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Abstract

Order-Sorted Feature (OSF) logic is a Knowledge Representation and Reasoning (KRR)
language originating in Hassan Aït-Kaci’s work on designing a calculus of partially ordered
type structures. The language was developed to model the notions of subsumption and
unification in inheritance-based KRR formalisms, and it has been applied in computational
linguistics and implemented in constraint logic programming languages and automated rea-
soners.

The language of OSF logic is based on function-denoting feature symbols and on set-
denoting sort symbols ordered in a subsumption (is-a) lattice. Reasoning with OSF logic
relies on the unification of set-denoting structures called OSF terms, a process that aims
to combine the constraints expressed by two OSF terms into a single term. An advantage
of OSF logic is that its unification algorithm takes into account the subsumption ordering
between sorts, which may enable a single unification step to replace several inference steps,
leading to more efficient computations.

This thesis deals with the theoretical development of approximate reasoning within the
framework of OSF logic. Two approaches are investigated: (i) a fuzzy generalization of
OSF logic that provides this language with the capability to represent graded subsumption
relations and vague concepts, and (ii) an extension of the language of OSF logic with a
similarity relation, leading to a flexible notion of OSF term unification that allows matching
different and disjoint sorts. Both strategies enable OSF logic to return approximate answers
to queries posed to a knowledge base.

The first key contribution of the thesis is the definition of fuzzy OSF logic, a fuzzy
generalization of the semantics of OSF logic where sort symbols denote fuzzy sets rather
than crisp sets, allowing to represent vague concepts. Moreover, the sorts symbols of fuzzy
OSF logic are ordered in a fuzzy subsumption relation (formally a fuzzy lattice) rather
than a crisp one, which provides more modeling flexibility by allowing to represent graded
subsumption relations. The fuzzy sort subsumption relation is given a special semantics
which generalizes Zadeh’s definition of inclusion of fuzzy sets, and which is then extended
to OSF terms.

We investigate whether several semantic and computational properties of crisp OSF logic
are preserved in the fuzzy setting. For instance, we show that OSF terms are ordered in
a fuzzy subsumption relation which extends the fuzzy ordering between sort symbols, and
we prove that the unification of two OSF terms yields their greatest lower bound. We also
define procedures to compute the subsumption degree between two sort symbols or between
two OSF terms, and study their computational complexity.
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The second key contribution of this thesis is the definition of similarity-based reasoning
with OSF logic. Approximate reasoning based on fuzzy relations – in particular similarity
relations – has been studied extensively in the fuzzy logic programming literature. Several
approaches consist in extending the Prolog language with a similarity relation, which enables
the definition of flexible notions of unification and SLD resolution, namely weak unification
and similarity-based SLD resolution.

Along these lines, defining similarity-based reasoning with OSF logic involves the devel-
opment of a flexible unification procedure for OSF terms that takes into account a similarity
relation between sort symbols. Since the sort symbols of OSF logic are ordered in a sub-
sumption relation, this procedure should also account for the interactions between the two
relations. Our proposed solution consists in a transformation that takes a sort subsumption
relation and a sort similarity as inputs, producing a fuzzy sort subsumption relation that
intuitively combines the information from both relations and their interactions. The ad-
vantage is that, as a consequence of this transformation, the same unification rules of fuzzy
OSF logic can be applied to this setting, and a single unification may be able to replace
several similarity-based SLD resolution steps.

With respect to practical applications of our approach, we discuss logic programming
languages based on fuzzy OSF logic and on similarity-based OSF logic, and a similarity-
based extension of the CEDAR reasoner, a Semantic Web reasoner based on OSF logic.
These applications rely on a fuzzy subsumption relation, or on a sort similarity relation, in
order to provide approximate answers to queries posed to a knowledge base.
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Introduction

Knowledge Representation and Reasoning (KRR) is the area of Artificial Intelligence con-
cerned with how knowledge can be explicitly represented by symbols and manipulated in
an automated way by reasoning algorithms in order to to solve complex problems [31, 57].
Over the years, the field has embraced a diverse range of approaches, starting from early
formalisms like frames [85] and conceptual graphs [108], to the most recent applications
integrating knowledge graphs with machine learning and language modeling techniques.

This thesis focuses on Order-Sorted Feature (OSF) logic [10], a KRR language rooted
in Hassan Aït-Kaci’s work on designing a calculus of partially ordered type structures [2].
Originally, this language was meant to model the notions of subsumption and unification
in inheritance-based KRR formalisms such as Brachman’s structured inheritance networks
[2, 4, 65]. OSF logic and related formalisms – e.g., feature logic [106], or the logic of
typed feature structures [34] – have been applied in computational linguistics (e.g., [34, 46,
107, 119]) and implemented in constraint logic programming languages such as LOGIN [8],
LIFE [10] and CIL [86]. OSF logic has also been proposed as a KRR language for the
Semantic Web by Aït-Kaci [4], and a Semantic Web reasoner based on OSF logic has been
implemented in the context of the CEDAR project [6, 15].

As the name of the language suggests, OSF logic is based on sort symbols (or sorts) and
feature symbols (or features). Features denote functional attributes of objects, while sorts
represent sets of objects. Sorts are ordered in a subsumption (is-a) relation that models
an inclusion relation between classes. Starting from sorts and features, OSF logic allows to
build OSF terms, record-like structures that denote complex classes of objects.

Closely related to OSF logic are Description Logics (DLs), a family of formal languages
that also descend from Brachman’s structured inheritance networks and from the effort to
overcome the lack of a formal semantics in earlier KRR formalisms like frames and semantic
networks [18, 19, 31]. DLs allow to represent knowledge by building concept descriptions
using a variety of concept and role constructors. Depending on the set of supported con-
structors, each DL can strike a different balance between the reasoning complexity and the
expressivity required by a given application. The most prominent application of DLs is
perhaps the Semantic Web, as they provide, by design, the semantics for the Web Ontology
Language developed by the World Wide Web Consortium [18].
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8 Introduction

Due to their common origin, OSF logic and DLs share a few similarities. For instance,
both languages are based on set-denoting symbols and on symbols for expressing attributes:
sorts and features in OSF logic, concepts and roles in DLs. The sorts and the OSF terms of
OSF logic are ordered in a subsumption relation and, similarly, DL concepts are organized
in a subsumption hierarchy. In both languages, one of the main reasoning problems consists
in deciding whether two sorts, OSF terms, or DL concepts are subsumed by each other.
The two formalisms also exhibit several differences. Perhaps the most apparent one is that
the features of OSF logic denote total functions, while the roles of DL are interpreted as
binary relations. One of the most significant differences between the two languages is that
the semantics of OSF logic is based on the closed world assumption, while DLs adopt an
open world semantics.

There are several advantages that motivate the adoption of OSF logic for the develop-
ment of KRR applications.

• One convenient feature of OSF logic is the flexibility provided by its terms, record-like
structures that generalize the terms of first-order logic. OSF logic does not constrain
its terms to have a fixed arity or a fixed argument order [8]. For instance, an OSF
logic signature admits terms with the same root sort but possibly a different number
and order of arguments, such as movie(year → 1960, directed_by → director) and
movie(directed_by → person). Because the arguments of an OSF term are identified
by feature names rather than positions, OSF terms are also easier to interpret.

• OSF terms also provide a natural way of representing partial information [34]. During
a computation, an OSF term like X : person, representing the class of people, can
become more specific by inheriting additional constraints, resulting, for instance, in the
term X : professor(works_at→ Y : university), representing the class of professors
working at some university.

• Since each subterm of an OSF term can be associated with a variable, it is possible
to express cyclic coreferences within a term, allowing the concise representation of
infinite structures [8], like in the term

X : person


last_name → Y : string,

spouse → person

(
spouse → X,

last_name → Y

)  .

• In a logic programming setting, replacing the first-order terms of Prolog with OSF
terms offers the advantage of integrating inheritance (an is-a subsumption relation)
into the unification process, rather than through a resolution-based inference mecha-
nism, which can result in more efficient computations [8, 37]. This is due to the fact
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that a sort subsumption relation is taken into account in the unification of two OSF
terms. This enables the unification, for instance, of terms such as X : professor and
X : person(works_at→ Y : university).

• The implementation of OSF logic is based on graph encoding techniques that allow
to perform Boolean operations on sorts very efficiently [6, 13]. By leveraging these
techniques, the CEDAR Semantic Web reasoner based on OSF logic has been experi-
mentally demonstrated to be a highly efficient alternative to Semantic Web reasoners
based on DLs [15].

Research questions and contributions

This thesis deals with the theoretical development of approximate reasoning within the
framework of OSF logic, driven by the following research questions.

1. How can OSF logic be provided with a fuzzy semantics, enabling this language to
support vague concepts and real-valued truth degrees?

2. How can the language of OSF logic be extended with a similarity relation on sorts, so
as to define a flexible notion of unification that allows matching different and disjoint
sorts?

In order to address these research questions, the two key contributions of this thesis are the
definition of fuzzy OSF logic and of similarity-based reasoning with OSF logic.

Fuzzy OSF logic Fuzzy OSF logic maintains the basic syntax of OSF logic, but it gener-
alizes its semantics by interpreting sort symbols as fuzzy sets rather than crisp sets, allowing
to represent vague concepts. Moreover, the sorts symbols of fuzzy OSF logic are ordered in
a fuzzy subsumption relation (formally a fuzzy lattice) rather than a crisp one, which pro-
vides more modeling flexibility by allowing to represent graded subsumption relations. The
semantics of the fuzzy sort subsumption relation generalizes Zadeh’s definition of inclusion
of fuzzy sets [44], and it follows the intuition according to which, if the subsumption degree
of a sort s with respect to another sort s′ is equal to β (in symbols, �·(s, s′) = β), then every
instance of the sort s must also be an instance of s′, with degree of membership greater
than or equal to β.

We investigate whether several semantic and computational properties of crisp OSF logic
are preserved in the fuzzy setting. For instance, we show that the fuzzy sort subsumption
ordering can be extended to OSF terms, and that formally this ordering constitutes a fuzzy
lattice such that the greatest lower bound of two OSF terms can be computed through their
unification.
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The generalization to a fuzzy semantics provides OSF logic with the capability to perform
approximate reasoning. In particular, we provide an algorithm for OSF term unification that
can be employed to decide whether two OSF terms are subsumed by each other, and to which
degree. We also define procedures to compute the subsumption degree between two sort
symbols or between two OSF terms, and study their computational complexity.

A potential application of fuzzy OSF logic is discussed, consisting of a fuzzy logic pro-
gramming language that is capable of providing approximate answers to queries by lever-
aging a fuzzy subsumption relation between sort symbols. The development of a fuzzy
semantics of OSF logic also enables the definition of similarity-based reasoning with this
language.

Similarity-based reasoning with OSF logic Approximate reasoning based on fuzzy
relations – in particular similarity relations – has been studied extensively in the fuzzy logic
programming literature (e.g., [64, 72, 74, 101, 118]). Several approaches extend the Prolog
language with a similarity relation, enabling the definition of flexible notions of unification
and SLD resolution, namely weak unification and similarity-based SLD resolution.

One motivation behind the similarity-based approaches is to model a form of reasoning
that may be referred to as reasoning by analogy or by similarity [101]. For instance, this
may be achieved by relaxing the equality constraint on two functor symbols to a flexible
constraint of similarity, when unifying two first-order terms. For example, if the functors
thriller and horror are assumed to be similar, then the term thriller(X) can unify with
the term horror("Psycho") to some degree, leading to approximate solutions to queries
posed to a knowledge base.

Along these lines, defining similarity-based reasoning with OSF logic involves the devel-
opment of a flexible unification procedure for OSF terms that takes into account a similarity
relation between sort symbols. Since the sort symbols of OSF logic are ordered in a sub-
sumption relation, this procedure should also account for the interactions between the two
relations. Our proposed solution consists in a transformation that, taken as inputs a sort
subsumption relation and a sort similarity, outputs a fuzzy sort subsumption relation, which
intuitively combines the information of both relations, and how they interact. Informally,
this is achieved by applying the following inference, inspired by the similarity-based ap-
proaches to logic programming (e.g., [101]):

If the sort s0 is subsumed by the sort s1

and s1 is similar to the sort s2 with degree β
then s0 is subsumed by s2 with degree β.

For example, if slashers are horror movies, and horror movies are similar to thrillers with
similarity degree 0.5, then it is possible to conclude that slashers are also thrillers with
subsumption degree 0.5.
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One advantage of this approach is that, as a consequence of this transformation, the same
unification rules of fuzzy OSF logic can be applied to this setting, and a single unification
may be able to replace several similarity-based SLD resolution steps.

Two applications of similarity-based reasoning with OSF logic are discussed, namely a
fuzzy logic programming language based on OSF terms, and an extension of the CEDAR
Semantic Web reasoner. Both applications rely on a sort similarity relation to provide
approximate answers to queries posed to a knowledge base.

Outline of the thesis

The thesis is structured as follows.

• Chapter 1 provides the definitions from order theory and fuzzy set theory that are
necessary for the development of fuzzy OSF logic and of similarity-based reasoning
with OSF logic.

• Chapter 2 is a brief summary of KRR languages and approaches that are closely
related to OSF logic, so as to provide the context of our research, and a means of
comparison of our work with the current literature. In particular, we discuss DLs
and fuzzy DLs, the fuzzy generalization of DLs whose goal is to handle vagueness and
real-valued truth degrees. The chapter also discusses the research on approximate
reasoning with logic programming based on fuzzy relations such as proximities and
similarities, which has inspired our work in Chapter 5.

• Chapter 3 is a thorough overview of the syntax and semantics of OSF logic that sets the
foundations for our development of fuzzy OSF logic in Chapter 4. Two applications
based on OSF logic are reviewed: (i) the logic programming language LOGIN, an
extension of Prolog where first-order terms are replaced by OSF terms, and (ii) the
CEDAR Semantic Web reasoner. The chapter also provides an overview of the graph
encoding techniques that enable the efficient implementation of OSF logic, which are
also relevant for the implementation of fuzzy OSF logic.

• Chapter 4 develops fuzzy OSF logic, our fuzzy generalization of the semantics of OSF
logic where sorts and OSF terms are interpreted as fuzzy subsets of a domain of inter-
pretation. The semantics of fuzzy OSF logic is investigated thoroughly, generalizing
several results from crisp OSF logic. We provide procedures for the computation of
the subsumption degree between two OSF terms or between two sorts, and we dis-
cuss their complexity and implementation. A potential application of fuzzy OSF logic
consisting of a fuzzy logic programming language is introduced.
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• Chapter 5 deals with similarity-based reasoning with OSF logic. The language of OSF
logic is extended with a similarity relation on sort symbols. By combining this simi-
larity relation with the usual sort subsumption relation of this language it is possible
to define a fuzzy subsumption relation which intuitively combines the information of
both relations and their interaction. We start by combining the two relations into a
fuzzy subsumption preorder, which may however contain cycles. To address this issue,
we introduce a construction of a fuzzy partial order from a fuzzy preorder that gener-
alizes a well-known result from order theory. A definition of a completion of a fuzzy
poset into a fuzzy lattice is presented next, which finalizes the transformation of a sub-
sumption relation and a similarity into a fuzzy subsumption relation. The resulting
fuzzy subsumption is then taken into account when unifying two OSF terms, accord-
ing to the constraint normalization rules of fuzzy OSF logic. The chapter presents
two potential applications of similarity-based OSF logic: a fuzzy logic programming
language and an extension of the CEDAR reasoner which are capable of returning
approximate answer to queries.

• Appendix A contains the proofs of the main results of Chapters 4 and 5.

Publications

The main contributions of this thesis are part of the following publications.

• Gian Carlo Milanese and Gabriella Pasi. “Conjunctive Reasoning on Fuzzy Tax-
onomies with Order-Sorted Feature Logic”. In: 2021 IEEE International Conference
on Fuzzy Systems (FUZZ-IEEE). Luxembourg, Luxembourg, 2021, pp. 1–7. doi:
10.1109/FUZZ45933.2021.9494474

Discussed in Section 4.8, specifically the computation of the subsumption degree of
two sorts, and the encoding of a fuzzy lattice or fuzzy partial order.

• Gian Carlo Milanese and Gabriella Pasi. “Fuzzy Order-Sorted Feature Term Unifica-
tion”. In: Federated Logic Conference. 36th International Workshop on Unification.
Haifa, Israel, 2022. url: https://www.cs.cas.cz/unif-2022/Papers/UNIF_2022_

paper_3.pdf

Discussed in Sections 4.6 and 4.7, specifically the syntactic definition of OSF term
subsumption, and the definition of fuzzy OSF term unification.

• Gian Carlo Milanese and Gabriella Pasi. “Fuzzy order-sorted feature logic”. In: Fuzzy
Sets and Systems 477 (2024), p. 108800. issn: 0165-0114. doi: https://doi.org/

10.1016/j.fss.2023.108800

https://doi.org/10.1109/FUZZ45933.2021.9494474
https://www.cs.cas.cz/unif-2022/Papers/UNIF_2022_paper_3.pdf
https://www.cs.cas.cz/unif-2022/Papers/UNIF_2022_paper_3.pdf
https://doi.org/https://doi.org/10.1016/j.fss.2023.108800
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Discussed in Sections 4.1 to 4.7, involving the fuzzy generalization of the semantics of
OSF logic.

• Gian Carlo Milanese and Gabriella Pasi. “Similarity-Based Reasoning with Order-
Sorted Feature Logic”. In: IEEE Transactions on Fuzzy Systems (2024), pp. 1–14.
doi: 10.1109/TFUZZ.2024.3362897

Discussed in Chapter 5, involving the definition of similarity-based reasoning with
OSF logic.

https://doi.org/10.1109/TFUZZ.2024.3362897




Chapter 1

Preliminaries

One of the distinctive feature of Order-Sorted Feature (OSF) logic is that its set of sort
symbols is ordered in a finite bounded lattice, which models an inclusion relation between
sets of objects. It is thus convenient to recall a few essential notions from order theory
before delving into the formal development of this language. The definitions of preorder,
partial order and lattice are recalled in Section 1.1, where the order theoretic notation em-
ployed throughout the thesis is also fixed. This section also discusses the construction of a
partial order from a preorder (Proposition 1.20), and of a lattice from a partial order (Def-
inition 1.15). The two constructions are useful from the perspective of implementing OSF
logic, and fuzzy generalization of these two results will also be essential for the development
of similarity-based OSF logic in Chapter 5. The definitions of Section 1.1 are based on [41].

In Chapter 4 we develop fuzzy OSF logic, a fuzzy generalization of OSF logic in which
sorts symbols are interpreted as fuzzy sets. Similarly to how OSF logic is based on a lattice
of sort symbols, fuzzy OSF logic requires its sorts symbols to be ordered in a fuzzy lattice.
Chapter 5, on the other hand, deals with an extension of the language of OSF logic with
a similarity relation on its sort symbols, which is modeled as a fuzzy equivalence relation.
All the definitions needed for the development of fuzzy OSF logic and similarity-based OSF
logic are defined in Section 1.2, which follows the theory of fuzzy sets from [44, 68].

1.1 Lattices and orders

We recall a few essential definitions from order theory that are needed for the development
of OSF logic in Chapter 3. We generally assume that the orders mentioned in this document
are finite.

Definition 1.1 (Preorder). A binary relation � on a set X is called a preorder if it

15



16 1.1. Lattices and orders

satisfies:

∀x ∈ X, x � x, (Reflexivity)

∀x, y, z ∈ X, if x � y and y � z, then x � z. (Transitivity)

A preorder constitutes the simplest ordering structure that may be given to a set. While
a preorder (X,�) may contain distinct elements x, y ∈ X such that x � y and also y � x, a
partial order is a refinement of a preorder that imposes the additional constraint whereby,
whenever such a bidirectional relation occurs, the elements x and y must be identical.

Definition 1.2 (Partial order). A binary relation � on a set X is called a partial order
if it satisfies (Reflexivity) and (Transitivity) and

∀x, y ∈ X, if x � y and y � x, then x = y. (Antisymmetry)

A partial order is bounded if ∃>,⊥ ∈ X such that, for all x ∈ X: ⊥ � x � >. The pair (X,
�) is also called a partially ordered set (poset).

A preorder (X,�) can be represented as a directed graph (X,E) – where E ⊆ X2 is a
set of edges on X – such that � is the reflexive and transitive closure of E. Analogously,
a poset (X,�) can be represented as a directed acyclic graph (DAG) (X,E) such that � is
the reflexive and transitive closure of E.

Definition 1.3 (Composition of two binary relations). Let R ⊆ X×Y and S ⊆ Y ×Z
be two binary relations. The composition of R and S is the binary relation defined as
R ◦ S def= {(x, z) ∈ X × Z | ∃y ∈ Y s.t. (x, y) ∈ R, (y, z) ∈ S}. Let Q be a binary relation
on X. The n-th composition of Q with itself is defined inductively by letting Q1 def= Q, and
Qn def= Q ◦Qn−1 for n > 1.

Definition 1.4 (Reflexive and transitive closure of a relation). Let R be a binary
relation on a set X. The transitive closure of R is the binary relation R+ def= ⋃n≥1R

n. The
reflexive and transitive closure of R is the binary relation R∗ def= R+

∪ {(x, x) | x ∈ X}.

Example 1.5 (Preorders and partial orders). Consider the graph (X,E) represented
in Fig. 1.1a. Its reflexive and transitive closure (X,E∗) is a preorder, but it does not satisfy
antisymmetry since, for instance, (u, s) ∈ E∗ and (s, u) ∈ E∗, but u 6= s. This can also be
verified visually, since the graph (X,E) contains a cycle involving the nodes u, r, and s. On
the other hand, the reflexive and transitive closure of the graph represented in Fig. 1.1b is
an example of a bounded partial order with least element ⊥ and greatest element >. .

Given a subset S of a partial order (X,�) it is often convenient to consider the elements
of X that are above or below every element of S, i.e., the upper bounds and the lower
bounds of S.
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Figure 1.1: A preorder and a partial order.

Definition 1.6 (Upper and lower bounds). Let (X,�) be a poset and S ⊆ X. The
set of lower bounds of S is defined as Sl

�
def= {x ∈ X | ∀s ∈ S, x � s}, i.e., it is the set of

elements of X that are below every element of S. The set of upper bounds of S is defined
as Su

�
def= {x ∈ X | ∀s ∈ S, s � x}, i.e., it is the set of elements of X that are above every

element of S.

Analogously, it is also convenient to consider the set of elements that are above or below
some elements of S, i.e., the up-set and the down-set of S.

Definition 1.7 (Up-sets and down-sets). Let (X,�) be a poset. The down-set of an
element x ∈ X is defined as x↓ def= {y ∈ X | y � x}, while its up-set is defined as x↑ def= {y ∈
X | y � x}. The down-set of a subset S ⊆ X is defined as S ↓ def= {x ∈ X | ∃s ∈ S, x � s},
while its up-set is defined as S ↑ def= {x ∈ X | ∃s ∈ S, s � x}.

Note that {x}l� = x↓, {x}u� = x↑, Su
� = ⋂s∈S s↑, and Sl

� = ⋂s∈S s↓.
OSF logic requires its set of sorts symbols S to be ordered in a finite bounded lattice

(S,�) which models a concept subsumption relation. In other words, for each pair of sorts
s0, s1 ∈ S there must exist a sort s such that s � s0 and s � s1 – that is, s is a lower bound,
or a common subsort, of s0 and s1 – and s is the most general sort with this property – that
is, s is the greatest lower bound (GLB) of s0 and s1. Finding the GLB of two sorts is one of
the core operations in reasoning with OSF logic, as will be seen in Chapter 3. Lattices are
formally defined next.

Definition 1.8 (Greatest lower bound and least upper bound). Let (X,�) be a
poset and S ⊆ X. The greatest lower bound (GLB) of S, denoted ⋏S, is the unique x ∈ X
such that x ∈ Sl

� and, for all y ∈ Sl
�, y � x. The least upper bound (LUB) of S, denoted

⋎S, is the unique x ∈ X such that x ∈ Su
� and, for all y ∈ Su

�, x � y.

If S = {x, y}, then ⋏S is also written as x ⋏ y, and ⋎S is also written as x ⋎ y. In a
partial order (X,�), GLBs and LUBs are not guaranteed to exist for every subset S ⊆ X.
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⊥

a b c

d e f

>

Figure 1.2: A lattice.

Definition 1.9 (Lattice). A partial order (X,�) is a lattice if the GLB x⋏y and the LUB
x ⋎ y exist for every pair of elements x, y ∈ X. A lattice is complete if the GLB ⋏S and
the LUB ⋎S exist for every subset S ⊆ X.

Note that every finite non-empty lattice is complete.

Example 1.10 (Lattice). The poset represented in Fig. 1.1b is not a lattice since, for
example, the nodes e and f do not have a GLB. An example of a lattice is represented in
Fig. 1.2. .

Although OSF logic formally requires its set of sort symbols to constitute a finite
bounded lattice, it is often more practical to simply work with a partial order. For instance,
when modeling a subsumption relation, the choice of a partial order may be convenient to
avoid explicitly specifying a GLB for each pair of sort symbols. While two sorts may not
have a GLB in a poset, it is nevertheless always possible to consider the set of their maximal
lower bounds (MLBs).

Definition 1.11 (Minimal and maximal elements). Let (X,�) be a poset and S ⊆ X.
The set of minimal elements of S is defined as bSc def= {x ∈ S | ∀y ∈ S( if y � x, then x =
y)}. The set of maximal elements of S is defined as dSe def= {x ∈ S | ∀y ∈ S( if x �
y, then x = y)}.

Definition 1.12 (Minimal upper bounds and maximal lower bounds). Let (X,
�) be a poset and S ⊆ X. The set of minimal upper bounds (MUBs) of S is defined as
Smub
�

def=
⌊
Su
�

⌋
i.e., it is the set of upper bounds of all elements of S that are minimal with

respect to �. The set of maximal lower bounds (MLBs) of S is defined as Smlb
�

def=
⌈
Sl
�

⌉
i.e.,

it is the set of lower bounds of all elements of S that are maximal with respect to �.

Example 1.13 (Maximal lower bounds). Consider the poset (X,�) represented in
Fig. 1.1b. The set of maximal lower bounds of e and f is {c, d}. .
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The idea of considering MLBs when working with posets rather than lattices is made
formal by the construction of a lattice on the antichains of a partial order (X,�), where
the GLB of two antichains of shape {s0} and {s1} corresponds exactly to the set of MLBs
of s0 and s1 in (X,�). The following definition of this construction is based on [13].

Definition 1.14 (Antichain). Let (X,�) be a poset. Two elements x, y ∈ X are said to
be incomparable – denoted x ‖ y – if x 6� y and y 6� x. An antichain is a subset C ⊆ X

such that, for all x, y ∈ C, x ‖ y if x 6= y. The set of all antichains of (X,�) is denoted
Antichains(X).

Note that, for any S ⊆ X, bSc and dSe are antichains.
The set of antichains of a partial order (X,�) can be endowed with an ordering that

extends the one on (X,�).

Definition 1.15 (Antichain ordering). Let (X,�) be a poset. The partial order � on
X can be extended to a partial order � on Antichains(X) by letting, for all C,C ′ ∈ Anti-
chains(X):

C � C ′ def⇔ ∀x ∈ C ∃x′ ∈ C ′ such that x � x′.

The same symbol � is used for the partial order on X and the partial order on Anti-
chains(X), since its meaning is always clear from context.

Equivalent definitions of the ordering on Antichains(X) can be given as follows.

Proposition 1.16 (Equivalent definition of the antichain ordering). Let (X,�) be
a poset. For all C,D ∈ Antichains(X):

(i) C � D ⇔ (ii) C ↓ ⊆ D↓ ⇔ (iii) C ⊆ D↓.

The following proposition states that (Antichains(X),�) is a completion of (X,�), i.e.,
(Antichains(X),�) is a complete lattice that extends (X,�) in the sense that there exists
an order embedding of (X,�) into (Antichains(X),�), that is, a function f : X → Anti-
chains(X) such that, for all x, y ∈ X, x � y ⇔ f(x) � f(y).

Proposition 1.17 (Antichain lattice). Let (X,�) be a (bounded) poset.

1. (Antichains(X),�) from Definition 1.15 is a (bounded) lattice, where GLBs and LUBs
are defined by letting, for C0, C1 ∈ Antichains(X): C0 ⋏ C1 def= dC0 ↓ ∩ C1 ↓e and
C0 ⋎ C1 def= bC0 ↑ ∩ C1 ↑c.

2. (Antichains(X),�) is a completion of (X,�) as witnessed by the order embedding
f : X → Antichains(X) defined by letting f(x) = {x} for each x ∈ X.

3. Existing GLBs and LUBs in (X,�) are preserved in (Antichains(X),�): for all x, y ∈
X, if z = x ⋏ y, then {z} = {x} ⋏ {y}.
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Figure 1.3: The partial order and its antichain completion of Example 1.18.

Example 1.18 (Antichain lattice). Consider the partial order (X,�) represented in
Fig. 1.3a, which is not a lattice since the elements c and d do not have a GLB. Fig. 1.3b
represent the completion (Antichains(X),�) of (X,�) as defined in Definition 1.15. Note
that, in particular, the GLB of {c} and {d} in (Antichains(X),�) is {a, b}, which is the set
of MLBs of c and d in (X,�). .

We conclude the section by recalling a well known construction of a partial order from
a preorder (X,�), based on the idea of merging in an equivalence class [x] all the elements
y ∈ X such that x � y and y � x. A fuzzy generalization of this result will be a key
component in the development of similarity-based reasoning with OSF logic in Chapter 5.

Definition 1.19 (Equivalence relation). A binary relation ≈ on a set X is called an
equivalence relation if it satisfies (Reflexivity), (Transitivity) and

∀x, y ∈ X, if x ≈ y, then y ≈ x. (Symmetry)

The equivalence class of x ∈ X is the set [x]≈ def= {y ∈ X | x ≈ y}. The superscript in [x]≈ is
dropped when ≈ is clear from context. The set of equivalence classes X/≈

def= {[x]≈ | x ∈ X}
forms a partition of X.

Proposition 1.20 (Partial order on the quotient set of a preorder). Every preorder
(X,�) induces an equivalence relation ≈ on X defined by letting, for all x, y ∈ X, x ≈ y def⇔
x � y and y � x. The preorder � ⊆ X×X can be extended to partial order � ⊆ X/≈×X/≈

by letting, for all x, y ∈ X, [x]≈ � [y]≈ def⇔ ∃x′ ∈ [x]≈,∃y′ ∈ [y]≈ s.t. x′ � y′.

The same symbol � is used for the preorder on X and the partial order on X/≈, since
its meaning is always clear from context.
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Figure 1.4: The preorder and partial order of Example 1.21.

Example 1.21 (Partial order on the quotient set of a preorder). Fig. 1.4b represents
the partial order constructed on the equivalence classes of the elements of the preorder
represented in Fig. 1.4a according to Proposition 1.20. .

1.2 Fuzzy set theory and fuzzy orders

In this section we recall the basic definitions of fuzzy set theory [44, 68] that are necessary
for the development of fuzzy OSF logic and similarity-based OSF logic in Chapter 4 and
Chapter 5. Whenever possible, we employ the same notation for fuzzy sets and fuzzy orders
as the one used for crisp sets and orders, but with the addition of a small dot (·) to avoid
ambiguity. For example, the symbol for the intersection of two crisp sets is ∩, while the
symbol for the intersection of two fuzzy sets is ⩀.

1.2.1 Fuzzy sets

Every subset C of a set X is associated with a characteristic function 1C : X → {0, 1}
defined by letting

1C(x) def=

1 if x ∈ C,

0 otherwise.

A fuzzy subset generalizes this definition by letting the value of a membership function range
in the unit interval [0, 1].

Definition 1.22 (Fuzzy subset, support and β-cut). A fuzzy subset F of a (crisp) set
X is determined by its membership function µF : X → [0, 1]. A fuzzy subset F of X can
also be represented as

F = {β/x | µF (x) = β}.
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Name t-norm t-conorm
Gödel β0 ∧ β1 def= min(β0, β1) β0 ∨ β1 def= max(β0, β1)
Product β0 ∧p β1 def= β0 · β1 β0 ∨p β1 def= β0 + β1 − β0 · β1
Łukasiewicz β0 ∧l β1 def= max(β0 + β1 − 1, 0) β0 ∨l β1 def= min(β0 + β1, 1)

Table 1.1: Examples of t-norms and t-conorms.

The support of F is |F | def= {x ∈ X | µF (x) > 0}, while the β-cut1 of F (β ∈ [0, 1]) is
|F |β def= {x ∈ X | µF (x) ≥ β}.

The fuzzy generalizations of the intersection and the union of crisp subsets are based
on operations known as triangular norms (t-norms) and triangular conorms (t-conorms).
Common examples of these operations are given in Table 1.1. In this thesis we adopt the
Gödel t-norm ∧ (minimum) and t-conorm ∨ (maximum).

Definition 1.23 (Intersection and union of fuzzy subsets). Let X be a set and F be
a set of fuzzy subsets of X. The intersection ⩀F and the union ⊍F of F are defined by
letting

µ
⩀F (x) def= inf({µF (x) | F ∈ F}) and µ

⊍F (x) def= sup({µF (x) | F ∈ F}).

Note that the latter definition employs inf and sup rather than min and max in order
to be applicable to sets of fuzzy subsets of arbitrary cardinality. If F is finite, then clearly

µ
⩀F (x) =

∧
F∈F

µF (x) = min({µF (x) | F ∈ F}), and

µ
⊍F (x) =

∨
F∈F

µF (x) = max({µF (x) | F ∈ F}).

The literature on fuzzy sets also provides several definitions of the complement of a fuzzy
set, based on a fuzzy negation operator. Two examples are the standard (or Łukasiewicz)
negation and the Gödel negation, which are defined, respectively by letting

	lβ def= 1− β and 	gβ def=

1 if β = 0,

0 otherwise.

Definition 1.24 (Complement of a fuzzy subset). Let X be a set, let F be a fuzzy
subset of X, and let 	 be a fuzzy negation operator (e.g., 	g or 	l). The complement X \F
of F is defined by letting, for all x ∈ X, µX\F (x) def= 	µF (x).

1Note that in the literature this is usually refereed to as an α-cut, but we prefer to use the name β-cut
so as to avoid notational clashes in later chapters, where α is used as the symbol for variable assignments.
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Name Implication

Gödel β0 ⇒g β1 def=
{

1 if β0 ≤ β1

β1 otherwise

Goguen (or product) β0 ⇒p β1 def=
{

1 if β0 ≤ β1
β1
β0

otherwise

Łukasiewicz β0 ⇒l β1 def= min(1− β0 + β1, 1)
Kleene Dienes β0 ⇒kd β1 def= max(1− β0, β1)

Table 1.2: Examples of fuzzy implication operators.

Finally, an implication operator can be defined starting from a t-norm, or from a t-
conorm and a fuzzy negation operator, generalizing analogous formulas from crisp proposi-
tional logic.

Definition 1.25 (R-implication and s-implication). Let ∧t be a t-norm, let ∨t be a
t-conorm, and let 	 be a fuzzy negation operator. The r-implication ⇒ with respect to ∧t
is defined by letting, for all β0, β1 ∈ [0, 1]:

β0 ⇒ β1 def= sup{β | β0 ∧t β ≤ β1}.

The s-implication ⇒ with respect to ∨t and 	 is defined by letting, for all β0, β1 ∈ [0, 1]:
β0 ⇒ β1 def= 	β0 ∨t β1.

A few examples of fuzzy implication operators are shown in Table 1.2. The implication
⇒kd is an s-implication based on 	l and ∨, while⇒l is an s-implication based on 	l and ∨l.
The implications ⇒g, ⇒l, and ⇒p are r-implications based on ∧, ∧l, and ∧p, respectively.

We adopt the convention of identifying a fuzzy subset F with its membership function
µF in order to make the notation less cumbersome.

Remark 1 (Fuzzy set notation). The membership function of a fuzzy subset F of a set
X is simply written F : X → [0, 1] rather than µF : X → [0, 1].

1.2.2 Fuzzy orders

Fuzzy OSF logic is based on a fuzzy subsumption relation, i.e., a fuzzy binary relation that
associates a subsumption degree in [0, 1] with every pair of sort symbols.

Definition 1.26 (Fuzzy binary relation). A fuzzy binary relation R between the sets X
and Y is a fuzzy subset of X × Y , i.e., it is a function R : X × Y → [0, 1].

Fuzzy preorders and fuzzy partial orders are generalization of preorders (Definition 1.1)
and partial orders (Definition 1.2).
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Definition 1.27 (Fuzzy preorder). A fuzzy binary relation R on a set X is a fuzzy
preorder if it satisfies:

∀x ∈ X, R(x, x) = 1, (Fuzzy Reflexivity)

∀x, y, z ∈ X, R(x, z) ≥ R(x, y) ∧R(y, z). (Max-Min Transitivity)

Equivalently, (Max-Min Transitivity) can also be defined as follows:

∀x, z ∈ X, R(x, z) ≥
∨
y∈X

(R(x, y) ∧R(y, z)).

Definition 1.28 (Fuzzy partial order). A fuzzy binary relation R on a set X is a fuzzy
partial order if it satisfies (Fuzzy Reflexivity) and (Max-Min Transitivity) and

∀x, y ∈ X, if R(x, y) > 0 and R(y, x) > 0, then x = y. (Strong Fuzzy Antisymmetry)

The pair (X,R) is called a fuzzy partially ordered set (fuzzy poset).

A fuzzy preorder (X,R) can be represented as a weighted directed graph (X,E, λE)
(where E ⊆ X2 is a set of edges and λE : E → [0, 1] labels each edge with a value in [0, 1])
such that R is the reflexive and transitive closure of λE . Analogously, a fuzzy poset (X,R)
can be represented as a weighted DAG (X,E, λE) such that R is the reflexive and transitive
closure of λE .

Definition 1.29 (Composition of fuzzy binary relations). The (max-min) composition
of two fuzzy binary relations R and Q on a finite set X is the fuzzy binary relation R ·◦ Q
defined by the membership function

R ·◦Q(x, z) def=
∨
y∈X

(R(x, y) ∧Q(y, z)).

The n-ary composition of a fuzzy binary relation R with itself is defined by letting R1 def= R

and Rn def= R ·◦Rn−1 for n > 1.

Definition 1.30 (Reflexive and transitive closure of a fuzzy binary relation). The
transitive closure of a fuzzy binary relation R is defined as R⊕ def= ⊍m≥1R

m. The reflexive
and transitive closure R⊛ of a fuzzy binary relation R is obtained by letting R⊛(x, y) def= 1 if
x = y and R⊛(x, y) def= R⊕(x, y) otherwise.

Example 1.31 (Fuzzy preorder and fuzzy partial order). Consider the weighted
directed graph (X,E, λE) of Fig. 1.5a. Edges with no weight are assumed to be implicitly
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Figure 1.5: A fuzzy preorder and a fuzzy partial order.

labeled with a 1. Let R : X ×X → [0, 1] be defined by letting, for all x, y ∈ X:

R(x, y) def=

λ
⊛

E(x, y) if (x, y) ∈ E∗,

0 otherwise.

The pair (X,R) is a fuzzy preorder. Note that antisymmetry is not satisfied, since, for
instance, R(r, u) = 0.5 and R(u, r) = 1, but r 6= u. This can also be seen from the graph
representation of (X,R), since u and r are part of a cycle together with the node s.

In a similar way, the weighted graph of Fig. 1.5b represents a fuzzy partial order. .

We introduce the following conventions regarding infix notation for fuzzy binary rela-
tions.

Remark 2 (Infix notation). IfR is a fuzzy binary relation, then xRαy stands forR(x, y) =
α, and xRy stands for R(x, y) > 0.

1.2.3 Fuzzy similarity relations

Several approaches to approximate reasoning based on fuzzy relations such as proximities
and similarities have been proposed in the fuzzy logic programming literature. The goal
of this research, which is briefly reviewed in Section 2.2, is to make query answering from
knowledge bases more flexible, by allowing the retrieval of approximate (not exact, but
similar) solutions to a query. In Chapter 5 we develop an extension of OSF logic based on a
similarity relation on the set of sort symbols, which will enable approximate reasoning with
this language. Proximity relations and similarity relations are defined next.

Definition 1.32 (Proximity relation). A fuzzy binary relation∼ on a setX is a proximity
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Figure 1.6: Representation of a proximity or a similarity relation.

if it satisfies (Fuzzy Reflexivity) and

∀x, y ∈ X,∼(x, y) = ∼(y, x). (Fuzzy Symmetry)

Definition 1.33 (Similarity relation). A fuzzy binary relation∼ on a setX is a similarity
if it satisfies (Fuzzy Reflexivity), (Fuzzy Symmetry) and (Max-Min Transitivity).

A proximity relation ∼ can be represented as a weighted directed graph of which ∼ is the
reflexive closure. A similarity relation ∼ can be represented as a weighted directed graph,
of which ∼ is the reflexive and transitive closure.

