graph algebra G can be characterized as follows:

[v]9 = {g € A9 | G(v) T g}.

It can also be proved that, for any OSF algebra Z = (A%,-7) and d,d’ € A? such that
d CT d', whenever d belongs to the denotation a term 1, then d must also belong to the
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denotation of the same term. Intuitively, if an object d satisfies the constraints expressed
by an OSF term, then the same must also hold for any object d’ that is more specific than
d. Moreover, the opposite direction is also true, that is, if two objects d and d' are such
that d’ € [¢]* whenever d € [o]F for any ¢ € ¥, then it must be the case that d C9 d’. As
stated in [10], this result was originally established by Dérre and Rounds [43].

Corollary 3.56 (Dorre-Rounds [10, 43]). For all OSF interpretations I and elements
d,d € AZ:

d T d' iff for all OSF terms v, d' € []* whenever d € [{]7.

By Definition we know that, whenever sg is subsumed by s; (i.e., sp = s1), then
s& C st holds in any OSF algebra Z. The subsumption ordering on OSF terms is an
extension of this ordering on sorts: a term ¢ is subsumed by a term ¢ if the denotation of

to is always included in the denotation of ¢; in any OSF algebra.

Definition 3.57 (Semantic OSF term subsumption [10]). The OSF term to is sub-
sumed by the OSF term t; (denoted tq < t;) if, for all OSF interpretations Z, [to]* C [t1]*.

OSF clauses are instead ordered by logical consequence or implication: the clause ¢ is
a logical consequence of ¢y if, for any OSF algebra 7 and assignment « that satisfies ¢ it
is possible to define an assignment o’ that agrees with o on the variables shared by ¢¢ and
¢1 and such that Z, o/ = ¢1.

Definition 3.58 (OSF clause implication [10]). The OSF clause ¢g implies the OSF
clause ¢y (denoted ¢ = ¢1) if, for all OSF interpretations Z and assignments « such that

Z,a = ¢, there is an assignment o/ such that
1. o/(X) = a(X) for all X € Tags(¢o) N Tags(¢1), and

2. I, o/ ): ¢1.

The implication ordering for rooted OSF clauses is defined similarly, and it requires that

the roots of the two clauses are assigned the same value.

Definition 3.59 (Rooted OSF clause implication [10]). Let ¢x and ¢/ be two rooted

OSF clauses with no common variables. The OSF clause ¢x implies the clause ¢/, (denoted
ox | ¢y) if ¢ = ¢'[X/Y].

The following theorem establishes that the three orderings are equivalent.

Theorem 3.60 (Semantic transparency of orderings [10]). If the normal OSF terms
¥ and ' (with roots Y and X, respectively, and no common variables), the OSF graphs g

and g', and the rooted solved OSF clauses ¢y and ¢’y respectively correspond to one another
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though the syntactic mappings, then the following are equivalent: (1) g CY ¢, (2) ¢ < 1,
(3) &y b= by, and (4) [¢']9 € [¥]°.

Similarly to the approximation ordering on OSF graph, the subsumption ordering on
OSF terms and the implication ordering on OSF clauses are in fact preorders, which can be

lifted to partial orders between equivalence classes of these objects as per Proposition [1.20

Example 3.61 (OSF term and OSF clause equivalence). Consider the terms 1y and

11 and the graphs g9 = G(¢p) and g1 = G(¢1) from Example and let ¢o = ¢(¢o)
and ¢1 = ¢(¢01). As shown in Example it holds that go CY g1 and g1 CY go, which

by Theorem implies that 1y < 11, ¥1 =< ¥o, ¢o = ¢1 and ¢1 = ¢o. Indeed, because

features are interpreted as total functions, the terms 1y and 1 are equivalent, i.e., they
have the same denotation in every OSF algebra. Analogously, the two OSF clauses ¢y and
¢1 are equivalent, since for any assignment aq that satisfies ¢¢ in an OSF algebra 7 it is

possible to define an assignment «q that satisfies ¢1 in Z, and vice versa. >

To conclude this section, we provide an additional characterization of subsumption

among OSF terms, framing it as a homomorphic mapping between their tags.