Example 1.34 (Proximity and similarity relations). Consider the weighted directed
graph (X,E, λE) of Fig. 1.6. Let ∼: X ×X → [0, 1] be defined by letting, for all (x, y) ∈ X:

∼(x, y) def=


1 if x = y,

λE(x, y) else, if (x, y) ∈ E,

0 otherwise.

Then ∼ is a proximity relation on X. Note that ∼ does not satisfy transitivity since, for
instance, ∼(a, b) = 0.3 and ∼(b, c) = 0.4, but ∼(a, c) = 0. The transitive closure ∼⊕ of ∼ is
a similarity relation such that, for example, ∼⊛(a, c) = 0.5. .

The following propositions provide a connection between the fuzzy binary relations de-
fined in this section and their crisp counterparts of Section 1.1.

Proposition 1.35 (Crisp and fuzzy properties of binary relations). Let R be a fuzzy
binary relation on a set X.

1. If R satisfies (Fuzzy Reflexivity), then |R| satisfies (Reflexivity).

2. If R satisfies (Max-Min Transitivity), then |R| satisfies (Transitivity).

3. If R satisfies (Strong Fuzzy Antisymmetry), then |R| satisfies (Antisymmetry).

4. If R satisfies (Fuzzy Symmetry), then |R| satisfies (Symmetry).
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Corollary 1.36 (Support of fuzzy binary relations). Let R be a fuzzy binary relation
on a set X.

1. If R is a fuzzy preorder, then |R| is a preorder.

2. If R is a fuzzy partial order, then |R| is a partial order.

3. If R is a fuzzy similarity, then |R| is an equivalence relation.

1.2.4 Fuzzy lattices

Finally, we recall the definition of a fuzzy lattice [36, 79, 80], which will be central in our
fuzzy generalization of OSF logic in Chapter 4.

Definition 1.37 (Lower and upper bounds in a fuzzy poset). Let (X,�·) be a fuzzy
poset and S ⊆ X. The set of lower bounds of S is defined as Sfl

�·
def= {x ∈ X | ∀x′ ∈ S, x�·x′},

and the set of upper bounds of S is defined as Sfu def= {x ∈ X | ∀x′ ∈ S, x′ �· x}2.

Definition 1.38 (Maximal elements and down-sets in a fuzzy poset). Let (X,�·)
be a fuzzy poset and S ⊆ X. The set of maximal elements of S is defined as dSe· def= {x ∈
S | ∀x′ ∈ S( if x �· x′, then x = x′)}. The (fuzzy) down-set of S is defined as the set
S↓· def= {x ∈ X | ∃x′ ∈ S, x�· x′}.

Definition 1.39 (Fuzzy GLB and LUB). Let (X,�·) be a fuzzy poset and S ⊆ X. The
GLB of S is the unique x ∈ Sfl

�· such that, for all x′ ∈ Sfl
�·, x′ �· x. The LUB of S is the

unique x ∈ Sfu such that, for all x′ ∈ Sfu , x�· x′. If the GLB of S exists, it is denoted �S,
or simply x 4 x′ in case S = {x, x′}. Similarly, if the LUB of S exists, it is denoted �S, or
simply x 5 x′ in case S = {x, x′}.

Definition 1.40 (Fuzzy lattice and bounded lattice). A fuzzy poset (X,�·) is a fuzzy
lattice if every pair of its elements has a GLB and a LUB. A fuzzy lattice (X,�·) is bounded
if there are elements ⊥,> ∈ X such that, for all x ∈ X, �·(⊥, x) = 1 and �·(x,>) = 1.

Example 1.41 (Fuzzy lattice). Fig. 1.7 depicts the weighted graph representation (X,
E, λE) of a fuzzy bounded lattice (X,�·), where edges with no weight are assumed to be
implicitly labeled with a 1. The fuzzy lattice can be formally defined by letting, for all
x, y ∈ X,

�·(x, y) def=


1 if x = ⊥ or y = >,

λ⊛E(x, y) else, if (x, y) ∈ E∗,

0 otherwise.

2Recall that x�· x′ is an abbreviation for �·(x, x′) > 0.
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Figure 1.7: A fuzzy lattice.

This definition ensures that the boundedness condition is satisfied by �·, without the need
to add extra edges to its graph representation, as simply taking the transitive closure of λE
might not be sufficient in general. In this case, for instance, λ⊛E(⊥, d) < 1. .

The following proposition states that the support (X, |�·|) of a fuzzy lattice (X,�·) is a
lattice. Additionally, if x is the GLB of x0 and x1 in (X,�·), then x is also the GLB of x0

and x1 in (X, |�·|), and vice versa. This property ensures that the computation of GLBs
in a fuzzy lattice can be reduced to the crisp setting. For instance, it would be possible
to employ the techniques of [5, 13] on the weighted graph representation of a fuzzy lattice
simply by ignoring the edge weights, thus preserving the same computational complexity.
The computation of GLBs in a fuzzy lattice and of the subsumption degree �·(x, x′) will be
discussed in Section 4.8, in the context of fuzzy OSF logic.

Proposition 1.42 (Fuzzy and crisp lattices). If (X,�·) is a fuzzy lattice, then (X, |�·|)
is a (crisp) lattice. Moreover, if ⋏ is the GLB operation for (X, |�·|), then �S = ⋏S for
every subset S ⊆ X.



Chapter 2

Related Work

Order-Sorted Feature (OSF) logic is one of many logical formalisms that have been re-
searched in Knowledge Representation and Reasoning (KRR), the area of Artificial Intelli-
gence concerned with how knowledge can be explicitly represented by symbols and manipu-
lated in an automated way by reasoning algorithms in order to solve problems [31, 57]. This
chapter provides a brief overview of a few KRR languages and approaches that are closely
related to OSF logic and the research presented in this thesis. The presentation is meant
to provide the necessary context for Chapters 3 to 5 and to facilitate comparisons, and it is
not intended as a comprehensive survey.

Closely related to OSF logic are Description Logics (DLs) [18], as both languages are
descendants of Ron Brachman’s structured inheritance networks and were developed to over-
come the lack of a formal semantics in earlier KRR formalisms such as frames and semantic
networks [4, 18, 19, 31]. DLs allow to represent knowledge through concept descriptions,
expressions built by applying concept and role constructors starting from unary predicates
called atomic concepts, and from binary relations called atomic roles. One advantage of
DLs is the possibility of choosing among a variety of constructors to build new concepts
and roles starting from the atomic ones in order to achieve the desired trade-off between
the reasoning complexity and the expressivity needed for the intended application. A brief
overview of DLs is provided in Section 2.1.1.

In addition to addressing challenges related to complexity and scalability, several real-
world applications need to handle uncertain, imprecise, or ambiguous knowledge, or could
benefit significantly from this capability. Classical two-valued logic is inherently inadequate
for addressing inconsistencies, uncertainty, or fuzziness. Extensions of DLs that can handle
imperfect knowledge are being researched extensively (e.g., [30, 77] are two surveys on
the matter), including probabilistic, possibilistic, and fuzzy DLs. Fuzzy DLs are briefly
discussed in Section 2.1.2 in order to aid the comparison with our fuzzy generalization of
OSF logic introduced in Chapter 4.

Another approach to approximate reasoning that is related to our research of Chapter 5

29
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is similarity-based reasoning in logic programming. In general terms, this approach con-
sists in enhancing the ordinary (crisp) representation of a Prolog knowledge base with the
addition of a similarity relation between symbols. This allows, for instance, to relax the
equality constraint on two functor symbols to a flexible constraint of similarity when unify-
ing two first-order terms (FOTs). This kind of relaxed unification is generally referred to
as weak unification (e.g., [101]). A similarity relation can also be considered between pred-
icate symbols in order to perform similarity-based SLD resolution [101]. A few approaches
to approximate reasoning in logic programming based on fuzzy relations are recalled in
Section 2.2.

2.1 Description logics and fuzzy description logics

2.1.1 Description logics

DLs are a family of KRR languages that can be employed to represent the terminological
knowledge of an application domain in a structured and formally well-understood way [18].
The knowledge of a domain can be captured in DL through concept descriptions, expressions
built from unary predicates called atomic concepts (like Person or Animal) and binary
relations called atomic roles (like hasChild or hasParent). More complex concepts and roles
are built from the atomic ones by applying concept and role constructors. For instance, the
expression ∃hasChild.> denotes the class of entities who have a child.

Depending on which constructors are allowed by a specific DL, a different trade-off
between expressivity and computational complexity can be achieved. Indeed, most DLs
restrict the language of FOL in order to be decidable [76]. The DL AL was introduced as a
minimal language that is of practical interest [19, 100]. Negation in this DL is restricted to
atomic concepts, and only the top concept >, representing the whole application domain,
is allowed under the scope of an existential quantification.

Definition 2.1 (The DL AL). The concept descriptions of AL (denoted C,D, . . .) are
defined inductively as follows.

Top and bottom The top concept > and the bottom concept ⊥ are AL concepts.

Atomic negation If A is an atomic concept, then A and ¬A are AL concepts.

Conjunction If C and D are AL concepts, then so is C uD.

Universal restriction If R is an atomic role and C is an AL concept, then ∀R.C is an
AL concept.

Limited existential restriction If R is an atomic role, then ∃R.> is an AL concept.
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For instance, in AL it is possible to represent the class of people who have a child, with
the expression Person u ∃hasChild.>.

The meaning of the concept descriptions of AL is provided by structures called inter-
pretations. A DL interpretation is a tuple I = (∆I , ·I) such that ∆I is a non-empty set
(the domain of the interpretation) and ·I is an interpretation function that assigns a subset
AI of ∆I to each atomic concept A, and a binary relation RI ⊆ ∆I ×∆I to each atomic
role R [19].

Definition 2.2 (Semantics of AL [19]). Let I = (∆I , ·I) be an interpretation. The
interpretation function ·I is extended to AL concept descriptions according to the following
inductive definitions:

• >I def= ∆I and ⊥I def= ∅,

• (¬A)I def= ∆I \AI ,

• (C uD)I def= CI ∩DI ,

• (∀R.C)I def= {x ∈ ∆I | RI(x) ⊆ CI}, and

• (∃R.>)I def= {x ∈ ∆I | RI(x) 6= ∅},

where RI(x) def= {y ∈ ∆I | (x, y) ∈ RI}.

In DLs, the knowledge about a domain is usually organized in an ontology (or knowledge
base) K = (T ,A), consisting of a terminological component T and an assertional component
A. The terminological component, also called the T-Box, involves axioms of shape C v D

(concept inclusion) or C ≡ D (concept equivalence or definition). A concept inclusion
C v D and a concept equivalence C ≡ D are satisfied in an interpretation I if, respectively,
CI ⊆ DI and CI = DI .

The assertional component of a DL knowledge base, or the A-Box, involves assertions
about specific entities of the domain of interpretation. Assertions are expressions of shape
C(a) (concept assertion) and R(a, b) (role assertion), where C is a concept, R is a role, and
a and b are individuals. Individuals are interpreted as objects of the domain, i.e., aI ∈ ∆I

and bI ∈ ∆I . An interpretation I = (∆I , ·I) satisfies a concept assertion C(a) if aI ∈ CI ,
and it satisfies a role assertion R(a, b) if (aI , bI) ∈ RI .

Example 2.3 (AL knowledge base). Consider the atomic concepts Movie, Horror ,
Comedy and ComedyHorror , the individuals alinda, celeste, psycho, and city_lights, and
the atomic role likesMovie. Let K = (T ,A) be the AL knowledge base defined as follows.
The assertional component A of K contains the facts

likesMovie(alinda, psycho), likesMovie(celeste, city_lights),
Horror(psycho),Comedy(city_lights),¬Horror(city_lights),
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while the T-Box T contains the concept inclusions Horror v Movie and Comedy v Movie,
and the concept definition ComedyHorror = Horror u Comedy.

An example of an AL concept description constructed with the language of this knowl-
edge base is ∀likesMovie.Horror . The denotation of this concept under any interpretation
I that satisfies K is the set containing all the elements of the domain that only like horror
movies. For instance, it could contain the element alindaI , but it may never contain the el-
ement celesteI , since (celesteI , city_lightsI) ∈ likesMovieI and city_lightsI 6∈ HorrorI . .

Reasoning with DLs allows one to infer implicit knowledge from the knowledge that is
explicitly expressed in the knowledge base [19]. The inference patterns supported by DLs
are related to the classification of concepts and individuals, i.e., they consist in determin-
ing whether a concept C is a subconcept of another concept D, or verifying whether an
individual a belongs to a given concept C. Concept classification allows to structure the
terminology in a subsumption hierarchy, while individual classification provides information
on the properties of an individual [19]. More specifically, the following are a few of the most
common reasoning tasks related to DLs [18, 19].

• Deciding the consistency of a concept C with respect to a knowledge base K, which
amounts to deciding whether there is a model I of K such that CI 6= ∅.

• Deciding the subsumption of two concepts C and D with respect to K, which amounts
to deciding if CI ⊆ DI for all models I of K.

• Deciding the equivalence of two concepts C and D with respect to K, which amounts
to deciding their subsumption in the two directions.

• Deciding whether an individual a is an instance of a concept C with respect to K,
which amounts to deciding whether aI ∈ CI holds for all models I of K.

• Deciding whether a pair of individuals (a, b) is an instance of a role R with respect to
K, which amounts to deciding whether (aI , bI) ∈ RI holds for all models I of K.

The complexity of these reasoning tasks varies depending on the concept constructors
supported by a DL. For instance, in ALC – the extension of AL that supports the comple-
ment of any concept, not just atomic ones, and that also allows any concept under the scope
of an existential restriction – concept satisfiability, concept subsumption, and A-Box con-
sistency are PSpace-complete problems [18]. In the same DL, deciding satisfiability with
respect to a general T-Box is ExpTime-complete, while the problem becomes PSpace-
complete if the T-Box is definitorial, i.e., it contains only unique and acyclic definitions
[18]. As an example of how adding constructors to a DL can affect its reasoning complexity,
deciding concept satisfiability in ALC with either transitive roles or role hierarchies is in
PSpace, but the problem becomes ExpTime-hard with both constructors [18].
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DLs have been implemented in several reasoners – such as FaCT++ [116], HermiT
[52, 102], Pellet [105], TrOWL [115], RacerPro [56], and SnoRocket [75]. The most
notable application of DLs is possibly the Semantic Web [18], an extension of the World Wide
Web in which “information is given well-defined meaning, better enabling computers and
people to work in cooperation” [25]. Indeed, by design, DLs provide the formal semantics
for the Web Ontology Language (OWL), the ontology language developed by the World
Wide Web Consortium [18]. An OWL ontology describes a domain of interest in terms of
classes and properties, which correspond to DL concepts and roles, respectively, together
with a set of axioms that assert, for example, inclusions between classes, like in a DL T-Box
[18]. DLs and OWL have found applications in various fields, such as software engineering,
medicine, biology, natural language processing, and database management [18, 19]. Several
biomedical ontologies have been developed using DLs [18], such as the Biological Pathways
Exchange ontology [98], the Galen ontology [92], the Foundational Model of Anatomy [53],
and the National Cancer Institute thesaurus [58]. More details regarding the applications
of DLs and OWL can be found, for instance, in [18, 19, 21].

2.1.2 Fuzzy description logics

Fuzzy DLs are extensions of DLs whose purpose is to model vagueness and imprecision in
the real world, and to characterize notions that cannot be properly defined with a crisp
predicate, such as the class of tall people [18, 30]. The following presentation of fuzzy DLs
is based on [18, 30, 77, 113].

Fuzzy DLs maintain the same basic syntax of DLs, but the semantics of DL expressions is
now defined through t-norms, t-conorms, fuzzy negations and implications (see Section 1.2).
A fuzzy interpretation I = (∆I , ·I) assigns a fuzzy subset AI : ∆I → [0, 1] to each atomic
concept A, and a fuzzy binary relation RI : ∆I ×∆I → [0, 1] to each atomic role R. The
interpretation of an individual a is the same as in crisp DLs, i.e., aI ∈ ∆I . The semantics
is extended to the concept descriptions of the DL ALC as follows.

Definition 2.4 (Fuzzy semantics of ALC). Let I = (∆I , ·I) be a fuzzy interpretation,
let ∧t be a t-norm, let 	 be a fuzzy negation, and let ⇒ be a fuzzy implication. The
interpretation function ·I is extended to ALC concept descriptions according to the following
inductive definitions1:

• >I def= 1∆I and ⊥I def= 1∅,

• (¬C)I(x) def= 	CI(x) for all x ∈ ∆I ,

• (C uD)I(x) def= CI(x) ∧t DI(x) for all x ∈ ∆I ,
1The symbol 1D denotes the characteristic function 1D : ∆I → {0, 1} of the set D ⊆ ∆I , which is defined

by letting, for all d ∈ ∆I , 1D(d) def= 1 if d ∈ D, and 1D(d) def= 0 otherwise.
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• (∀R.C)I(x) def= infy∈∆I RI(x, y)⇒ CI(y) for all x ∈ ∆I , and

• (∃R.C)I(x) def= supy∈∆I RI(x, y) ∧t CI(y) for all x ∈ ∆I .

The terminological component T of a fuzzyALC knowledge base K = (T ,A) is composed
of fuzzy concept inclusion axioms of shape (C v D,β), i.e., concept inclusions associated
with a truth degree β ∈ [0, 1]. Such an axiom (C v D,β) is satisfied by a fuzzy interpretation
I = (∆I , ·I) if, for every x ∈ ∆I , it holds that CI(x) ⇒ DI(x) ≥ β. The assertional
component A of K is made up of fuzzy concept assertions of shape (C(a), β), and fuzzy role
assertions of shape (R(a, b), β), where C is a concept, R is a role, a and b are individuals,
and β ∈ [0, 1]. A fuzzy concept assertion (C(a), β) is satisfied in a fuzzy interpretation I if
CI(aI) ≥ β, and a fuzzy role assertion (R(a, b), β) is satisfied in I if RI(aI , bI) ≥ β.

Example 2.5 (Fuzzy DL concept inclusion). Consider the atomic concepts Movie,
Horror , Slasher , and Thriller , and the individuals halloween, memento, and psycho. Sup-
pose that I = (∆I , ·I) is a fuzzy interpretation such that ∆I = {h, p,m}, halloweenI = h,
psychoI = p, mementoI = m, and

• ThrillerI(h) = 0.5, and HorrorI(h) = SlasherI(h) = 1;

• ThrillerI(p) = HorrorI(p) = 1 and SlasherI(p) = 0.7;

• ThrillerI(m) = 1;

• MovieI(x) = 1 for every x ∈ ∆I ; and

• all the remaining membership degrees are equal to 0.

Adopting ⇒g (see Table 1.2) as the fuzzy inclusion operator, the interpretation I satisfies
the following fuzzy concept inclusion axioms:

• (C v Movie, 1) for C ∈ {Thriller ,Slasher ,Horror}, since CI(x) ⇒g MovieI(x) = 1
for all x ∈ ∆I ;

• (Slasher v Horror , 1), since SlasherI(x)⇒g HorrorI(x) = 1 for all x ∈ ∆I ;

• (Slasher v Thriller , 0.5), since in particular SlasherI(h)⇒g ThrillerI(h) = 0.5

• (Horror v Thriller , 0.5), since in particular HorrorI(h)⇒g ThrillerI(h) = 0.5.

• (Thriller v C, 0) for C ∈ {Slasher ,Horror}, since ThrillerI(m)⇒g C
I(m) = 0. .

Fuzzy DLs support several reasoning problems, including the following generalizations
of decision problems of crisp DLs [113].
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• Deciding the consistency of a concept C with respect to a knowledge base K, which
amounts to deciding whether there is a model I = (∆I , ·I) of K such that CI(x) > 0
for some x ∈ ∆I .

• Deciding whether the subsumption degree of two concepts C and D with respect to K
is always greater than a given truth degree β, which amounts to deciding if (C v D,β)
is satisfied in all models I of K.

• Deciding whether the degree of membership of an individual a to a concept C with
respect to K is always greater than a given truth degree β, which amounts to deciding
whether CI(aI) ≥ β holds for all models I of K.

• Deciding whether the degree of membership of a pair of individuals (a, b) to a role R
with respect to K is always greater than a given truth degree β, which amounts to
deciding whether RI(aI , bI) ≥ β holds for all models I of K.

Other reasoning problems that have been introduced for fuzzy DLs include finding the best
entailment degree of an axiom with respect to a knowledge base K, or computing the best
satisfiability degree of an axiom with respect to K [113].

The complexity of deciding these reasoning problems depends not only on the expressiv-
ity of a given fuzzy DL (i.e., on which concept constructors are supported), but also on the
adopted t-norms, t-conorms, fuzzy negation and fuzzy implication operators. For instance,
deciding the consistency of a knowledge base in the fuzzy DL NALC (where N stands for an
additional concept constructor called residual negation) with the Gödel t-norm ∧ and im-
plication ⇒g is ExpTime-complete. However, the problem in general becomes undecidable
if the product t-norm ∧p and implication⇒p, or the Łukasiewicz t-norm ∧l and implication
⇒l, are employed instead [30].

Fuzzy DLs have been implemented in a number of reasoners, such as Fire [104, 110],
SoftFacts [114], DeLorean [26], fuzzyDL [28, 29], and LiFR [117]. Several fuzzy
extensions of OWL have been proposed (e.g, [50, 111, 112]), along with a method to represent
fuzzy DL ontologies using OWL 2 annotation properties [27].

2.2 Similarity-based reasoning in logic programming

Approximate reasoning based on fuzzy relations, similarities in particular, has been re-
searched extensively in fuzzy logic programming. Early work includes Ying’s logic for ap-
proximate reasoning [118] and the first papers on similarity-based logic programming [17,
48, 51, 101]. One motivation behind the similarity-based approaches is to model a form of
reasoning that may be referred to as reasoning by analogy or similarity [101]. For instance,
this may be achieved by relaxing the equality constraint on two functor symbols to a flex-
ible constraint of similarity, when unifying two first-order terms (FOTs). For example, if
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the functors thriller and horror are assumed to denote similar concepts, then the term
thriller(X) can unify with the term horror("Psycho") to some extent (degree), leading
to approximate (not exact but similar) solutions to a query posed to a knowledge base. This
kind of relaxed unification is generally referred to as weak unification (e.g., [101]).

This research line has been extended in several ways, including approaches that sup-
port multiple similarity relations [45], proximity relations [61, 64, 74], or related operations
like matching and anti-unification [71, 72, 73]. Moreover, weak unification has been im-
plemented in fuzzy logic programming systems such as FASILL [60] and Bousi∼Prolog [62,
63], which has been employed in several applications such as text classification [94, 99], lin-
guistic feedback in computer games [97], decision making [32, 33], and knowledge discovery
[96]. Aït-Kaci and Pasi [9] have presented a procedure for weak unification that, besides
tolerating different (but similar) functor symbols, also allows the unification of FOTs with
a different number and possibly a different order of arguments. This work has been gener-
alized to proximity relations [90], and a possible incorporation in Bousi∼Prolog has been
proposed [38].

In this section we briefly review weak FOT unification and similarity-based SLD reso-
lution, following [9, 62, 101]. The presentation – which mainly serves as the background
and as a means for comparison with Chapter 5, where similarity-based reasoning with OSF
logic is introduced – is mostly kept informal and carried out through examples.

For the rest of this section, it is assumed that V is a countably infinite set of variables
denoted X,Y,X1, and so on. For each n ≥ 0, Σn is a set of n-ary functor symbols (denoted
f , g, fi, and so on), and Σ def= ⋃n≥0 Σn. If a functor symbol has arity 0, it is called a
constant. For each n ≥ 0, Πn is a set of n-ary predicate symbols (denoted p, q, pi, and so
on), and Π def= ⋃n≥0 Πn. A 0-ary predicate symbol is also called a propositional symbol. The
set TΣ,V of FOTs is defined as usual: variables in V are terms, constants in Σ0 are terms,
and f(t1, . . . , tn) is a term whenever f ∈ Σn and t1, . . . , tn are terms, for each n ≥ 1. A FOT
is denoted by t or ti for some i ∈ N. If p ∈ Πn and t1, . . . , tn are FOTs, then p(t1, . . . , tn) is
an atom. The set of variables occurring in a term t is denoted Vars(t). A substitution is a
function from V to TΣ,V that is the identity except for a finite subset of V, and it can also
be represented as a set {t1/X1, . . . , tn/Xn}. Substitutions are denoted by θ, θ1, and so on,
and the result of applying a substitution θ to a FOT t is denoted tθ.

2.2.1 Weak unification

Unification is a fundamental operation upon which many methods for automated reasoning
are based [20]. Given two FOTs t1 and t2, their unification consists in finding the most
general substitution θ such that t1θ = t2θ, called their most general unifier (MGU). Several
FOT unification algorithms have been proposed in the literature (e.g., see [69] for a survey
on the matter). Along the lines of [9], a unification procedure for FOTs consisting of
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Term Decomposition
[n ≥ 0]
E ∪ {f(s1, . . . , sn) .= f(t1, . . . , tn)}

E ∪ {s1
.= t1, . . . , sn

.= tn}

Variable Erasure

E ∪ {X .= X}

E

Variable Elimination
[X /∈ Vars(t), X occurs in E]
E ∪ {X .= t}

E[t/X] ∪ {X .= t}

Equation Orientation
[t /∈ V]
E ∪ {t .= X}

E ∪ {X .= t}

Figure 2.1: Herbrand-Martelli-Montanari FOT unification rules.

transformations of sets of equations is presented in Fig. 2.1. This procedure is dubbed
Herbrand-Martelli-Montanari unification, as [9] tracks the origin of these rules back to
Herbrand’s PhD thesis [59] and Martelli and Montanari’s work [78]. Each unification rule
is of the form

Rule name
[Side condition]
Premise

Conclusion

and it expresses that, whenever the optional side condition is true, the set of equations in the
premise can be transformed into the set of equations in the conclusion. A set of equations is
denoted by E, and the notation E[t/X] stands for the set of equations resulting after every
occurrences of the variable X in E has been replaced with the term t. The unification of
two FOTs t1 and t2 can be performed by applying the rules of Fig. 2.1 starting from the
set {t1

.= t2}, until no rule applies, resulting in a set of equations E′. If all equations in E′

are of the form X
.= t, with X occurring nowhere else in E′, then these equalities provide

a most general unifying substitution (modulo variable renaming) θ = {t/X | X .= t ∈ E′}
such that t1θ = t2θ, otherwise there is no solution. As a simple example, according to the
rules of Fig. 2.1, the unification of the FOTs

t1 = movie(hitchcock, psycho) and t2 = film(hitchcock, X)

immediately fails, as no rule is applicable to the set of equations {movie(hitchcock, psycho) .=
film(hitchcock, X)}, since the functors movie and film are different.

The weak unification procedure presented in [101] is a generalization of the standard



38 2.2. Similarity-based reasoning in logic programming

Weak Term Decomposition
[n ≥ 0, f ∼β1 g]
(E ∪ {f(s1, . . . , sn) .= g(t1, . . . , tn)})β0

(E ∪ {s1
.= t1, . . . , sn

.= tn})β0∧β1

Variable Erasure

(E ∪ {X .= X})β

(E)β

Variable Elimination
[X /∈ Vars(t), X occurs in E]
(E ∪ {X .= t})β

(E[t/X] ∪ {X .= t})β

Equation Orientation
[t /∈ V]
(E ∪ {t .= X})β

(E ∪ {X .= t})β

Figure 2.2: Weak FOT unification rules [101].

unification algorithm for FOTs based on a similarity relation2 ∼: Σ × Σ → [0, 1] between
the functor symbols of a first-order signature. The similarity relation enables to perform
approximate reasoning at a syntactic level rather than at a rule level, by allowing to match
different but similar functor symbols. In other words, the equality constraint on functor
symbols is replaced by a flexible constraint of similarity. The similarity on functor symbols
is extended to a similarity relation on FOTs by letting [101]:

• ∼(X,X) def= 1 for all X ∈ V;

• ∼(X, t) def= 0 and ∼(t,X) def= 0 for all X ∈ V and t ∈ TΣ,V such that t 6= X;

• For all f, g ∈ Σn and si, ti ∈ TΣ,V such that f ∼β g and si ∼βi ti (for 1 ≤ i ≤ n):

∼(f(s1, . . . , sn), g(t1, . . . , tn)) def= β ∧
n∧
i=1

βi.

Fig. 2.2 shows the weak unification rules of Sessa [101]. The main differences with
respect to the standard FOT unification rules are that (i) the weak unification rules as-
sociate an approximation degree β ∈ [0, 1] to each set of equations E, and (ii) the rule
Weak Term Decomposition allows the simplification of the equation f(s1, . . . , sn) .= g(t1,
. . . , tn) even in cases where f and g are different, provided that they are similar to some
degree β. The unification process starts from the set of equations ({t1

.= t2})1 with asso-
ciated approximation degree 1, and it terminates when no more rules are applicable. The
approximation degree associated with a set of equations can possibly only decrease before
the end of the unification process. If the procedure is successful, the result of applying the

2Similarity relations are defined in Section 1.2.3.
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rules of Fig. 2.2 to two FOTs t1 and t2 is a substitution θ such that ∼(t1θ, t2θ) = β for some
β ∈ [0, 1].

Assuming, for instance, that ∼(movie,film) = 0.8, then the weak unification procedure
of [101] allows to unify the terms t1 = movie(hitchcock, psycho) and t2 = film(hitchcock, X)
with the substitution θ mapping X to psycho. The terms t1θ and t2θ are deemed to be
similar with degree 0.8.

As preliminary work towards the definition of similarity-based reasoning with OSF logic,
Aït-Kaci and Pasi [9] have proposed a generalization of Sessa’s weak unification that allows
matching two FOTs even if they have a different arity or if their argument positions are in
a different order, besides tolerating different, but similar, functor symbols. Indeed, relaxing
these constraints makes the setting more similar to that of OSF logic, where terms do not
have a fixed arity or argument order (see Chapter 3). For instance, with the approach of [9]
it is possible to weakly unify the FOTs

t3 = movie(hitchcock, psycho, 1960) and t4 = film(X, hitchcock).

While the unification rules of Fig. 2.1, or the weak unification rules of Fig. 2.2 would clearly
fail to unify these two terms, the approach of [9] is to consider, for each f ∈ Σm and
g ∈ Σn with m ≤ n, an injective function µf,g : {1, . . . ,m} → {1, . . . , n} (satisfying a few
consistency conditions), called an argument alignment mapping. A similarity relation ≈
between functor symbols can then be extended to a similarity ≈ on TΣ,V . The definition of
≈ on variables is the same as Sessa’s [101], while the definition on complex terms becomes:

• For all f ∈ Σm, g ∈ Σn and si, tj ∈ TΣ,V such that f ≈β g and si ≈βi tµf,g(i) (with
1 ≤ i ≤ m and 1 ≤ j ≤ n):

≈(f(s1, . . . , sm), g(t1, . . . , tn)) def= β ∧
m∧
i=1

βi.

The weak unification procedure of [9] consists of the rules of Fig. 2.3, together with the
rules Variable Erasure, Variable Elimination and Equation Orientation of Fig. 2.2, yielding a
unification procedure that tolerates functor arity and argument position mismatches, besides
different but similar functor symbols. For instance, consider the terms t3 = movie(hitchcock,
psycho, 1960) and t4 = film(X, hitchcock), and assume that movie ≈0.9 film and that the
argument alignment mapping µfilm,movie is such that µfilm,movie(1) = 2 and µfilm,movie(2) = 1.
The weak FOT unification rules with non-aligned arguments of [9] would find the substi-
tution θ mapping X to psycho as the unifier of the two terms. The terms t3θ and t4θ are
deemed to be similar with degree 0.9.
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Fuzzy Non-Aligned-Argument Term Decomposition
[0 ≤ m ≤ n, f ≈β1 g]
(E ∪ {f(s1, . . . , sm) .= g(t1, . . . , tn)})β0

(E ∪ {s1
.= tµf,g(1), . . . , sm

.= tµf,g(m)})β0∧β1

Fuzzy Equation Orientation
[0 ≤ m < n]
(E ∪ {g(t1, . . . , tn) .= f(s1, . . . , sm)})β

(E ∪ {f(s1, . . . , sm) .= g(t1, . . . , tn)})β

Figure 2.3: Weak FOT unification rules with non-aligned arguments [9].

horror(X) :- slasher(X).
slasher("Psycho").
thriller("Memento").

Figure 2.4: The logic program of Example 2.6.

2.2.2 Similarity-based SLD resolution

The weak unification rules of [101] are instrumental in defining similarity-based SLD res-
olution, a generalization of the SLD resolution procedure where the classical unification
algorithm is replaced by the weak unification procedure of Fig. 2.2. One of the motivations
behind the definition of similarity-based SLD resolution is to model a form of reasoning
that may be referred to as reasoning by analogy or similarity [101]. An example would
be inferring “Alinda likes thriller movies” from the premises “Alinda likes horror movies”
and “horror movies are similar to thrillers”. An advantage of this approach is that it en-
ables flexible query answering: besides exact solutions, a query may return similar solutions,
both in a semantic sense (for instance, by returning movies of a genre that is similar to the
requested one) or syntactically (for example, by tolerating spelling mistakes).

Example 2.6 (Similarity-based SLD resolution). Consider, for example, the Prolog
program of Fig. 2.4 and assume that horror and thriller are similar to degree 0.5. If
similarity-based SLD resolution is adopted, the query ?- thriller(X) will return, besides
X = "Memento", also the solution X = "Psycho" with approximation degree 0.5. This is due
to the fact that, thanks to the similarity relation, the query will resolve with the first clause
of the program, leading to an approximate solution. Intuitively, since "Psycho" is a horror

movie as a consequence of the first rule, and horror movies are similar to thrillers, then,
to some degree, "Psycho" is also a thriller. .
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% Subsumption rules
person(X) :- director(X).
horror(X) :- slasher(X).
movie(X) :- horror(X).
movie(X) :- thriller(X).
% Similarity relation
thriller ~ horror = 0.5.
% Instances
person(alinda).
director(hitchcock).
director(carpenter).
director(nolan).
horror(psycho).
slasher(halloween).
thriller(memento).
% Facts
director_of(hitchcock, psycho).
director_of(carpenter, halloween).
director_of(nolan, memento).
% Rules
likes(alinda, Y) :- thriller(Y), director_of(X, Y).

Figure 2.5: The Bousi∼Prolog program of Example 2.7.

Weak unification and similarity-based SLD resolution have been implemented, for in-
stance, in the fuzzy logic programming language Bousi∼Prolog. Bousi∼Prolog extends the
syntax of Prolog by allowing to specify similarity declarations of shape a ∼ b = β, where
a and b are functor (or predicate) symbols, and β ∈ [0, 1]. Bousi∼Prolog also generalizes
Sessa’s approach by supporting proximity relations [62, 63] (i.e., reflexive and symmetric
fuzzy binary relations, which can be more appropriate in some modeling contexts [61, 67,
103]), and linguistic variables [95]. The following example shows a Bousi∼Prolog program
and the computation of approximate solutions to a query through similarity-based SLD
resolution.

Example 2.7 (Bousi∼Prolog program). Consider the Bousi∼Prolog program of Fig. 2.5.
The syntax is essentially the same as that of Prolog, except for a similarity declaration
stating that the predicate symbols horror and thriller are similar to degree 0.5. The
query ?- likes(alinda, Y) will return, for instance, a solution mapping Y to halloween

with approximation degree 0.5, through the following steps:

• By resolving against the last rule, the query ?- likes(alinda, Y) simplifies into
?- thriller(Y), director_of(X, Y).

• Since horror and thriller are similar, by similarity-based SLD resolution the first



42 2.2. Similarity-based reasoning in logic programming

goal thriller(Y) resolves against the rule horror(X) :- slasher(X), so that the
query becomes ?- slasher(Y), director_of(X, Y). The approximation degree as-
sociated with the computation becomes 0.5.

• The first goal slasher(Y) now resolves with the fact slasher(halloween), so that Y

is mapped to halloween, and the query becomes ?- director_of(X, halloween).

• The remaining goal resolves with the fact director_of(carpenter, halloween), and
the computation terminates successfully.

Through similar steps, the program will also return a solution mapping Y to psycho with
approximation degree 0.5, and a solution mapping Y to memento. .

Chapter 5 will deal with the development of similarity-based reasoning with OSF logic,
by extending its language with a similarity relation on sort symbols. One challenge that
arises in this context is how to reconcile the similarity relation with the sort subsumption
ordering on which OSF logic is grounded. Our solution will be to combine these two relations
into a single fuzzy subsumption relation, shifting the setting to that of fuzzy OSF logic, which
is developed in Chapter 4. This strategy allows to seamlessly integrate the sort similarity
relation into the unification algorithm of fuzzy OSF logic. As will be discussed in Chapter 5,
an advantage of this approach is that a single fuzzy OSF term unification can replace several
similarity-based SLD resolution steps (Example 5.3).



Chapter 3

Order-Sorted Feature Logic

Order-Sorted Feature (OSF) logic is a Knowledge Representation and Reasoning (KRR)
language that originates in Hassan Aït-Kaci’s work [2]. At the core of OSF logic are two
kinds of symbols that are employed to represent concepts and properties: sort symbols
(or sorts) are used to denote conceptual classes such as person or director, and feature
symbols (or features) are used to describe functional attributes of objects, like directed_by,
written_by or name. Sorts are ordered in a subsumption relation � that denotes inclusion
between classes. For example, the subsumption director � personmeans that every director
is a person.

Together with variables, also named coreference tags, sorts and features can be used
to construct record-like structures called OSF terms that can represent complex concepts,
similarly to the defined concepts of Description Logic (DLs). The following OSF term, for
example, denotes the class of movies that are written and directed by the same person:

t1 = X1 : movie
(
directed_by → Y1 : person,
written_by → Y1

)
.

Reasoning in OSF logic is based on the unification of OSF terms, a procedure that
aims to combine in a single term the constraints expressed by two terms. For instance, the
unification of the term t1 with the term

t2 = X2 : movie
(
directed_by → Y2 : director,
genre → Z2 : thriller

)

results in the term

t3 = X3 : movie


directed_by → Y3 : director,
written_by → Y3,

genre → Z3 : thriller

 .
43
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The unification procedure takes the sort subsumption relation into account: for example,
assuming that director � person, since the feature directed_by in t1 points to the sort
person, and the same feature in t2 points to the sort director, then the value of this feature
in the unifier t3 must be of sort director, i.e., the most specific of the two sorts. Moreover,
the sort subsumption ordering � can be extended to an ordering between OSF terms, and
the unification algorithm for such structures provides an efficient way to decide whether two
OSF terms are subsumed by each other (for instance, t3 is subsumed by t1 and t2), and,
in general, for finding the most general OSF term that is subsumed by both terms, thus
offering an efficient calculus of partially ordered types [8].

Similarly to DLs, OSF logic was initially meant as a formalization of Ron Brachman’s
structured inheritance networks [4, 18]. Indeed, due to their common origin, the two lan-
guages share a few similarities, as well as several distinguishing aspects. For instance,
both formalisms are subsets of first-order logic designed to simplify its language in order to
achieve computational tractability, while still providing enough expressive power for effective
knowledge representation and reasoning. DLs and OSF logic are both based on set-denoting
symbols (concepts and sorts, respectively), and on symbols for expressing attributes: rela-
tional roles for DL, and functional features for OSF Logic. While the feature symbols of
OSF logic denote total functions, which may appear less versatile than the relational roles
of DLs, versions of this language that support partial functions or relations have also been
defined [4, 34, 106]. The OSF sort subsumption relation is also comparable to the inclusion
axioms of a DL T-Box. One of the most significant differences with respect to DLs is that
the semantics of OSF logic is based on the closed world assumption: for instance, if two
sorts do not share a common subsort, then they are assumed to be disjoint. The relationship
between OSF logic and DLs has been explored thoroughly in works such as [4, 70, 87, 88].

OSF logic and related formalisms, like feature logic [106] or the logic of typed feature
structures [34], have been applied in computational linguistics [34] and implemented in
constraint logic programming languages such as LOGIN [8], LIFE [10] and CIL [86]. On
the other hand, DLs have found one of their primary applications in the Semantic Web, as
they provide, by design, the formal semantics for the Web Ontology Language (OWL), the
ontology language developed by the World Wide Web Consortium [18]. More recently, OSF
logic was proposed by Aït-Kaci as an alternative formalism for the Semantic Web [4], and
the language has been implemented in the CEDAR Semantic Web reasoner [6, 15].

The goal of this chapter is to provide a comprehensive overview of OSF logic, setting the
foundations for our development of fuzzy OSF logic in Chapter 4 and of similarity-based
OSF logic in Chapter 5. We start by presenting the main syntactic objects of this language
in Section 3.1, namely sorts, features, OSF terms and OSF clauses. These objects are then
given a meaning in structures called OSF algebras, which are discussed in Section 3.2.

Besides terms and clauses, OSF logic also enjoys a third syntactic representation, namely
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OSF graphs. These are rooted directed graphs whose nodes are labeled by sorts and whose
edges are labeled by features. OSF graphs are the elements of the domain of an OSF algebra
that is of core importance for the development of OSF logic, the OSF graph algebra, which is
presented in Section 3.3. In Section 3.4 we explore OSF algebra homomorphisms, structure-
preserving mappings between OSF algebras that are essential for proving several results
regarding the satisfiability of OSF clauses. OSF algebra homomorphisms are also central
in Section 3.5, which is devoted to proving that the subsumption ordering between sort
symbols can be extended to the other syntactic objects of OSF logic and, in particular, we
show that OSF terms form a lattice. The greatest lower bound of two OSF terms can be
computed through a unification procedure which is presented in Section 3.6.

The integration of OSF term unification in the logic programming language LOGIN
is then outlined in Section 3.7.1, followed by an overview of the Semantic Web reasoner
CEDAR based on OSF logic in Section 3.7.2. The implementation of OSF logic in LO-
GIN and CEDAR is based on techniques that exploit the specificity of concept taxonomies
[15], and in particular on graph encoding techniques that allow to efficiently perform lattice
operations. These techniques are discussed in Section 3.8.

While our presentation of OSF logic closely follows Aït-Kaci’s development of this lan-
guage [10], we have taken the opportunity to make a few adjustments. For example, Def-
inition 3.12 redefines the procedure to translate OSF constraints into OSF terms, as the
original one can lead to an infinite loop. We also refine a few theorems and definitions,
such as Theorem 3.49 and Definition 3.50, since the original ones are susceptible to coun-
terexamples, as discussed in Remark 4. Moreover, we define a syntactic notion of OSF term
subsumption and prove that it is equivalent to the semantic one of [10].

3.1 Syntax

In this section we provide the definitions of OSF signature and of two formal languages that
are used to represent knowledge with OSF logic: OSF terms and OSF clauses. As discussed
in the introduction, OSF terms are comparable to the defined concepts of DLs, and they are
interpreted as subsets of the domain of an interpretation. An OSF clause is an equivalent
representation that can be seen as a logical reading of an OSF term, and for which a notion
of satisfiability is defined. In OSF logic, both syntactic representations are important from
an implementation perspective, as OSF terms are the abstract syntax employed by an user,
while OSF clauses are used in the constraint normalization rules needed for OSF term
unification [10].

We begin our overview of the syntax of OSF logic by introducing the concept of an OSF
signature, a tuple that specifies the sets of sort and feature symbols that may be used to
construct OSF terms. Additionally, an OSF signature also prescribes a lattice ordering for
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⊥

writer horror

director thriller

string

person movie

>

Figure 3.1: The OSF signature of Example 3.2.

the sort symbols.

Definition 3.1 (OSF signature [10]). An OSF signature is a tuple (S,F ,�) such that

1. S is a finite set of sort symbols,

2. F is a finite set of feature symbols,

3. (S,�) is a bounded lattice with least element ⊥ and greatest element >.

Elements of S and F are also simply called sorts and features, respectively. For a sort s ∈ S,
the set s↑ def= {s′ ∈ S | s � s′} is the set of supersorts of s, while the set s↓ def= {s′ ∈ S | s′ � s}
is the set of subsorts of s. The greatest lower bound (GLB) s ⋏ s′ of two sorts s and s′ is
also called their greatest common subsort. The least upper bound (LUB) s ⋎ s′ of two sorts
s and s′ is also called their least common supersort.

Example 3.2 (OSF signature). An example of an OSF signature in the domain of movies
is the tuple (S,F ,�) such that (S,�) is the lattice represented in Fig. 3.1, and F def=
{written_by, directed_by, title}· .

Starting from sorts and features it is possible to construct record-like syntactic structures
called OSF terms, which serve as representations for complex concepts.

Definition 3.3 (OSF term [10]). Let V be a countably infinite set of variables (or coref-
erence tags, or simply tags), and (S,F ,�) be an OSF signature. Let X ∈ V, s ∈ S and
f1, . . . , fn ∈ F . An OSF term is defined recursively as follows.

• A sorted variable X : s is an OSF term.

• An attributed sorted variable t = X : s(f1 → t1, . . . , fn → tn) is an OSF term
whenever t1, . . . , tn are OSF terms.
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We let Tags(t) def= {X} ∪⋃1≤i≤n Tags(ti). The variable X is called the root tag of t and is
denoted RootTag(t), and the sort s is called the root sort of t.

Example 3.4 (OSF term). The following OSF term denotes the class of movies that are
written and directed by the same person:

X : movie
(
directed_by → Y : person,
written_by → Y

)
.

The variable Y is used as a coreference tag, i.e., it specifies that the values of the features
directed_by and written_by should be the same. The variables in an OSF term are often
left implicit unless they are necessary to express this property, as in the following OSF term:

t = movie


title → string,

directed_by → X : director
(
name → string,

spouse → Y

)
,

written_by → Y : writer
(
spouse → X

)

 . .

OSF terms generalize the terms of first-order logic in several ways. First of all, they lack
a fixed number of arguments, so that they are convenient to represent partial information.
For example, an OSF logic knowledge base could include terms of shape movie(title →
“Psycho”, year → 1960) and also of shape movie(title → “Halloween”).1 Moreover, the
arguments of an OSF terms are identified by features rather than positions, which helps the
interpretability of a term. For instance, consider the OSF termmovie(title→ “Adaptation”,
directed_by → “Spike Jonze", written_by → “Charlie Kaufman") and the first-order term
movie(“Adaptation", “Spike Jonze", “Charlie Kaufman"). Features can also be left implicit
in an OSF term by considering s(X,Y , s′) as an abbreviation for s(1 → X, 2 → Y , 3 →
s′), where the features 1, 2 and 3 take on a positional meaning. An additional fea-
ture of OSF terms is their capability to express cycles, as exemplified by the term X :
person (name→ “Celeste", spouse→ Y : person (spouse→ X)), thus enhancing the flexi-
bility of this language.

The definition of OSF terms given above does not rule out the presence of redundant
or even contradictory information (e.g., consider the OSF term s(f → s0, f → s1), which
is contradictory if s0 ⋏ s1 = ⊥). OSF terms that are well-behaved to this regard are called
normal OSF terms and are defined as follows [10].

Definition 3.5 (Normal OSF term, or ψ-term [10]). An OSF term t = X : s(f1 →
t1, . . . , fn → tn) is in normal form (or normal) if the following conditions are satisfied.

1Strings such as “Psycho” and “Halloween”, and integers such as 1960, are treated as singleton sorts, i.e.,
sorts that denote a single element.
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1. The root sort s is different from ⊥.

2. The features f1, . . . , fn ∈ F are pairwise distinct.

3. Each ti is in normal form.

4. For all Y ∈ Tags(t), there is at most one occurrence of Y in t such that Y is the root
variable of an OSF term different from Y : >.

OSF terms in normal form are also called ψ-terms and denoted ψ, ψi, and so on. For an
OSF term ψ in normal form and X ∈ Tags(ψ), we let Sortψ(X) be the most specific sort
s such that X : s appears in ψ. The notation X f−→ψ Y indicates that there is a feature f
pointing from a subterm of ψ with root tag X to a subterm of ψ with root tag Y . We let
Ψ denote the set of all normal OSF terms.

A method for transforming an OSF term into a normal one is more easily presented as
a constraint normalization procedure for OSF constraints, which are defined next.

Definition 3.6 (OSF constraints and clauses [10]). Let V be a countably infinite set
of variables, and (S,F ,�) be an OSF signature. An OSF constraint is an expression of the
form X : s, X .= X ′, or X.f .= X ′, where X,X ′ ∈ V, s ∈ S and f ∈ F . If φ1, φ2, . . . , φn are
OSF constraints, then their conjunction φ = φ1 & φ2 & . . . & φn is an OSF clause. The set
of variables occurring in φ is denoted Tags(φ), while φ[X/Y ] is the OSF clause obtained by
replacing all occurrences of the variable Y with X.

Informally, the constraint X : s means that the value assigned to X is of sort s, X .= X ′

means that the same value is assigned to the variables X and X ′, while X.f .= X ′ means
that applying the feature f to the value assigned to X returns the value assigned to X ′.

Example 3.7 (OSF clause). Let φ be the following OSF clause.

X0 : movie & X0.title
.= X1 & X1 : string & X0.directed_by

.= X &
X : director & X.name

.= X2 & X2 : string & X.spouse
.= Y &

X0.written_by
.= Y & Y : writer & Y .spouse

.= X.

Note that φ is simply a translation of the term t from Example 3.4 into an OSF clause.
The variables that were left implicit in Example 3.4 must be written explicitly in the OSF
clause. .

We thus specify formally a way to translate an OSF term into an OSF clause. An anal-
ogous mapping will be provided for the opposite direction, and, in Section 3.3, procedures
will be defined to translate OSF terms and OSF clauses into OSF graphs, and back. The
definition of these mapping is necessary, as they allow us to move effortlessly between the
three representations, depending on which one is more convenient at a given moment.
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Definition 3.8 (Mapping from normal OSF terms to OSF clauses [10]). The map-
ping φ from normal OSF terms to OSF clauses is defined as follows [10]: if ψ = X : s(f1 →
t1, . . . , fn → tn), then φ(ψ) def= X : s & &

1≤i≤n
(X.fi

.= RootTag(ti) & φ(ti)).

Note that the same symbol φ is used to denote an OSF clause and the function mapping
an OSF term to a clause, as its meaning is always clear from context.

While every OSF term can be rewritten as an OSF clause, the converse is in general
only true for the class of rooted solved OSF clauses [10], which are defined next.

Definition 3.9 (Rooted OSF clause and maximal subclause rooted in X[10]).
Given an OSF clause φ, the binary reachability relation φ

 ⊆ Tags(φ)2 is defined as follows,
for all X,Y ∈ Tags(φ): (i) X φ

 X, and (ii) X φ
 Y if there is a constraint X.f .= Z in

φ and Z φ
 Y . A rooted OSF clause φX is an OSF clause φ together with a distinguished

variable X (its root) such that every variable Y occurring in φ is explicitly sorted (possibly
as Y : >) and reachable from X (i.e., X φ

 Y ). Given an OSF clause φ and a variable
X ∈ Tags(φ), the maximal subclause of φ rooted in X is denoted φ(X).

Definition 3.10 (Solved OSF clause [10]). An OSF clause φ is called solved if, for each
variable X, φ contains (i) at most one sort constraint of the form X : s (with s 6= ⊥), (ii) at
most one feature constraint of the form X.f

.= Y for each f , and (iii) no equality constraint
of the form X

.= Y . The set of all OSF clauses in solved form is denoted Φ, and the subset
of rooted solved OSF clauses is denoted ΦR.

Example 3.11 (Rooted and solved OSF clauses). The OSF clause φ of Example 3.7
is a solved clause rooted in the variable X. On the other hand, the clause

φ′ = X0 : movie & X0.title
.= X1 & X1 : string &

Y0 : movie & Y0.directed_by
.= Y1 & Y1 : person

is solved, but not rooted. The maximal subclause of φ′ rooted in X0 is φ′(X0) = X0 :
movie & X0.title

.= X1 & X1 : string. The clause

φ′′ = X : movie & X.directed_by .= X1 & X1 : person
& X.directed_by .= Y1 & Y1 : director

is rooted, but not solved. .

We are thus ready to define the syntactic mapping that translates rooted solved OSF
clauses into normal OSF terms.

Definition 3.12 (Mapping from rooted solved OSF clauses to normal OSF terms).
Assume without loss of generality a total ordering on F , which induces a lexicographic
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ordering on F∗ (the set of all sequences of elements of F). The mapping ψφ : ΦR → Ψ
from rooted solved OSF clauses to normal OSF terms is defined as follows. Suppose that
φX contains the constraint X : s2, and that X.f1

.= Y1, . . . , X.fn
.= Yn are all the other

constraints in φ with an occurrence of the variable X on the left-hand side. The OSF term
ψ = ψφ(φX) is constructed as follows:

1. X and s are the root tag and the root sort of ψ, respectively;

2. for each 1 ≤ i ≤ n, if the variable Yi in the constraint X.fi
.= Yi has not yet occurred

in the construction of ψ (in the predetermined ordering of F∗), then the subterm fi →
ψφ(φ(Yi)) is added to ψ, and the construction continues recursively from ψφ(φ(Yi)).
Otherwise, the subterm fi → Yi : > is added to ψ instead.

The lexicographic ordering on F is needed to ensure that ψφ(φX) is unique.

Example 3.13 (Mapping OSF terms to and from OSF clauses). Let φ = X :
s & X.f

.= Y & Y : > & Y .f
.= X and note that φ(X) = φ(Y ) = φ.

Following Definition 3.12 we construct ψ = ψφ(φX) as follows.

• The root tag and the root sort of ψ are X and s, respectively.

• Because φX contains the constraint X.f .= Y and the variable Y has not appeared
in the construction yet, then we add the subterm f → ψφ(φ(Y )) to ψ. So far, the
construction has yielded the term X : s(f → ψφ(φ(Y ))).

• The construction continues recursively from ψ′ = ψφ(φ(Y )). The root tag and root
sort of ψ′ must be Y and >, respectively. Next, because we have the constraint
Y .f

.= X, but X has already appeared in the construction of ψ, then ψ′ only contains
the subterm f → X : >. Thus ψ′ = Y : >(f → X : >).

This concludes the construction, yielding the term

ψφ(φ(X)) = X : s(f → ψφ(φ(Y ))) = X : s(f → Y : >(f → X : >)). .

Remark 3. Our definition of the mapping ψφ differs from the original one [10], where
ψφ(φX) is instead given as ψφ(φX) def= X : s(f1 → ψφ(φ(Y1)), . . . , fn → ψφ(φ(Yn))). The
issue with this definition is that it can lead to infinite loops. For example, applying this
mapping to the clause φX of Example 3.13 results in

ψφ(φX) = X : s(f → ψφ(φ(Y )))
= X : s(f → Y : >(f → ψφ(φ(X))))
= X : s(f → Y : >(f → X : s(f → ψφ(φ(Y )))))
= . . .

2Otherwise, we can assume the implicit existence of X : >.
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Sort Intersection
φ & X : s & X : s′

φ & X : s ⋏ s′

Feature Functionality
φ & X.f

.= Y & X.f
.= Y ′

φ & X.f
.= Y & Y

.= Y ′

Inconsistent Sort
φ & X : ⊥
X : ⊥

Tag Elimination
φ & X

.= Y [Y ∈ Tags(φ)]
φ[X/Y ] & X

.= Y

Figure 3.2: OSF constraint normalization rules.

Definition 3.12 is inspired by the mapping that translates OSF graphs to OSF terms from
[10] (also see Definition 3.33).

Proposition 3.14 (Bijections between normal OSF terms and rooted solved OSF
clauses [10]). The mappings φ : Ψ → ΦR and ψφ : ΦR → Ψ are bijections, i.e.: idΦR =
φ ◦ ψφ and idΨ = ψφ ◦ φ.

Finally, we report the constraint normalization rules that are needed to transform an
OSF clause into a solved form [10]. Each rule is of the form

Rule name
Premise φ

[Side condition]
Conclusion φ′

and it expresses that, whenever the (optional) side condition holds, the premise φ can be
simplified into the conclusion φ′.

Proposition 3.15 (OSF clause normalization [10]). The rules of Fig. 3.2 are finite
terminating and confluent (modulo variable renaming). Furthermore, they always result in a
normal form that is either the inconsistent clause or an OSF clause in solved form together
with a conjunction of equality constraints.

The constraint normalization rules also provide a procedure for transforming an OSF
term t into an equivalent normal form, by applying the constraint normalization rules to
φ(t) and translating the result back into an OSF term.

Example 3.16 (OSF clause normalization). Consider the clause φ′′ from Example 3.11.
An application of the rule Feature Functionality to this clause leads to the clause

X : movie & X.directed_by .= X1 & X1 : person
& X1

.= Y1 & Y1 : director
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Applying the rule Tag Elimination then yields the clause

X : movie & X.directed_by .= X1 & X1 : person
& X1

.= Y1 & X1 : director

Finally, an application of the rule Sort Intersection results in the OSF clause in solved form
X : movie & X.directed_by .= X1 & X1 : director together with the equality constraint
X1

.= Y1. .

3.2 Semantics

The meaning of the symbols of OSF logic is given by an OSF algebra, a structure that spec-
ifies the denotation of sort symbols as sets and of feature symbols as functions. Moreover,
a sort subsumption lattice is interpreted in an OSF algebra as a set inclusion relation that
must ensure that the denotation of the GLB of two sorts corresponds to the intersection of
their respective sets.

Definition 3.17 (OSF algebra [10]). An OSF algebra (or interpretation) for a signature
(S,F ,�) is a pair I = (∆I , ·I) such that

1. ∆I is a non-empty set, called the domain or universe of the algebra,

2. for each s ∈ S, sI is a subset of ∆I ,

3. for each s0, s1 ∈ S: if s0 � s1, then sI0 ⊆ sI1 ,

4. for each s0, s1 ∈ S: (s0 ⋏ s1)I = sI0 ∩ s
I
1 , and

5. for each f ∈ F : fI is a function fI : ∆I → ∆I .

Going forward, we refrain from explicitly specifying the OSF signature and instead
assume that the syntactic objects of OSF logic are interpreted in OSF algebras for the
relevant signature.

Example 3.18 (OSF algebra). Consider the signature of Example 3.2. Let I = (∆I , ·I)
be the OSF algebra for this signature defined as follows.

• The domain is

∆I = {psycho, vertigo, hitchcock, coppel, stefano, “Psycho”, “Vertigo”,null}.

• The interpretation of the sort symbols is defined by letting

– stringI = {“Psycho”, “Vertigo”}, ⊥I = ∅, >I = ∆I ;
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– directorI = {hitchcock}, writerI = {coppel, stefano}, personI = directorI ∪

writerI ; and

– thrillerI = {vertigo}, horrorI = {psycho}, movieI = thrillerI ∪ horrorI .

• The interpretation of the feature symbols is defined by letting

– directed_byI(psycho) = directed_byI(vertigo) = hitchcock;

– written_byI(psycho) = stefano, written_byI(vertigo) = coppel;

– titleI(psycho) = “Psycho” and titleI(vertigo) = “Vertigo”; and

– all the remaining feature applications are equal to null. .

Since features are interpreted as total functions, in the last example the feature title had
to be defined also for elements of sort person such as hitchcock. While we can circumvent
this issue by assigning titleI(hitchcock) = null, there are versions of OSF logic that interpret
features as partial functions instead [4, 34, 106].

In Section 3.1 we presented OSF terms and OSF clauses as two alternative, but syn-
tactically equivalent, data structures for representing knowledge with OSF logic. We thus
define the denotation of an OSF term as a subset of the domain and the satisfaction of an
OSF clause, and show that these two notions are also semantically equivalent.

The denotation of an OSF term in an interpretation I = (∆I , ·I) is derived from the
interpretation of the sorts, features and variables it contains. The meaning of variables
is given by a variable assignment α : V → ∆I , and the set of all variable assignments is
referred to as Val(I).

Definition 3.19 (Denotation of an OSF term [10]). Let t = X : s(f1 → t1, . . . , fn →
tn) be an OSF term and I = (∆I , ·I) be an OSF algebra. Let α : V → ∆I be a variable
assignment. The denotation of t in the algebra I under the assignment α is defined as

[[t]]I,α def= {α(X)} ∩ sI ∩ ⋂

1≤i≤n
(fIi )−1([[ti]]I,α)

where, for a subset D ⊆ ∆I , (fIi )−1(D) def= {d ∈ ∆I | fIi (d) ∈ D}. The denotation of t in
the algebra I is defined as

[[t]]I def= ⋃

α:V→∆I
[[t]]I,α.

Note that, for any OSF algebra I, assignment α and OSF term t, the set [[t]]I,α is always
a singleton or the empty set.

Example 3.20 (Denotation of an OSF term). Continuing from Example 3.18, consider
the term t = X : movie (directed_by → X0 : director) and the assignment α : V → ∆I such
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that α(X) = psycho and α(X0) = hitchcock. The denotation of the term t in I according
to α is

[[t]]I,α = {α(X)} ∩ movieI ∩ (directed_byI)−1[[X0 : director]]I,α

= {psycho} ∩ {psycho, vertigo} ∩ (directed_byI)−1({α(X0)} ∩ directorI)
= {psycho} ∩ (directed_byI)−1({hitchcock})
= {psycho} ∩ {psycho, vertigo} = {psycho}.

It is also easy to see that [[t]]I = {psycho, vertigo}.
As another example, let I be an arbitrary OSF algebra, let t1 = X : s(f0 → Y : >, f1 →

Y : >), and let t2 = X : s(f → X). Then [[t1]]I = {d ∈ ∆I | d ∈ sI and fI0 (d) = fI1 (d)},
and [[t2]]I = {d ∈ ∆I | d ∈ sI and fI(d) = d}. .

We now provide the definition of the satisfaction of an OSF clause in an OSF algebra I
under a variable assignment α : V → ∆I .

Definition 3.21 (Satisfaction of an OSF clause in an OSF algebra [10]). The
satisfaction of an OSF clause φ in a OSF algebra I = (∆I , ·I) under the assignment α :
V → ∆I (notation: I, α |= φ) is defined recursively by letting

I, α |= X : s ⇔ α(X) ∈ sI ,
I, α |= X

.= Y ⇔ α(X) = α(Y ),
I, α |= X.f

.= Y ⇔ fI(α(X)) = α(Y ), and
I, α |= φ & φ′ ⇔ I, α |= φ and I, α |= φ′.

If I, α |= φ, then α is called a solution for the clause φ, and φ is said to be satisfiable in I.

Example 3.22 (OSF clause satisfaction). Continuing from Example 3.18, consider the
OSF clause φ = X : movie & X.directed_by .= X0 & X0 : director. Let α be an assignment
α : V → ∆I such that α(X) = psycho and α(X0) = hitchcock. It follows that I, α |= φ,
since every constraint of φ is satisfied in I under the assignment α.

• I, α |= X : movie, since α(X) = psycho ∈ movieI .

• I, α |= X.directed_by .= X0, since directed_byI(α(X)) = directed_byI(psycho) =
hitchcock = α(X0).

• I, α |= X0 : director, since α(X0) = hitchcock ∈ directorI . .

Besides being syntactically equivalent, an OSF term t and its corresponding OSF clause
φ(t) are also semantically equivalent, in the sense that the denotation of t in an OSF algebra
I can be derived from the solutions for the clause φ(t) in I.
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Proposition 3.23 (Equivalence of term denotation and constraint satisfaction
[10]). For every OSF term t = X : s(f1 → t1, . . . , fn → tn), for every interpretation
I = (∆I , ·I) and for every assignment α : V → ∆I :

[[t]]I,α =

{α(X)} if I, α |= φ(t)

∅ otherwise

and therefore
[[t]]I = {α(X) | α ∈ Val(I) s.t. I, α |= φ(t)}.

An important property of the constraint normalization rules is that the clause φ′ resulting
from the application of a rule of Fig. 3.2 to an OSF clause φ is semantically equivalent to the
original clause φ, meaning that they share the same solutions across all OSF algebras. As
we will illustrate in Chapter 4, this property is only partially retained in the fuzzy setting.

Proposition 3.24 (Solution-preservation of OSF clause normalization [10]). The
rules of Fig. 3.2 are solution-preserving, i.e., for any rule with premise φ and conclusion
φ′, for any OSF interpretation I and assignment α: I, α |= φ if and only if I, α |= φ′.

We conclude this section by exploring subalgebras of OSF algebras.

Definition 3.25 (Subalgebra of an OSF algebra). An OSF algebra I = (∆I , ·I) is a
subalgebra of an OSF algebra J = (∆J , ·J ) if ∆I ⊆ ∆J and for all d ∈ ∆I , s ∈ S and
f ∈ F : sI = sJ ∩∆I and fI(d) = fJ (d).

It is easy to see that, if I is a subalgebra of J , then the denotation of an OSF term t

under a valuation α : V → ∆I is the same in the two algebras. Similarly, an assignment
α : V → ∆I is a solution for a clause φ in I if and only if it is a solution for φ in J .

Proposition 3.26 (Denotation and satisfaction in subalgebras). Let I be a subalgebra
of an OSF algebra J . For every OSF term t, every OSF clause φ, and every assignment
α : V → ∆I : (i) [[t]]I,α = [[t]]J ,α and (ii) I, α |= φ if and only if J , α |= φ.

In the next sections we will often consider specific subalgebras of a given algebra I =
(∆I , ·I), namely those that can be generated by applying every possible feature composition
to the elements of a subset D of ∆I .

Definition 3.27 (F-closure [10]). Let I be an OSF interpretation. For each sequence
w = f1 . . . fn ∈ F∗ of features let wI = fIn ◦. . .◦fI1 be the corresponding function composition
on ∆I . For any non-empty subset D of ∆I the F-closure of D is the set

F∗(D) def= ⋃

w∈F∗
wI(D) = ⋃

w∈F∗
{wI(d) | d ∈ D}.

In other words F∗(D) is the smallest set containing D and closed under feature applications.
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Definition 3.28 (OSF subalgebra generated by a set [10]). Let I = (∆I , ·I) be an
OSF interpretation and D ⊆ ∆I be nonempty. The OSF subalgebra generated by D is the
structure I[D] = (F∗(D), ·I[D]) such that, for each s ∈ S, sI[D] def= sI ∩F∗(D), and for each
f ∈ F , fI[D] is defined as the restriction of fI to F∗(D).

When D = {d} is a singleton we write I[d] instead of I[{d}].

Proposition 3.29 (OSF subalgebra generated by a set [10]). Let I = (∆I , ·I) be
an OSF interpretation. For any non-empty subset D ⊆ ∆I the structure I[D] is the least
subalgebra of I containing D.

3.3 The OSF graph algebra

This section covers the OSF graph algebra G, an OSF algebra that is essential for proving
several semantic properties of OSF logic. The elements of this algebra are rooted directed
labeled graphs called OSF graphs.

Definition 3.30 (OSF graph [10]). An OSF graph is a directed labeled graph g = (N,
E, λN , λE , X) such that

• N ⊆ V and X ∈ N is a distinguished node called the root of g;

• λN : N → S is a node labeling function such that each node of g is labeled by a
non-bottom sort, i.e., λN (N) ⊆ S \ {⊥};

• λE : E → F is an edge labeling function that assigns a feature to each edge (Y , Z) ∈ E
in such a way that no two edges outgoing from the same node are labeled by the same
feature, i.e., if λE(Y , Z) = λE(Y , Z ′) then Z = Z ′; and

• every node lies on a directed path starting at the root.

The set of all OSF graphs is denoted ∆G .

Example 3.31 (OSF graph). Let g = (N,E, λN , λE , X0) be the OSF graph such that

• N = {X0, X1, X2, X, Y };

• E = {(X0, X1), (X0, X), (X0, Y ), (X,Y ), (X,X2), (Y ,X)};

• λN = {(X0,movie), (X1, string), (X2, string), (X, director), (Y ,writer)}; and

• λE =
{

((X0, X1), title), ((X0, X), directed_by), ((X0, Y ), written_by),
((X,Y ), spouse), ((X,X2), name), ((Y ,X), spouse)

}
.
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movie

string

director

writer

string

title

directed_by

written_by

name

spousespouse

Figure 3.3: The OSF graph of Example 3.31.

The OSF graph g is depicted in Fig. 3.3, where the root node is identified with a double
ellipse, and the node identifiers (i.e., the variables) are omitted. .

OSF graphs can also be seen as an alternative syntax for normal OSF terms, and con-
sequently for rooted solved OSF clauses. Each of the three syntactic representations is
valuable for different purposes, and being able to switch between them depending on the
context is highly convenient. For instance, OSF terms offer a more concise representation,
OSF clauses are essential for the constraint normalization procedure, and OSF graphs are
often more practical for establishing results about this language. From an implementation
perspective, Aït-Kaci argues that “the three views are important since the term view is the
abstract syntax used by the user; the clausal view is the syntax used in the normalization
rules presenting the operational semantics of constraint-solving; and, the graph view is the
canonical representation used for implementation” [10].

The mappings between normal OSF terms and OSF graphs are defined as follows.

Definition 3.32 (Mapping from normal OSF terms to OSF graphs [10]). The
mapping G : Ψ→ ∆G from normal OSF terms to OSF graphs is defined as follows.

• If ψ = X : s, then G(ψ) def= ({X}, ∅, {(X, s)}, ∅, X), i.e., G(ψ) is the graph consisting
of a single node X labeled s.

• If ψ = X : s(f1 → ψ1, . . . , fn → ψn) and, for each 1 ≤ i ≤ n, G(ψi) = (Ni, Ei, λNi ,

λEi , Xi), then G(ψ) def= (N,E, λN , λE , X) where:

– N = {X} ∪⋃1≤i≤nNi,

– E = {(X,Xi) | 1 ≤ i ≤ n} ∪⋃1≤i≤nEi,

– λN (Y ) =

s if Y = X,

λNi(Y ) if Y ∈ Ni \ ({X} ∪⋃1≤j<iNj),
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– λE(e) =

fi if e = (X,Xi),

λEi(e) if e ∈ Ei.

Definition 3.33 (Mapping from OSF graphs to normal OSF terms [10]). Assume
without loss of generality a total ordering on F , which induces a lexicographic ordering
on F∗. The mapping ψG : ∆G → Ψ from OSF graphs to normal OSF terms is defined as
follows. Let g = (N,E, λN , λE , X) be such that λN (X) = s and let f1, . . . , fn, with n ≥ 0,
be the (pairwise distinct) features in F labeling all the edges outgoing from X. Then ψG(g)
can be constructed as the OSF term X : s(f1 → ψ1, . . . , fn → ψn) where, for each 1 ≤ i ≤ n:

• if the root Yi of gi = fGi (g) has already occurred earlier during the construction (in
the predetermined ordering of F∗), then ψi def= Yi : >,

• otherwise, ψi def= ψG(gi) = ψG(fGi (g)).

Proposition 3.34 (Bijections [10]). The mappings

ψφ : ΦR → Ψ, φ : Ψ→ ΦR, ψG : ∆G → Ψ, and G : Ψ→ ∆G

are bijections between the sets Ψ, ∆G and ΦR. More precisely,

1ΦR = φ ◦ ψφ, 1Ψ = ψφ ◦ φ = ψG ◦G, and 1∆G = G ◦ ψG.

To improve readability, we simplify the notation by using expressions like φ(g) instead
of φ(ψG(g)), or G(φ) instead of G(ψφ(φ)). We will also simply write ψ(g) for ψG(g), and
ψ(φ) for ψφ(φ).

Example 3.35 (Mappings between OSF graphs, normal OSF terms and rooted
solved OSF clauses). Consider the OSF term t from Example 3.4, the OSF clause φ from
from Example 3.7, and the OSF graph g graph from Example 3.31: then g = G(ψ) = G(φ),
ψ = ψ(g) = ψ(φ) and φ = φ(g) = φ(ψ). .

Having introduced OSF graphs and explored how they are syntactically related to OSF
terms and clauses, we can proceed to examine how this collection of graphs can be endowed
with an OSF algebraic structure.

Definition 3.36 (OSF graph algebra [10]). The OSF graph algebra is the structure
G = (∆G , ·G), where ∆G is the set of all OSF graphs, and where the interpretation of sorts
and features is defined as follows.

• For each s ∈ S: sG def= {g = (N,E, λN , λE , X) | λN (X) � s}.



Chapter 3. Order-Sorted Feature Logic 59

• For each f ∈ F and g = (N,E, λN , λE , X) ∈ ∆G , the function fG : ∆G → ∆G is
defined as follows:

fG(g) def=

g
∣∣
Y

if ∃Y ∈ N such that λE(X,Y ) = f,

G(Zf,g : >) otherwise,

where g
∣∣
Y

is the maximally connected subgraph of g rooted in Y , and G(Zf,g : >)
denotes the trivial OSF graph ({Zf,g}, ∅, {(Zf,g,>)}, ∅, Zf,g) whose only node is the
new variable Zf,g ∈ V \ N – labeled > – uniquely determined by the feature f and
the graph g (i.e., if f 6= f ′ or g 6= g′, then Zf,g 6= Zf ′,g′).

Example 3.37 (Interpretation of sorts in the OSF graph algebra). The interpre-
tation of the sort symbols in the OSF graph algebra is straightforward: for each s ∈ S,
the set sG contains any graph whose root is labeled by a sort s′ such that s′ � s. Consid-
ering the sort signature of Example 3.2, for instance, the denotation of the sort movie is
movieG = {movie(title → string), horror(directed_by → director), horror(written_by →
writer, directed_by → person), . . .}. .

Example 3.38 (Interpretation of features in the OSF graph algebra). Consider
a signature where S = {s0, . . . , s3} and F = {f0, . . . , f4}. Fig. 3.4 shows how features
are interpreted in the OSF graph algebra for this signature. OSF graphs are represented
inside boxes. For a feature f , the application of fG to a graph g is represented as an arrow
originating from the box containing g and pointing at the box containing fG(g). The figure
shows the iterative application of a few features to the graph g corresponding to the term

s0


f2 → s1,

f0 → X : s2

(
f4 → Y ,

f3 → s1

)
,

f1 → Y : s3
(
f4 → X

)

 .

Note that the result of applying the function fG to a graph that does not contain this feature
results in a trivial graph (e.g., the application of fG3 to g or to fG1 (g)). .

Proposition 3.39 (OSF graph algebra). The OSF graph algebra G is an OSF algebra,
i.e., it satisfies the conditions of Definition 3.17.

A key property of the OSF graph algebra is that every solved OSF clause φ is satisfiable
in a subalgebra of G, namely the subalgebra generated by the graphs corresponding to the
maximal rooted subclauses of φ.
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s0

s1

s2

s3

s1

f2
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f1
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f4f4
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fG0 (g)

fG0
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s1
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fG3 (fG0 (g))
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>

fG3 (fG1 (g))

fG3

>

fG3 (g)

fG3

s1

fG2 (g)

fG2

fG4

fG4

Figure 3.4: Feature applications in the OSF graph algebra.

Definition 3.40 (Canonical graph algebra [10]). Let φ be a solved OSF clause. The
subalgebra G[∆G,φ] of the OSF algebra G generated by the set ∆G,φ def= {G(φ(X)) | X ∈
Tags(φ)} is called the canonical graph algebra induced by φ.

Theorem 3.41 (Satisfiability in the canonical graph algebra [10]). Any solved clause
φ is satisfiable in G[∆G,φ] under any assignment α : V → ∆G[∆G,φ] such that α(Y ) = G(φ(Y ))
for all Y ∈ Tags(φ).

As a corollary of Proposition 3.26, we obtain that every solved OSF clause φ is satisfiable
in G under any assignment that maps each variable Y ∈ Tags(φ) to the graph G(φ(Y )). For
this reason, such a mapping is called a canonical solution for the clause φ in G.

Corollary 3.42 (Canonical solution in the OSF graph algebra [10]). Every solved
OSF clause φ is satisfiable in the OSF graph algebra G under any assignment α : V → ∆G

such that, for each Y ∈ Tags(φ), α(Y ) = G(φ(Y )).

3.4 OSF algebra homomorphisms

In this section we present OSF algebra homomorphisms, which constitute an essential tool
for proving several results regarding OSF algebras.
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movie director director

psycho hitchcock

vertigo

· · ·

dir_by

dir_byI

dir_byI

G(t) dir_byG(G(t))

G[G(t)]

I

dir_byG

γ γ

Figure 3.5: The OSF algebra morphism of Example 3.44.

Definition 3.43 (OSF algebra homomorphism [10]). An OSF algebra homomorphism
γ : I → J between two OSF algebras I and J is a function γ : ∆I → ∆J such that

• for all f ∈ F and d ∈ ∆I : γ(fI(d)) = fJ (γ(d));

• for all s ∈ S: γ(sI) ⊆ sJ , i.e., for all d ∈ sI , γ(d) ∈ sJ .

In other words, an OSF algebra homomorphism is a function from an OSF algebra
I into another OSF algebra J that preserves the structure of I. The first condition of
Definition 3.43 means that the morphism γ must commute with fI and fJ for each f ∈ F ,
while the second one states that γ must preserve the sort of each element of the algebra I.

Example 3.44 (OSF algebra homomorphism). Consider the fuzzy interpretation I,
the assignment α and the term t = X : movie (directed_by → X0 : director) from Exam-
ples 3.18 and 3.20. Consider the subalgebra of G generated from the element G(t) and
define a function γ : ∆G[G(t)] → ∆I by setting, for g = wG(G(t)) ∈ ∆G[G(t)], γ(g) def=
wI(psycho), where w ∈ F∗. In particular γ(G(t)) = psycho and γ(G(Y : director)) =
γ(directed_byG(G(t))) = directed_byI(psycho) = hitchcock. This is easily verified to be an
OSF algebra homomorphism: for instance, G(t) ∈ movieG , and γ(G(t)) = psycho ∈ movieI .
The two algebras and the homomorphism are depicted in Fig. 3.5 (where trivial graphs are
not shown, and some names have been shortened). .

Since an OSF algebra morphism γ : I → J preserves the structure of I in J , it seems
intuitive that any clause that is satisfiable in I must also be satisfiable in J .

Theorem 3.45 (Extending solutions through homomorphisms [10]). Let I and J
be two OSF algebras and γ : I → J be a homomorphism between them. For every OSF
clause φ and assignment α : V → ∆I , if I, α |= φ, then J , α′ |= φ, where α′ = γ ◦ α.

More interestingly, it is possible to show that any solution for a clause φ in any OSF
algebra I can be obtained as the homomorphic image of the canonical solution for φ in G
(see Corollary 3.42).
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Theorem 3.46 (Extracting solutions through homomorphisms [10]). For any solved
OSF clause φ, OSF algebra I and assignment α : V → ∆I such that I, α |= φ there exists
an OSF algebra homomorphism γ : G[∆G,φ] → I such that α(X) = γ(G(φ(X))) for each
X ∈ Tags(φ).

As stated in the following theorem, it is always possible to define a homomorphism γ

from any OSF algebra I into the OSF graph algebra G. Thus, as a corollary of Theorem 3.45
we obtain that any solution α for an OSF clause φ in some OSF algebra I can be extended
to a solution for φ in G, meaning that any OSF clause is satisfiable if and only if it is
satisfiable in the OSF graph algebra.

Theorem 3.47 (Weak finality of G [10]). There exists a homomorphism γ from any
OSF algebra I into the OSF graph algebra G.

Corollary 3.48 (Canonicity of the OSF graph algebra [10]). An OSF clause is
satisfiable if and only if it is satisfiable in the OSF graph algebra.

Because of the semantic equivalence between OSF terms and OSF clauses (Proposi-
tion 3.23), the denotation of an OSF term in an OSF algebra I can be characterized through
the existence of homomorphisms from the canonical graph algebra induced by G(ψ) into I.

Theorem 3.49 (Interpretability of canonical solutions [10]). Let ψ be a normal OSF
term, let φ = φ(ψ), and let I be an OSF interpretation. Then

[[ψ]]I = {γ(G(ψ)) | γ : G[∆G,φ]→ I is an OSF algebra homomorphism}.

Remark 4. The original version of Theorem 3.49 from [8] states that, for any normal OSF
term ψ and algebra I:

[[ψ]]I = {γ(G(ψ)) | γ : G → I is an OSF algebra homomorphism}.

While this statement is less cumbersome to read, it is also imprecise, as the next counterex-
ample shows.

Consider S = {⊥, s0, s1,>} such that s0 ⋏ s1 = ⊥, s0 ⋎ s1 = >, and F = {f}. Let
ψ = X : s0(f → X) and I = (∆I , ·I) be such that ∆I = {a}, fI(a) = a, sI0 = {a}, and
sI1 = ∅. It follows that a ∈ [[ψ]]I (consider any assignment α such that α(X) = a).

Clearly there is no homomorphism γ : G → I such that a = γ(G(ψ)). If such a
homomorphism γ existed, then it would also be defined on the graph g = G(Y : s1) ∈ ∆G ,
and, since g ∈ sG1 , then by Definition 3.43 it should hold that γ(g) ∈ sI1 , which is impossible
since sI1 = ∅.

On the other hand, the function γ : ∆G[∆G,φ] → ∆I (where φ = φ(ψ)) defined by
letting γ(g) = a constitutes a homomorphism γ : G[∆G,φ] → I. To see this, note that
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∆G,φ = {G(ψ)}, where G(ψ) is an OSF graph composed of a single node labeled s0 and a
self loop labeled f , and thus ∆G[∆G,φ] = F∗(∆G,φ) = {G(ψ)}.

Theorem 3.49 and Definition 3.50 have been rephrased to account for this kind of coun-
terexamples.

3.5 Subsumption

In this section we show that the set Ψ of normal OSF terms, the set ΦR of rooted solved OSF
clauses, and the set ∆G of OSF graphs can each be endowed with a partial order3. More
specifically, we define an approximation ordering on OSF graphs, an implication ordering
on OSF clauses, and a subsumption ordering on OSF terms.

Establishing a decidable subsumption ordering between OSF terms is crucial for effective
reasoning within OSF logic. This point is also underscored by Carpenter [34] with respect
to the related logic of typed feature structures:

“The primary goal in constructing our feature structures is to allow for the
representation of partial information. We do not think of a feature structure as
representing all that can be known about a domain object, but rather what is
known at some particular stage in a computation. When dealing with partial
information it is important to be able to tell when one piece of partial information
is more informative or specific than another.”