Definition 3.62 (Syntactic OSF term subsumption). The (normal) OSF term g is
(syntactically) subsumed by the (normal) OSF term v (denoted 1o < 1) if there is a
mapping h : Tags(v1) — Tags(1o) such that:

1. h(RootTag(yn)) = RootTag(vy);
2. Sorty,(h(X)) = Sorty, (X) for each X € Tags(1n);
3.1 X Ly, v, then (X) Ly h(Y).

The equivalence of the semantic (Definition [3.57)) and syntactic definitions of OSF term

subsumption is given next.

Proposition 3.63 (Semantic and syntactic subsumption). If ¢y and 1)1 are consistent
OSF terms, then vy =< 11 if and only if there are two (normal) OSF terms ¥} and | such
that

o [vol* = [¥4]* for all Z,
o [al* = [Wi]* for all T,

o 1 <Y,
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3.6 Unification

Unification is an essential operation in automated reasoning, and is at the core of the appli-
cation of OSF logic and its variants in computational linguistics [34] and the implementation
of logic programming languages based on OSF terms [8] [10]. More recently, it has enabled
the implementation of the CEDAR Semantic Web reasoner [6, |15]. Informally, the unifier of
two OSF terms 17 and 9 is a term ¢ that consistently combines the constraints expressed
by the two terms, without adding any extra constraints. In other words, it is the most

general term that is subsumed by both ¥, and .

Definition 3.64 (OSF term unification [10]). The unifier of two normal OSF terms
and 9 is their GLB in the OSF term subsumption ordering and is denoted 1 A 5.

Recall that applying the OSF constraint normalization rules to an OSF clause results
in a normal form ¢ that is either the inconsistent clause X : L, or an OSF clause in solved
form together with a conjunction of equality constraints (Proposition . The subclause
of ¢ in solved form is denoted Solved(¢).

Theorem 3.65 (OSF term unification [10]). Let ¢ and 12 be normal OSF terms, and
let ¢ be the OSF clause obtained by non-deterministically applying any applicable constraint
normalization rule (Fig. to the clause

(Y1) & d(2) & RootTag(y1) = RootTag(v2)

until none applies. Then, ¢ is the inconsistent clause iff the GLB of ¥ and 9 is X : L.
If ¢ is not the inconsistent clause, then 11 A 1o = 1(Solved()).

Note that two normal OSF terms always have a GLB (possibly L) in the OSF term
subsumption ordering, which can be computed via their unification. Normal OSF terms are

thus ordered in a subsumption lattice.

Example 3.66 (OSF term unification). Consider the OSF signature of Example
and the OSF terms

" x ) ( directed_by — Xg : director, )
1 = X : movie

title — Xy :string

and 9 =Y : horror (directed by — Yy : person). Their unifier can be computed by con-

sidering the constraints

(1) = X :movie & X.directed by =Xy & Xj:director
&  X.title = X4 & X :string
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and ¢(¢2) = Y : horror & X.directed_by = Yy & Yy : person and applying the OSF
constraint normalization rules of Fig. to the clause ¢(¢1) & ¢(12) & X =Y, resulting
in the OSF clause

X :horror & X.directed by = Xo & Xy :director
& X.title= X, & Xj :string
& X =Y & Xo=Y)

or an equivalent clause. Translating this clause back into an OSF term yields

directed_by — Xy : director,
X : horror

title — Xy :string
which is the unifier of ¥; and 19, i.e., their GLB in the OSF term subsumption lattice. >

With respect to the complexity of computing the unifier of two OSF terms 1 and g,
the algorithm from [8] based on the union-find problem [1] has a worst-case complexity of
O(mG(m)), where m = | Tags(11) U Tags(12)| and the growth rate of the function G is of
the order of an inverse of the Ackermann function (G(m) < 5 for all practical purposes) [8].
The computation of the unifier for two OSF terms hinges, in particular, on determining the
GLB of two sorts within the sort subsumption lattice, as evidenced by the [Sort Intersection|

rule. Various strategies for optimizing this operation are discussed in Section [3.8]