We start by presenting, for each OSF algebra I, an approximation ordering on ∆I which
is defined according to the existence of homomorphisms relating subalgebras of I generated
by singletons.

Definition 3.50 (Endomorphic approximation [10]). On each OSF interpretation I a
preorder vI⊆ ∆I ×∆I is defined by letting, for all d, d′ ∈ ∆I :

d vI d′ if γ(d) = d′ for some homomorphism γ : I[d]→ I[d′]

If d vI d′ we say that d approximates d′.

Proposition 3.51 (Endomorphic approximation preorder). For each OSF interpre-
tation I, the relation vI is a preorder on ∆I .

The intuition behind this definition is more easily understood if we consider the approx-
imation ordering defined on the OSF graph algebra G.

3More precisely, we define preorders rather than partial orders on these sets, and show that antisymmetry
holds modulo an equivalence relation. This situation is analogous to the subsumption ordering of first-order
terms [91, 93], which is antisymmetric modulo variable renaming.
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Figure 3.6: The OSF algebra morphism of Example 3.52.

Example 3.52 (OSF graphs approximation ordering). Consider the OSF signature
of Example 3.2 and let

g0 = G(X0 : movie (directed_by → Y0 : person)) and

g1 = G(X1 : thriller (directed_by → Y1 : director, title→ Z1 : string))

Define γ : ∆G[g0] → ∆G[g1] by letting, for each g = wG(g0) in ∆G[g0] (with w ∈ F∗):
γ(g) def= wG(g1). For example, γ(g0) = g1, and γ(directed_byG(g0)) = directed_byG(g1).
This is depicted in Fig. 3.6 (where not all trivial graphs are shown, and a few feature
names are abbreviated). The function γ is a morphism witnessing g0 vG g1. In particular,
g0 ∈ movieG and g1 = γ(g0) ∈ thrillerG ⊆ movieG , and the feature applications commute
with the function γ. Intuitively, the graph g0 approximates g1 as it represents information
that is consistent with g1 in a more general way: g0 is a movie rather than a thriller, it is
directed by a person rather than by a director, and it does not constrain the feature title
to be of any sort more specific than >. .

Thanks to Proposition 1.20, we know that vG can be extended to a partial order among
equivalence classes of OSF graphs. As the next proposition illustrates, the elements of these
equivalence classes are OSF graphs that are essentially the same except for different variable
names or possibly the presence of trivial subgraphs.

Proposition 3.53 (OSF graph equivalence). Let g0 and g1 be two OSF graphs. If
g0 vG g1 (as witnessed by a morphism γ0 : G[g0] → G[g1]) and g1 vG g0 (as witnessed by a
morphism γ1 : G[g1]→ G[g0]), then
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Figure 3.7: The OSF graphs and morphisms of Example 3.54.

1. for all g ∈ G[g0], g and γ0(g) are labeled by the same sort;

2. for all g ∈ G[g1], g and γ1(g) are labeled by the same sort;

3. γ0 ◦ γ1 = id∆G[g1] and γ1 ◦ γ0 = id∆G[g0], and thus γ0 and γ1 are bijections.

Example 3.54 (OSF graph equivalence). Consider the OSF terms

ψ0 = X0 : s(f → Y0 : s′) and ψ1 = X1 : s(f → Y1 : s′, f ′ → Z1 : >)

and let g0 = G(ψ0) and g1 = G(ψ1). Let γ0 : G[g0] → G[g1] be defined by letting, for all
g = wG(g0) ∈ G[g0] with w ∈ F∗, γ0(g) def= wG(g1). Similarly, let γ1 : G[g1] → G[g0] be
defined by letting, for all g = wG(g1) ∈ G[g1] with w ∈ F∗, γ1(g) def= wG(g0). In particular
γ0(g0) = g1 and γ1(g1) = g0. These are easily verified to be homomorphisms witnessing
g0 vG g1 and g1 vG g0. The OSF graphs and morphisms are depicted in Fig. 3.7. .

It is now possible to characterize the denotation of a normal OSF term ψ in the OSF
graph algebra G as the set of OSF graphs that are approximated by G(ψ).

Corollary 3.55 (Denotation of an OSF term in G [10]). Let ψ be a normal OSF term.
The denotation of ψ in the OSF graph algebra G can be characterized as follows:

[[ψ]]G = {g ∈ ∆G | G(ψ) vG g}.

It can also be proved that, for any OSF algebra I = (∆I , ·I) and d, d′ ∈ ∆I such that
d vI d′, whenever d belongs to the denotation a term ψ, then d′ must also belong to the
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denotation of the same term. Intuitively, if an object d satisfies the constraints expressed
by an OSF term, then the same must also hold for any object d′ that is more specific than
d. Moreover, the opposite direction is also true, that is, if two objects d and d′ are such
that d′ ∈ [[ψ]]I whenever d ∈ [[ψ]]I for any ψ ∈ Ψ, then it must be the case that d vG d′. As
stated in [10], this result was originally established by Dörre and Rounds [43].

Corollary 3.56 (Dörre-Rounds [10, 43]). For all OSF interpretations I and elements
d, d′ ∈ ∆I :

d vI d′ iff for all OSF terms ψ, d′ ∈ [[ψ]]I whenever d ∈ [[ψ]]I .

By Definition 3.17 we know that, whenever s0 is subsumed by s1 (i.e., s0 � s1), then
sI0 ⊆ sI1 holds in any OSF algebra I. The subsumption ordering on OSF terms is an
extension of this ordering on sorts: a term t0 is subsumed by a term t1 if the denotation of
t0 is always included in the denotation of t1 in any OSF algebra.

Definition 3.57 (Semantic OSF term subsumption [10]). The OSF term t0 is sub-
sumed by the OSF term t1 (denoted t0 � t1) if, for all OSF interpretations I, [[t0]]I ⊆ [[t1]]I .

OSF clauses are instead ordered by logical consequence or implication: the clause φ1 is
a logical consequence of φ0 if, for any OSF algebra I and assignment α that satisfies φ0 it
is possible to define an assignment α′ that agrees with α on the variables shared by φ0 and
φ1 and such that I, α′ |= φ1.

Definition 3.58 (OSF clause implication [10]). The OSF clause φ0 implies the OSF
clause φ1 (denoted φ0 |= φ1) if, for all OSF interpretations I and assignments α such that
I, α |= φ, there is an assignment α′ such that

1. α′(X) = α(X) for all X ∈ Tags(φ0) ∩ Tags(φ1), and

2. I, α′ |= φ1.

The implication ordering for rooted OSF clauses is defined similarly, and it requires that
the roots of the two clauses are assigned the same value.

Definition 3.59 (Rooted OSF clause implication [10]). Let φX and φ′Y be two rooted
OSF clauses with no common variables. The OSF clause φX implies the clause φ′Y (denoted
φX |= φ′Y ) if φ |= φ′[X/Y ].

The following theorem establishes that the three orderings are equivalent.

Theorem 3.60 (Semantic transparency of orderings [10]). If the normal OSF terms
ψ and ψ′ (with roots Y and X, respectively, and no common variables), the OSF graphs g
and g′, and the rooted solved OSF clauses φY and φ′X respectively correspond to one another
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though the syntactic mappings, then the following are equivalent: (1) g vG g′, (2) ψ′ � ψ,
(3) φ′X |= φY , and (4) [[ψ′]]G ⊆ [[ψ]]G.

Similarly to the approximation ordering on OSF graph, the subsumption ordering on
OSF terms and the implication ordering on OSF clauses are in fact preorders, which can be
lifted to partial orders between equivalence classes of these objects as per Proposition 1.20.

Example 3.61 (OSF term and OSF clause equivalence). Consider the terms ψ0 and
ψ1 and the graphs g0 = G(ψ0) and g1 = G(ψ1) from Example 3.54, and let φ0 = φ(ψ0)
and φ1 = φ(ψ1). As shown in Example 3.54 it holds that g0 vG g1 and g1 vG g0, which
by Theorem 3.60 implies that ψ0 � ψ1, ψ1 � ψ0, φ0 |= φ1 and φ1 |= φ0. Indeed, because
features are interpreted as total functions, the terms ψ0 and ψ1 are equivalent, i.e., they
have the same denotation in every OSF algebra. Analogously, the two OSF clauses φ0 and
φ1 are equivalent, since for any assignment α0 that satisfies φ0 in an OSF algebra I it is
possible to define an assignment α1 that satisfies φ1 in I, and vice versa. .

To conclude this section, we provide an additional characterization of subsumption
among OSF terms, framing it as a homomorphic mapping between their tags.

Definition 3.62 (Syntactic OSF term subsumption). The (normal) OSF term ψ0 is
(syntactically) subsumed by the (normal) OSF term ψ1 (denoted ψ0 E ψ1) if there is a
mapping h : Tags(ψ1)→ Tags(ψ0) such that:

1. h(RootTag(ψ1)) = RootTag(ψ0);

2. Sortψ0(h(X)) � Sortψ1(X) for each X ∈ Tags(ψ1);

3. If X f−→ψ1 Y , then h(X) f−→ψ0 h(Y ).

The equivalence of the semantic (Definition 3.57) and syntactic definitions of OSF term
subsumption is given next.

Proposition 3.63 (Semantic and syntactic subsumption). If ψ0 and ψ1 are consistent
OSF terms, then ψ0 � ψ1 if and only if there are two (normal) OSF terms ψ′0 and ψ′1 such
that

• [[ψ0]]I = [[ψ′0]]I for all I,

• [[ψ1]]I = [[ψ′1]]I for all I,

• ψ′0 E ψ
′
1.
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3.6 Unification

Unification is an essential operation in automated reasoning, and is at the core of the appli-
cation of OSF logic and its variants in computational linguistics [34] and the implementation
of logic programming languages based on OSF terms [8, 10]. More recently, it has enabled
the implementation of the CEDAR Semantic Web reasoner [6, 15]. Informally, the unifier of
two OSF terms ψ1 and ψ2 is a term ψ that consistently combines the constraints expressed
by the two terms, without adding any extra constraints. In other words, it is the most
general term that is subsumed by both ψ1 and ψ2.

Definition 3.64 (OSF term unification [10]). The unifier of two normal OSF terms ψ1

and ψ2 is their GLB in the OSF term subsumption ordering and is denoted ψ1 ⋏ ψ2.

Recall that applying the OSF constraint normalization rules to an OSF clause results
in a normal form φ that is either the inconsistent clause X : ⊥, or an OSF clause in solved
form together with a conjunction of equality constraints (Proposition 3.15). The subclause
of φ in solved form is denoted Solved(φ).

Theorem 3.65 (OSF term unification [10]). Let ψ1 and ψ2 be normal OSF terms, and
let φ be the OSF clause obtained by non-deterministically applying any applicable constraint
normalization rule (Fig. 3.2) to the clause

φ(ψ1) & φ(ψ2) & RootTag(ψ1) .= RootTag(ψ2)

until none applies. Then, φ is the inconsistent clause iff the GLB of ψ1 and ψ2 is X : ⊥.
If φ is not the inconsistent clause, then ψ1 ⋏ ψ2 = ψ(Solved(φ)).

Note that two normal OSF terms always have a GLB (possibly ⊥) in the OSF term
subsumption ordering, which can be computed via their unification. Normal OSF terms are
thus ordered in a subsumption lattice.

Example 3.66 (OSF term unification). Consider the OSF signature of Example 3.2
and the OSF terms

ψ1 = X : movie
(
directed_by → X0 : director,
title → X1 : string

)

and ψ2 = Y : horror (directed_by → Y0 : person). Their unifier can be computed by con-
sidering the constraints

φ(ψ1) = X : movie & X.directed_by .= X0 & X0 : director
& X.title

.= X1 & X1 : string
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and φ(ψ2) = Y : horror & X.directed_by .= Y0 & Y0 : person and applying the OSF
constraint normalization rules of Fig. 3.2 to the clause φ(ψ1) & φ(ψ2) & X

.= Y , resulting
in the OSF clause

X : horror & X.directed_by .= X0 & X0 : director
& X.title

.= X1 & X1 : string
& X

.= Y & X0
.= Y0

or an equivalent clause. Translating this clause back into an OSF term yields

X : horror
(
directed_by → X0 : director,
title → X1 : string

)

which is the unifier of ψ1 and ψ2, i.e., their GLB in the OSF term subsumption lattice. .

With respect to the complexity of computing the unifier of two OSF terms ψ1 and ψ2,
the algorithm from [8] based on the union-find problem [1] has a worst-case complexity of
O(mG(m)), where m = |Tags(ψ1) ∪ Tags(ψ2)| and the growth rate of the function G is of
the order of an inverse of the Ackermann function (G(m) ≤ 5 for all practical purposes) [8].
The computation of the unifier for two OSF terms hinges, in particular, on determining the
GLB of two sorts within the sort subsumption lattice, as evidenced by the Sort Intersection
rule. Various strategies for optimizing this operation are discussed in Section 3.8.

3.7 Applications

3.7.1 LOGIN: OSF logic and definite clauses

One of the primary applications of OSF logic involves its integration into Prolog, by replacing
its first-order terms (FOTs) with OSF terms, resulting in the language LOGIN (Logic and
Inheritance) [8]. There are several advantages to adopting OSF terms rather than FOTs
in the context of a logic programming language, as highlighted in [8]. For instance, one
limitation of FOTs is that its functor symbols have a fixed arity, while an OSF logic signature
allows terms with the same root sort but with possibly a different number of arguments,
such as movie(directed_by → director, year → 1960) and movie(directed_by → person).
Moreover, the arguments of an OSF term are identified by features rather than positions,
aiding the interpretability of a term.

The main motivation behind the integration of OSF terms into Prolog is, however, a more
natural, and possibly more efficient, implementation of inheritance (i.e., an is-a subsumption
relation) directly into the unification process rather than through SLD resolution. Indeed,
a key limitation of Prolog is that the unification of two FOTs fails whenever a mismatch of
functor symbols occurs, which may not always be desirable. For instance, the unification of
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s2(X) :- s1(X).
...
sn(X) :- sn-1(X).
s1(a).
prop(a).

(a) Prolog version

s1 < s2.
...
sn-1 < sn.
{a} < s1.
prop(a).

(b) OSF version

Figure 3.8: The logic programs of Example 3.67.

person(X) and student(alice) fails in Prolog, even under the assumption that student

is subtype of (or is subsumed by) person. While Prolog allows to express this subsumption
through the rule person(X) :- student(X), the authors of [8] argue that this approach
is not satisfactory in practice, as inheritance is achieved by an inference step, lengthening
proofs. Replacing the FOTs of Prolog with OSF terms offers the advantage of integrating
inheritance into the unification process, since OSF term unification takes into account a
subsumption relation on sorts, for instance allowing the unification of OSF terms such as
X : person and student(name → “Alice”), provided that student � person. In general,
this property of OSF logic may lead a single unification step to replace several resolutions
steps, as the following example from [8] shows.

Example 3.67 (Prolog resolution and OSF unification). Consider the Prolog program
of Fig. 3.8a. The query ?- sn(X), prop(X) will require n resolution steps before matching
X = a. The OSF version of the same program is depicted in Fig. 3.8b. The program involves
declarations of shape s < s' for the sort subsumption relation, and of shape {a} < s for
the instances of the sort symbols. Constants such as a are treated as singleton sorts (sorts
that denote a single element), and thus as OSF terms themselves. The symbol prop is a
predicate symbol which takes OSF terms as arguments. Since a is subsumed by sn, now
the query prop(X:sn) (which aims to retrieve individuals X of sort sn and that satisfy the
property prop) succeeds in a single unification step rather than n resolution steps. .

The advantage of performing a single unification step rather than several SLD resolution
steps might not seem significant at first, especially considering that OSF term unification
relies on the computation of the GLB of two sorts in a lattice, a potentially expensive
operation. As will be seen in Section 3.8, however, this operation can be implemented very
efficiently thanks to graph encoding techniques that reduce the computation of a GLB to
a simple bitwise AND on binary strings, at the cost of a one-time preprocessing of the sort
subsumption graph. As a result, replacing a number of SLD resolution steps with a single
OSF term unification can indeed lead to more efficient computations.

To conclude the section, the following example illustrates a LOGIN program in which
the computation of a solution to a given query relies on SLD resolution on predicate symbols
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% Subsumption relation
director < person.
slasher < horror.
horror < movie.
thriller < movie.
% Instances
{ alinda } < person.
{ hitchcock, carpenter, nolan } < director.
{ psycho } < horror.
{ halloween } < slasher.
{ memento } < thriller.
% Facts
director_of(hitchcock, psycho).
director_of(carpenter, halloween(year -> 1979)).
director_of(nolan, memento(title -> "Memento")).
% Rules
likes(alinda, Y :thriller) :- director_of(X : person, Y).

Figure 3.9: A logic program with OSF terms.

and on OSF term unification. Predicate symbols in this context are distinct from the sorts
and features of OSF terms. They work exactly as in Prolog, with the only difference that
they accept OSF terms rather than first-order terms as arguments.

Example 3.68 (SLD resolution in LOGIN). Consider the program of Fig. 3.9. After the
definition of the sort subsumption relation and of the instances of a few sorts, the program
specifies a few facts regarding the binary predicate director_of. Finally, a rule involving
the predicates director_of and likes states that alinda likes thriller movies. The query
?- likes(alinda, Y : movie) is first reduced by resolution to the goal director_of(X :

person, Y : thriller), which is then resolved against the facts of the program, returning
a single solution binding Y to memento(title -> "Memento"), through the unification of
thriller and memento(title -> "Memento"). .

LOGIN was implemented as a part of LIFE (Logic, Inheritance, Functions, and Equa-
tions) a programming language which incorporates elements from functional, logic and
object-oriented programming [7, 14].

3.7.2 CEDAR: OSF logic for the Semantic Web

Two versions of a Semantic Web reasoner based on OSF logic were implemented in the
context of the CEDAR project [6, 15], an ANR Chair of Excellence Project led by Hassan
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Aït-Kaci.4 The goal of the project was to develop, implement and test a constraint-based
approach to KRR based on the OSF framework in order to provide an effective, efficient
and scalable technology that is able to represent knowledge and reason about data, aiming
to prove that OSF logic provides a sound alternative to DL as a language for the Semantic
Web, and that it is in fact able to overcome some of the limitations of DL as reported, for
instance, in [42, 54, 109].

An extension of the CEDAR reasoner that leverages a similarity relation between sort
symbols in order to provide approximate answers to a query will be discussed in Section 5.5.1,
which deals with similarity-based OSF logic.

CEDAR reasoner V1 The first version of the CEDAR reasoner [5, 6] is a taxonomic
reasoner that is capable of classifying a taxonomy and answering Boolean queries. In the
context of the CEDAR project, a taxonomy is a partial order (S,�), i.e., a set S of set-
denoting sort symbols together with an is-a ordering � on S which represents set inclusion.
The taxonomy (S,�) is specified in CEDAR through subsort declarations of shape s C s′.
Assuming that they do not involve cycles, these declarations can be also be represented as
a DAG (S,C) such that � is equal to the reflexive and transitive closure of C. It can be
assumed without loss of generality that S contains a greatest sort > and a least sort ⊥,
which respectively denote the whole domain of interest and the empty set ∅.

The task of classifying a taxonomy consists in computing the reflexive and transitive
closure of the subsort declarations (S,C) given as input. After classifying a taxonomy, the
CEDAR reasoner is able to decide whether a sort is subsumed by another sort, and to answer
Boolean queries on the elements of the taxonomy, that is, queries involving conjunctions,
disjunctions an negations on sort symbols. Formally, given two sorts s0, s1 ∈ S, (i) a
conjunctive query s0 ⋏ s1 aims to find the GLB of s0 and s1 in S, that is, the most general
sort s that is subsumed by both s0 and s1, which corresponds to their intersection; (ii) a
disjunctive query s0 ⋎ s1 aims to find the least upper bound (LUB) of s0 and s1 in S, that
is, the most specific sort s that subsumes both s0 and s1, which corresponds to their union;
(iii) a negated query ¬s0 aims to find the complement of the sort s0.

The classification of a taxonomy is performed by the CEDAR reasoner by implementing a
bottom-up DAG encoding algorithm originally proposed in [13], which consists in associating
each sort s ∈ S with a vector of bits of length O(|S|). After the classification is complete,
for instance, a conjunctive query s0 ⋏ s1 can be answered simply by computing the bitwise
AND of the bit vectors corresponding to s0 and s1. The classification algorithm is discussed
in more detail in Section 3.8, which deals with the implementation of OSF logic.

The performance of the first version of the CEDAR reasoner was compared with that of
state-of-the-art Semantic Web reasoners based on DL – including FaCT++ [116], HermiT

4More information about the CEDAR project can be found at https://cedar.liris.cnrs.fr/, including
reports, papers, demos and software.

https://cedar.liris.cnrs.fr/
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[52, 102], Pellet [105], TrOWL [115], RacerPro [56], and SnoRocket [75] – on several
taxonomies of varying size. The evaluation involved the tasks of classifying a taxonomy
and answering Boolean queries combining conjunctions, disjunctions and negations. The
results showed that the CEDAR taxonomic reasoner was among the fastest with respect
to classification, and orders of magnitude more efficient with respect to answering Boolean
queries [5, 6].

As experimentally shown in [6], a key advantage of the CEDAR taxonomic reasoner is
the efficiency of performing Boolean queries, which is virtually O(1) irrespective of the size
of the taxonomy [6]. Because each sort s ∈ S is encoded as a bit-vector of length O(|S|),
however, there is a trade-off with respect to the space required by this representation, which
is quadratic in the size of the taxonomy, and may thus become unfeasible in practice for very
large taxonomies. Nevertheless, the CEDAR reasoner was applied to the NCBI (National
Center for Biotechnology Information) taxonomy5 consisting of 903617 sorts, which was,
according to the authors, the largest taxonomy available at the time of the experiments [6].
Moreover, alternative encoding strategies that are more space efficient and that maintain
efficient (logarithmic) Boolean operations are proposed in [13] and [6].

CEDAR reasoner V2 The second iteration of the CEDAR reasoner extends its capa-
bilities by introducing support for reasoning not only with bare sorts but also with OSF
features and DL roles. More specifically, in addition to performing the classification of an
is-a taxonomy and answering Boolean queries, the enhanced CEDAR reasoner can carry
out the following tasks [15, 16]:

• reasoning over OSF structures involving OSF feature symbols, domain and range
specifications for such features, aggregate sorts representing collections of instances of
specific sorts, and universal and existential restrictions;

• verifying the consistency of a query expressed as an OSF term by normalizing it with
respect to the classified taxonomy; and

• applying the OSF constraint normalization rules to optimize a query before translating
it into SPARQL6 for the retrieval of RDF triples, an operation that can significantly
reduce the retrieval search space.

Furthermore, [15, 16] define an RDF format for OSF structures, establishing a mapping
between the two representations, and propose an indexing scheme for RDF triples that takes
advantage of the semantic information provided by OSF sorts and attributes, facilitating
efficient instance retrieval.

5https://www.ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.html/.
6https://www.w3.org/TR/sparql11-query/.

https://www.ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.html/
https://www.w3.org/TR/sparql11-query/


74 3.7. Applications

An extended OSF logic syntax is also adopted in the updated CEDAR reasoner in order
to supports a few DL constructs [3, 4]. For instance, one of the most notable differences
between OSF logic and DLs lies in their interpretation of attributes. In the OSF formalism
attributes are interpreted as functional features, whereas in DL they denote relational roles.
However, because relations correspond to set-valued functions7, the syntax of OSF logic
can be enriched with the construct set-of(s), whose meaning in an OSF interpretation I is
[[set-of(s)]]I = P(sI) [3, 4]. As a consequence, a relation R between two sorts s0 and s1 may
be seen as a feature fR from s0 to set-of(s1). Moreover, the OSF constraint normalization
rules of Fig. 3.2 do not need to be altered in order to support the set-of construct [3, 4].
Other extensions of the OSF logic syntax, including the support for the existential and
universal restrictions of DLs, are discussed in more detail in [4].

The updated version of the CEDAR reasoner also verifies the consistency of the taxon-
omy with respect to a given set of domain and range declarations for feature symbols. These
consist in expressions of shape f : s1 → s2, stating that the function denoted by f takes
as input an object of sort s1 and returns an object of sort s2. The consistency check for
feature declarations involves confirming that, for each feature f , there are no declarations
f : s1 → s2 and f : s′1 → s′2 such that s′1 � s1 and s2 ⋏ s

′
2 = ⊥. Otherwise, if s2 ⋏ s

′
2 6= ⊥,

then the initial declaration can be updated to f : s′1 → s2 ⋏ s
′
2. This process is repeated for

every declaration of shape f : s1 → s2 and each subsort of s1 [15, 16].
Another key feature of the CEDAR reasoner V2 lies in its query optimization step

[15]. Before being executed, a query (expressed as an OSF term) is normalized according
to the OSF constraint normalization rules and the knowledge expressed in the taxonomy,
including subsort declarations and feature domain and range declarations. Moreover, this
step also ensures the consistency of the input query, so that no answer is provided if the
query is inconsistent. If consistent, the normalized OSF query is translated into a SPARQL
query in order to retrieve instances. As argued in [15], the normalization of an OSF query
before its translation to SPARQL can significantly reduce the retrieval search space by only
focusing on the relevant instances, and it has the potential to improve the query evaluation
by eliminating unnecessary joins.

Example 3.69 (CEDAR V2: query normalization and retrieval). Consider, for
instance, the following query expressed as an OSF term (in which the variable of interest is
marked by a question mark), which intends to retrieve the instances of person that study
in some school and that also work in a restaurant:

t = ?X : person
(
studiesAt → school,

workAt → restaurant

)
.

7A relation R ⊆ X × Y can equivalently be seen as a set-valued function from X to P(Y ) mapping each
x ∈ X to R(x) = {y ∈ Y | (x, y) ∈ R}.
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SELECT ?x WHERE {
?x rdf:type :person.
?x :studiesAt ?y.
?y rdf:type :school.
?x :workAt ?z.
?z rdf:type :restaurant. }

(a) Without the normalization step

SELECT ?x WHERE {
?x rdf:type :student.
?x :workAt ?y.
?y rdf:type :restaurant. }

(b) After the normalization step

Figure 3.10: The SPARQL queries of Example 3.69.

Assuming, for instance, that the input to the CEDAR reasoner contains the feature decla-
ration studiesAt : student → school, specifying that the feature studiesAt only applies to
object of sort student, then the query t can be normalized to t′ = ?X : student(workAt→
restaurant). Fig. 3.10 shows the translation into SPARQL of the queries t and t′. Note
that the instance retrieval search space of the query of Fig. 3.10b is much smaller, resulting
in a more efficient retrieval. .

The performance of the second version of the CEDAR reasoner was compared with
that of state-of-the-art Semantic Web reasoners based on DL – including FaCT++ [116],
HermiT [52, 102], Pellet [105], TrOWL [115], and RacerPro [56] – with respect to
the tasks of classifying a taxonomy, T-Box reasoning, and A-Box query answering. The
experimental evaluation showed that the CEDAR reasoner consistently ranked among the
best three reasoners for taxonomy classification. As far as T-Box reasoning is concerned, the
CEDAR reasoner systematically performed orders of magnitude more efficiently compared
to the other reasoners. With respect to A-Box query answering, the CEDAR reasoner using
Jena8 as a SPARQL query evaluator systematically achieved the best performances of all
tested systems in term of query answering time. Moreover, the CEDAR reasoner achieved
even better results by taking advantage of an indexing scheme for RDF triples based on the
OSF formalism instead of Jena [15, 16].

The efficiency of the CEDAR reasoner is one of the main motivations behind the devel-
opment of extensions of OSF logic that are capable of performing approximate reasoning.
A fuzzy generalization of OSF logic is introduced in Chapter 4, while Chapter 5 deals with
defining similarity-based reasoning within the OSF framework.

3.8 Implementation

In Section 3.7 we have reviewed two applications of OSF logic: the logic programming
language LOGIN [8], and the Semantic Web reasoner CEDAR [6, 15]. Both applications are

8https://jena.apache.org/.

https://jena.apache.org/
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based on OSF term unification. Indeed, one of the advantages of LOGIN compared to other
logic programming languages is that a single OSF term unification step can replace several
SLD resolution steps, possibly leading to more efficient computations (e.g., Example 3.67).
The query normalization phase of CEDAR is also based on the OSF constraint normalization
rules, and, at the time of the experiments, it allowed this reasoner to match the performance
of state-of-the-art Semantic Web reasoners with respect to concept classification, while also
demonstrating greater efficiency in terms of terminological reasoning [6, 15]. The efficiency
of OSF logic is due to techniques that exploit the specificity of concept taxonomies [15], in
particular to graph encoding techniques that allow to efficiently perform lattice operations.

In this section we recall a binary encoding strategy for graphs first presented in [13]
and employed in the CEDAR Semantic Web reasoner [5, 6, 16], and that is also central
in the implementation of fuzzy OSF logic (Section 4.8). We start by exploring how this
encoding technique can be employed in order to compute GLBs in a lattice in Section 3.8.1,
and then discuss in Section 3.8.2 how the same technique can be applied to partial orders.
Section 3.8.3 deals with the issue of detecting cycles in a sort subsumption declaration, while
Section 3.8.4 addresses the limitations of the encoding strategy of [13] with respect to space
complexity.

The idea of preprocessing the DAG representation of a lattice or a partial order to
enhance the efficiency of the GLB computation was initially introduced by [13], as also
acknowledged in subsequent works such as [23, 24]. Although several alternative approaches
have been proposed to perform this operation ([22, 23, 24, 35, 39, 40, 47, 49, 55] just to cite
a few) this section primarily delves into the original method proposed by [13], since it has
seen a practical application in the implementation of the CEDAR reasoner based on OSF
logic.

3.8.1 Encoding lattices

One of the core operations behind OSF term unification is the computation of the GLB of
two sorts in a sort subsumption lattice (S,�). However, traversing the graph representation
of (S,�) to perform this computation would be too expensive in terms of time complexity,
potentially negating the efficiency gains offered by OSF logic, such as the ability of a single
unification step to replace several SLD resolution steps.

The main intuition behind the solution of [13] is that, rather than computing GLBs in
(S,�) directly, it can be more advantageous to consider a lattice (B,v) where GLBs can be
computed efficiently and define encoding and decoding functions ε : S → B and δ : B → S
such that, for all s, s′ ∈ S, δ(ε(s)) = s and ε(s ⋏ s′) = ε(s) u ε(s′), where u is the GLB
operation in (B,v). Consequently, GLBs in (S,�) can be computed as s⋏s′ = δ(ε(s)uε(s′)).

Concretely, (B,v) is a lattice of binary strings (or bit vectors), so that the elements of
S are encoded as strings such as 101010 or 101. The GLB of two binary strings is efficiently
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Algorithm 1 Taxonomy classification.
1: procedure ClassifyTaxonomy
2: ε(⊥)← 0
3: p← 0
4: L← Parents(⊥)
5: while L 6= ∅ do
6: for all s ∈ L do . Encode sort s
7: ε(s)← 2p t⊔s′∈Children(s) ε(s′)
8: p← p+ 1
9: L←⋃s∈L Parents(s) . Compute new layer

10: for all s ∈ L do . Remove unwanted elements from layer
11: if ∃s′ ∈ Children(x) such that ε(s′) is undefined then
12: L← L \ {s}

computed by taking their binary AND, e.g., 1011 AND 1101 = 1001. The code ε(s) of each
sort s ∈ S is obtained through a bottom-up algorithm that traverses the sort subsumption
lattice [13], which will be described shortly. Since the encoding of the sort lattice only needs
to be performed once, while the execution of a LOGIN program, or the optimization of
a CEDAR query, can involve a significant number of GLB operations, the initial cost of
traversing the sort lattice is negligible. If (S,�) is a lattice, then the result of ε(s0) u ε(s1)
is a code b ∈ B such that b = ε(s) for a unique s ∈ S. Pairs of shape (ε(s), s) can thus be
stored in a hash table for the purpose of decoding [15].

We can now proceed with the description of the encoding algorithm. A lattice (S,
�) of sort symbols can be specified as the reflexive and transitive closure of subsumption
declarations of shape s C s′, forming a directed acyclic graph (DAG) (S,C). In other
words, � = C∗. We let Children(s) def= {s′ ∈ S | s′ C s} be the set of sorts s′ that are
immediately below s in (S,C), while Parents(s) def= {s′ ∈ S | s C s′} is the set of sorts s′

that are immediately above s in (S,C). For example, Fig. 1.2 in Section 1.1 is the graph
representation of a lattice. We assume without loss of generality that the lattice (S,�) is
bounded, i.e., it has a greatest element > and a least element ⊥ (if not, these two elements
can simply be added to S).

The classification algorithm of [13], depicted in Algorithm 1, proceeds bottom-up and
assigns a bit vector to each sort as follows.

• The algorithms initializes the code of ⊥ to 0, a counter p to 0, and the first layer L
to be encoded as Parents(⊥) (Lines 2 to 4).

• Each sort s ∈ L is then encoded as the binary OR (denoted t) of (the bit vector
corresponding to the integer) 2p and the codes of the sorts that are immediately below
s (Line 7). The counter p is incremented each time a sort in L is encoded (Line 8).

• After each sort in L is encoded, a new layer is computed as the set of sorts that are
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⊥

a b c

d e f

>

(a)

Sort Code
⊥ 0
a 1
b 10
c 100
d 1011
e 10101
f 100110
> 1111111

(b)

Figure 3.11: A lattice and its encoding.

immediately above some sort in L. However, if a sort s has some uncoded child s′

(i.e., for which ε(s′) is still undefined), then it is temporarily ignored. If (S,C) is a
DAG, s′ will eventually be encoded, and thus also s.

Algorithm 2 Taxonomy classification by topological sort.
1: procedure ClassifyTaxonomyTopological
2: T ← TopologicalSort(S,C)
3: N ← |S|
4: ε(T [0])← 0 . T [0] = ⊥
5: for all 1 ≤ i < N do . Iterate over the rest of the sorts
6: s← T [i]
7: ε(s)← 2i t⊔s′∈Children(s) ε(s′)

In fact, if the is-a declarations form a DAG, Algorithm 1 simply proceeds by visiting
sorts in topological order. A variation of Algorithm 1 based on a topological order on sorts
is given in Algorithm 2. We assume that a procedure TopologicalSort is defined that takes a
DAG (S,C) as input and returns an array T containing the sorts of S in topological order.
The algorithm then initializes the encoding of the bottom sort ⊥ = T [0] and proceeds to
encode all N = |S| sorts in a fashion analogous to Algorithm 1.

Example 3.70 (Encoding a lattice). Fig. 3.11b shows the encoding of the sorts of
the lattice represented in Fig. 3.11a, obtained by applying the classification algorithm of
Algorithm 1 or Algorithm 2. The codes are computed as bit-vectors of variable length.
Computing the GLB of d and f , for instance, amounts to performing the bitwise AND of
their codes, i.e., 1011 AND 100110 = 10. The result is the code of the sort b, which is indeed
the GLB of d and f in the lattice of Fig. 3.11a. .

Algorithm 2 is very simple to implement, as the Python snippet of Fig. 3.12 shows. The
topological sort of the DAG representation of the sort lattice is obtained with a function
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t = list(nx.topological_sort(sort_graph))
t[0].code = 0
code_table = {0: t[0]}
for i, sort in enumerate(t[1:]):

code = (1 << i)
for child in sort_graph.pred[sort]:

code = code | child.code
sort.code = code
code_table[code] = sort

Figure 3.12: Python code for Algorithm 2.

from the NetworkX package9. Sorts are represented as objects with a code attribute that
stores their encoding, and are collected in a NetworkX DiGraph10 called sort_graph. The
pred attribute of this graph is a dictionary that maps each sort to the set of its children
(immediate predecessors). Bit vectors are simply integers, which in Python can have an
arbitrary size11. The integer 2i of Line 7 of Algorithm 2 is computed using the left shift
operator <<, while | is the binary OR operation. The implementation also takes care of
collecting pairs (ε(s), s) in a dictionary code_table for the purpose of decoding.

3.8.2 Encoding partial orders

Both Algorithms 1 and 2 can also be employed when (S,�) is just a partial order rather
than a lattice, but the strategy described earlier to decode ε(s)uε(s′) does not longer apply
if s and s′ do not have a GLB. If s ⋏ s′ exists in (S,�), then, as stated above, ε(s ⋏ s′) is
exactly ε(s)uε(s′), so that the decoding of the latter can be carried out simply by searching
the sort in S whose encoding is equal to ε(s)u ε(s′) (for instance, using a hash table storing
pairs of shape (ε(s), s)). If s ⋏ s′ does not exist, however, this method cannot be employed.

The solution proposed by [13] and employed in the CEDAR reasoner [6] is to implic-
itly work in a completion of the partial order (S,�), specifically on (Antichains(X),�)
(Definition 1.15). In practice, this is achieved by computing the set of MLBs of two sorts
(Definition 1.12) rather than by constructing the actual completion of (S,�). It is clear by
the inner workings of Algorithms 1 and 2 and from Example 3.70 that, for each sort s, the
code ε(s) corresponds exactly to the set of lower bounds of s, i.e., {s}l� = {s′ ∈ S | s′ � s}
(note that each bit 1 in the code of s corresponds to a lower bound of s). Consequently,
the code ε(s) u ε(s′) corresponds to the set {s, s′}l� = {s′′ ∈ S | s′′ � s and s′′ � s′}. In
order to compute the set of MLBs of s and s′ in (S,�) (which corresponds to the GLB of

9https://networkx.org/.
10https://networkx.org/documentation/stable/reference/classes/digraph.html.
11https://docs.python.org/3/whatsnew/3.0.html#integers.

https://networkx.org/
https://networkx.org/documentation/stable/reference/classes/digraph.html
https://networkx.org/
https://networkx.org/documentation/stable/reference/classes/digraph.html
https://docs.python.org/3/whatsnew/3.0.html#integers
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Figure 3.13: A poset and its encoding.

{s} and {s′} in (Antichains(X),�)) it is thus necessary to compute the maximal elements
of this subset.

Algorithm 3 Return the MLBs of a subset of sorts.
1: procedure MaximalLowerBounds(s, s′)
2: L = {s, s′}l�
3: M ← ∅
4: for all s ∈ L do
5: if ¬∃s′ ∈ Parents(s) such that s′ ∈ L then
6: M ←M ∪ {s}
7: return M . Return the MLBs of S

A procedure that computes the set of MLBs of two sorts s and s′ is given in Algorithm 3.
The algorithm first computes the set L of lower bounds of s and s′ (this can be obtained,
for instance, by taking each sort s′′ such that the bit at the position corresponding to s′′ in
ε(s) u ε(s′) is equal to 1), and then collects in a set M the elements that are maximal in
L. This algorithm is not particularly efficient, but it only needs to be applied when the two
sorts s and s′ do not have a GLBs, i.e., when ε(s) u ε(s′) is not stored in the hash table.
Moreover, the decoding is only necessary for extracting the end result of a query, while all
intermediate steps need not refer to the sorts and deal only with bit vectors [6]. After the
computation is done, the pair (ε(s)uε(s′), {s, s′}mlb

� ) may be stored in a hash table for faster
retrieval in future queries.

Example 3.71 (Encoding a partial order). Fig. 3.13b shows the encoding of the sorts
of the poset represented in Fig. 3.13a, obtained by applying the classification algorithm of
Algorithm 1 or Algorithm 2. The codes are computed as bit-vectors of variable length.
Computing the GLB of c and d, for instance, amounts to performing the bitwise AND of
their codes, i.e., 111AND1010 = 10. The result is the code of the sort b, which is indeed the
GLB of c and d in the poset of Fig. 3.13a. The bitwise AND of the codes of the sorts e and
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f , however, results in 11111 AND 101111 = 1111, which does not correspond to any of the
sorts of the poset of Fig. 3.13a. The set of MLBs of e and f is then computed by applying
the procedure MaximalLowerBounds of Algorithm 3. The procedure first computes the
set L = {⊥, a, b, c, d, } and then proceeds to find the set of maximal elements of L, i.e.,
M = {c, d}, which is the set of MLBs of e and f . .

Working with partial orders rather than lattices involves extending the syntax of OSF
logic to support disjunctive terms [10], i.e., terms of shape X : {t1, . . . , tn}, where each ti
is a (possibly disjunctive) OSF term. Given an interpretation I and an assignment α, the
semantics of a disjunctive term is

[[X : {t1, . . . , tn}]]I,α = {α(X)} ∩
n

⋃

i=1
[[ti]]I,α.

More details about OSF logic with disjunctive sorts can be found in [4, 10].

3.8.3 Dealing with cycles

Another issue arises when the considered sort hierarchy (S,�) is neither a lattice nor a
poset, but rather a preorder. This is the case whenever the DAG representation (S,C) of
(S,�) contains cycles, indicating a violation of antisymmetry in �.

While Algorithm 2 cannot be applied in this case, as it requires a topological sort of
(S,C), it is still possible to run Algorithm 1 on a DAG containing cycles [6]. The result is
that, at the end of the procedure, the sorts in S that are involved in a cycle are not encoded.
The approach adopted by the CEDAR reasoner is to identify the maximal cycles contained
in (S,C) and to report them as errors to the user in order to be corrected [5, 6]. Another
approach, also mentioned in [5, 6], is to collapse the maximal cycles into a single sort, thus
constructing a partial order according to Proposition 1.20.

3.8.4 Space considerations

While the encoding strategy of Sections 3.8.1 and 3.8.2 provides a very efficient way to
compute GLBs and MLBs, a quadratic amount of space is required to store the encoding
of a sort lattice (or partial order), which could be prohibitive for very large ontologies or
knowledge bases. More precisely, if fixed-length sequences of bits are employed, each of the
N sorts is assigned a bit vector of length N , requiring N2 bits of space.

We have run a few experiments in Python to get an idea of the space required in practice
to encode a partial order following the strategy of Sections 3.8.1 and 3.8.2. The implemen-
tation of the encoding algorithm is analogous to Fig. 3.12, which employs Python integers,
comparable to bit vectors of variable length, to encode sorts. As a consequence, ignoring the
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overhead of Python objects12, for each 0 < i < |S|, the sort at position i in the topological
order of the DAG of subsort declarations is encoded with a bit vector of length i, while the
bit vector of ⊥, which is at position 0 in the topological ordering, is equal to 0 and thus
requires 1 bit to encode. The space necessary to encode the whole poset (S,�) is thus equal
to

1 +
∑

0≤i<N
i = 1 + N · (N − 1)

2 (3.1)

bits, whereN = |S|, saving a significant amount of space with respect to theN2 bits required
by fixed-length sequences of bits. Table 3.1 shows the time (in seconds) needed to encode
random DAGs of various sizes, and the space required to store the encoding (comparing
the theoretical size that ignores the overhead of Python objects, and the space required in
practice)13. As another example, the WordNet DAG is made up of 74374 nodes, so that
by Eq. (3.1) its encoding size can be estimated at around 329 MB. In practice, the actual
encoding takes up around 360 MB.

The space limitation of this strategy was already addressed by its authors, who proposed
an alternative approach, called modulation, which relies on the observation that DAGs in
many applications consist of several densely connected groups of nodes, with only a few links
into other dense groups [13]. The worst-case space complexity of this approach improves
to O(|S| log(|S|)), but the complexity of the GLB operations increases to O(log(|S|), rather
than the virtually constant-time operation of performing a bitwise AND. Another encoding
method, called compact codes, was proposed in the context of the CEDAR reasoner [6].
This method – which is again more efficient in terms of space, but more expensive with
respect to time complexity – was only used to serialize a sort lattice to disk [6] (although
it can also support lattice operations). Despite its space limitation, the encoding strategy
of Section 3.8.1 was successfully employed by CEDAR to perform lattice operations [6, 15],
encoding sort taxonomies consisting of up to 903617 sorts.

We conclude this section by considering another approach for efficient GLB computation
(mentioned, for example, in [66]) that simply consists in storing GLBs of pairs of sorts in a
hash table.

While storing the GLB of every pair of sorts in a table is clearly not space efficient,
optimizations can be carried out by considering that the subsumption hierarchies used in
knowledge representation are often very sparse, and resemble trees with a few back edges.
For instance, the WordNet DAG has an average outdegree of only ∼ 1.02. It may thus
happen that there are very few non-bottom GLBs in these hierarchies (i.e., GLBs different

12Integers in Python are objects, and their size is at least 24 bytes.
13All experiments in this sections were run with implementations in Python 3.9.5 of the relevant algorithms

on the WordNet dag (as provided by nltk) or on random DAGs (generated with NetworkX) with a least element
and a greatest element and an average outdegree of 1.5. The experiments were run on a Dell XPS 13 running
Ubuntu 20.04, with an Intel Core i7-8565U CPU @ 1.80GHz × 8, and 15.3 GiB RAM. The nltk library can
be found at https://www.nltk.org/, and the NetworkX package can be found at https://networkx.org/.

https://www.nltk.org/
https://networkx.org/
https://www.nltk.org/
https://networkx.org/
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Encoding
Time (s) Size (MB)

|S| Exp. Theor. Exp.
939 0.009 0.052 0.139

9504 0.119 5.383 6.512
47476 1.101 134.344 148.242
94943 2.768 537.281 582.983

142446 5.028 1209.421 1302.376
190016 7.830 2152.079 2315.324
237592 12.243 3364.666 3611.197
285198 17.425 4848.100 5195.975
500000 // 14901.131 //
750000 // 33527.568 //
1000000 // 59604.585 //

Table 3.1: Time and space required to encode a DAG of different sizes. The theoretical
encoding size is computed according to Eq. (3.1).

from the bottom element ⊥). For instance, it turns out that only around 0.022% of all
possible pairs (not considering order) of nodes in the WordNet DAG have a non-bottom
GLB or set of MLBs, i.e., 600992 out of N×(N−1)

2 = 2765708751 pairs, where N = 74374 is
the number of nodes of WordNet. Using Python, for instance, it is possible to store these
GLBs in around 38 MB, compared to the 360 MB required by the variable-length bit vectors
discussed above. This is achieved as follows.

• Let S be the set of nodes of WordNet. We assume that, for each node si ∈ S, i is
the index of the sort si in a fixed topological ordering of S such that, if i ≤ j, then si
comes before sj in this ordering.

• If si ⋏ sj ∈ {si, sj}, with i ≤ j, we store the hash of the pair14 (i, j) in a set S.

• If si ⋏ sj = sk ∈ S \ {⊥, si, sj}, with i ≤ j, then we store the pair (hash(i, j), k) in
a Python dictionary (a hash table) D, where hash is the Python built-in function
returning the hash of an object.

• If si ⋏ sj does not exist, with i ≤ j, then we store the pair (hash(i, j), {k0, . . . , kn}) in
D, where {si, sj}mlb

� = {sk0 , . . . , skn}.

The GLB or set of MLBs of two sorts si, sj ∈ S (i ≤ j) can then be computed as follows:
(i) if i = j, return si; (ii) else, if sj = >, return si; (iii) else, if hash(i, j) ∈ S, return si; (iv)
else, if hash(i, j) is a key of the dictionary D, return its value; (v) else, return ⊥.

All of these steps can be performed in constant time, so that the whole computation is
O(1). In fact, GLB computation is faster than using bit vectors. This is due to the fact that,

14Recall that in Python tuples of hashable objects are hashable.
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N Time (µs)
100 0.65

1000 0.73
10000 0.37

100000 1.48
500000 6.65

1000000 13.20
5000000 72.60

10000000 146.00

Table 3.2: Time needed to compute the bitwise AND on two bit vectors of length N .

for large values of N , a binary operation on bit-vectors of length N is not a constant-time
operation. Table 3.2 shows the average time for the computation of a binary AND on two
bit-vectors of length N . Moreover, decoding the bit vector obtained as the bitwise AND
of two bit vectors may involve computing the set of MLBs, which takes linear time in the
number of nodes and edges of the DAG (Algorithm 3)

With respect to WordNet, computing the GLBs or MLBs of 100 randomly chosen pairs of
sorts takes 123 µs using bit-vectors, and 49.7 µs using the method outlines above, including
the time to recover the sorts from their integer representations.

While this method can achieve a smaller space complexity and slightly faster GLB
computations, it may only be advantageous for very sparse DAGs such as WordNet, where
only 0.02% of the GLBs need to be stored. Another drawback of this approach is that
all GLBs need to be computed beforehand as an offline preprocessing step. While a naive
approach would compute the GLBs or MLBs for each pair (si, sj) of sorts (with i ≤ j), an
optimization can be implemented by considering that, if s0⋏s1 = ⊥, then for all s′0 � s0 and
s′1 � s1 it must be the case that s′0 ⋏ s′1 = ⊥, so that there is no need to compute the latter
GLB. This optimization – which is mentioned, for instance, in [66], where no algorithm is
however given – is implemented in Algorithm 4, which works as follows.

1. A hash table GlbTable that maps a pair of sorts to either a sort (their GLB) or a set
of sorts (the set of their MLBs) is initialized on Line 1, while a topological sort of the
subsumption DAG (S,C) is computed on Line 2. In the rest of the algorithm, the
subscript i of a sort si indicates its position in this topological ordering.

2. On Line 4 starts a loop that considers each sort si in topological order except for the
bottom and top elements T [0] = ⊥ and T [N − 1] = >, since computing the GLB
of a sort s with either of these elements can be done in constant time without any
encoding.

3. For each sort si, the algorithm performs a non-recursive depth-first search (DFS)
starting from the top element >. We keep track of already visited nodes in the set
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Algorithm 4 Precompute all GLBs and MLBs.
1: GlbTable ← new HashTable〈S × S, S ∪ P(S)〉();
2: T ← TopologicalSort(S,C);
3: N ← |T | ;
4: for all 1 ≤ i < N − 1 do . Iterate over the rest of the sorts
5: si ← T [i];
6: Seen ← ∅;
7: NodesStack ← new Stack〈S〉(); . Create empty stack of nodes;
8: for all s ∈ Children(>) do
9: NodesStack.push(s);

10: while NodesStack is not empty do
11: sj ← NodesStack.pop();
12: if j < i or sj ∈ Seen then
13: continue;
14: Seen ← Seen ∪ {sj};
15: if GLB({si, sj}) = ⊥ then
16: continue;
17: GlbTable.put((si, sj), GLB({si, sj}));
18: for all s ∈ Children(sj) do
19: NodesStack.push(s)

Seen initialized on Line 6, and create a stack NodesStack of sorts for the DFS on
Line 7, initialized with the children of > (Lines 8 and 9).

4. In depth-first fashion, a node sj is popped from the stack until NodesStack is empty
i.e., sj is visited (Lines 10 and 11). The node sj is skipped if it has already been seen,
or if its topological rank is lower than that of si (Lines 12 and 13) since this means
that the pair (sj , si) has already been considered at a previous iteration of the loop
starting at Line 4. Otherwise, on Line 14 the node sj is added to the set of already
visited nodes, so that it will not be considered again.

5. The GLB or MLBs of si and sj is then computed. If this is the bottom element,
nothing else is done, and the computation resumes on Line 10, visiting a new node, if
available. Otherwise, si ⋏ sj is stored in the hash table GlbTable (Line 17), and the
children of sj are pushed to the stack (Lines 18 and 19).

Note that if si ⋏ sj = ⊥, then the children of sj are not pushed to the stack, since
their GLB (and the GLB of their children, and so on) with respect to si would also
be ⊥, implementing the aforementioned optimization.

The procedure GLB at Lines 15 and 17 may be any algorithm for computing GLBs and
MLBs, including the ones of Section 3.8.1 or Section 3.8.2. In this case, encoding the DAG
would be necessary for this offline step, but the bit-vectors could be discarded once the hash
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table has been obtained. Following this approach, the runtime of this algorithm is around
46 seconds for WordNet, compared to the several hours needed by a naive approach that
computes the GLB/MLBs for all pairs of sorts (even taking commutativity into account).
In general, the actual efficiency gains of using this algorithm compared with the naive one
depend on how sparse the considered DAG is.



Chapter 4

Fuzzy Order-Sorted Feature Logic

In Chapter 3 we have explored Order-Sorted Feature (OSF) logic, a Knowledge Represen-
tation and Reasoning language based on functional features and partially ordered sorts.
The terms of this language are record-like structures that denote partially ordered classes
of objects, and that generalize first-order terms by allowing to represent partial informa-
tion. The OSF term unification algorithm, together with implementation techniques that
leverage the specificity of concept subsumption relations, enable an efficient calculus of type
subsumption, which has been implemented in logic programming languages such as LOGIN
[8] and automated reasoners such as CEDAR [6, 15].

This chapter introduces a fuzzy generalization of OSF logic – called fuzzy OSF logic –
based on the Gödel t-norm (minimum) and t-conorm (maximum). This language incorpo-
rates the following key features.

1. The syntax of OSF logic is essentially unaltered, allowing, for instance, to benefit from
the crisp results regarding the equivalence of normal OSF terms, rooted solved OSF
clauses and OSF graphs.

2. The sort symbols of OSF logic are interpreted as fuzzy subsets of the domain of an
interpretation rather than crisp subsets, enabling the support of real-valued degrees
of membership of an object to a particular sort. This interpretation is extended to
OSF terms, allowing to represent complex classes of object with a fuzzy denotation.

3. The sort subsumption relation is generalized to a fuzzy subsumption relation between
sorts, which allows to model a weaker notion of inclusion. This allows scenarios where
an object’s membership degree to a sort smight be greater than its membership degree
to a supersort of s. This notion is extended to OSF terms, so that every two terms
are associated with a subsumption degree. OSF terms are proved to be ordered in a
fuzzy lattice, generalizing the OSF term lattice of crisp OSF logic.

4. The greatest lower bound (GLB) of two OSF terms in the fuzzy subsumption lattice
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can be computed through their unification, by applying constraint normalization rules
that are essentially the same as those of crisp OSF logic. This constitutes a significant
advantage with respect to the implementation of fuzzy OSF logic, as it allows to
leverage the same efficient techniques of crisp OSF logic. Moreover, the computational
complexity of finding the GLB of two terms in the fuzzy subsumption lattice is the
same as in crisp OSF logic.

5. Differently from the crisp setting, the unifier of two OSF terms is associated with a
unification degree, the computation of which can be optimized by exploiting the same
encoding techniques of crisp OSF logic.

The idea of a fuzzy generalization of OSF logic was first introduced in [9], where a
weaker notion of first-order term unification based on a similarity relation between term
constructors is defined that also allows mismatches between functor arities and argument
positions (see Section 2.2.1). While our generalization of the semantics of OSF logic to a
fuzzy setting is novel, fuzzy OSF logic shares a few common aspects with fuzzy Description
Logics (DLs) (e.g., [18, 30, 77, 113]), similarly to their crisp counterparts. For instance, fuzzy
DL concepts are also interpreted as fuzzy subsets of a domain. On the other hand, fuzzy
DLs interpret roles as fuzzy relations, while fuzzy OSF logic maintains a crisp interpretation
for feature symbols, as will be seen in Section 4.3. Moreover, as will be clear shortly, the
notion of fuzzy subsumption of sorts and OSF terms in fuzzy OSF logic differs significantly
with that of fuzzy concept inclusions in fuzzy DLs, which relies on the fuzzy implication
operator (see Section 2.1.2 and Example 2.5).

Before delving into the formal development of fuzzy OSF logic, Section 4.1 provides an
informal presentation of our definition of fuzzy sort subsumption and how it is extended to
the terms of OSF logic

The syntax of fuzzy OSF logic is essentially unchanged from that of its crisp version.
The only difference, which is discussed in Section 4.2, concerns OSF signatures, which now
feature a fuzzy subsumption ordering �· on the set of sort symbols.

The fuzzy generalization of the semantics of OSF logic begins in Section 4.3, where we
define the interpretation of the syntactic objects of this language – namely sorts, features,
OSF terms and OSF clauses – in structures called fuzzy OSF interpretations. The fuzzy
OSF graph algebra, a special interpretation whose elements are OSF graphs, is defined in
Section 4.4.

In Section 4.5 we define structure-preserving mappings between fuzzy OSF interpre-
tations called fuzzy OSF homomorphisms, which are valuable for proving several results
regarding the satisfiability of OSF clauses in fuzzy interpretations.

Fuzzy OSF homomorphisms are then employed extensively in Section 4.6, where we
extend the fuzzy sort subsumption ordering to OSF terms and prove that it constitutes a
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fuzzy partial order. We provide similar orderings for OSF clauses and OSF graphs, and
illustrate how the fuzzy OSF term subsumption ordering is related to its crisp counterpart.

Section 4.7 is devoted to unification. We show how to compute the GLB of two OSF
terms in the fuzzy OSF term subsumption ordering through their unification, and how to
find the degree to which two OSF terms are subsumed by each other. We also discuss the
complexity of these computations. Implementation issues are then addressed in Section 4.8.

Finally, in Section 4.9 we discuss the potential application of fuzzy OSF logic as a fuzzy
logic programming language based on OSF terms, which leverages a fuzzy subsumption
relation between sort symbols in order to provide approximate answers to queries posed to
a knowledge base.

The proofs of the main results of this chapter are reported in Appendix A.1.

4.1 Fuzzy OSF logic, informally

Let S and F be (finite) sets of sort symbols and feature symbols, respectively, and let us fix
an interpretation I = (∆I , ·I), i.e., a structure with a domain ∆I and a function ·I that
provides an interpretation to the elements of S and F1. In fuzzy OSF logic, a sort s ∈ S is
interpreted as a fuzzy subset sI : ∆I → [0, 1], while a feature symbol f ∈ F is interpreted
as a function fI : ∆I → ∆I . We rely on the Gödel t-norm ∧ and t-conorm ∨.

As seen in Chapter 3, in crisp OSF logic a subsumption relation � ⊆ S × S is a binary
relation that denotes set inclusion. A natural fuzzy generalization of this notion is Zadeh’s
inclusion of fuzzy sets [44], according to which the subsumption s � s′ has the following
meaning:

if s � s′, then ∀d ∈ ∆I : sI(d) ≤ s′I(d). (4.1)

That is, this definition of fuzzy inclusion requires that, whenever d is an instance of sI with
degree sI(d) = β ∈ [0, 1], then d must also be an instance of s′I with a degree greater than
or equal to β.

We consider a fuzzy subsumption relation as a way to model a weaker notion of inclusion,
where the element d can be an instance of s′I with a degree that may possibly be smaller
than its degree of membership to sI . Thus, we define a fuzzy subsumption relation as a
fuzzy partial order, i.e., a function �· : S2 → [0, 1] that associates a subsumption degree β
with each pair of sort symbols (s0, s1) (and satisfying every constraint of Definition 1.28)
and having the following semantics:

if �·(s0, s1) = β, then ∀d ∈ ∆I : sI0 (d) ∧ β ≤ sI1 (d). (4.2)

1Fuzzy interpretations will be defined properly in Section 4.3.
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Figure 4.1: A fuzzy subsumption relation.

That is, any object d which is an instance of sI0 with degree β0 must also be an instance of
sI1 with a degree β1 that is greater than or equal to the minimum of β0 and β. Note that
(4.1) is a special case of this equation with β = 1. An example of a fuzzy sort subsumption
relation is given in Fig. 4.12.

Sort symbols are analogous to the atomic concepts of DLs. As illustrated in Chapter 3,
complex concepts can be expressed with OSF terms, structures built from sort symbols,
feature symbols (attributes) and variables. For example, the term

t1 = X1 : movie
(
directed_by → Y1 : person,
genre → Z1 : thriller

)

denotes the class of movies directed by some person and whose genre is thriller.
In this chapter we show that a fuzzy subsumption relation between sort symbols can be

extended to a fuzzy subsumption relation between OSF terms. For example, consider the
fuzzy subsumption relation depicted in Fig. 4.1 and the term

t2 = X2 : movie


title → W2 : string,
genre → Z2 : slasher,
directed_by → Y2 : director

 .
This term is more specific that t1, as it provides additional information by introducing the
feature title and by constraining its value to be of sort string, and because it defines more
restrictive constraints, by requiring that the value of the feature directed_by be of sort
director, which is subsumed by person, and that the value of the feature genre be of sort

2We represent a fuzzy subsumption relation �· graphically as a weighted directed acyclic graph (DAG),
of which �· is the reflexive and transitive closure (see Definition 1.30 in Section 1.2).



Chapter 4. Fuzzy Order-Sorted Feature Logic 91

slasher, which is subsumed by thriller with degree 0.5. In this case we say that t1 subsumes
t2 with degree 0.5.

As seen in Chapter 3, one of the reasoning tasks supported by OSF logic is deciding
whether a given term is subsumed by another, or in general finding the most general term
which is subsumed by two given terms. This is also the case for fuzzy OSF logic, where,
similarly to the crisp case, this problem can be solved by unifying two OSF terms, a process
which aims to combine the constraints expressed by the two terms in a consistent way. For
example, t2 is the unifier of term t1 and the following term:

t3 = X3 : movie


directed_by → Y3 : director,
title → W3 : string,
genre → Z3 : horror

 .
In particular, the value for the feature genre in t2 must be of sort slasher, as this sort is
subsumed by both thriller and horror (the values of genre in t1 and t3), and it is the most
general one with this property. Additionally, in fuzzy OSF logic the unifier t2 is associated
with a unification degree, which depends on the subsumption degrees of its sorts with respect
to the corresponding sorts in t1 and t3. In this case the unification degree is 0.5, due to
�·(slasher, thriller) = 0.5.

4.2 Syntax

Fuzzy OSF logic is based on the same syntactic structures of (crisp) OSF logic, so that the
definitions of (normal) OSF terms and (rooted solved) OSF clauses are unchanged. As far
as syntax is concerned, the only difference with crisp OSF logic is that the sort symbols are
ordered in a fuzzy sort subsumption relation rather than a crisp one. The most significant
differences concern the semantics, as will be seen starting from Section 4.3.

Definition 4.1 (Fuzzy OSF signature). A fuzzy OSF signature is a tuple (S,F ,�·) where
S is a set of sort symbols, F is a set of feature symbols, and (S,�·) is a finite bounded fuzzy
lattice with least element ⊥ and greatest element >3. The elements of S and F will also
simply be called sorts and features, respectively. The greatest lower bound (GLB) s 4 s′ of
two sorts s and s′ is also called their greatest common subsort.

Example 4.2 (Fuzzy OSF signature). As an example of a fuzzy OSF signature we
may take the set of sorts and the fuzzy subsumption relation corresponding to the graph of
Fig. 4.1, and F = {directed_by, title} as the set of features. .

Since the sort symbols are now ordered in a fuzzy subsumption, the normalization of an
OSF clause is performed over a fuzzy lattice. In fact, the constraint normalization rules of

3See Definition 1.40 in Section 1.2.
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Fuzzy Sort Intersection
φ & X : s & X : s′

φ & X : s 4 s′

Feature Functionality
φ & X.f

.= Y & X.f
.= Y ′

φ & X.f
.= Y & Y

.= Y ′

Inconsistent Sort
φ & X : ⊥
X : ⊥

Tag Elimination
φ & X

.= Y [Y ∈ Tags(φ)]
φ[X/Y ] & X

.= Y

Figure 4.2: Fuzzy OSF constraint normalization rules.

fuzzy OSF logic (Fig. 4.2) are the same as the ones of crisp OSF logic (Fig. 3.2), except that
the rule Fuzzy Sort Intersection involves the GLB operation 4 in a fuzzy lattice rather than
a crisp one. Thanks to Proposition 1.42, this does not constitute a significant difference as
far as the properties of the normalization procedure are concerned.

Proposition 4.3 (Fuzzy OSF clause normalization). The rules of Fig. 4.2 are finite
terminating and confluent (modulo variable renaming). Furthermore, they always result in a
normal form that is either the inconsistent clause or an OSF clause in solved form together
with a conjunction of equality constraints.

Exactly like in the crisp setting, an OSF term ψ can be normalized by applying the
constraint normalization rules to φ(ψ) and translating the result back into an OSF term.

4.3 Semantics

In this section we generalize the semantics of OSF logic [10] to a fuzzy setting. We begin
by defining fuzzy OSF interpretations, the structures in which the syntactic objects of OSF
logic are interpreted. Fuzzy OSF interpretation, or fuzzy OSF algebras, provide the meaning
of a fuzzy sort subsumption relation and determine the denotations of sort symbols as fuzzy
subsets and of feature symbols as functions.

Let us fix a fuzzy signature (S,F ,�·) for the rest of the section.

Definition 4.4 (Fuzzy OSF interpretation). A (fuzzy) OSF interpretation (or algebra)
for a signature (S,F ,�·) is a pair I = (∆I , ·I) such that4

1. ∆I is a non-empty set, called the domain or universe of the interpretation;

2. for each s ∈ S, sI : ∆I → [0, 1] is a fuzzy subset of ∆I (where in particular >I = 1∆I
and ⊥I = 1∅);

4The symbol 1D denotes the characteristic function 1D : ∆I → {0, 1} of the set D ⊆ ∆I , which is defined
by letting, for all d ∈ ∆I , 1D(d) def= 1 if d ∈ D, and 1D(d) def= 0 otherwise. The symbol ⩀ denotes the
intersection of fuzzy subsets (Definition 1.23).
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3. for each s0, s1 ∈ S, ∀d ∈ ∆I : sI0 (d) ∧ �·(s0, s1) ≤ sI1 (d);

4. for each s0, s1 ∈ S,∀d ∈ ∆I : if (sI0 ⩀ sI1 )(d) > 0, then (s0 4 s1)I(d) > 0; and

5. for each f ∈ F : fI is a function fI : ∆I → ∆I .

In the following we write d ∈ I and d ∈ ∆I interchangeably. Note that the same symbol
I is used for crisp OSF interpretations and for fuzzy OSF interpretations, since its meaning
is always clear from context.

As discussed in Section 4.1, the motivation behind condition (3) is to model a weaker
notion of inclusion which allows scenarios where an object’s membership degree to a sort s
might be greater than its membership degree to a supersort of s.

In order to motivate condition (4), let us momentarily switch to the crisp setting of
Chapter 3, where sI denotes a (crisp) subset of the domain ∆I , � ⊆ S2 is a binary sub-
sumption relation and ⋏ is the GLB operation on (S,�). The definition of an OSF algebra
(Definition 3.17) requires that the following holds for every s0, s1 ∈ S:

sI0 ∩ s
I
1 ⊆ (s0 ⋏ s1)I . (4.3)

In other words, whenever an element belongs to the intersection of the denotations of
two sorts, then it must also belong to the denotation of their GLB. Our fuzzy general-
ization of this requirement is very flexible as it does not impose restrictive constraints
on the membership degree of d to (s0 4 s1)I , but it simply requires that, whenever an
object is an instance of two sorts s0 and s1 with a degree greater than 0, then it must
also be an instance of their GLB with a degree greater than 0. A direct generalization
of (4.3), stating that sI0 ⩀ sI1 (d) ≤ (s0 4 s1)I(d) for all d ∈ ∆I and s0, s1 ∈ S, would
be too restrictive. Indeed, this formulation would require that the degree of member-
ship of an object d to the sort s0 4 s1 is always greater than or equal to its degree of
membership to either s0 or s1. There may however be scenarios where it is convenient
for (s0 4 s1)I(d) to be smaller than both s0

I(d) and s1
I(d). For instance, the follow-

ing example models a situation where thrillerI(psycho) = horrorI(psycho) = 1, but
(thriller4horror)I(psycho) = slasherI(psycho) = 0.7, which is allowed by the more flexible
formulation of Definition 4.4.

Example 4.5 (Fuzzy OSF interpretation). Consider the fuzzy OSF signature of Ex-
ample 4.2 and let I = (∆I , ·I) be defined as follows.

• The domain is

∆I = {psycho, halloween, hitchcock, carpenter , “Psycho”, “Halloween”,null}.

• The interpretation of the sort symbols is defined by letting
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– thrillerI(halloween) = 0.5;

– horrorI(halloween) = slasherI(halloween) = 1;

– thrillerI(psycho) = horrorI(psycho) = 1 and slasherI(psycho) = 0.7;

– movieI(psycho) = movieI(halloween) = 1;

– stringI(“Psycho”) = stringI(“Halloween”) = 1;

– personI(hitchcock) = personI(carpenter) = 1;

– directorI(hitchcock) = directorI(carpenter) = 1;

– >I(x) = 1 for every x ∈ ∆I ; and

– all the remaining membership degrees are equal to 0.

• The interpretation of the feature symbols is defined by letting

– directed_byI(psycho) = hitchcock;

– directed_byI(halloween) = carpenter ;

– titleI(psycho) = “Psycho” and titleI(halloween) = “Halloween”; and

– all the remaining feature applications are equal to null.

This is easily verified to satisfy all constraints of Definition 4.4. In particular

thrillerI(halloween) = 0.5 ≥ 1 ∧ 0.5 = slasherI(halloween) ∧ �·(slasher, thriller). .

Similarly to crisp OSF logic, since features are interpreted as total functions, in the
last example the feature title had to be defined also for elements of sort person such as
hitchcock. An extension of fuzzy OSF logic that interprets features as partial functions is
left for future work.

We now define the meaning of an OSF term in a fuzzy OSF interpretation. Let Val(I)
be the set of all variable assignments α : V → ∆I .

Definition 4.6 (Fuzzy denotation of an OSF term). Let t = X : s(f1 → t1, . . . , fn →
tn) be an OSF term, let I = (∆I , ·I) be a fuzzy OSF interpretation, and let α : V → ∆I be
a variable assignment. The denotation of t in the interpretation I under the assignment α
is the fuzzy subset of ∆I defined by letting, for all d ∈ ∆I :

[[t]]I,α(d) def= 1{α(X)}(d) ∧ sI(d) ∧
∧

1≤i≤n
[[ti]]I,α(fIi (d)).

The denotation of t in the interpretation I is defined as5

[[t]]I def= ⊍

α:V→∆I
[[t]]I,α.

5The symbol ⊍ denotes the union of fuzzy subsets (Definition 1.23).
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Definition 4.6 is a direct generalization of the crisp denotation of an OSF term in an
OSF interpretation under an assignment α (Definition 3.19). Note that the crisp denotation
of a term is always a singleton or the empty set, while in the fuzzy setting [[t]]I,α has a value
greater than 0 for at most one element d ∈ ∆I .

Example 4.7 (Fuzzy denotation of an OSF term). Continuing from Example 4.5, let
t be the term X : thriller (directed_by → Y : director) and α be an assignment such that
α(X) = halloween and α(Y ) = carpenter . Then (with h def= halloween and c def= carpenter):

[[t]]I,α(h) = 1{α(X)}(h) ∧ thrillerI(h) ∧ [[Y : director]]I,α(directed_byI(h))
= 1 ∧ 0.5 ∧ [[Y : director]]I,α(c)
= 1 ∧ 0.5 ∧ 1{α(Y )}(c) ∧ directorI(c)
= 1 ∧ 0.5 ∧ 1 ∧ 1 = 0.5.

Now consider the term

t′ = X : movie (directed_by → Y : director, directed_by → Y : string)

and note that director 4 string = ⊥. It follows that the denotation of t′ in any fuzzy OSF
interpretation I is always equal to 0, i.e., the term t′ is contradictory. Indeed, suppose
towards a contradiction that [[t′]]I,α(d) > 0 for some OSF interpretation I = (∆I , ·I),
d ∈ ∆I and valuation α. Then it must be the case that directorI(d′) ∧ stringI(d′) > 0 or,
equivalently, (directorI ⩀ stringI)(d′) > 0, where d′ = α(Y ). From Definition 4.4 it follows
that (director 4 string)I(d′) = ⊥I(d′) > 0, which is impossible since ⊥I = 1∅. .

Remark 5 (Fuzzy denotation of an OSF term). Let t = X : s(f1 → t1, . . . , fn → tn)
be an OSF term and Xi = RootTag(ti) for each i. Let I be an OSF interpretation and
d ∈ ∆I . It is easy to see that, if α0 and α1 are assignments such that

[[t]]I,α0(d) = β0 > 0 and [[t]]I,α1(d) = β1 > 0,

then it must be the case that α0(Y ) = α1(Y ) for all Y ∈ Tags(t), and thus β0 = β1.
Indeed, it must be the case that α0(X) = α1(X) = d, and so for each fi is must hold that
α0(Xi) = fIi (d) = α1(Xi), and so on for all subterms. Hence the set {β | [[t]]I,α(d) = β >

0 for some α : V → ∆I} is a singleton and if [[t]]I(d) = ⊍α:V→∆I [[t]]I,α(d) = β > 0, then
there exists some α such that [[t]]I,α(d) = β.

We now define the graded satisfaction of an OSF clause in a fuzzy OSF interpretation,
generalizing Definition 3.21.

Definition 4.8 (Graded satisfaction of an OSF clause). If I = (∆I , ·I) is a fuzzy OSF
interpretation and α : V → ∆I is an assignment, then the satisfaction of an OSF clause φ
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to a degree β ∈ [0, 1] in the interpretation I under the assignment α (notation: I, α |=β φ)
is defined recursively as follows:

I, α |=β X : s ⇔ sI(α(X)) ≥ β,
I, α |=β X

.= Y ⇔ 1{α(X)}(α(Y )) ≥ β,
I, α |=β X.f

.= Y ⇔ 1{fI(α(X))}(α(Y )) ≥ β,
I, α |=β φ & φ′ ⇔ I, α |=β φ and I, α |=β φ

′.

If I, α |=β φ, then α is called a solution in I for the clause φ with degree β, and φ is said to
be satisfiable in I with degree β. The clause φ is said to be satisfiable in I if there is some
α : V → ∆I and β > 0 such that I, α |=β φ, and φ is said to be satisfiable if there is some
I such that φ is satisfiable in I.

Note that I, α |=0 φ always holds for any fuzzy OSF interpretation I, assignment α and
OSF clause φ (the satisfaction degree of a clause for a given assignment and interpretation
is always greater than or equal to 0). Moreover, for any β ∈ (0, 1],

I, α |=β X
.= Y ⇔ 1{α(X)}(α(Y )) ≥ β ⇔ α(X) = α(Y ) ⇔ I, α |=1 X

.= Y ,

I, α |=β X.f
.= Y ⇔ 1{fI(α(X))}(α(Y )) ≥ β ⇔ fI(α(X)) = α(Y ) ⇔ I, α |=1 X.f

.= Y ,

and
α(X) 6= α(Y ) ⇒ 1{α(X)}(α(Y )) = 0 ⇒ I, α |=0 X

.= Y ,

fI(α(X)) 6= α(Y ) ⇒ 1{fI(α(X))}(α(Y )) = 0 ⇒ I, α |=0 X.f
.= Y .

Example 4.9 (Graded satisfaction of an OSF clause). Continuing from Example 4.5,
let φ = X : slasher & X.directed_by .= Y & Y : director and let α be an assignment such
that α(X) = psycho and α(Y ) = hitchcock. Then I, α |=0.7 φ:

• I, α |=0.7 X : slasher, since slasherI(α(X)) = slasherI(psycho) = 0.7;

• I, α |=0.7 X.directed_by
.= Y , since directed_byI(α(X)) = directed_byI(psycho) =

hitchcock = α(Y ); and

• I, α |=0.7 Y : director, since directorI(α(Y )) = directorI(hitchcock) = 1. .

As seen in Chapter 3, as far as crisp OSF logic is concerned, the denotation of an OSF
term and the satisfaction of its corresponding OSF clause are equivalent (Proposition 3.23).
A similar relationship can be proved for the denotation of an OSF term t in a fuzzy inter-
pretation and the degree of satisfaction of the corresponding OSF clause φ(t).

Proposition 4.10 (Equivalence of fuzzy term denotation and graded constraint
satisfaction). For every OSF term t (with root variable X), every interpretation I, every
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assignment α, and every β ∈ [0, 1]:

[[t]]I,α(α(X)) ≥ β ⇔ I, α |=β φ(t).

Therefore [[t]]I,α(α(X)) = sup({β | I, α |=β φ(t)}) and thus, for all d ∈ ∆I :

[[t]]I(d) = sup({β | α ∈ Val(I) and α(X) = d and I, α |=β φ(t)}).

In crisp OSF logic, the OSF clause φ′ resulting from the application of a constraint
normalization rule of Fig. 3.2 is semantically equivalent to the original clause φ. In a fuzzy
context, the constraint normalization rules of Fig. 4.2 still preserve the satisfiability of an
OSF clause, but not necessarily the satisfaction degree.

Proposition 4.11 (Solution-preservation of fuzzy OSF clause normalization). For
any rule of Fig. 4.2 with premise φ and conclusion φ′, for every fuzzy OSF algebra I and
assignment α: I, α |=β φ for some β > 0 if and only if I, α |=β′ φ

′ for some β′ > 0.

Note that the degrees β and β′ in the last proposition may be not be the same, so
that the degree of satisfaction of an OSF constraint in an algebra I according to some
assignment α may be different from the degree of satisfaction of its solved form in the same
algebra and according to the same assignment. Together with Proposition 4.10, this implies
that the denotation of an OSF term t in a fuzzy OSF interpretation may not coincide with
the denotation of its normal form ψ obtained by applying the constraint normalization
procedure to φ(t). This constitutes a significant departure from crisp OSF logic, where in
any OSF algebra every OSF clause is equivalent to its solved form, and every OSF term has
the same denotation as its normal form.

Example 4.12 (Solution-preservation of fuzzy OSF clause normalization). Con-
sider the fuzzy OSF signature of Example 4.2 and the OSF clause φ def= X : thriller & X :
horror. An application of the rule Sort Intersection to φ results in the OSF clause φ′ def= X :
slasher. Let I be the fuzzy OSF interpretation from Example 4.5, and α be an assignment
such that α(X) = psycho. Then I, α |=1 φ, but I, α |=0.7 φ

′. As another example, if α′ is
an assignment such that α′(X) = halloween, then I, α′ |=0.5 φ, and I, α′ |=1 φ

′. .

We conclude the section by exploring subalgebras of fuzzy OSF algebras.

Definition 4.13 (Subalgebra of a fuzzy OSF algebra). Let I = (∆I , ·I) and J =
(∆J , ·J ) be fuzzy OSF interpretations. The algebra I is a subalgebra of J if ∆I ⊆ ∆J and
for all d ∈ ∆I , all s ∈ S and all f ∈ F : sI(d) = sJ (d) and fI(d) = fJ (d).

Similarly to the crisp case, the denotation of an OSF term t under a valuation α : V → ∆I

is the same in an algebra J and in a subalgebra I of J . Moreover, an assignment α : V → ∆I
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is a solution for a clause φ in I if and only if it is a solution for φ in J , with the same degree
of satisfaction.

Proposition 4.14 (Fuzzy denotation and graded satisfaction in subalgebras). Let
I be a subalgebra of a fuzzy OSF algebra J . For every OSF term t, every OSF clause φ,
every assignment α : V → ∆I and every β ∈ [0, 1]: (i) [[t]]I,α(d) = [[t]]J ,α(d) for all d ∈ ∆I ,
and (ii) I, α |=β φ if and only if J , α |=β φ.

Finally, the definition of a subalgebra generated by a subset of a fuzzy algebra is a
straightforward generalization of the same notion of crisp OSF logic (Definition 3.28).

Definition 4.15 (Fuzzy OSF subalgebra generated by a set). Let I = (∆I , ·I) be a
fuzzy OSF interpretation and D ⊆ ∆I be nonempty. The fuzzy OSF subalgebra generated
by D is the structure I[D] = (F∗(D), ·I[D]) such that, for each s ∈ S, sI[D] def= sI ⩀ 1F∗(D),
and for each f ∈ F , fI[D] is defined as the restriction of fI to F∗(D).

When D = {d} is a singleton we write I[d] instead of I[{d}].

Proposition 4.16 (Least fuzzy OSF subalgebra generated by a set). Let I =
(∆I , ·I) be an OSF interpretation. For any non-empty subset D ⊆ ∆I the structure I[D] is
the least fuzzy subalgebra of I containing D.

4.4 The fuzzy OSF graph algebra

As seen in Chapter 3, OSF graphs play a fundamental role in the semantics of crisp OSF
logic [10]. The same is true for the fuzzy generalization of this language. In particular,
OSF graphs are the elements of the domain of the fuzzy OSF graph algebra, a fuzzy OSF
interpretation which will be essential for proving many results about fuzzy OSF logic. This
fuzzy interpretation is defined next.6

Definition 4.17 (Fuzzy OSF graph algebra). The fuzzy OSF graph algebra is the pair
G = (∆G , ·G) defined as follows.

1. The domain ∆G is the set of all OSF graphs.

2. For each s ∈ S and for each graph g = (N,E, λN , λE , X) ∈ ∆G : sG(g) def= �·(λN (X), s).

3. For each f ∈ F , the function fG : ∆G → ∆G is defined by letting, for any g = (N,E,
λN , λE , X):

fG(g) def=

g
∣∣
Y

if ∃Y ∈ N such that λE(X,Y ) = f,

G(Zf,g : >) otherwise,
6Note that the same symbol G is used for the crisp OSF graph algebra and for the fuzzy OSF graph

algebra, since its meaning is always clear from context.
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where

• g
∣∣
Y

is the maximally connected subgraph of g rooted at Y ; and
• G(Zf,g : >) denotes the trivial OSF graph ({Zf,g}, ∅, {(Zf,g,>)}, ∅, Zf,g) whose

only node is the new variable Zf,g ∈ V \ N – labeled by > – which is uniquely
determined by the feature f and the graph g, i.e., if f 6= f ′ or g 6= g′, then
Zf,g 6= Zf ′,g′ .

This definition generalizes the OSF graph algebra of Definition 3.36. The interpretation
of feature symbols is the same (e.g., Example 3.38), but the denotation of a sort symbol s
is now a fuzzy set whose value for a graph g with root X is the subsumption degree of the
root sort λN (X) with respect to s.