3.7 Applications

3.7.1 LOGIN: OSF logic and definite clauses

One of the primary applications of OSF logic involves its integration into Prolog, by replacing
its first-order terms (FOTs) with OSF terms, resulting in the language LOGIN (Logic and
Inheritance) [8]. There are several advantages to adopting OSF terms rather than FOTs
in the context of a logic programming language, as highlighted in [8]. For instance, one
limitation of FOTs is that its functor symbols have a fixed arity, while an OSF logic signature
allows terms with the same root sort but with possibly a different number of arguments,
such as movie(directed_by — director,year — 1960) and movie(directed_by — person).
Moreover, the arguments of an OSF term are identified by features rather than positions,
aiding the interpretability of a term.

The main motivation behind the integration of OSF terms into Prolog is, however, a more
natural, and possibly more efficient, implementation of inheritance (i.e., an is-a subsumption
relation) directly into the unification process rather than through SLD resolution. Indeed,
a key limitation of Prolog is that the unification of two FOTs fails whenever a mismatch of

functor symbols occurs, which may not always be desirable. For instance, the unification of
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so(X) - s1(X). s1 < Sq.
sp(X) := sp-1(X). Sp-1 < Sp.
si(a). {a} < s;.
prop(a). prop(a).

(a) Prolog version (b) OSF version

Figure 3.8: The logic programs of Example

person(X) and student(alice) fails in Prolog, even under the assumption that student
is subtype of (or is subsumed by) person. While Prolog allows to express this subsumption
through the rule person(X) :- student(X), the authors of [8] argue that this approach
is not satisfactory in practice, as inheritance is achieved by an inference step, lengthening
proofs. Replacing the FOTs of Prolog with OSF terms offers the advantage of integrating
inheritance into the unification process, since OSF term unification takes into account a
subsumption relation on sorts, for instance allowing the unification of OSF terms such as
X : person and student(name — “Alice”), provided that student < person. In general,
this property of OSF logic may lead a single unification step to replace several resolutions

steps, as the following example from [8] shows.

Example 3.67 (Prolog resolution and OSF unification). Consider the Prolog program
of Fig.[3.8a] The query ?- s,(X), prop(X) will require n resolution steps before matching
X = a. The OSF version of the same program is depicted in Fig.[3.8bl The program involves
declarations of shape s < s' for the sort subsumption relation, and of shape {a} < s for
the instances of the sort symbols. Constants such as a are treated as singleton sorts (sorts
that denote a single element), and thus as OSF terms themselves. The symbol prop is a
predicate symbol which takes OSF terms as arguments. Since a is subsumed by s,, now
the query prop(X:s,) (which aims to retrieve individuals X of sort s, and that satisfy the

property prop) succeeds in a single unification step rather than n resolution steps. >

The advantage of performing a single unification step rather than several SLD resolution
steps might not seem significant at first, especially considering that OSF term unification
relies on the computation of the GLB of two sorts in a lattice, a potentially expensive
operation. As will be seen in Section [3.8] however, this operation can be implemented very
efficiently thanks to graph encoding techniques that reduce the computation of a GLB to
a simple bitwise AND on binary strings, at the cost of a one-time preprocessing of the sort
subsumption graph. As a result, replacing a number of SLD resolution steps with a single
OSF term unification can indeed lead to more efficient computations.

To conclude the section, the following example illustrates a LOGIN program in which

the computation of a solution to a given query relies on SLD resolution on predicate symbols
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% Subsumption relation

director < person.

slasher < horror.

horror < movie.

thriller < movie.

% Instances

{ alinda } < person.

{ hitchcock, carpenter, nolan } < director.

{ psycho } < horror.

{ halloween } < slasher.

{ memento } < thriller.

% Facts

director_of (hitchcock, psycho).

director_of (carpenter, halloween(year -> 1979)).
director_of (nolan, memento(title -> "Memento")).
% Rules

likes(alinda, Y :thriller) :- director_of(X : person, Y).