Example 4.18 (Interpretation of sorts in the fuzzy OSF graph algebra). Consider
the fuzzy subsumption relation corresponding to the graph of Fig. 4.1. Then, for example,
thrillerG is the function such that:

• thrillerG(g) = 1 for any OSF graph g whose root is labeled by thriller or by ⊥;

• thrillerG(g) = 0.5 for any OSF graph g whose root is labeled by slasher; and

• thrillerG(g) = 0 for any other OSF graph g. .

Proposition 4.19 (Fuzzy OSF graph algebra). The fuzzy OSF graph algebra of Defi-
nition 4.17 is a fuzzy OSF interpretation in the sense of Definition 4.4.

Fuzzy OSF logic preserves the result from crisp OSF logic (Theorem 3.41) stating that
every solved OSF clause φ is satisfiable in the subalgebra of the OSF graph algebra generated
by the graphs corresponding to the maximal rooted subclauses of φ. In fuzzy OSF logic, it
can be proved that in these subalgebras solved OSF clauses can always be satisfied with the
maximum degree, i.e., 1.

Definition 4.20 (Fuzzy canonical graph algebra). Let φ be a solved OSF clause. The
subalgebra G[∆G,φ] of the fuzzy OSF graph algebra G generated by ∆G,φ def= {G(φ(X)) | X ∈
Tags(φ)} is called the (fuzzy) canonical graph algebra induced by φ.

Proposition 4.21 (Satisfiability in the fuzzy canonical graph algebra). Any solved
clause φ ∈ Φ is satisfiable in G[∆G,φ] with degree 1 under any assignment α : V → ∆G[∆G,φ]

such that α(Y ) = G(φ(Y )) for all Y ∈ Tags(φ).

Since G[∆G,φ] is a subalgebra of G, as a corollary of Propositions 4.14 and 4.21 it is
possible to prove that every solved OSF clause is satisfiable in G (with degree 1) under any
assignment mapping each variable Y of φ to the graph G(φ(Y )), thus carrying Corollary 3.42
to fuzzy OSF logic. Analogously to crisp OSF logic, such a mapping is called a canonical
solution for the clause φ in G.
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Corollary 4.22 (Canonical solutions in the fuzzy OSF graph algebra). Any solved
OSF clause φ is satisfiable in the fuzzy OSF graph algebra G with degree 1 under any as-
signment α : V → ∆G such that, for each Y ∈ Tags(φ), α(Y ) = G(φ(Y )).

4.5 Fuzzy OSF algebra homomorphisms

In this section we introduce fuzzy β-homomorphisms, mappings between fuzzy OSF inter-
pretations that preserve feature applications and, to some degree, the sorts of the elements
of the domain. Fuzzy β-morphisms allow us to prove several results regarding the satis-
faction of OSF clauses in fuzzy OSF interpretations. In particular, we prove that the OSF
graph algebra G is canonical in the sense that any OSF clause is satisfiable if and only if it is
satisfiable in G. We also prove that the denotation of a normal OSF term ψ in a fuzzy OSF
interpretation can be characterized through the existence of fuzzy homomorphisms from the
subalgebra of G generated by G(ψ). In the next section, β-morphisms will be used to define
a fuzzy ordering on the domain of any fuzzy OSF interpretation, which will eventually lead
to the fuzzy subsumption ordering between OSF terms.

Definition 4.23 (Fuzzy OSF algebra β-homomorphism). A β-homomorphism (or
β-morphism) γ : I → J between two fuzzy OSF interpretations I and J is a function
γ : ∆I → ∆J such that, for all f ∈ F , all s ∈ S, and all d ∈ ∆I :

• γ(fI(d)) = fJ (γ(d)), and

• sI(d) ∧ β ≤ sJ (γ(d)).

Our definition of fuzzy OSF algebra β-morphism generalizes the corresponding crisp one
of Definition 3.43. The condition on features is unchanged: a β-morphism must preserve
the structure of the input algebra I, i.e., it must commute with feature applications. The
original crisp condition on sorts states that, whenever d is an element of the interpretation
of s in I, then its image γ(d) must be an element of the interpretation of s in J . A direct
fuzzy generalization of this statement would specify that, for all s ∈ S and d ∈ ∆I ,

sI(d) ≤ sJ (γ(d)). (4.4)

Similarly to our definition of a fuzzy subsumption relation, we further generalize this con-
straint by requiring that, in order for γ to be a β-morphism, whenever d is a member of sI

with degree β′, then γ(d) must be a member of sJ with degree greater than or equal to the
minimum of β and β′. Clearly (4.4) is recovered simply by setting β = 1.

Example 4.24 (Fuzzy OSF algebra β-morphism). Consider the fuzzy interpretation
I, the assignment α and the term t = X : thriller (directed_by → Y : director) from
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thriller director director

halloween

carpenter

psycho

hitchcock

· · ·

dir_by

dir_byI dir_byI

G(t) dir_byG(G(t))

G[G(t)]

I

dir_byG

γ

γ

Figure 4.3: The fuzzy OSF algebra morphism of Example 4.24.

Example 4.7. Consider the subalgebra of G generated from the element G(t) and define the
function γ : ∆G[G(t)] → ∆I by setting, for g = wG(G(t)) ∈ ∆G[G(t)], γ(g) def= wI(halloween),
where w ∈ F∗. In particular we have γ(G(t)) = halloween and γ(G(Y : director)) =
carpenter . This is easily verified to be a 0.5-morphism. This is depicted in Fig. 4.3 (where
trivial graphs are not shown, and some names have been shortened). .

The following proposition provides a few properties of fuzzy OSF algebra homomor-
phisms. In particular, if a function γ : ∆I → ∆J is a β-morphisms, then there is always a
maximum β′ such that γ is also a β′-morphism.

Proposition 4.25 (Fuzzy homomorphisms). Let γ : I → J be a β-morphism.

1. If γ′ : J → K is a β′-morphism, then γ′ ◦ γ : I → K is a β ∧ β′-morphism.

2. For all β′ ≤ β: γ is a β′ morphism.

3. There is a maximum β′ such that γ is a β′-morphism.

On the other hand, as Example 4.26 shows, it is not true in general that, for any fuzzy
interpretations I and J , there is a maximum β such that there exists a β-morphism γ : I →
J . This property, which will be valuable later, holds however for specific homomorphisms
relating subalgebras generated by singletons, as stated in Proposition 4.27.

Example 4.26 (Homomorphism degrees). Consider a simple signature where S =
{⊥, s,>}, the subsumption ordering is ⊥ �·1 s �·1 >, and F = {f}. Let I = (∆I , ·I) be
such that ∆I = {a}, sI(a) = 1, and fI(a) = a. Let J = (∆J , ·J ) be such that

• ∆J = {ai | i ∈ N \ {0}};

• ∀i > 0: sJ (ai) = 1− 1/i;

• ∀i > 0: fJ (ai) = ai.
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For each i > 0, let βi def= 1− 1/i. Any morphism γ : I → J has shape γi : a 7→ ai for some
i > 0. Note that for each i > 0, γi is a βi-morphism, since sI(a)∧βi = 1∧(1−1/i) = 1−1/i =
sJ (ai) = sJ (γi(a)). Let B def= {β | ∃ β-morphism γ′ : I → J }. Clearly B = {βi | i ∈ N\{0}}
and sup(B) = 1, but there is no 1-morphism from I to J . .

Proposition 4.27 (Homomorphisms originating from singletons). Let I and J be
fuzzy OSF interpretations and fix d ∈ ∆I . Let γ : I[d]→ J be a β-morphism.

1. For every d′ ∈ I[d], γ(d′) is an element of the domain of J [γ(d)], i.e., γ : I[d] →
J [γ(d)].

2. For any β′-homomorphism γ′ : I[d] → J : if γ′(d) = γ(d), then γ = γ′, i.e., for all
d′ ∈ ∆I[d], γ(d′) = γ′(d′).

3. There is a maximum β′ such that there exists a β′-morphism γ′ : I[d] → J that
satisfies γ′(d) = γ(d).

As should be expected, the satisfiability of an OSF clause φ is preserved under an OSF
algebra β-morphism γ : I → J , modulo the degree β: if φ is satisfiable in I with degree β′,
then φ must also be satisfiable in J with degree β ∧ β′.

Proposition 4.28 (Extending solutions through fuzzy homomorphisms). Let I and
J be two fuzzy OSF interpretations and γ : I → J be a β-morphism. For every OSF clause
φ and assignment α : V → ∆I , if I, α |=βI φ, then J , γ ◦ α |=βI∧β φ.

An interesting property that carries over from crisp OSF logic (Theorem 3.47) is that
it is always possible to define a β-morphism from any fuzzy interpretation I into the fuzzy
OSF graph algebra for some positive degree β. Consequently, it holds that any OSF clause
is satisfiable if and only if it is satisfiable in G (Corollary 4.30), generalizing the analogous
crisp result (Corollary 3.48).

Theorem 4.29 (Fuzzy morphisms into G). For any fuzzy OSF interpretation I there
exists a β-homomorphism into the fuzzy OSF graph algebra G for some β ∈ (0, 1].

Corollary 4.30 (Canonicity of the fuzzy OSF graph algebra). An OSF clause is
satisfiable if and only if it is satisfiable in the fuzzy OSF graph algebra.

Another core property that is preserved from crisp OSF logic (Theorem 3.46) is that
any solution α for a clause φ in any fuzzy interpretation I can be obtained through a
homomorphism from the canonical graph algebra induced by φ. Specifically, if α is a solution
to φ in I with degree β, then it is possible to define a β-homomorphism γ : G[∆G,φ] → I
such that α is the homomorphic image of the canonical solution for φ in G, as stated next.
An example of the application of this theorem was given in Example 4.24.
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Theorem 4.31 (Extracting solutions through fuzzy homomorphisms). For any
solved OSF clause φ, fuzzy interpretation I, assignment α : V → ∆I and β ∈ (0, 1] such
that I, α |=β φ there exists an OSF algebra β-homomorphism γ : G[∆G,φ] → I such that
α(X) = γ(G(φ(X))) for each X ∈ Tags(φ).

Thanks to Proposition 4.10 and Theorem 4.31 we can show that the denotation of a
normal OSF term ψ in a fuzzy OSF interpretation can be characterized through the existence
of fuzzy homomorphisms from the canonical graph algebra induced by G(ψ), generalizing
the analogous result of crisp OSF logic (Theorem 3.49).

Theorem 4.32 (Denotation of ψ-terms via fuzzy morphisms). Let ψ be a normal
OSF term, let φ = φ(ψ), and let I = (∆I , ·I) be a fuzzy OSF interpretation. For all d ∈ ∆I

and β ∈ (0, 1]:

[[ψ]]I(d) ≥ β ⇔ there is a β-morphism γ : G[∆G,φ]→ I such that d = γ(G(ψ))

and thus [[ψ]]I(d) = sup({β ∈ [0, 1] | ∃β-morphism γ : G[∆G,φ]→ I such that d = γ(G(ψ))}).

4.6 Fuzzy OSF orderings and subsumption

One of the main features of (crisp) OSF logic [10] is its definition of a subsumption ordering
between OSF terms, which extends the subsumption ordering between sort symbols. This
notion allows to understand whether a concept represented as an OSF term is more general
or more specific than another concept, thereby creating a concept hierarchy. As discussed
in Section 3.5, equivalent partial orders can also be defined on rooted solved OSF clauses
and OSF graphs.

In this section we generalize this result to a fuzzy setting by defining a fuzzy subsumption
ordering between OSF terms, a graded implication ordering between OSF clauses, and a
fuzzy approximation ordering between OSF graphs. We show that these fuzzy relations
are equivalent and that they constitute fuzzy partial orders7 on, respectively, OSF graphs,
normal OSF terms and rooted solved OSF clauses. We give both a semantic definition and
a syntactic definition of fuzzy subsumption of OSF terms, and prove their equivalence. A
connection between the crisp definition of subsumption of OSF terms (Definition 3.57) and
our fuzzy generalization is also provided.

We begin by defining a fuzzy preorder on the domain of any fuzzy OSF interpretation,
generalizing Definition 3.50.

Definition 4.33 (Fuzzy endomorphic approximation). On every fuzzy OSF inter-
pretation I a fuzzy binary relation vI : ∆I × ∆I → [0, 1] is defined by letting, for all

7To be more precise, these fuzzy orders are antisymmetric on equivalence classes of OSF graphs, normal
OSF terms and rooted solved OSF clauses, as detailed later.
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d, d′ ∈ ∆I :

vI(d, d′) def= sup({β | γ(d) = d′ for some β-homomorphism γ : I[d]→ I[d′]}).

If vI(d, d′) = β (abbreviated as dvIβ d′) we say that d approximates d′ with degree β.

thriller director director >

slasher

director

string

director string

dir_by

dir_by

title

g0 dir_byG(g0) titleG(g0)
titleG

G[g0]

g1

dir_byG(g1) titleG(g1)

G[g1]

dir_byG

dir_byG

γ γ γ

titleG

Figure 4.4: The fuzzy OSF algebra morphism of Example 4.34.

Example 4.34 (OSF graphs fuzzy approximation ordering). Let

g0 = G(X0 : thriller (directed_by → Y0 : director)) and

g1 = G(X1 : slasher (directed_by → Y1 : director, title→ Z1 : string)).

Define γ : ∆G[g0] → ∆G[g1] by letting, for each g = wG(g0) in ∆G[g0] (with w ∈ F∗):
γ(g) def= wG(g1). The graphs g0 and g1 and the function γ are depicted in Fig. 4.4 (where
not all trivial graphs are shown, and some names are shortened). In particular γ(g0) = g1.
The function γ is a 0.5-morphism witnessing vG(g0, g1) = 0.5. .

Remark 6. Let I be a fuzzy OSF algebra and d, d′ ∈ ∆I . Suppose that vI(d, d′) = β′ > 0.
Then Proposition 4.27 guarantees that there exists a β′-morphism γ′ : I[d] → I[d′] such
that γ′(d) = d′, i.e., that β′ = sup({β | γ(d) = d′ for some β-morphism γ : I[d]→ I[d′]}) is
a maximum.

Proposition 4.35 (Endomorphic approximation fuzzy preorder). For all fuzzy OSF
interpretations I, the fuzzy binary relation vI is a fuzzy preorder.
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Similarly to the crisp setting (Proposition 3.51), the approximation ordering on OSF
graphs does not satisfy (fuzzy) antisymmetry, that is, it may be the case that vG(g0, g1) =
β0 > 0 and vG(g1, g0) = β1 > 0, but g0 6= g1. However, while g0 and g1 may not be identical,
it is possible to show that they are essentially the same graph except for different variable
names or possibly the presence of trivial subgraphs (subgraphs consisting of a single node
labeled >), like in the crisp case (Proposition 3.53).

Proposition 4.36 (Fuzzy morphisms between two OSF graphs). Let g0 and g1 be
two OSF graphs. If γ0 : G[g0] → G[g1] is a β0-morphism (β0 > 0) and γ1 : G[g1] → G[g0] is
a β1-morphism (β1 > 0) such that γ0(g0) = g1 and γ1(g1) = g0, then:

1. for all g ∈ G[g0], g and γ0(g) are labeled by the same sort;

2. for all g ∈ G[g1], g and γ1(g) are labeled by the same sort;

3. γ0 ◦ γ1 = id∆G[g1] and γ1 ◦ γ0 = id∆G[g0], and thus γ0 and γ1 are bijections;

4. γ0 and γ1 are 1-morphisms.

In line with this result, it is convenient to define a notion of OSF graph equivalence.

Definition 4.37 (OSF graph equivalence). Two OSF graphs g0 and g1 are equivalent
(notation: g0 ≡ g1) if there are 1-morphisms γ0 : G[g0]→ G[g1] and γ1 : G[g1]→ G[g0] such
that γ0(g0) = g1 and γ1(g1) = g0.

Example 4.38 (OSF graph equivalence). Consider the OSF graphs g0 and g1 and the
functions γ0 and γ1 from Example 3.548. Similarly to how in Example 3.54 the two functions
are crisp homomorphisms witnessing the equivalence of the two graphs, int the fuzzy setting
γ0 and γ1 are easily verified to be 1-morphisms, and thus g0 ≡ g1. .

By Proposition 4.36 and Proposition 4.35, we can thus prove that vG is a fuzzy partial
ordering on OSF graphs modulo OSF graph equivalence.

Theorem 4.39 (Endomorphic graph approximation fuzzy partial order). The fuzzy
binary relation vG is a fuzzy partial order on (equivalence classes of) OSF graphs, i.e., if
vG(g0, g1) > 0 and vG(g1, g0) > 0, then g0 ≡ g1.

The equivalence relation on OSF graphs induces analogous equivalence relations on
normal OSF terms and rooted solved OSF clauses by letting ψ0 ≡ ψ1 ⇔ G(ψ0) ≡ G(ψ1),
and φ0 ≡ φ1 ⇔ G(φ0) ≡ G(φ1). As expected, in every fuzzy OSF interpretation equivalent
normal OSF terms have the same denotation, and equivalent rooted solved OSF clauses are
satisfied with the same degree.

8Note that in Example 3.54 the functions γ0 and γ1 were defined on the domain of the crisp OSF graph
algebra, which is the same as the domain of the fuzzy OSF graph algebra.
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Proposition 4.40 (Fuzzy denotation of equivalent OSF terms). If the normal OSF
terms ψ0 and ψ1 are equivalent, then [[ψ0]]I = [[ψ1]]I for every fuzzy interpretation I.

Proposition 4.41 (Graded satisfaction of equivalent OSF clauses). If the rooted
solved OSF clauses φ0 and φ1 are equivalent, then for every fuzzy interpretation I and
every β ∈ [0, 1]: I, α0 |=β φ0 for some assignment α0 if and only if I, α1 |=β φ1 for some
assignment α1.

We now give a semantic definition of fuzzy OSF term subsumption. Recall that the
fuzzy sort subsumption �·(slasher, thriller) = β means that, on any interpretation I, every
object that is an instance of slasherI with degree β′ must also be an instance of thrillerI

with a degree greater than or equal to β ∧ β′. Along these lines, we may say that an OSF
term t1 is subsumed by a term t2 with degree β if, for any interpretation I, every object
in the denotation of t1 with degree β′ also belongs to the denotation of t2 with a degree
greater than or equal to β′ ∧ β. We thus define fuzzy OSF term subsumption as the fuzzy
relation that assigns to each pair of OSF terms the supremum of all degrees β ∈ [0, 1] that
satisfy this property.

Definition 4.42 (Semantic OSF term fuzzy subsumption). The sort subsumption
relation �· : S2 → [0, 1] is extended to a fuzzy binary relation on OSF terms by letting, for
all OSF terms t1 and t2: �·(t1, t2) def= sup({β | ∀I,∀d ∈ ∆I : [[t1]]I(d) ∧ β ≤ [[t2]]I(d)}). We
abbreviate �·(ψ1, ψ2) = β by writing ψ1 �·β ψ2.

We provide an analogous definition for the graded implication of OSF clauses, which
generalizes the crisp one of Definition 3.58.

Definition 4.43 (Graded implication of OSF clauses). The OSF clause φ1 implies the
OSF clause φ2 at degree β if, for all fuzzy OSF interpretations I and assignments α such
that I, α |=βI φ, there exists an assignment α′ such that: (i) ∀X ∈ Tags(φ1) ∩ Tags(φ2):
α′(X) = α(X), and (ii) I, α′ |=βI∧β φ2. The fuzzy binary relation |= on OSF clauses
is defined by letting |=(φ1, φ2) def= sup({β | φ1 implies φ2 at degree β}). We abbreviate
|=(φ1, φ2) = β by writing φ1 |=β φ2.

Definition 4.44 (Graded implication of rooted OSF clauses). Let φX and φ′Y be
two rooted OSF clauses with no common variables. The OSF clause φX is said to imply
the clause φ′Y at degree β (denoted φX |=β φ

′
Y ) if φ |=β φ

′[X/Y ].

We now prove that the fuzzy relations vG on OSF graphs, �· on normal OSF term and
|= on rooted solved OSF constraints are equivalent, generalizing the analogous crisp result
(Theorem 3.60).
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Theorem 4.45 (Equivalence of fuzzy OSF orderings). If the normal OSF terms ψ
and ψ′ (with roots Y and X, respectively, and no common variables), the OSF graphs g and
g′, and the rooted solved OSF clauses φY and φ′X respectively correspond to one another
though the syntactic mappings, then the following are equivalent: (1) g vGβ g′, (2) ψ′ �·β ψ,
and (3) φ′X |=β φY .

The fact that �· and |= are fuzzy partial orders on normal OSF terms and rooted solved
OSF clauses (modulo OSF term and OSF clause equivalence), respectively, is obtained as a
corollary of Theorems 4.39 and 4.45.

Corollary 4.46 (Fuzzy partial orders on normal OSF terms and rooted solved
OSF clauses). The fuzzy relation �· is a fuzzy partial order on normal OSF terms modulo
OSF term equivalence. The fuzzy relation |= is a fuzzy partial order on rooted solved OSF
clauses modulo OSF clause equivalence.

Next, we provide a syntactic definition of OSF term subsumption and prove that it is
equivalent to the semantic one of Definition 4.42. The syntactic definition will be useful in
Section 4.7 for the computation of the subsumption degree between two OSF terms.

Definition 4.47 (Syntactic OSF term fuzzy subsumption). The normal OSF term
ψ0 is (syntactically) subsumed by the normal OSF term ψ1 with degree β (denoted ψ0E· βψ1)
if there is a mapping h : Tags(ψ1)→ Tags(ψ0) such that

1. h(RootTag(ψ1)) = RootTag(ψ0);

2. if X f−→ψ1 Y , then h(X) f−→ψ0 h(Y ); and

3. β = min{�·(Sortψ0(h(X)),Sortψ1(X)) | X ∈ Tags(ψ1)}.

We write E· (ψ0, ψ1) ≥ β to express that ψ0 E· β′ ψ1 and β′ ≥ β.

Remark 7. Syntactic OSF term subsumption is well-defined. Indeed, if h : Tags(ψ1) →
Tags(ψ0) and h′ : Tags(ψ1)→ Tags(ψ0) are two mappings that satisfy

1. h(RootTag(ψ1)) = RootTag(ψ0) = h′(RootTag(ψ1)), and

2. if X f−→ψ1 Y , then h(X) f−→ψ0 h(Y ) and h′(X) f−→ψ0 h
′(Y ),

then necessarily h = h′, which means that the value β in Definition 4.47 is unique.

Theorem 4.48 (Semantic and syntactic fuzzy subsumption). Let ψ0 and ψ1 be two
normal OSF terms. Then, for all β ∈ (0, 1]: ψ0 �·β ψ1 if and only if there are two (normal)
OSF terms ψ′0 and ψ′1 such that ψ0 ≡ ψ′0, ψ1 ≡ ψ′1, and ψ′0 E· β ψ′1.
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Let � def= |�·| and recall that � is a (crisp) subsumption relation on S such that GLBs
in (S,�) correspond to GLBs in (S,�·) (Proposition 1.42). The next theorem provides the
connection between the crisp subsumption � and the fuzzy subsumption �· on OSF terms.

Theorem 4.49 (Crisp and fuzzy subsumption). For all normal OSF terms ψ1 and ψ2:
ψ1 � ψ2 if and only if �·(ψ1, ψ2) > 0.

The next corollary follows from Theorem 4.49 and the analogous result for crisp OSF
logic.

Corollary 4.50 (Fuzzy OSF term lattice). The fuzzy binary relation �· is a fuzzy lattice
on (equivalence classes) of normal OSF terms.

4.7 Fuzzy OSF term unification

In OSF logic, reasoning hinges on the unification of OSF terms, an operation that aims to
combine the constraints expressed by two OSF terms ψ1 and ψ2 in a consistent way in a
single term ψ. The resulting term – the unifier of ψ1 and ψ2 – is the GLB of ψ1 and ψ2

within the OSF term subsumption lattice. Thanks to efficient implementation techniques,
OSF term unification has been integrated in logic programming languages such as LOGIN
[8] and LIFE [10], and in the CEDAR Semantic Web reasoner [6, 15].

In this section we prove that computing the GLB of two OSF terms in the fuzzy sub-
sumption lattice is no more difficult than computing it in the crisp setting, as the same
unification procedure can be employed. We provide an algorithm for computing the unifier
of two OSF terms and the associated unification degree, prove its correctness, and study its
computational complexity.

Definition 4.51 (Fuzzy OSF term unification). The unifier of two normal OSF terms
ψ1 and ψ2 is their GLB in the OSF term fuzzy subsumption lattice (modulo OSF term
equivalence) and is denoted ψ1 4 ψ2. The unification degree of ψ1 and ψ2 is defined as
min(�·(ψ1 4 ψ2, ψ1),�·(ψ1 4 ψ2, ψ2)). We write ψ = ψ1 4β ψ2 if ψ is the unifier of ψ1 and ψ2

with unification degree β.

Recall that applying the OSF constraint normalization rules to an OSF clause results
in a normal form φ that is either the inconsistent clause X : ⊥, or an OSF clause in solved
form together with a conjunction of equality constraints (Proposition 4.3). The subclause of
φ in solved form is denoted Solved(φ). The following theorem is an immediate consequence
of Theorems 4.49 and 3.65 and Proposition 1.42.

Theorem 4.52 (Fuzzy OSF term unification). Let ψ1 and ψ2 be OSF terms with no
common variables, and let φ be the OSF clause obtained by non-deterministically applying
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Algorithm 5 Compute the unifier of ψ1 and ψ2 and their unification degree.
Input ψ1, ψ2 ∈ Ψ
Output (ψ, β) such that ψ = ψ1 4β ψ2

1: procedure Unify(ψ1, ψ2)
2: φ← φ(ψ1) & φ(ψ2) & RootTag(ψ1) .= RootTag(ψ2)
3: while any rule r of Fig. 4.2 is applicable to φ do
4: φ← result of applying r to φ
5: if φ is the inconsistent clause then
6: return (X : ⊥, 1)
7: else
8: φ′ ← Solved(φ)
9: Eq = {(X,Y ) | X .= Y or Y .= X is a conjunct of φ}∗

10: Tags(φ)/Eq = {[X] | X ∈ Tags(φ)}
11: for X ∈ Tags(φ′) do
12: φ′ ← φ′[Z [X]/X] . Z [X] is a new variable in V \ Tags(φ)
13: ψ ← ψ(φ′) . Unifier ψ = ψ1 4 ψ2
14: β1 ← min{�·(Sortψ(Z [X]),Sortψ1(X)) | X ∈ Tags(ψ1)}
15: β2 ← min{�·(Sortψ(Z [X]),Sortψ2(X)) | X ∈ Tags(ψ2)}
16: β ← min(β1, β2) . Unification degree β ∈ [0, 1]
17: return (ψ, β)

any applicable constraint normalization rule (Fig. 4.2) to the clause

φ(ψ1) & φ(ψ2) & RootTag(ψ1) .= RootTag(ψ2)

until none applies. Then, φ is the inconsistent clause iff the GLB of ψ1 and ψ2 is X : ⊥.
If φ is not the inconsistent clause, then ψ1 4 ψ2 = ψ(Solved(φ)).

Algorithm 5 shows a procedure to unify two normal OSF terms and to compute their
unification degree9. Given two normal OSF terms ψ1 and ψ2, the algorithm proceeds as
follows.

• Lines 2 to 4 involve the application of the constraint normalization rules of Fig. 4.2 to
the clause φ(ψ1) & φ(ψ2) & RootTag(ψ1) .= RootTag(ψ2), resulting in an OSF clause
φ in normal form.

• If this normal form is (equivalent to) the inconsistent clause, then X : ⊥ is returned
with unification degree 110 on Line 6. Otherwise, the algorithm proceeds with the
computation of the unification degree.

9The following notation is adopted in Algorithm 5. The reflexive and transitive closure of a binary relation
R is denoted R∗. The expression Tags(φ)/Eq denotes the quotient of the set Tags(φ) modulo the equivalence
relation Eq ⊆ Tags(φ)2. For a variable X ∈ Tags(φ), its equivalence class with respect to the relation Eq is
[X] def= {Y | (X,Y ) ∈ Eq}.

10Recall that by Definition 1.40 ⊥ is subsumed by every sort with degree 1.



110 4.7. Fuzzy OSF term unification

p q

r s t

u v

0.8 0.9 0.6

0.7 0.4 0.5

(a) Fuzzy lattice (the el-
ements ⊥ and > are left
implicit)

v

u

t

q

s

r

u

v

r

G(ψ2)G(ψ1)

G(ψ)

f

g

fg

h

fg

h

h2

h2

h2

h1

h1

h1

(b) The fuzzy unification of Example 4.54

Figure 4.5: The fuzzy subsumption relation and unification of Example 4.54.

• In Lines 8 to 12 the set Tags(φ) is partitioned into equivalence classes according
to the equality constraints contained in φ, and each variable X in φ′ = Solved(φ)
is uniformly renamed with a new variable Z [X] ∈ V \ Tags(φ) corresponding to its
equivalence class. This step allows each term to maintain its own variable scope, and
facilitates the computation of the unification degree in the next lines.

• Finally, the GLB ψ = ψ1 4 ψ2 is obtained on Line 13 as the OSF term corresponding
to φ′, while Lines 14 to 16 deal with the computation of the unification degree β of
the two OSF terms.

The output of the algorithm is a pair (ψ, β) such that ψ = ψ14β ψ2. Note that the unifier of
the two terms can already be obtained on Line 8 as ψ(Solved(φ)), and the subsequent steps
are only concerned with the computation of the unification degree. The same algorithm can
also be employed to decide whether the two terms subsume each other, and to what degree:
if ψ is equivalent to ψ1, then �·(ψ1, ψ2) = β; alternatively, if ψ is equivalent to ψ2, then
�·(ψ2, ψ1) = β.

Theorem 4.53 (Correctness of Algorithm 5). Let ψ1 and ψ2 be normal OSF terms. If
(ψ, β) is the output of the procedure Unify(ψ1, ψ2) of Algorithm 5, then ψ = ψ1 4β ψ2.

The following example clarifies each step of Algorithm 5.

Example 4.54 (Fuzzy OSF term unification). Consider the fuzzy lattice of Fig. 4.5a
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and the OSF terms

ψ1 = Y0 : u (f → Y1 : v (g → Y0, h→ Y2 : r)) , and

ψ2 = X0 : v (f → X1 : u (g → X2 : t)) .

After Lines 2 to 4, an application of the rules of Fig. 4.2 to φ(ψ1) & φ(ψ2) & X0
.= Y0 yields

the OSF clause in normal form

φ = X0 : q & X1 : s & Y2 : r &
X0.f

.= X1 & X1.g
.= X0 & X1.h = Y2 &

X0
.= Y0 & X0

.= X2 & X1
.= Y1

or an equivalent clause. On Lines 9 and 10 the set Tags(φ) is thus partitioned into the
equivalence classes [X0] = {X0, X2, Y0}, [X1] = {X1, Y1} and [Y2] = {Y2}. The solved part
of φ is renamed accordingly (Lines 11 and 12) and translated on Line 13 into the OSF term

ψ = Z [X0] : q(f → Z [X1] : s(g → Z [X0], h→ Z [Y2] : r)).

The subsumption degree �·(ψ,ψ1) is then computed on Line 14 as β1 = min{�·(q, u),�·(s, v),
�·(r, r)} = 0.4. In particular, �·(Sortψ(Z [X1]),Sortψ1(Y1)) = �·(s, v) = 0.4. Similarly,
�·(ψ,ψ2) is computed on Line 15 as β2 = min{�·(q, v),�·(s, u),�·(q, t)} = 0.5. Overall,
the unification degree of ψ1 and ψ2 is thus 0.4 (Line 16). For i ∈ {1, 2}, the mapping
hi : Tags(ψi) → Tags(ψ) witnessing the (syntactic) subsumption ψ E· βi ψi is defined by
letting hi(X) = Z [X] for all X ∈ Tags(ψi). The unification is depicted in Fig. 4.5b, where
the mappings h1 and h2 are depicted as arrows relating the nodes of G(ψ1), G(ψ2) and G(ψ)
corresponding to the variables of their respective OSF terms. .

Finally, let us analyze Algorithm 5 in terms of complexity. Finding the unifier of two
normal OSF terms ψ1 and ψ2 with respect to a fuzzy sort subsumption lattice has the
same complexity of deciding the problem in the crisp setting. This is due to the fact
that GLBs in a fuzzy lattice and its crisp counterpart can be computed in the same way
(also see Proposition 1.42), and the rules for fuzzy OSF constraint normalization and crisp
OSF constraint normalization are essentially the same. The algorithm from [8] is based
on the union-find problem [1] and has a worst-case complexity of O(mG(m)), where m =
|Tags(ψ1) ∪ Tags(ψ2)| and the growth rate of the function G is of the order of an inverse of
the Ackermann function (G(m) ≤ 5 for all practical purposes) [8].

Partitioning the set Tags(φ) according to the equality constraints in φ (Lines 9 and 10)
is an application of the union-find problem. The complexity is thus O(mG(m)), where G is
as above and m = |Tags(ψ1) ∪ Tags(ψ2)|.

Computing �·(s, s′) for two sorts s, s′ ∈ S can be performed in O(|S|+e) time – where e is
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the number of edges in the DAG representation of the fuzzy sort subsumption relation – with
an approach that is analogous to solving the shortest paths problem in a DAG (presented
in Section 4.8.3). The overall complexity of the computation of the subsumption degrees β1

and β2 in Lines 14 and 15 is thus O(m(|S|+ e)), where m = |Tags(ψ1) ∪ Tags(ψ2)|.

4.8 Implementation

As discussed in Section 3.8, efficient OSF term unification relies on an efficient implemen-
tation of the GLB operation in the sort subsumption lattice. This can be achieved, for
instance, by encoding the DAG representation of the sort lattice using binary vectors. In
this section we show that the same encoding techniques of crisp OSF logic can be employed
for computing GLBs in a fuzzy lattice, and we present algorithms for the computation of
the subsumption degree �·(s, s′) between two sorts.

4.8.1 Encoding fuzzy lattices

A fuzzy bounded lattice (S,�·) of sort symbols can be obtained as the reflexive and transitive
closure of fuzzy is-a declarations of shape s ·Cβ s′ (β ∈ (0, 1]), i.e., �· def= ·C⊛, where ·C :
S2 → [0, 1] is a fuzzy binary relation on S. Because of Proposition 1.42 and the following
proposition – stating that the support of the reflexive and transitive closure of a fuzzy binary
relation is equal to the reflexive and transitive closure of its support –, GLBs in (S,�·) can
equivalently be computed in (S,�), where � def= |�·|.

Proposition 4.55 (Support and reflexive-transitive closure). If ·C is a fuzzy binary
relation on a set S, then | ·C|∗ = | ·C⊛|.

By Propositions 1.42 and 4.55, it is possible to consider a fuzzy subsort declaration s ·Cβs′

with β > 0 as a regular subsort declaration s | ·C| s′ simply by ignoring the associated degree
β. Algorithm 1 or Algorithm 2 can then be used to encode the (crisp) lattice (S, | ·C|∗) by
associating a binary code with each sort, and these codes can be used to compute GLBs
with the encoding technique seen in Section 3.8.1.

Example 4.56 (Encoding a fuzzy lattice). Fig. 4.6b shows the encoding of the sorts
of the fuzzy lattice represented in Fig. 4.6a, obtained by applying the same classification
algorithm of Algorithm 1 or Algorithm 2, simply by ignoring the edge weights. The codes are
computed as bit-vectors of variable length. Computing the GLB of thriller and horror, for
instance, amounts to performing the bitwise AND of their codes, i.e., 100010AND10010 = 10.
The result is the code of the sort slasher, which is indeed the GLB of thriller and horror
in the lattice of Fig. 4.6b. .
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Figure 4.6: A fuzzy lattice and its encoding.

4.8.2 Encoding fuzzy partial orders

The definition of an OSF signature (Definition 3.1) requires that the sort subsumption
relation of crisp OSF logic must constitute a finite lattice. As seen in Section 3.8.2, however,
whenever (S,�) is just a partial order it is still possible to implicitly work on a lattice
completion of (S,�) defined on its antichains. From an implementation perspective, the
completion does not need to be explicitly constructed. When the GLB s⋏s′ of two sorts does
not exists, the set of their MLBs is computed instead (for instance, through Algorithm 3),
since {s, s′}mlb

� corresponds exactly to the GLB of {s} and {s′} in the lattice of antichains
of S.

In this section we show that it is possible to adopt a similar strategy in fuzzy OSF logic
when the fuzzy subsumption relation (S,�·) is not a fuzzy lattice, but only a fuzzy partial
order. Like in the crisp case, rather than computing the GLB of two sorts of a fuzzy poset,
it is possible to compute the set of their MLBs instead.

Definition 4.57 (MLBs in a fuzzy poset). Let (S,�·) be a fuzzy poset and S ⊆ S. The
set of MLBs of S in (S,�·) is defined as Sfmlb

�·
def=
⌈
Sfl
�·

⌉·
.

The fact that the same encoding and decoding strategy of Section 3.8.2 can be applied
in the fuzzy case is guaranteed by Proposition 4.55 and the following proposition, which
states that the MLBs in a fuzzy poset (S,�·) correspond to the MLBs in the poset (S, |�·|).

Proposition 4.58 (MLBs in crisp and fuzzy posets). Let (S,�·) be a fuzzy poset and
let � def= |�·|. For all S ⊆ S, Sfmlb

�· = Smlb
� .

This approach is formally validated by the construction of the completion of a fuzzy
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partial order (S,�·) into a fuzzy lattice (Antichains(S),�·) built on the antichains of (S,�·).
Like in the crisp case, the GLB of {s} and {s′} in (Antichains(S),�·) corresponds exactly to
the set of maximal lower bounds of {s, s′} in (S,�·). The construction of (Antichains(S),�·)
is detailed in Section 5.4, in the context of the definition of similarity-based reasoning with
OSF logic.

4.8.3 Computing the subsumption degree �·(s, s′)

Besides finding the GLB of two sorts (or the set of their MLBs), another operation that
needs to be performed efficiently is the computation of the subsumption degree �·(s0, s1).

A possible approach is to generalize the bit-vector encoding strategy of Section 3.8.1
by encoding each sort s ∈ S with a vector of N = |S| real numbers rather than N bits,
in such a way that the real number at position i in the vector encoding the sort s is the
value of the subsumption degree �·(si, s). In other words, the code ε(s) of a sort s would
be a vector V ∈ [0, 1]N that corresponds to the fuzzy set {β/si | V [i] = β = �·(si, s)}.
This encoding can be obtained by adapting the crisp classification algorithm (Algorithm 1)
using the point-wise max and min operations on real vectors, rather than the bitwise OR
and AND operations on bit vectors. The GLB of a pair s0 and s1 can be obtained by
taking the point-wise min of their codes, thus obtaining a code corresponding to the set
L = {β/s | β = min(�·(s, s0),�·(s, s1))}, and then computing the maximal elements of
|L|. This approach may however be too expensive for large fuzzy lattices. For instance,
while encoding a lattice of N = 100000 sorts with binary codes of variable length would
require around 596 MB, encoding a fuzzy lattice using 32-bit or 64-bit representations of
real numbers in the unit interval would require around 38146 MB or 76293 MB, respectively.
Moreover, although the binary encoding technique has been applied to a DAG of more than
900000 nodes in the CEDAR project, for even larger graphs in order to mitigate the space
complexity it may be necessary to apply the optimizations presented in [13] or [6], which
are not readily applicable to [0, 1]-valued arrays.

An alternative solution is to compute the value of �·(s0, s1) only when necessary (and
possibly keep a cache for efficient subsequent computations), by traversing the DAG rep-
resentation of the fuzzy lattice. This computation can be optimized by first encoding the
fuzzy lattice, so that it is possible to efficiently decide whether a sort s is subsumed by
another sort s′ with a positive degree, by verifying whether s 4 s′ = s, allowing to avoid
traversing portions of the DAG representation that are not needed for the computation of
�·(s0, s1). While encoding the fuzzy lattice with bit vectors still requires quadratic space,
storing vectors of bits requires significant less space than an |S| × |S| table of real numbers.

Recall that a fuzzy lattice (S,�·) can be represented as a weighted DAG obtained by
fuzzy is-a declarations of shape s ·Cβ s′ (β ∈ (0, 1]), i.e., �· def= ·C⊛, where ·C : S2 → [0, 1]
is a fuzzy binary relation on S. The set of all paths from s to s′ in this DAG is denoted
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Paths(s, s′). The value of a path π = s′1 Cβ1 s
′
2 Cβ2 . . . Cβn−2 s

′
n−1 Cβn−1 s

′
n is defined as

Value(π) def= min1≤i≤n−1 βi. By max-min transitivity, the value of �·(s0, s1) can thus be
computed as maxπ∈Paths(s0,s1) Value(π).

Concretely, the computation of �·(s0, s0) can be achieved with Algorithm 6, which pro-
ceeds analogously to the shortest-paths algorithm for weighted DAGs, by visiting all the
elements between s0 and s1 in topological order. For a sort s ∈ S we let Parentsf (s) def=
{β/s′ | s ·Cβ s′}, and we assume that the procedure Topological(s0, s1) returns an iterator
of sorts between s0 and s1 in a fixed topological order of (S,�·). During the traversal, the
value of the best path from s0 to a sort s′ found so far is stored as Value(s′). This value is
initially undefined for every sort. The algorithm proceeds as follows.