Figure 3.9: A logic program with OSF terms.

and on OSF term unification. Predicate symbols in this context are distinct from the sorts
and features of OSF terms. They work exactly as in Prolog, with the only difference that

they accept OSF terms rather than first-order terms as arguments.

Example 3.68 (SLD resolution in LOGIN). Consider the program of Fig. After the
definition of the sort subsumption relation and of the instances of a few sorts, the program
specifies a few facts regarding the binary predicate director_of. Finally, a rule involving
the predicates director_of and likes states that alinda likes thriller movies. The query
?- likes(alinda, Y : movie) is first reduced by resolution to the goal director_of (X :
person, Y : thriller), which is then resolved against the facts of the program, returning
a single solution binding Y to memento(title -> "Memento"), through the unification of

thriller and memento(title -> "Memento"). >

LOGIN was implemented as a part of LIFE (Logic, Inheritance, Functions, and Equa-
tions) a programming language which incorporates elements from functional, logic and
object-oriented programming , .

3.7.2 CEDAR: OSF logic for the Semantic Web

Two versions of a Semantic Web reasoner based on OSF logic were implemented in the
context of the CEDAR project @, , an ANR Chair of Excellence Project led by Hassan



72 3.7. Applications

Al't—Kaciﬁ The goal of the project was to develop, implement and test a constraint-based
approach to KRR based on the OSF framework in order to provide an effective, efficient
and scalable technology that is able to represent knowledge and reason about data, aiming
to prove that OSF logic provides a sound alternative to DL as a language for the Semantic
Web, and that it is in fact able to overcome some of the limitations of DL as reported, for
instance, in [42, [54, [109].

An extension of the CEDAR reasoner that leverages a similarity relation between sort
symbols in order to provide approximate answers to a query will be discussed in Section [5.5.1]

which deals with similarity-based OSF logic.

CEDAR reasoner V1 The first version of the CEDAR reasoner [5, 6] is a taxonomic
reasoner that is capable of classifying a taxonomy and answering Boolean queries. In the
context of the CEDAR project, a taxonomy is a partial order (S, =), i.e., a set S of set-
denoting sort symbols together with an is-a ordering < on § which represents set inclusion.
The taxonomy (S, <) is specified in CEDAR through subsort declarations of shape s < s'.
Assuming that they do not involve cycles, these declarations can be also be represented as
a DAG (8, <) such that < is equal to the reflexive and transitive closure of <. It can be
assumed without loss of generality that S contains a greatest sort T and a least sort L,
which respectively denote the whole domain of interest and the empty set (.

The task of classifying a taxonomy consists in computing the reflexive and transitive
closure of the subsort declarations (S, <1) given as input. After classifying a taxonomy, the
CEDAR reasoner is able to decide whether a sort is subsumed by another sort, and to answer
Boolean queries on the elements of the taxonomy, that is, queries involving conjunctions,
disjunctions an negations on sort symbols. Formally, given two sorts sp,s1 € S, (i) a
conjunctive query so A s1 aims to find the GLB of sy and s; in §, that is, the most general
sort s that is subsumed by both sy and s;, which corresponds to their intersection; (ii) a
disjunctive query so v s1 aims to find the least upper bound (LUB) of sy and s; in S, that
is, the most specific sort s that subsumes both sy and s1, which corresponds to their union;
(iii) a negated query —sg aims to find the complement of the sort sp.

The classification of a taxonomy is performed by the CEDAR reasoner by implementing a
bottom-up DAG encoding algorithm originally proposed in [13], which consists in associating
each sort s € S with a vector of bits of length O(|S]|). After the classification is complete,
for instance, a conjunctive query sg A s; can be answered simply by computing the bitwise
AND of the bit vectors corresponding to sg and s1. The classification algorithm is discussed
in more detail in Section [3.8} which deals with the implementation of OSF logic.