1. First of all, the algorithm verifies whether �·(s0, s1) > 0 on Line 2, which can be
achieved efficiently by encoding the weighted DAG representation of the fuzzy lattice
(Section 4.8.1). If s0 6�· s1, the algorithm returns the subsumption degree 0; otherwise,
it continues with the traversal of the DAG.

2. The value Value(s0) of the source node s0 is initialized to 1 on Line 5, since �·(s0, s0) =
1 by reflexivity. The algorithm then proceeds by visiting each sort s′ in topological
order from s0 to s1.

3. On Line 7 the algorithm verifies whether Value(s′) has been initialized. It may happen
that s′ is not a supersort of s′, but still happens to be between s0 and s1 in the
topological ordering, so that Value(s′) is left undefined. In this case the sort s′ is
skipped, and the loop of Line 6 resumes with the next sort.

4. Otherwise, if Value(s′) is defined, each parent s′′ of s′ is considered (Line 8). If s′′

is not a subsort of s1, then s′′ is skipped, and its value Value(s′′) is not computed.
Otherwise, β = min(Value(s′), ·C(s′, s′′)) is computed on Line 10. Finally, Value(s′′) is
either initialized or updated to the value β, depending on whether it was undefined,
or its value was less than β.

Because the nodes are visited in topological order, after the node s1 has been visited it must
be the case that Value(s1) = �·(s0, s1) = maxπ∈Paths(s0,s1) Value(π).

Encoding the DAG representation of the fuzzy lattice allows a few optimizations in
Algorithm 6, by allowing to skip sorts that are not necessary for the computation of�·(s0, s1).
For instance, on Line 9 the sort s′′ is skipped if it is not a subsort of s1, so that Value(s′′) is
not computed. At a later iteration of the loop of Line 6, the same sort s′′ will be skipped on
Line 7 since Value(s′′) is undefined, avoiding unnecessary computations on Lines 8 to 12.

Example 4.59 (Computing a subsumption degree). Consider the fuzzy partial or-
der represented in Fig. 4.7, where the index of each sort corresponds to its position in a
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Algorithm 6 Approximation degree in topological order.
1: procedure Degree(s0, s1) . Compute �·(s0, s1)
2: if s0 6�· s1 then
3: return 0
4: else
5: Value(s0)← 1
6: for s′ ← s0 to s1 in Topological(s0, s1) do
7: if Value(s′) is defined then
8: for β/s′′ ∈ Parentsf (s′) do
9: if s′′ �· s1 then

10: β ← min(Value(s′), β)
11: if Value(s′′) is not defined or Value(s′′) < β then
12: Value(s′′)← β

13: return Value(s1)

⊥

s1 s2 s3

s4 s5 s6

s7 s8 s9

s10 s11 s12

>

0.9 0.7 0.8

0.2 0.6 0.5

0.4 0.3

Figure 4.7: The fuzzy partial order of Example 4.59.

topological ordering of the graph. In order to compute �·(s3, s9), the iteration starting on
Line 6 will first consider the sort s3 and initialize Value(s6) = 1, but not Value(s5), since
the latter is not a subsort of s9. After discarding the sorts s4 and s5 on Line 7, the iter-
ation will visit s6 and initialize Value(s9) = 0.5. The sorts s7 and s8 are then skipped on
Line 7, and the next node visited by the iteration is the target s9, where the iteration stops.
The value of �·(s3, s9) is thus 0.5. Without the optimizations implemented in Algorithm 6,
Value(s5) would have been initialized instead, causing the loop of Line 6 to be executed for
s5, and consequently also for s7 and s8, thus initializing Value(si) for i ∈ {5, 7, 8, 10, 11, 12},
traversing edges of the fuzzy partial order that are not necessary for the computation of
�·(s3, s9). .
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% Subsumption and fuzzy subsumption
rock < music.
electronic < music.
post_rock < rock.
artist < person.
<(post_rock, electronic) = 0.5.

% Instances
{ alinda } < person.
{ yorke, greenwood } < artist.
{ radiohead } < band.
{ kid_a } < post_rock.
{ anima } < electronic.
{ 0.7/ok_computer } < rock.

% Facts
member_of(yorke, radiohead).
member_of(greenwood, radiohead).
plays_in(yorke, kid_a(year -> 2000)).
plays_in(yorke, anima(title -> "Anima")).
plays_in(greenwood, ok_computer).

% Rules
likes(alinda, X) :- plays_in(Z : artist, X : electronic),

member_of(Z, radiohead).

Figure 4.8: A logic program with OSF terms and a fuzzy subsumption relation.

4.9 Potential application: logic programming with fuzzy OSF
logic

A possible application of fuzzy OSF logic is the implementation of a logic programming
language (like LOGIN [8]) based on SLD resolution and fuzzy OSF term unification, i.e.,
where first-order term unification is replaced by the unification of OSF terms over a fuzzy
sort subsumption lattice. As seen in Section 2.2, logic programming languages and weaker
definitions of unification based on fuzzy relations such as similarities and proximities have
been researched extensively (e.g., [9, 17, 51, 61, 64, 72, 74, 101]) and implemented in systems
such as Bousi∼Prolog [63] and FASILL [60].

There are several potential advantages to using OSF logic in this context. First of
all, the unification algorithm for OSF terms takes into account a (fuzzy) sort subsumption
relation, which can result in more efficient computations [8, 37]. Another advantage is the
flexibility provided by OSF terms, which lack a fixed arity and can thus easily represent
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partial information, and are moreover simpler to interpret thanks to their use of features
rather than positions to specify arguments [8].

Consider, for example, the program of Fig. 4.8. The program begins by declaring a sim-
ple fuzzy subsumption relation (whose only non-crisp subsumption is the pair �·(post_rock,

electronic) = 0.5), followed by the membership degrees of a few individuals (where the
only non-crisp membership concerns ok_computer, which belongs to the sort rock with
degree 0.7). Individuals can be thought of as singleton sorts (sorts that denote a single ele-
ment), and thus as OSF terms themselves. The predicates member_of, plays_in and likes

– whose arguments are OSF terms – are then used to specify the facts of the program and a
rule stating that the individual alinda likes electronic music albums played by members of
the band Radiohead. The query ?- likes(alinda, X : music) would return a solution
binding Z to yorke and X to anima(title -> "Anima"), and another solution binding Z to
yorke and X to kid_a(year -> 2000). However, since kid_a is an instance of post_rock,
which is subsumed by electronic only with degree 0.5, the second solution is associated
with a satisfaction degree of 0.5. As another example, the query ?- plays_in(greenwood,

X : rock) would return the solution mapping X to ok_computer with satisfaction degree
0.7, as this is the membership degree of ok_computer to rock.

Additional applications of fuzzy OSF logic will be explored in Chapter 5, focusing on
similarity-based OSF logic, an approach grounded on fuzzy OSF logic.



Chapter 5

Similarity-Based Reasoning with
Order-Sorted Feature Logic

Many approaches to approximate reasoning based on fuzzy relations have been proposed
in the logic programming literature. As seen in Section 2.2, several approaches extend the
syntax of a logic program with a similarity relation (or a proximity relation, or multiple
such relations) on the set of functor and predicate symbols. This relation is then taken
into account when two first-order terms (FOTs) are unified or when SLD resolution is per-
formed, so as to tolerate mismatches in functor and predicate names, leading to approximate
solutions to queries posed to a logic program.

As preliminary work towards the definition of similarity-based reasoning with Order-
Sorted Feature (OSF) logic, the FOT unification procedure of Aït-Kaci and Pasi [9] not
only tolerates mismatches in functor names, but also allows the unification of FOTs with
a different number and possibly a different order of arguments. This approach allows the
unification, for example, of FOTs such as movie(Director, "Psycho") and film(Title,

Year, "Hitchcock"), provided that the functors movie and film are considered similar,
and that a mapping between their argument positions is defined.

The interest in defining a similarity-based extension of OSF logic lies in the efficiency
of this language for knowledge representation and reasoning. For instance, as shown in
Section 3.7.1, one advantage of OSF logic is that its unification algorithm takes into ac-
count a subsumption (is-a) ordering between sorts, which enables a single unification step to
potentially replace several resolution steps, possibly leading to more efficient computations
[8, 37]. Moreover, as discussed in Section 3.7.2, the CEDAR Semantic Web reasoner based
on OSF logic was, at the time of the experiments, consistently among the best reasoners in
terms of concept classification, and several orders of magnitude more efficient in terms of
terminological reasoning [6, 15]. Introducing a similarity relation to augment the flexibility
of OSF logic, while preserving its efficiency, has the potential to significantly enhance the
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effectiveness and applicability of this framework, particularly in domains like the Semantic
Web, where efficiency is of paramount concern.

In this chapter we show how to make the OSF term unification algorithm more flexi-
ble by considering a similarity relation between sorts besides a sort subsumption ordering.
Rather than devising ad-hoc unification rules that deal with the similarity relation and its
interaction with the sort subsumption ordering, we propose to combine the two relations into
a single fuzzy subsumption relation. Intuitively, this is achieved by applying the following
informal inference, inspired by the similarity-based approaches to logic programming (e.g.,
[101]):

If the sort s0 is subsumed by the sort s1

and s1 is similar to the sort s2 with degree β
then s0 is subsumed by s2 with degree β.

For example, if slashers are horror movies, and horror movies are similar to thrillers with
degree 0.5, then we can conclude that slashers are also thrillers with subsumption degree
0.5. As a consequence, queries aimed to retrieve thrillers from a knowledge base may also
retrieve instances of slasher (associated with an approximation degree), thus improving
the flexibility of the retrieval process. Intuitively, the fuzzy subsumption relation encodes
the information of both the crisp subsumption and the similarity. This procedure shifts
the setting to that of OSF logic with a fuzzy sort subsumption relation, i.e., fuzzy OSF
logic, whose semantics has been developed in Chapter 4. The advantage is that, as seen
in Chapter 4, in fuzzy OSF logic it is possible to apply the same unification algorithm
of (crisp) OSF logic, with essentially the same computational cost, thereby retaining the
efficiency inherent to this logical framework.

In Section 5.1 we argue why a similarity-based unification procedure for OSF terms
should take into account the interaction between the sort subsumption and the sort similarity
relations, and why combining them into a single fuzzy subsumption relation is an effective
way to address this issue.

We proceed by dealing with the issue of how to formally define a fuzzy subsumption
relation – which should be a fuzzy partial order, or even a fuzzy lattice – starting from a
(crisp) subsumption and a fuzzy similarity relation. Section 5.2 starts by combining the two
relations into a fuzzy subsumption preorder, which may however contain fuzzy subsumption
cycles. This matter is addressed in Section 5.3, where we present a construction of a fuzzy
partial order from a fuzzy preorder that generalizes the well-known analogous result from
order theory (Proposition 1.20). In Section 5.4 we introduce a definition of a completion
of a fuzzy poset into a fuzzy lattice built on the antichains of the fuzzy poset, generaliz-
ing Proposition 1.17 to a fuzzy setting. The completion finalizes the transformation of a
subsumption relation and a similarity into a fuzzy subsumption relation. In other words,
Sections 5.2 to 5.4 ensure that the process of combining a crisp subsumption and a fuzzy
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similarity according to the intuition outlined above is sound, i.e., it indeed leads to a fuzzy
lattice, as required by the unification rules of fuzzy OSF logic.

Finally, in Section 5.5 we discuss two potential applications of similarity-based reasoning
with OSF logic: (i) an extension of the CEDAR reasoner [6, 15] which relies on a sort
similarity relation to approximately answer queries posed to a knowledge base, and (ii) a
fuzzy logic programming language based on OSF terms, which leverages a similarity relation
between sorts, comparable to a similarity-based extension of the language LOGIN [8].

The proofs of the main results of this chapter are reported in Appendix A.2.

5.1 Similarity-based OSF logic, informally

In a standard setting, two FOTs can be unified if there is a substitution that makes them
equal. A mismatch of functor symbols such as f and g in the terms t1 def= f(X, a) and
t2 def= g(b, Y ) causes their unification to fail. As discussed in Section 2.2, several approaches
have been proposed to relax this equality constraint in order to make FOT unification more
flexible. For instance, by considering a similarity relation between functor symbols (e.g.,
[101]), it is possible to weakly unify the terms t1 and t2 provided that f ∼β g with β ∈ (0, 1].
In this case the two terms weakly unify with approximation degree β. A similarity can also
be considered when resolving clauses, leading to similarity-based SLD resolution [101] (see,
e.g., Examples 2.6 and 2.7).

As seen in Section 3.6, the unification of two OSF terms aims to combine the constraints
expressed by the two terms in a consistent way into a single term. This procedure takes a
sort subsumption relation � into account, so that it is possible, for instance, to unify the
term t1 def= s(f1 → s1) with the term t2 def= s′(f2 → s2) even if their root sorts s and s′ are
different, as long as s ⋏ s′ 6= ⊥. Moreover, as shown in Section 3.7.1, this feature can allow
a single unification step to replace several resolution steps, which can lead to more efficient
computations.

Our goal is to define a more flexible, or weaker, unification procedure for OSF terms
that also takes into account a similarity relation ∼: S × S → [0, 1] on sort symbols. Using
this additional information it could be possible, for example, to unify the terms t1 and t2
even if s ⋏ s′ = ⊥.

Example 5.1 (Weak OSF term unification: similar sorts). Consider the set of sorts
S, the subsumption relation � ⊆ S2, and the similarity ∼ : S2 → [0, 1] specified in Fig. 5.1a.
Additionally, consider the sort "Psycho", which only subsumes ⊥ and is only subsumed by
>, and the OSF terms ψ1 def= horror(title→ "Psycho") and ψ2 def= thriller(title→ X : >).
Clearly the two terms cannot be unified since horror ⋏ thriller = ⊥, but they could be
weakly unified if we additionally consider that horror and thriller are similar to degree 0.5.
Intuitively, as ψ1 and ψ2 denote movies of similar genres (and all of the other constraints
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Figure 5.1: Examples of (fuzzy) relations (the bottom element ⊥ is left implicit).

can be combined in a consistent way), then they could be weakly unified. .

Besides matching similar sorts, weak OSF term unification could also consider the in-
teraction between the subsumption and the similarity relations, as the following example
shows.

Example 5.2 (Weak OSF term unification: subsort of a similar sort). Continuing
from Example 5.1, consider the term ψ3 def= slasher(title → "Psycho") which unifies with
ψ1 since slasher � horror. Moreover, as horror ∼0.5 thriller, then ψ3 should also weakly
unify with ψ2. In other words, since the genre of ψ3 is subsumed by a genre (horror) which
is similar to the genre of ψ2 (and also all of the other constraints can be combined in a
consistent way), then the two terms could be weakly unified, achieving a result analogous
to Example 2.6, where similarity-based SLD resolution is employed. .

Additionally, similarly to how a single OSF term unification step can replace several
SLD resolution steps (as in Example 3.67), similarity-based OSF term unification should be
capable of replacing several similarity-based SLD resolution steps.

Example 5.3 (Similarity-based SLD resolution and weak OSF term unification).
Consider the logic program of Fig. 5.2a and assume that ∼ is a similarity relation such
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s1(X) :- s0(X).
s3(X) :- s2(X).
...
s2n+1(X) :- s2n(X).
s0(a).
prop(a).

(a) Prolog version

s0 < s1.
s2 < s3.
...
s2n < s2n+1.
{a} < s0.
prop(a).

(b) OSF version

Figure 5.2: The logic programs of Example 5.3.

that, for each 1 ≤ i ≤ n, ∼(s2i-1, s2i) = βi > 0. The query ?- s2n+1(X), prop(X) will
then require several similarity-based SLD resolution steps before returning the solution
X = a. Now consider the OSF version of the same program of Fig. 5.2b and the query
prop(X:s2n+1). Because a1 is subsumed by s0, which is subsumed by s1, which is similar
to s2, which is subsumed by s3, and so on, up to s2n+1, then the query should succeed after
a single unification of the terms X:s2n+1 and a. .

These examples show that a similarity-based notion of OSF term unification should con-
sider the interaction between the sort subsumption and the sort similarity relations, besides
allowing sorts that are equal, similar, or with a non-bottom GLB.

In order to achieve this, we propose to combine the (crisp) subsumption � and the
similarity ∼ into a single fuzzy subsumption relation �·. The advantage is that it would
then be possible to employ the fuzzy unification algorithm of OSF terms (Section 4.7),
taking into account the fuzzy subsumption �· which incorporates the information of both �
and ∼ at the same time. Intuitively, the combination of � and ∼ is inspired by the following
informal inference:

If the sort s0 is subsumed by the sort s1

and s1 is similar to the sort s2 with degree β
then s0 is subsumed by s2 with degree β.

For example, considering the setting of Examples 5.1 and 5.2, since slasher � horror and
horror ∼0.5 thriller (Fig. 5.1a), then we could conclude that �·(slasher, thriller) = 0.5
(Fig. 5.1c). Thus, it would be possible to unify the terms ψ1 and ψ2, since, according to
Fig. 5.1c, horror 4 thriller = slasher (where 4 denotes the GLB of two sorts in the fuzzy
subsumption �·). The unification would result in the term slasher(title → "Psycho"),
which is subsumed by ψ1 with degree 1, and by ψ2 with degree 0.5 (and thus the overall
unification degree is 0.5). In a similar manner, ψ2 and ψ3 can be unified with degree 0.5.

1Recall that constants such as a are treated as singleton sorts, i.e., sorts that denote a single element.
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Analogously, in the context of Example 5.3, since

a � s0, s0 � s1, ∼(s1, s2) = β1, s2 � s3, . . . , ∼(s2n-1, s2n) = βn, s2n � s2n+1

then by repeatedly applying the same informal inference2 we obtain �·(a, s2n+1) = β =
min1≤i≤n βi, thus enabling the weak unification of a with X:s2n+1 with degree β.

The advantage of this approach is that it allows to seamlessly integrate the similarity
relation into the unification rules of fuzzy OSF logic, taking the interaction between the
similarity and the crisp subsumption into account, potentially allowing a single weak uni-
fication to replace several similarity-based SLD resolution steps, all the while maintaining
the same computational complexity of crisp OSF logic for the computation of the unifier
of two OSF terms. The only additional cost is the construction of the fuzzy subsumption,
which is only required once, before the queries are processed.

Sections 5.2 to 5.4 are devoted to the formal validation of this procedure. Specifically,
they demonstrate that the fuzzy subsumption defined by combining a crisp subsumption
and a similarity leads indeed to a fuzzy lattice, as required by the unification rules of fuzzy
OSF logic.

5.2 Fuzzy similarity-subsumption preorder

As a first step towards our formal definition of a fuzzy subsumption relation that combines
a (crisp) subsumption relation and a sort similarity, we define a fuzzy preorder on sort
symbols, which intuitively arises from the iterated application of the informal inference
discussed above.

Definition 5.4 (Similarity-subsumption chain and ∼≺). Let (S,�) be a partial order,
let ∼: S2 → [0, 1] be a similarity relation, and let s, s′ ∈ S. A similarity-subsumption chain
of strength β from s to s′ is a sequence of sorts

s ∼β0 s0 � s′1 ∼β1 s1 � s′2 · · · sn−1 � s′n ∼βn s′

such that β = min0≤i≤n βn. The fuzzy relation ∼≺ on S is defined by letting, for all s, s′ ∈ S,

∼≺(s, s′) def= max
{
β

there is a similarity-subsumption
chain of strength β from s to s′

}
.

Alternatively, it is possible to define ∼≺ as the transitive closure of the composition of �
and ∼.

2More precisely, a generalization of the rule where the subsumption in the antecedent is also fuzzy: if
�·(s0, s1) = β0 and ∼(s1, s2) = β1, then �·(s0, s2) = β0 ∧ β1.
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Proposition 5.5 (Equivalent definition of ∼≺). Let (S,�) be a partial order3, let ∼ be
a similarity relation on S, and let ∼≺ be as in Definition 5.4. Then ∼≺ = (� ·◦ ∼)⊕.

Example 5.6 (Similarity-subsumption chain). Fig. 5.1b represents the fuzzy preorder

∼≺ obtained by combining the subsumption relation � and the similarity ∼ of Fig. 5.1a. The
fuzzy subsumption edges added to � are represented in green. .

Proposition 5.7 (Similarity-subsumption preorder). The fuzzy relation ∼≺ of Defini-
tion 5.4 is a fuzzy preorder.

5.3 Fuzzy similarity-subsumption partial order

It is clear from Example 5.6 that the fuzzy relation ∼≺ in general is not a fuzzy lattice, and
not even a fuzzy partial order, as it is not antisymmetric. One reason is that |∼| ⊆ |∼≺| and
|∼| is symmetric, and thus ∼≺ will contain symmetric links (such as ∼≺(thriller, horror) =

∼≺(horror, thriller) > 0 in Example 5.6) that are due directly to the similarity relation. A
solution in this case simply consists in deleting such similarity links, which is also jus-
tified by the fact that these are not needed anymore for the purpose of unifying two
terms (for example, the fact ∼(thriller, horror) > 0 has already been used to define

∼≺(slasher, thriller) > 0, which is enough, for instance, to make the terms ψ2 and ψ3

of Examples 5.1 and 5.2 weakly unifiable). According to this intuition, we define the fuzzy
relation ∼≺· as follows.

Definition 5.8 (Fuzzy preorder ∼≺·). Let � ⊆ S2 be a partial order, ∼ : S2 → [0, 1] be a
similarity relation and ∼≺ be as in Definition 5.4. The fuzzy relation ∼≺· is defined by letting

∼≺· def= ((∼≺ .−∼) ⊍�)⊕, where the difference .− is defined by letting, for two fuzzy sets F and
G,

µF .−G(x) def=

0 if µG(x) > 0

µF (x) otherwise.

Note that the fuzzy union of (∼≺ .−∼) with � is necessary in case |∼| ∩ � 6= ∅, and the
transitive closure is needed to ensure the transitivity of ∼≺· in case transitive links are deleted
by taking (∼≺ .−∼).

Example 5.9 (Fuzzy preorder ∼≺·). Fig. 5.1c represents the fuzzy relation ∼≺· obtained by
combining the subsumption � and the similarity ∼ – resulting in the relation ∼≺ represented
in Fig. 5.1b – and then deleting the similarity links as per Definition 5.8. The result in this
case is a fuzzy lattice which can be employed, for instance, for the unification of the terms
ψ2 and ψ3 of Examples 5.1 and 5.2. .

3Note that the crisp relation � can be treated as a fuzzy relation by identifying its characteristic function
1� with the membership function µ�.



126 5.3. Fuzzy similarity-subsumption partial order

a

b

c

d

β0β1

(a) � (black) and
∼ (red, dashed)

a

b

c

dβ1

β0

β1

β0

β0β1

(b) ∼≺

{a, b, c, d}

(c) ∼≺ on S/≈

a

b

c

dβ1

β0

β1

β0

(d) ∼≺·

{a, c}

{b, d}

β0 ∧ β1

(e) ∼≺· on S/≈

Figure 5.3: The fuzzy relations of Examples 5.10 and 5.13.

Deleting symmetric links may work for simple cases such as the one of Fig. 5.1, but in
general the relation ∼≺· may still not be antisymmetric, as the next example shows.

Example 5.10 (Antisymmetry and ∼≺·). Consider Fig. 5.3a, where S = {a, b, c, d}, a � b,
c � d, a ∼ d = β0 > 0 and b ∼ c = β1 > 0. Then a � b ∼β1 c and c � d ∼β0 a so that
a ∼≺·β1 c and c ∼≺·β0 a (Fig. 5.3d), but a 6= c, violating fuzzy antisymmetry. .

Proposition 5.11 (Fuzzy preorder ∼≺·). The fuzzy relation ∼≺· of Definition 5.8 is a fuzzy
preorder.

While cases such as the latter one could be blamed on an improper modeling of the
subsumption and the similarity relations, we propose a more general solution that consists
in the definition of a fuzzy partial order on equivalence classes of sorts starting from a fuzzy
preorder on sorts. This construction generalizes to fuzzy set theory the well-known order
theoretic transformation of a preorder into a partial order described in Proposition 1.20.

Definition 5.12 (Fuzzy partial order ∼≺· on S/≈). Let (S,�·) be a fuzzy preorder on S
and ≈ be the equivalence relation on S defined by letting s ≈ s′ ⇔ (s, s′) ∈ |�·| and (s′, s) ∈
|�·|. Let βs def=

∧
s′∈[s]≈(�·(s, s′) ∧ �·(s′, s)) for each s ∈ S. The fuzzy binary relation �· on

S/≈ is defined by letting �·([s0]≈, [s1]≈) def= 1 if [s0]≈ = [s1]≈, and otherwise

�·([s0]≈, [s1]≈) def= βs0 ∧ βs1 ∧
∨

s′0∈[s0]≈,s′1∈[s1]≈
�·(s′0, s′1).

Note that the same symbol �· is used for the preorder on S and the fuzzy relation on
S/≈, since its meaning is clear from context.

Example 5.13 (Fuzzy partial order ∼≺· on S/≈). Continuing from Example 5.10, Fig. 5.3e
depicts the fuzzy partial order ∼≺· on the equivalence classes of S obtained from the fuzzy
preorder ∼≺· on S of Fig. 5.3d, as defined in Definition 5.12. Then, for example, the similarity-
based unification of the OSF terms b(f → >) and c(f → >) could be performed by
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considering the fuzzy subsumption on the equivalence classes of the sorts, resulting in the
unifier t1 = {a, c}(f → >), where {a, c} is a disjunctive sort, and t1 is a disjunctive OSF
term [10] (also see Section 3.8.2). Alternatively, the construction of Definition 5.12 could
be applied to the fuzzy preorder ∼≺ represented in Fig. 5.3b, leading to the partial order of
Fig. 5.3c. In this case the similarity-based unification of the same two terms would result
in t2 = {a, b, c, d}(f → >). .

Proposition 5.14 (Fuzzy partial order ∼≺· on S/≈). The fuzzy relation �· of Defini-
tion 5.12 is a fuzzy partial order on S/≈.

5.4 Fuzzy similarity-subsumption lattice

In crisp OSF logic, the sort subsumption relation is by definition required to be a finite
lattice. In practice, however, it is enough for (S,�) to be a partial order and to implicitly
work on a completion of (S,�) consisting of a lattice of sets of sorts, where singletons are
treated as normal sorts, while sets of two or more sorts as disjunctive sorts [10]. Formally,
the lattice is defined on the antichains of the sort subsumption partial order and, from
an implementation standpoint, it does not need to be explicitly constructed [5] (also see
Section 3.8.2).

Analogously, the fuzzy sort subsumption relation of fuzzy OSF logic is required to be
a fuzzy lattice, as seen in Chapter 4. In this section we present a generalization to fuzzy
set theory of the antichain completion of a partial order into a lattice (Definition 1.15
and Proposition 1.17), i.e., we show how to construct a fuzzy lattice on the antichains of a
fuzzy poset.

Definition 5.15 (Antichains in a fuzzy poset). Let (S,�·) be a fuzzy poset. Two
elements s, s′ ∈ S are said to be incomparable – denoted s ‖ s′ – if �·(s, s′) = 0 and
�·(s′, s) = 0. An antichain is a subset C ⊆ S such that, for all s, s′ ∈ C, s ‖ s′ if s 6= s′.
The set of all antichains of (S,�·) is denoted Antichains(S).

Definition 5.16 (Fuzzy antichain ordering). A fuzzy partial order �· on S can be
extended to a fuzzy relation �· on Antichains(S) by letting, for all C,C ′ ∈ Antichains(S):
�·(C,C ′) def= minc∈C maxc′∈C′ �·(c, c′).

The same symbol �· is used for the partial order on S and the fuzzy relation on Anti-
chains(S), since its meaning is always clear from context.

Proposition 5.17 (Fuzzy antichain lattice). If (S,�·) is a fuzzy poset, then (Anti-
chains(S),�·) from Definition 5.16 is a fuzzy lattice, where the GLB of C,C ′ ∈ Anti-
chains(S) is given by C1 4 C2 def= dC1↓· ∩ C2↓·e·. Moreover, (Antichains(S),�·) preserves
the GLBs that exist in (S,�·), i.e., if s0 4 s1 = s, then {s0} 4 {s1} = {s}.
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Figure 5.4: The fuzzy relations of Example 5.18.

Example 5.18 (Greatest lower bounds in ∼≺·). Consider the subsumption � and the
similarity ∼ represented in Fig. 5.4a, and the fuzzy partial order ∼≺· obtained from their
combination (according to Definition 5.8) represented in Fig. 5.4c. In this case ∼≺· is not
a fuzzy lattice, since h and t do not have a GLB. Fig. 5.4d shows the completion of ∼≺· as
defined in Definition 5.16, in which the GLB of {h} and {t} is {s, p}. We can thus use this
fuzzy order for the unification, e.g., of the OSF terms t1 = m(f → h) and t2 = m(f → t),
which would result in the disjunctive OSF term m(f → {s, p}), which is subsumed by t1
and t2 with degree 0.5. .

Similarly to the crisp setting, the completion of a fuzzy partial order �· : S → [0, 1] does
not need to be computed explicitly in order to find the GLB of two sorts in Antichains(S),
as the same encoding and decoding strategies of [5, 13] can be employed in the fuzzy case,
as seen in Section 4.8.2.

5.5 Potential applications

5.5.1 Similarity-based CEDAR

As seen in Section 3.7.2, CEDAR [6, 15] is a Semantic Web reasoner based on OSF logic
and OSF term unification, whose implementation relies on techniques that exploit the speci-
ficity of concept taxonomies, particularly the fact that subsumption orderings are central to
all ontologies. The main capabilities of CEDAR are concept classification, Boolean query
answering (i.e., answering queries formed by sort symbols and Boolean connectives), and an-
swering queries represented as OSF terms (CEDAR features an extended OSF term syntax
that also supports a few Description Logic constructs [15]).

Before being executed, a query – expressed as an OSF term in which the variables of
interest are marked by a question mark – is first optimized according to both the knowledge
expressed in the given ontology and the OSF constraint normalization rules. The resulting
query is then translated into a SPARQL query and executed by a SPARQL engine. This



Chapter 5. Similarity-Based Reasoning with Order-Sorted Feature Logic 129

SELECT ?x WHERE {
?x rdf:type :person .
?x :works_at ?y .
?y rdf:type owl:Thing . }

(a) Without the optimization step

SELECT ?x WHERE {
?x rdf:type :researcher .
?x :works_at ?y .
?y rdf:type :university . }

(b) After the optimization step

Figure 5.5: The SPARQL queries of Example 5.19.

process potentially leads to an optimized query that is more efficient to execute, by reducing
the instance retrieval search space. Moreover, it also ensures the consistency of the input
query against the ontology, so that no answer is provided if the query is inconsistent. The
retrieval is further optimized thanks to a custom RDF triple indexing scheme based on OSF
sort and attribute information [15].

Example 5.19 (CEDAR query normalization). Consider the subsumption � and
similarity ∼ represented in Fig. 5.6 (adapted from an example of [15]) and the query
?X : person(works_at → >), which aims to retrieve people that work somewhere. Addi-
tionally, assume that the feature works_at applies to objects of sort researcher and points
to objects of sort university. The CEDAR query optimization step [15] would transform the
given query into the query ?X : researcher(works_at→ university) (the SPARQL trans-
lations of these queries are depicted in Figs. 5.5a and 5.5b, respectively). The reason is that,
since X is of sort person and the feature works_at only applies to researchers, then by
the rule Sort Intersection the variable X must be of sort person⋏researcher = researcher.
An analogous reasoning applies to the value of the feature works_at. The resulting query –
which aims to retrieve researchers rather than people, and universities rather than entities
of any sort – benefits from a much smaller search space, and is thus more efficient to execute.

On the other hand, CEDAR would find the query ?X : teacher(works_at → >) to be
inconsistent with the knowledge expressed in Fig. 5.6 (according to the subsumption �, the
sorts teacher and researcher are disjoint: teacher ⋏ researcher = ⊥), thus preventing the
query from being translated into SPARQL and executed. .

While the consistency check is useful for preventing unnecessary computations, there
may be scenarios where offering approximate answers to inconsistent queries becomes de-
sirable. For instance, users often do not possess full knowledge of the extensive ontologies
they query, making the inconsistency of a query, such as the second one in Example 5.19,
potentially surprising. Furthermore, the inconsistency of this query is due to the closed
world assumption of OSF logic, which states that, since teacher ⋏ researcher = ⊥, the two
sorts must denote disjoint classes. However, it may be desirable to relax this consistency
requirement in contexts where this assumption does not hold, such as settings where domain
knowledge can evolve or be incomplete.
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>

institution

university

person

professor

researcher teacher
0.5

Figure 5.6: The subsumption (black) and similarity (red, dashed) relations of Examples 5.19
and 5.20.

With these considerations in mind, similarity-based reasoning with OSF logic could be
implemented in an extension of CEDAR in order to relax the consistency requirement and
provide approximate answers even when the input query is inconsistent with respect to the
ontology. This would be achieved, for example, by enriching the subsumption relation of
the given ontology with a similarity, which would then be taken into account during the
query optimization phase, making query answering with CEDAR more flexible.

Example 5.20 (Similarity-based CEDAR query normalization). Continuing from
Example 5.19, in a similarity-based extension of CEDAR we could consider the similarity
relation ∼ of Fig. 5.6, which specifies that researcher and teacher are similar. The con-
straint normalization rules used in the query optimization phase could then be executed
over the fuzzy subsumption ∼≺· obtained by combining � and ∼ as described in the previ-
ous sections, where professor becomes the GLB of researcher and teacher. The query
?X : teacher(works_at→ >), which was previously inconsistent, can now be simplified to
?X : professor(works_at→ university). In this case, the answers to this query are asso-
ciated with the approximation (satisfaction) degree 0.5. Alternatively, instead of providing
approximate answers, the new query could be suggested to the user as a replacement to the
inconsistent query. .

5.5.2 Logic programming with similarity-based OSF logic

Another possible application of our approach is the implementation of a logic programming
language based on SLD resolution and OSF term unification (like LOGIN [8]), which addi-
tionally allows the specification of a sort similarity relation, similarly to how Bousi∼Prolog
[62, 63] allows the specification of a similarity (or a proximity) relation between functors,
constants and predicates. The addition of a similarity relation allows the retrieval of ap-
proximate solutions to a query, improving the flexibility of query answering.
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There are several potential advantages of using OSF logic in this context. First of all,
the unification algorithm for OSF terms takes into account a sort subsumption relation,
which can lead to more efficient computations [8, 37]. For instance, Example 3.67 shows
how a single OSF term unification can replace several resolution steps, and analogously
Example 5.3 discusses how a single weak OSF term unification can replace several similarity-
based resolution steps. Another advantage is the flexibility provided by OSF terms, which
lack a fixed arity and can thus easily represent partial information, and are moreover simpler
to interpret thanks to their use of features rather than positions to specify arguments [8].

The following example, which extends Example 3.68, illustrates a similarity-based OSF
logic program, showcasing the flexibility of our approach in retrieving approximate solutions
to queries. The computation of a solution to a given query relies on the weak unification of
OSF terms, and on SLD resolution on predicate symbols. Predicate symbols in this context
are distinct from the sorts and features of OSF terms. They work exactly as in Prolog, with
the only difference that they accept OSF terms rather than first-order terms as arguments.

Example 5.21 (Logic programming with OSF logic and a sort similarity). Consider
the program of Fig. 5.7, which corresponds to the Bousi∼Prolog program of Example 2.7. A
sort subsumption relation is specified by declarations of shape s < s’, while an expression like
{ c } < s means that the constant c is an instance of the sort s. Constants such as c are treated
as singleton sorts (sorts that denote a single element), and thus as OSF terms themselves. A
similarity declaration of shape x ∼ y = β specifies that the sorts horror and thriller are
similar to degree 0.5. A few facts with the predicate director_of – whose arguments are
OSF terms – are then specified and, finally, a rule involving the predicates director_of and
likes states that alinda likes thriller movies. The query ?- likes(alinda, Y : movie)

is first reduced by resolution to the goal director_of(X : person, Y : thriller), which
is then resolved against the facts of the program, returning the following solutions:

• a solution binding Y to memento(title -> "Memento"), through the unification of
thriller and memento(title -> "Memento");

• a solution binding Y to psycho with approximation degree 0.5, through the weak
unification of thriller and psycho (since psycho is a horror, which is similar to
thriller);

• a solution binding Y to halloween(year -> 1979) with approximation degree 0.5,
through the weak unification of thriller and halloween(year -> 1979) (since
halloween is a horror, which is similar to thriller).

Behind the scenes, the computations would involve the unification of OSF terms over the
fuzzy subsumption ∼≺· obtained by combining, before the execution of the queries, the sub-
sumption �· and the similarity ∼ specified by the program. .
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% Subsumption relation
director < person.
slasher < horror.
horror < movie.
thriller < movie.
% Similarity relation
thriller ~ horror = 0.5.
% Instances
{ alinda } < person.
{ hitchcock, carpenter, nolan } < director.
{ psycho } < horror.
{ halloween } < slasher.
{ memento } < thriller.
% Facts
director_of(hitchcock, psycho).
director_of(carpenter, halloween(year -> 1979)).
director_of(nolan, memento(title -> "Memento")).
% Rules
likes(alinda, Y :thriller) :- director_of(X : person, Y).

Figure 5.7: A logic program with OSF terms and a similarity relation.

Note that in this example a similarity was only specified between sort symbols in order
to perform weak OSF term unification, but it could be possible to further extend our
approach by also considering a similarity between predicate symbols in order to perform
similarity-based SLD resolution. This would be analogous, for instance, to Bousi∼Prolog,
which supports a similarity relation on predicate symbols (in order to perform similarity-
based SLD resolution) and on functor symbols (in order to perform weak first-order term
unification).

We conclude with an example that showcases another advantage of our approach with
respect to other similarity-based logic programming languages such as Bousi∼Prolog, in
particular when dealing with cycles in the specification of the subsumption and similarity
relations.

Example 5.22 (Cycles in Bousi∼Prolog and similarity-based OSF logic). Consider
the logic program enriched with a similarity relation of Fig. 5.8a, which follows the syntax of
Bousi∼Prolog [62, 63]. The program starts by describing the similarity and the subsumption
relations of Fig. 5.3a (with β0 = 0.4 and β1 = 0.5) through declarations of shape x ∼ y = β

and two Horn rules, followed by a few facts that specify the instances of the predicates a, b, c

and d. Loading this program in Bousi∼Prolog and querying a(X) leads to an infinite loop4.
4The program of Fig. 5.8a was tested on Bousi∼Prolog 3.6.1 (https://dectau.uclm.es/bousi-prolog/

2018/07/26/downloads/).

https://dectau.uclm.es/bousi-prolog/2018/07/26/downloads/
https://dectau.uclm.es/bousi-prolog/2018/07/26/downloads/
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a ~ d = 0.4 .
b ~ c = 0.5 .
b(X) :- a(X).
d(X) :- c(X).
a(alice).
b(bob).
c(carol).
d(david).

(a) Bousi∼Prolog
version

a ~ d = 0.4 .
b ~ c = 0.5 .
a < b.
c < d.
{ alice } < a.
{ bob } < b.
{ carol } < c.
{ david } < d.

(b) OSF version

Figure 5.8: The logic programs with a similarity relation of Example 5.22.

This is due to the fact that, since a and d are similar, then the query a(X) resolves with the
clause d(X) :- c(X) though similarity-based SLD resolution, and the goal becomes c(X).
Then, since b and c are similar, the new goal resolves with the clause b(X) :- a(X) by
similarity-based SLD resolution, resulting in the goal a(X) again, so that the cycle starts
over.

Now consider the similarity-based OSF logic program of Fig. 5.8b, which describes the
same setting. The subsumption and similarity defined in the program would be combined
into a fuzzy subsumption relation before the execution of the query a(X), leading to the fuzzy
partial order ∼≺ of Fig. 5.3c, or the fuzzy partial order ∼≺· of Fig. 5.3e (this could depend on
an additional parameter passed to the program). In the first case, the answers to the query
would include the instances of a, b, c and d (i.e., alice, bob, carol and david), while in
the second case they would consist of the instances of a and c (i.e., alice and carol). .





Conclusions

In this chapter we provide a brief summary of the thesis, followed by an overview of potential
directions for future research.

Summary of the thesis

In Chapter 2 we have presented a brief summary of Knowledge Representation and Rea-
soning (KRR) languages that are closely related to Order-Sorted Feature (OSF) logic, in
order to provide the necessary background and a means of comparison of our work with the
current literature. In particular, we have discussed Description Logics (DLs), one of the
most prominent formalisms for KRR due to its application to the Semantic Web, and fuzzy
DLs, the fuzzy generalization of DLs that aims to handle vagueness and real-valued truth
degrees.

A brief overview is then provided of research on approximate reasoning with logic pro-
gramming that relies on fuzzy relations such as proximities and similarities. Extending
the syntax of Prolog with a similarity relation enables the definition of flexible notions of
unification and SLD resolution, called weak unification and similarity-based SLD resolu-
tion. The aim is to enhance logic programming languages with the capability of providing
approximate answers to queries.