The performance of the first version of the CEDAR reasoner was compared with that of
state-of-the-art Semantic Web reasoners based on DL — including FACT++ [116], HERMIT

4More information about the CEDAR project can be found at https://cedar.liris.cnrs.fr/, including
reports, papers, demos and software.
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[52,102], PELLET [105], TROWL [115], RACERPRO [56], and SNOROCKET |75] — on several
taxonomies of varying size. The evaluation involved the tasks of classifying a taxonomy
and answering Boolean queries combining conjunctions, disjunctions and negations. The
results showed that the CEDAR taxonomic reasoner was among the fastest with respect
to classification, and orders of magnitude more efficient with respect to answering Boolean
queries [}, 6].

As experimentally shown in [6], a key advantage of the CEDAR taxonomic reasoner is
the efficiency of performing Boolean queries, which is virtually O(1) irrespective of the size
of the taxonomy [6]. Because each sort s € S is encoded as a bit-vector of length O(|S]),
however, there is a trade-off with respect to the space required by this representation, which
is quadratic in the size of the taxonomy, and may thus become unfeasible in practice for very
large taxonomies. Nevertheless, the CEDAR reasoner was applied to the NCBI (National
Center for Biotechnology Information) taxonomyﬁ] consisting of 903617 sorts, which was,
according to the authors, the largest taxonomy available at the time of the experiments [6].
Moreover, alternative encoding strategies that are more space efficient and that maintain

efficient (logarithmic) Boolean operations are proposed in [13] and [6].

CEDAR reasoner V2 The second iteration of the CEDAR reasoner extends its capa-
bilities by introducing support for reasoning not only with bare sorts but also with OSF
features and DL roles. More specifically, in addition to performing the classification of an
is-a taxonomy and answering Boolean queries, the enhanced CEDAR reasoner can carry
out the following tasks |15} 16]:

e reasoning over OSF structures involving OSF feature symbols, domain and range
specifications for such features, aggregate sorts representing collections of instances of

specific sorts, and universal and existential restrictions;

« verifying the consistency of a query expressed as an OSF term by normalizing it with

respect to the classified taxonomy; and

o applying the OSF constraint normalization rules to optimize a query before translating
it into SPARQIE] for the retrieval of RDF triples, an operation that can significantly

reduce the retrieval search space.

Furthermore, [15, |16] define an RDF format for OSF structures, establishing a mapping
between the two representations, and propose an indexing scheme for RDF triples that takes
advantage of the semantic information provided by OSF sorts and attributes, facilitating

efficient instance retrieval.

Shttps://www.ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.html/.
Shttps://www.w3.org/TR/sparqlii-query/.
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An extended OSF logic syntax is also adopted in the updated CEDAR reasoner in order
to supports a few DL constructs [3, 4]. For instance, one of the most notable differences
between OSF logic and DLs lies in their interpretation of attributes. In the OSF formalism
attributes are interpreted as functional features, whereas in DL they denote relational roles.
However, because relations correspond to set-valued functionsﬂ the syntax of OSF logic
can be enriched with the construct set-of(s), whose meaning in an OSF interpretation 7 is
[set-of(s)]* = P(s?) [3,4]. As a consequence, a relation R between two sorts sp and s may
be seen as a feature fr from sp to set-of(s;). Moreover, the OSF constraint normalization
rules of Fig. do not need to be altered in order to support the set-of construct [3, [4].
Other extensions of the OSF logic syntax, including the support for the existential and
universal restrictions of DLs, are discussed in more detail in [4].

The updated version of the CEDAR reasoner also verifies the consistency of the taxon-
omy with respect to a given set of domain and range declarations for feature symbols. These
consist in expressions of shape f : s; — s, stating that the function denoted by f takes
as input an object of sort s; and returns an object of sort so. The consistency check for
feature declarations involves confirming that, for each feature f, there are no declarations
f:s1— sy and f:s) — s, such that 8§ < s; and sy A s, = L. Otherwise, if sg A s, # L,
then the initial declaration can be updated to f : | — s9 A 5. This process is repeated for
every declaration of shape f : s; — sy and each subsort of s; |15 /16].

Another key feature of the CEDAR reasoner V2 lies in its query optimization step
[15]. Before being executed, a query (expressed as an OSF term) is normalized according
to the OSF constraint normalization rules and the knowledge expressed in the taxonomy,
including subsort declar