Chapter 3 is a comprehensive overview of OSF logic [10]. It presents the main syntactic
objects of this language – namely OSF terms, OSF clauses and OSF graphs – and how they
are related to each other. The meaning of these objects is defined in structures called OSF
algebras, which provide the denotation of an OSF term and the satisfiability of an OSF
clause.

Structure-preserving mappings between OSF algebras, called OSF algebra homomor-
phisms, allow to establish an approximation partial ordering on the set of OSF graphs.
A subsumption ordering on the set of normal OSF terms, and an implication ordering on
rooted solved OSF clauses, are also defined, and it is proved that the three orderings are
equivalent. In particular, the subsumption ordering on normal OSF terms constitutes a lat-
tice such that the greatest lower bound (GLB) of two OSF terms can be computed through
their unification, the operation on which reasoning with OSF logic is grounded.
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Two applications based on OSF logic and OSF term unification are then discussed: the
logic programming language LOGIN [8], and the Semantic Web reasoner CEDAR [6, 15].

The discussion of Chapter 3 sets the foundations for the development of fuzzy OSF logic
in Chapter 4, which constitutes the first key contribution of our thesis.

Fuzzy OSF logic maintains the syntax of crisp OSF logic, but it generalizes its semantics
to a fuzzy setting. In particular, each sort symbol is interpreted as a fuzzy subset of a
domain of an interpretation, allowing real-valued degrees of membership of an object to a
sort. Moreover, sort symbols are ordered in a fuzzy subsumption relation, which models a
flexible notion of inclusion that generalizes Zadeh’s definition of inclusion of fuzzy sets.

The syntactic objects of fuzzy OSF logic are interpreted in fuzzy OSF algebras (or
interpretations). The denotation of an OSF term is a fuzzy subset of the domain, while
OSF clauses are satisfiable in a fuzzy OSF interpretation with an associated satisfaction
degree β ∈ [0, 1]. Similarly to the crisp case, the notions of fuzzy denotation of OSF terms
and of graded satisfiability of OSF clauses are proved to be equivalent. The fuzzy OSF graph
algebra, a generalization of the OSF graph algebra, is then introduced, and it is proved that
any solved clause is satisfiable in this algebra with degree of satisfaction 1.

Fuzzy β-homomorphisms are then introduced as mappings between two fuzzy OSF in-
terpretations I and J that preserve feature applications and, to some degree, the sorts of
the elements of I. These mappings enable the definition of a fuzzy ordering between OSF
graphs, which is then proved to be equivalent to a fuzzy subsumption ordering between
normal OSF terms, and a fuzzy implication ordering between rooted solved OSF clauses.

The fuzzy subsumption ordering between normal OSF terms generalizes the one on
sort symbols, and it constitutes a fuzzy lattice. An equivalent syntactic definition of fuzzy
OSF term subsumption is also provided, along with a result showing how fuzzy OSF term
subsumption and crisp OSF term subsumption are related to each other.

The GLB of two normal OSF terms in the fuzzy OSF term subsumption lattice can be
computed via their unification, through a constraint normalization process that is essen-
tially the same as the one for crisp OSF logic. The fact that it is possible to employ the
same unification procedure as crisp OSF logic constitutes a benefit in terms of developing
fuzzy OSF logic reasoners, since it is possible to take advantage of existing implementation
techniques.

The generalization to a fuzzy semantics enables approximate reasoning within the frame-
work of OSF logic. In particular, we have provided an algorithm for OSF term unification
that can be employed to decide whether two OSF terms are subsumed by each other, and
to which degree. The complexity of this algorithm is discussed, followed by the implemen-
tation of two core operations it is based on: finding the GLB of two sorts in the fuzzy
sort subsumption lattice, and computing the subsumption degree of a sort with respect to
another sort.
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Finally, we have presented an application of fuzzy OSF logic consisting of a fuzzy logic
programming language based on fuzzy OSF term unification. Fuzzy OSF logic also en-
ables the development of similarity-based reasoning with OSF logic, which is discussed in
Chapter 5.

In Chapter 5 we have presented the second key contribution of our thesis, consisting
of an approach to define approximate reasoning with OSF logic by extending its language
with a similarity relation on sort symbols. By combining this similarity relation with the
usual sort subsumption relation of this language it is possible to define a fuzzy subsumption
relation which intuitively combines the information of both relations and their interaction.

We start by combining a sort subsumption relation and a sort similarity into a fuzzy
subsumption preorder, which may however contain cycles. To address this issue, we present
a construction of a fuzzy partial order from a fuzzy preorder that generalizes a well-known
result from order theory. A definition of a completion of a fuzzy poset into a fuzzy lattice
is introduced next, which finalizes the transformation of a subsumption relation and a
similarity into a fuzzy subsumption relation.

The fuzzy subsumption is then taken into account when unifying two OSF terms, accord-
ing to the constraint normalization rules of fuzzy OSF logic. The advantage of this approach
is that it allows to seamlessly integrate the similarity relation into the unification rules of
fuzzy OSF logic, taking the interaction between the similarity and the crisp subsumption
into account, and potentially allowing a single unification to replace several similarity-based
SLD resolution steps.

Two potential applications of similarity-based reasoning with OSF logic have been pre-
sented: a fuzzy logic programming language and an extension of the CEDAR reasoner which
are capable of returning approximate answer to queries.

Future work

In this section we present in distinct paragraphs some promising research directions based
on the research work developed in this thesis.

Disjunction and negation The language of OSF logic adopted in this thesis consists
of conjunctions of simple constraints. It would be interesting to study a fuzzy semantics
of the language of OSF logic that also includes, for instance, negations and disjunctions.
Versions of crisp OSF logic (and of feature logics in general) that include these operations
are studied, for instance, in [4, 34, 106].

Partial features and fuzzy features Like in crisp OSF logic, feature symbols are inter-
preted as total functions in fuzzy OSF logic as well. Other feature logics have been studied
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where features are interpreted as partial functions instead [4, 34, 106]. Besides investigat-
ing an extension of fuzzy OSF logic that interprets features as partial functions, another
research direction would be the study of OSF logic where feature symbols are also given
a fuzzy interpretation, for instance as fuzzy binary relations satisfying some functionality
condition, or along the lines of the fuzzy functions of [89].

Other t-norms The definition of the fuzzy semantics of OSF logic in Chapter 4 relies on
the choice of the Gödel t-norm and t-conorm, and the same is true for the development of
similarity-based reasoning with OSF logic in Chapter 5. The study of the semantics of OSF
logic under alternative t-norms, and the investigation of whether the results of Chapters 4
and 5 are preserved when employing these operations, is left for future research.

Proximity relations Besides similarity relations, proximity relations have also been con-
sidered when defining weaker notions of unification with the goal of extending logic pro-
gramming languages with the capability to perform approximate reasoning (e.g., [61, 64,
74, 90]). Proximity relations generalize similarity relations by dropping the max-min transi-
tivity requirement, which can be more appropriate in some modeling contexts [61, 67, 103],
so that it would also be valuable to define a proximity-based notion of weak unification of
OSF terms.

Description Logic constructs DLs offer a great variety of concept and role constructors
that can be employed to build complex expressions. Depending on the choice of these
constructors, a different trade-off can be achieved between the expressivity of a DL and its
computational complexity. Strategies to express DL constructors in OSF logic are discussed,
for instance, in [4, 15]. An analogous investigation into whether it is possible to extend fuzzy
OSF logic with DL concept constructors will be the subject of future work.

Anti-unification Another direction for future work would be investigating the fuzzy anti-
unification (or generalization) of OSF terms, i.e., the operation dual to unification. Fuzzy
definitions of the anti-unification of first-order terms are provided, for instance, in [9, 71,
72, 73], and anti-unification of OSF terms is studied in [12].

Fuzzy OSF term unification modulo a theory OSF theory unification is the problem
of checking the consistency of an OSF term modulo a hierarchy of sort definitions, enforcing
structural constraints imposed by an OSF theory [11]. Sort definitions are comparable to
classes imposing structural constraints on objects, and OSF theory unification allows objects
to inherit and abide by constraints from their classes. The integration of sort definitions
in fuzzy OSF logic, and the study of fuzzy OSF term unification modulo a theory of sort
definitions, are left for future research.
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Implementation and experimental comparisons Finally, the approaches to approx-
imate reasoning with OSF logic developed in this thesis should be implemented in applica-
tions that are capable of providing approximate answers to queries posed to a knowledge
base, by relying on a fuzzy sort subsumption relation or on a sort similarity relation. Ex-
amples of these applications are the fuzzy logic programming languages of Sections 4.9
and 5.5.2, and the extension of the CEDAR reasoner of Section 5.5.1. The efficiency and
the effectiveness of systems based on the outcomes of our research could then be exper-
imentally compared with other approaches, such as Bousi∼Prolog, or DL and fuzzy DL
reasoners.
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Proofs

A.1 Proofs for Chapter 4: Fuzzy Order-Sorted Feature Logic

A.1.1 Proofs for Section 4.5: Fuzzy OSF algebra homomorphisms

Proposition 4.25 (Fuzzy homomorphisms). Let γ : I → J be a β-morphism.

1. If γ′ : J → K is a β′-morphism, then γ′ ◦ γ : I → K is a β ∧ β′-morphism.

2. For all β′ ≤ β: γ is a β′ morphism.

3. There is a maximum β′ such that γ is a β′-morphism.

Proof of Proposition 4.25. The first two points are easy to show.
Let B def= {β ∈ [0, 1] | γ : I → J is a β-morphism} and βs = sup(B). Note that

B def= {β ∈ [0, 1] | γ : I → J is a β-morphism}
= {β ∈ [0, 1] | ∀s ∈ S,∀d ∈ ∆I : sI(d) ∧ β ≤ sJ (γ(d))}

and that B 6= ∅ by assumption. The fact that βs ∈ B and thus βs is the maximum β′ such
that γ is a β′-morphism follows from the following claim.

Claim A.1. For each 1 ≤ i ≤ n, let fi : X → [0, 1] and gi : X → [0, 1] be functions. Let

B def= {β ∈ [0, 1] | ∀x ∈ X,∀1 ≤ i ≤ n : min(fi(x), β) ≤ gi(x)}.

Then sup(B) ∈ B.

Theorem 4.29 (Fuzzy morphisms into G). For any fuzzy OSF interpretation I there
exists a β-homomorphism into the fuzzy OSF graph algebra G for some β ∈ (0, 1].

Proof of Theorem 4.29. For each element d ∈ ∆I we construct an OSF graph γ(d) ∈ ∆G .
Let us start with a few preliminary definitions. Let d ∈ ∆I :
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• the set of sorts to which d belongs to with degree greater than 0 is denoted1

|d|IS def= {s ∈ S | sI(d) > 0};

• the most specific sort to which d belongs to with degree greater than 0 is denoted
sd

def= � |d|IS .

We construct a labeled graph g = (N,E, λN , λE) with N ⊆ V as follows:

• for each d ∈ ∆I we choose a variable Xd ∈ V to denote a node in g;

• the label of Xd is defined as λN (Xd) def= sd;

• for each f ∈ F , if fI(d) = d′, then g contains the edge (Xd, Xd′) labeled f .

For each d ∈ ∆I , let βd = mins∈|d|IS �·(sd, s). Note that βd > 0 for any d ∈ ∆I , and that
because the set S of sorts is finite, then the set {βd | d ∈ ∆I} = {mins∈|d|IS �·(sd, s) | d ∈ ∆

I}
is also finite. Let β = min{βd | d ∈ ∆I} > 0 and define γ(d) to be the maximally connected
subgraph of g rooted in Xd. It is left to show that γ : I → G is a β-homomorphism.

• Let f ∈ F and d ∈ ∆I . If fI(d) = d′, then γ(d) has an edge labeled f from Xd to
Xd′ , which is the root of γ(d′). Hence γ(fI(d)) = fG(γ(d)).

• Let s ∈ S and d ∈ ∆I . If sI(d) = 0, then sG(γ(d)) ≥ β ∧ sI(d). Otherwise, s ∈ |d|IS
and thus sG(γ(d)) = �·(sd, s) ≥ mins′∈|d|IS �·(sd, s

′) = βd ≥ β ≥ β ∧ sI(d).

Theorem 4.31 (Extracting solutions through fuzzy homomorphisms). For any
solved OSF clause φ, fuzzy interpretation I, assignment α : V → ∆I and β ∈ (0, 1] such
that I, α |=β φ there exists an OSF algebra β-homomorphism γ : G[∆G,φ] → I such that
α(X) = γ(G(φ(X))) for each X ∈ Tags(φ).

Proof of Theorem 4.31. Let us abbreviate G(φ(X)) as gX . The β-morphism γ : G[∆G,φ]→
I is defined as follows. Let g ∈ G[∆G,φ], so that g = wG(gX) for some w ∈ F∗ and
X ∈ Tags(φ): we define γ(g) = γ(wG(gX)) def= wI(α(X)). Note that γ(gX) = α(X) for each
X ∈ Tags(φ). First of all, we need to show that γ is well-defined. Let g ∈ G[∆G,φ] and note
that there are two cases to consider.

• Suppose g = gX for some X ∈ Tags(φ) and let w,w′ ∈ F∗ and Y , Z ∈ Tags(φ) be
such that g = wG(gY ) = w′G(gZ). We want to prove that wI(α(Y )) = w′I(α(Z)). By
construction of gX it must be the case that φ contains constraints of shape

Y .f0
.= Y1, Y1.f1

.= Y2, . . . , Yn.fn
.= X and

Z.f ′0
.= Z1, Z1.f

′
1
.= Z2, . . . , Zm.f

′
m
.= X

1Recall that we assume that (S,�) is finite, and thus |d|IS is a finite subset of S.
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such that w = f0 · f1 · · · fn and w′ = f ′0 · f ′1 · · · f ′m. Because I, α |=β φ and β > 0, then
indeed wI(α(Y )) = w′I(α(Z)) as desired.

• Suppose g = G(Z : >) for some variable Z /∈ Tags(φ). Then g = w′G(gX) for some
X ∈ Tags(φ) and some w′ ∈ F∗ such that gX and w′ uniquely determine Z (see
Definition 4.17). This case now reduces to the previous one.

We now prove that the function γ is indeed a β-morphism.

• Let f ∈ F and g ∈ G[∆G,φ], so that g has shape g = wG(gX) as before. Let w′ = w ·f ∈
F∗. Then γ(fG[∆G,φ](g)) = γ(fG[∆G,φ](wG(gX))) = γ(fG(wG(gX))) = γ(w′G(gX)) =
w′I(α(X)) = fI(wI(α(X))) = fI(γ(g)).

• Now let s ∈ S and we want to show that sI(γ(g)) ≥ β ∧ sG(g) for all g ∈ G[∆G,φ]. Let
g ∈ G[∆G,φ] be arbitrary. There are two cases to consider.

– Suppose g = G(Z : >) for some variable Z /∈ Tags(φ). If sG(g) = 0 then the result
holds. Otherwise, if sG(g) > 0, then g is labeled by a sort s′ such that �·(s′, s) > 0,
but since g is labeled by s′ = >, then s = >, so that sI(γ(g)) = >I(γ(g)) = 1
and the result holds.

– Suppose g = gX for some X ∈ Tags(φ) and let s′ be the label of the root of g. By
construction of gX then φ must contain a constraint of the form X : s′, and by
the assumption that I, α |=β φ we have that s′I(α(X)) ≥ β. By Definition 4.4
then we have that sI(γ(gX)) = sI(α(X)) ≥ s′I(α(X))∧�·(s′, s) ≥ β ∧�·(s′, s) =
β ∧ sG(g).

Theorem 4.32 (Denotation of ψ-terms via fuzzy morphisms). Let ψ be a normal
OSF term, let φ = φ(ψ), and let I = (∆I , ·I) be a fuzzy OSF interpretation. For all d ∈ ∆I

and β ∈ (0, 1]:

[[ψ]]I(d) ≥ β ⇔ there is a β-morphism γ : G[∆G,φ]→ I such that d = γ(G(ψ))

and thus [[ψ]]I(d) = sup({β ∈ [0, 1] | ∃β-morphism γ : G[∆G,φ]→ I such that d = γ(G(ψ))}).

Proof of Theorem 4.32. Let X be the root variable of ψ and let d ∈ ∆I .
Suppose that [[ψ]]I(d) ≥ β. By Definition 4.6 and Remark 5 then there is some α

such that [[ψ]]I,α(d) ≥ β and d = α(X). By Proposition 4.10 then I, α |=β φ, so that
by Theorem 4.31 there is a β-homomorphism γ : G[∆G,φ] → I such that d = α(X) =
γ(G(φ(X))) = γ(G(ψ)).

Now suppose γ : G[∆G,φ]→ I is a β-homomorphism such that d = γ(G(ψ)). By Proposi-
tion 4.21 we know that G[∆G,φ], α |=1 φ where α : V → ∆G[∆G,φ] is such that α(Y ) = G(φ(Y ))
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for all Y ∈ Tags(φ), and thus d = γ(G(ψ)) = γ(G(φ(X))) = γ(α(X)). Then by Proposi-
tion 4.28 I, γ ◦ α |=β φ, and thus by Proposition 4.10 it holds that [[ψ]]I,γ◦α(γ(α(X))) ≥ β,
i.e., [[ψ]]I,γ◦α(d) ≥ β, so that [[ψ]]I(d) ≥ β.

Finally, note that by what we just proved (and the fact that, for any S ⊆ [0, 1], sup(S) =
sup(S \ {0})):

[[ψ]]I(d) = sup({β ∈ [0, 1] | [[ψ]]I(d) ≥ β})
= sup({β ∈ (0, 1] | [[ψ]]I(d) ≥ β})
= sup({β ∈ (0, 1] | ∃ β-morphism γ : G[∆G,φ]→ I such that d = γ(G(ψ))})
= sup({β ∈ [0, 1] | ∃ β-morphism γ : G[∆G,φ]→ I such that d = γ(G(ψ))}).

A.1.2 Proofs for Section 4.6: Fuzzy OSF orderings and subsumption

Proposition 4.35 (Endomorphic approximation fuzzy preorder). For all fuzzy OSF
interpretations I, the fuzzy binary relation vI is a fuzzy preorder.

Proof of Proposition 4.35. Let I be a fuzzy OSF interpretation. For all d ∈ I the identity
function on I[d] is clearly a 1-morphism, so that vI(d, d) = 1. Now suppose vI(d0, d1) = β0

and vI(d1, d2) = β1. We want to prove that vI(d0, d2) ≥ β0 ∧ β1. Let β0 > 0 and
β1 > 0 (otherwise, the desired result follows immediately) and let γ0 : I[d0] → I[d1] and
γ1 : I[d1] → I[d2] be, respectively, a β0-morphism and a β1-morphism. Note that these
exist because of Proposition 4.27. Then by Proposition 4.25 γ1 ◦ γ0 is a β0 ∧ β1 morphism,
and vI(d0, d2) ≥ β0 ∧ β1 follows by Definition 4.33.

Proposition 4.36 (Fuzzy morphisms between two OSF graphs). Let g0 and g1 be
two OSF graphs. If γ0 : G[g0] → G[g1] is a β0-morphism (β0 > 0) and γ1 : G[g1] → G[g0] is
a β1-morphism (β1 > 0) such that γ0(g0) = g1 and γ1(g1) = g0, then:

1. for all g ∈ G[g0], g and γ0(g) are labeled by the same sort;

2. for all g ∈ G[g1], g and γ1(g) are labeled by the same sort;

3. γ0 ◦ γ1 = id∆G[g1] and γ1 ◦ γ0 = id∆G[g0], and thus γ0 and γ1 are bijections;

4. γ0 and γ1 are 1-morphisms.

Proof of Proposition 4.36. According to the statement of the proposition, let

• γ0 : G[g0]→ G[g1] be a β0-morphism such that γ0(g0) = g1, and

• γ1 : G[g1]→ G[g0] be a β1-morphism such that γ1(g1) = g0

with β0 > 0 and β1>0.
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Let g ∈ G[g1], so that g = wG(g1) for some w ∈ F∗. Then

γ0(γ1(g)) = γ0(γ1(wG(g1))) = γ0(wG(γ1(g1)))
= wG(γ0(γ1(g1))) = wG(γ0(g0)) = wG(g1) = g,

i.e., γ0 ◦ γ1 = id∆G[g1] .
Let s be the sort labeling g and s′ be the sort labeling g′ def= γ1(g). By Definition 4.23

then

sG(g) ∧ β1 ≤ sG(g′) and s′G(g′) ∧ β0 ≤ s′G(γ0(g′)) = s′G(g).

Note that sG(g) = 1 and s′G(g′) = 1, so that sG(g′) > 0 and s′G(g) > 0. Thus

�·(s′, s) = sG(g′) > 0 and �·(s, s′) = s′G(g) > 0,

so that by antisymmetry of �· it follows that s = s′, meaning that g and γ1(g) are labeled
by the same sort.

Now let s be an arbitrary sort, and g ∈ G[g1] be arbitrary. By what we just showed, g and
γ1(g) are labeled by the same sort, so that sG(g) = sG(γ1(g)), and thus sG(g)∧1 ≤ sG(γ1(g)),
i.e., γ1 is a 1-morphism.

In a very similar way it can be shown that (i) γ0 is a 1-morphism, (ii) for all g ∈ G[g0],
g and γ0(g) are labeled by the same sort, and (iii) γ1 ◦ γ0 = id∆G[g0] .

Lemma A.2 (Equivalence of fuzzy OSF orderings). If the normal OSF terms ψ and
ψ′ (with roots Y and X, respectively, and no common variables), the OSF graphs g and g′,
and the rooted solved OSF clauses φY and φ′X respectively correspond to one another though
the syntactic mappings, then the following are equivalent, for all β ∈ (0, 1].

1. There is a β-morphism γ : G[g]→ G[g′] such that γ(g) = g′.

2. For all OSF interpretations I and d ∈ ∆I : [[ψ′]]I(d) ∧ β ≤ [[ψ]]I(d).

3. For all OSF interpretations I and assignments α such that I, α |=β′ φ
′, there is an

assignment α′ such that α′(X) = α(X) and I, α′ |=β′∧β φ[X/Y ].

4. For all g ∈ ∆G: [[ψ′]]G(g) ∧ β ≤ [[ψ]]G(g).

Proof of Lemma A.2.

(1) implies (2) Suppose that there is a β-homomorphism γ : G[g] → G[g′] such that
g′ = γ(g). We want to show that for all I and d ∈ ∆I :

[[ψ′]]I(d) ∧ β ≤ [[ψ]]I(d).
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Let I be an arbitrary OSF interpretation, let d ∈ ∆I and suppose [[ψ′]]I(d) = β′ > 0
(otherwise the desired result immediately follows). Then by Theorem 4.32 there is a β′-
morphism γ′ : G[∆G,φ′ ]→ I such that d = γ′(G(ψ′)) = γ′(g′). Note that G[g] = G[∆G,φ] and
G[g′] = G[∆G,φ′ ], thus we can also write γ : G[∆G,φ] → G[∆G,φ′ ]. Then by Proposition 4.25
γ′ ◦ γ : G[∆G,φ] → I is a β ∧ β′-morphism and d = γ′(γ(g)) = (γ′ ◦ γ)(g) = (γ′ ◦ γ)(G(ψ)).
By Theorem 4.32 then [[ψ]]I(d) ≥ β ∧ β′ = β ∧ [[ψ′]]I(d).

(2) implies (1) Suppose that, for any I and d ∈ ∆I : [[ψ′]]I(d) ∧ β ≤ [[ψ]]I(d). Then in
particular for all g′′ ∈ ∆G : [[ψ′]]G(g′′) ∧ β ≤ [[ψ]]G(g′′).

Since g′ = G(ψ′), then [[ψ′]]G(g′) = 1, so that [[ψ]]G(g′) ≥ β > 0. Thus by Theorem 4.32
there is a β-morphism γ : G[∆G,φ] → G such that g′ = γ(G(ψ)) = γ(g). Note that G[g] =
G[∆G,φ], since g = G(φ). Then by Proposition 4.27 γ : G[g]→ G[γ(g)], i.e., γ : G[g]→ G[g′]
as desired.

The following claim will be needed in the next two directions.

Claim A.3. Let φ be an OSF clause, β ∈ [0, 1], Y ∈ Tags(φ) and X /∈ Tags(φ): if
I, α |=β′ φ, then I, α′ |=β′ φ[X/Y ], where

α′(Z) =

α(Y ) if Z = X

α(Z) otherwise.

(2) implies (3) Suppose that I, α |=β′ φ
′. Then [[ψ′]]I(α(X)) ≥ β′ by Proposition 4.10, so

that by assumption (2) [[ψ]]I(α(X)) ≥ β∧β′. If β′ = 0 the desired result follows immediately,
so suppose otherwise. By Remark 5 and Proposition 4.10 then there is some α′ such that
I, α′ |=β′∧β φ and α(X) = α′(Y ) (recall that Y is the root tag of φ and ψ). But then α′′

defined by letting

α′′(Z) =

α
′(Y ) if Z = X

α′(Z) otherwise

is such that I, α′′ |=β′∧β φ[X/Y ] by Claim A.3, and α′′(X) = α′(Y ) = α(X) as desired.

(3) implies (2) Let I and d ∈ ∆I be arbitrary and we want to show that [[ψ′]]I(d)∧ β ≤
[[ψ]]I(d). Suppose that [[ψ′]]I(d) = β′ > 0 (otherwise the result follows immediately). By
Remark 5 and Proposition 4.10 then there is some α such that d = α(X) and I, α |=β′ φ

′.
By assumption (3) then there is some α′ such that α′(X) = α(X) and I, α′ |=β∧β′

φ[X/Y ]. Let α′′ be defined by letting

α′′(Z) =

α
′(X) if Z = Y

α′(Z) otherwise.
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Then I, α′′ |=β∧β′ φ[X/Y ][Y /X] by Claim A.3, i.e., I, α′′ |=β∧β′ φ. Since α′′(Y ) = α′(X) =
α(X) = d, then by Proposition 4.10 [[ψ]]I(d) ≥ β ∧ β′ = β ∧ [[ψ′]]I(d) as desired.

(2) implies (4) Obvious.

(4) implies (1) Similar to (2) implies (1).

Theorem 4.45 (Equivalence of fuzzy OSF orderings). If the normal OSF terms ψ
and ψ′ (with roots Y and X, respectively, and no common variables), the OSF graphs g and
g′, and the rooted solved OSF clauses φY and φ′X respectively correspond to one another
though the syntactic mappings, then the following are equivalent: (1) g vGβ g′, (2) ψ′ �·β ψ,
and (3) φ′X |=β φY .

Proof of Theorem 4.45. Note that, by Lemma A.2 (and the fact that, for any S ⊆ [0, 1],
sup(S) = sup(S \ {0})):

sup({β ∈ [0, 1] | γ(g) = g′ for some β-homomorphism γ : G[g]→ G[g′]})

= sup
({

β ∈ [0, 1]
∀I,∀d ∈ ∆I : (I, α |=β′ φ

′)⇒ (∃α′.α′(X) = α(X)
and I, α′ |=β′∧β φ[X/Y ]

})
= sup({β ∈ [0, 1] | ∀I,∀d ∈ ∆I : [[ψ′]]I(d) ∧ β ≤ [[ψ]]I(d)}).

Lemma A.4 (Semantic and syntactic subsumption). Let ψ0 and ψ1 be two normal
OSF terms. Then, for all β ∈ (0, 1]: �·(ψ0, ψ1) ≥ β if and only if there are two (normal)
OSF terms ψ′0 and ψ′1 such that ψ0 ≡ ψ′0, ψ1 ≡ ψ′1, and E· (ψ′0, ψ′1) ≥ β.

Proof of Lemma A.4.

(⇐) Let ψ′0 and ψ′1 be as in the statement of the lemma, with h : Tags(ψ′1) → Tags(ψ′0)
witnessing E· (ψ′0, ψ′1) ≥ β. By Proposition 4.40 it holds that [[ψ0]]I = [[ψ′0]]I and [[ψ1]]I =
[[ψ′1]]I for all I. We show that �·(ψ0, ψ1) ≥ β by showing that ∀I,∀d ∈ ∆I : [[ψ0]]I(d) ∧ β ≤
[[ψ1]]I(d).

Let I be an arbitrary fuzzy interpretation, let d ∈ ∆I and suppose [[ψ0]]I(d) = [[ψ′0]]I(d) =
β0. Assume β0 > 0, as otherwise the result follows immediately. Then by Proposition 4.10
and Remark 5 there is some α0 : V → ∆I such that I, α0 |=β0 φ′0, where φ′0 = φ(ψ′0),
d = α0(X ′0), and X ′0 = RootTag(ψ′0). Define α1 : V → ∆I as follows, for any X ∈ V:

α1(X) =

α0(h(X)) if X ∈ Tags(ψ′1),

α0(X) otherwise.

Then I, α1 |=β∧β0 φ
′
1, where φ′1 = φ(ψ′1):
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• Suppose φ′1 contains a constraint of the form X1 : s1. Since φ′1 is a rooted solved
clause constructed from ψ′1, then it must be the case that s1 = Sortψ′1(X1). Let
s0 = Sortψ′0(h(X1)) and note that by assumption that E· (ψ′0, ψ′1) ≥ β we have that (a)
�·(s0, s1) ≥ β. By construction φ′0 contains a constraint of the form h(X1) : s0, and
since I, α0 |=β0 φ

′
0, then (b) sI0 (α0(h(X1))) ≥ β0. Thus

sI1 (α1(X1)) = sI1 (α0(h(X1)))
≥ sI0 (α0(h(X1))) ∧ �·(s0, s1) (Definition 4.4)
≥ β0 ∧ β. (by (a) and (b))

• Suppose φ′1 contains a constraint of the form X.f
.= Y . Then X

f−→ψ′1
Y and thus

by assumption that E· (ψ′0, ψ′1) ≥ β we have that h(X) f−→ψ′0
h(Y ), so that φ′0 must

contain a constraint of the form h(X).f .= h(Y ). Since I, α0 |=β0 φ
′
0 and β0 > 0, then

fI(α0(h(X))) = α0(h(Y )), and thus fI(α1(X)) = α1(Y ), so that I, α1 |=β∧β0 X.f
.=

Y .

LetX ′1 = RootTag(ψ′1). By Definition 4.47 then h(X ′1) = X ′0, so that α1(X ′1) = α0(h(X ′1)) =
α0(X ′0) = d. Since I, α1 |=β∧β0 φ

′
1, then by Proposition 4.10 [[ψ′1]]I(d) = [[ψ1]]I(d) ≥ β0∧β =

[[ψ0]]I(d) ∧ β as desired.

(⇒) (Sketch) Let φ0 = φ(ψ0) and φ1 = φ(ψ1) and g0 = G(ψ0) and g1 = G(ψ1). In the
following, we abbreviate G(φ0(X)) as gX0 and G(φ1(X)) as gX1 (in other words, gXi is the
subgraph of gi rooted at the node corresponding to the variable X ∈ Tags(ψi)).

Since �·(ψ0, ψ1) ≥ β, then vG(g1, g0) ≥ β, so there is a β-morphism γ : G[g1] → G[g0]
such that g0 = γ(g1). The following steps almost provide a mapping h : Tags(ψ1) →
Tags(ψ0) that witnesses E· (ψ0, ψ1) ≥ β:

1. for Y ∈ Tags(ψ1), consider gY1 ∈ G[g1] and γ(gY1 ) ∈ G[g0];

2. let X be the variable in ψ0 such that gX0 = γ(gY1 ); and

3. define h(Y ) def= X.

Unfortunately, nothing guarantees that such a variable X ∈ Tags(ψ0) actually exists, be-
cause of cases such as the following:

s0 �·β s1, ψ0 = X0 : s0, and ψ1 = Y0 : s1(f → Y1 : >)

where γ(G(φ1(Y1))) = γ(G(Y1 : >)) would be the trivial graph (with main sort >) obtained
by applying fG to G(ψ0) (recall Definition 4.17). Clearly ψ0 �·β ψ1

2, but we cannot define
an h that satisfies Definition 4.47. This is why the statement of the lemma mentions a term

2Note that, for any OSF term ψ = X : s(f1 → t1, . . . , fn → tn), [[ψ]]I = [[X : s(f1 → t1, . . . , fn → tn, f →
>)]]I , for any f ∈ F .
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ψ′0 that is equivalent to ψ0, where the required subterms of ψ0 corresponding to such trivial
graphs would be made explicit (in the latter case ψ′0 would be X0 : s0(f → X : >)). The
details concerning the general construction of such ψ′0 are left to the reader. In the following
we simply assume that ψ0 contains the variables needed to define h as above.

Now we show that the function h witnesses the fact that E· (ψ0, ψ1) ≥ β.

• Clearly h(RootTag(ψ1)) = RootTag(ψ0), since γ(g1) = g0, and h has been defined
accordingly.

• Suppose that Y0
f−→ψ1 Y1. According to our definition of h:

– let X0 be the variable in ψ0 such that gX0
0 = γ(gY0

1 )), so that h(Y0) = X0; and

– let X1 be the variable in ψ0 such that gX1
0 = γ(gY1

1 ), so that h(Y1) = X1.

Since Y0
f−→ψ1 Y1, then gY1

1 = fG(gY0
1 ) and, since γ is a β-morphism, then γ(gY1

1 ) =
γ(fG(gY0

1 )) = fG(γ(gY0
1 )), and thus gX1

0 = fG(gX0
0 ). By construction of g0 this means

that X0
f−→ψ0 X1, i.e.,. h(Y0) f−→ψ0 h(Y1) as desired.

• Now let Y ∈ Tags(ψ1) be arbitrary. According to our definition of h, let X be the
variable in ψ0 such that gX0 = γ(gY1 ), so that h(Y ) = X. Let s0 = Sortψ0(X) and
s1 = Sortψ1(Y ). Since γ is a β-morphism, then sG1 (gY1 ) ∧ β ≤ sG1 (γ(gY1 )) = sG1 (gX0 ).
Note that sG1 (gY1 ) = �·(s1, s1) = 1 and sG1 (gX0 ) = �·(s0, s1), so the previous inequation
simplifies to β ≤ �·(s0, s1).

Since Y ∈ Tags(ψ1) was arbitrary, we have shown that

�·(Sortψ0(h(Y )),Sortψ1(Y )) ≥ β

is true for all Y ∈ Tags(ψ1), and thus min({�·(Sortψ0(h(Y )),Sortψ1(Y )) | Y ∈
Tags(ψ1)}) ≥ β, showing indeed that E· (ψ0, ψ1) ≥ β.

Theorem 4.48 (Semantic and syntactic fuzzy subsumption). Let ψ0 and ψ1 be two
normal OSF terms. Then, for all β ∈ (0, 1]: ψ0 �·β ψ1 if and only if there are two (normal)
OSF terms ψ′0 and ψ′1 such that ψ0 ≡ ψ′0, ψ1 ≡ ψ′1, and ψ′0 E· β ψ′1.

Proof of Theorem 4.48. This is a consequence of Lemma A.4 and the following fact.

Claim A.5. Let ψ0 and ψ1 be normal OSF terms. If

• there exist ψ′0 and ψ′1 such that ψ′0 ≡ ψ0 and ψ′1 ≡ ψ1 and ψ′0 E· β′ ψ′1 with β′ > 0, and

• there exist ψ′′0 and ψ′′1 such that ψ′′0 ≡ ψ0 and ψ′′1 ≡ ψ1 and ψ′′0 E· β′′ ψ′′1 with β′′ > 0,

then β′ = β′′.
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The reason why this holds is that, if ψi, ψ′i and ψ′′i (i ∈ {0, 1}) are equivalent, then they
are essentially the same term, except that possibly one term may contain a subterm with
a feature f pointing at the sort >, and this subterm is not present in the other equivalent
terms (see also Definition 4.37 and the proof of Lemma A.4). The existence of such trivial
subterms does not however affect the degree of the syntactic subsumption.

Let us now prove the statement of the theorem. If �·(ψ0, ψ1) = β then by Lemma A.4
there exist ψ′0 ≡ ψ0 and ψ′1 ≡ ψ1 such that E· (ψ′0, ψ′1) ≥ β, i.e., ψ′0 E· β′ ψ′1 and β′ ≥ β. Then
also E· (ψ′0, ψ′1) ≥ β′, and thus by Lemma A.4 �·(ψ0, ψ1) ≥ β′, i.e., β′ ≤ β, and thus β′ = β.

Now suppose that there exist ψ′0 ≡ ψ0 and ψ′1 ≡ ψ1 such that ψ′0 E· β ψ′1, so that
E· (ψ′0, ψ′1) ≥ β. Then by Lemma A.4 �·(ψ0, ψ1) ≥ β. To prove that �·(ψ0, ψ1) ≤ β, let
us suppose otherwise, i.e., that �·(ψ0, ψ1) = β′ > β. Then by Lemma A.4 there exist
ψ′′0 ≡ ψ0 and ψ′′1 ≡ ψ1 such that E· (ψ′′0 , ψ′′1) ≥ β′, i.e., ψ′′0 E· β′′ ψ′′1 and β′′ ≥ β′ > β. But by
Claim A.5 β′′ = β, which is the desired contradiction.

Theorem 4.49 (Crisp and fuzzy subsumption). For all normal OSF terms ψ1 and ψ2:
ψ1 � ψ2 if and only if �·(ψ1, ψ2) > 0.

Proof of Theorem 4.49. We employ the following notation for the rest of the proof: for an
OSF graph g = (N,E, λN , λE , X), we let sg def= λN (X), i.e., sg is the label of the root of g.

In the rest of the proof we rely on definitions, results and notation from crisp OSF logic
[10]. In particular, � denotes the crisp subsumption ordering on sorts and OSF terms, and
vJ is the crisp approximation ordering on OSF graphs.

To better distinguish between the crisp and fuzzy contexts in the proof, we use J for
the crisp OSF graph algebra [10], and G for the fuzzy OSF graph algebra. Note that the
domains of these two structures and the definition of fJ and fG are the same. The only
difference is the interpretation of sort symbols, since, for each s ∈ S: sJ is the set of graphs
g such that sg � s, while sG is a fuzzy set defined by letting sG(g) = �·(sg, s). Note that it
follows that g ∈ sJ if and only if sG(g) > 0.

Also note that, given a graph g, the subalgebra J [g] and the fuzzy subalgebra G[g] have
the same domain and feature symbols are interpreted in the same way. The only difference
is again the interpretation of sort symbols, since, for each s ∈ S: sJ [g] = sJ ∩ F∗(g) and
sG[g] = sG ⩀ 1F∗(g). Note that it holds that g′ ∈ sJ [g] if and only if sG[g](g′) > 0.

Let g1 = G(ψ1) and g2 = G(ψ2). Suppose that ψ1 � ψ2, so that g2 vJ g1 [10], meaning
that there is a function γ : ∆J [g2] → ∆J [g1] such that

• γ(g2) = g1;

• ∀f ∈ F , ∀g ∈ J [g2]: γ(fJ (g)) = fJ (γ(g)); and

• ∀s ∈ S, ∀g ∈ J [g2]: if g ∈ sJ , then γ(g) ∈ sJ .
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Note that, equivalently, the last condition expresses that ∀s ∈ S, ∀g ∈ G[g2]:

if sG(g) > 0, then sG(γ(g)) > 0. (A.1)

We prove that there is a β > 0 such that ∀s ∈ S and ∀g ∈ G[g2]: sG(g) ∧ β ≤ sG(γ(g)).
Note that G[g2] contains a finite number of graphs with root label different from >, i.e.,

at most the ones corresponding to the variables of φ(ψ2). Thus the set B def= {�·(sγ(g), sg) |
sg 6= >, g ∈ G[g2]} is finite, so that β def= min(B) exists. Note that β = min({�·(sγ(g), sg) |
g ∈ G[g2]}), since if sg = >, then �·(sγ(g), sg) = 1 by definition. Moreover, for every
g ∈ G[g2], �·(sγ(g), sg) > 0: indeed sGg (g) = �·(sg, sg) = 1 > 0 so that by (A.1) sGg (γ(g)) =
�·(sγ(g), sg) > 0. It follows that β > 0. Finally, let g ∈ G[g2] and s ∈ S. Then

sG(g) ∧ β = �·(sg, s) ∧ β ≤ �·(sg, s) ∧ �·(sγ(g), sg)
≤ �·(sγ(g), s) = sG(γ(g))

by transitivity of �·. Thus γ is a β-morphism γ : G[g2]→ G[g1] such that γ(g2) = g1. Then
vG(g2, g1) = β′ ≥ β > 0, so that by Theorem 4.45 �·(ψ1, ψ2) > 0.

For the other direction, assume that ψ1 �·β ψ2 for some β > 0. Then g2 vGβ g1, meaning
that there is a function γ : ∆G[g2] → ∆G[g1] such that

• γ(g2) = g1;

• ∀f ∈ F , ∀g ∈ G[g2]: γ(fG(g)) = fG(γ(g)); and

• ∀s ∈ S, ∀g ∈ G[g2]: sG(g) ∧ β ≤ sG(γ(g)).

Let s and g be arbitrary and suppose that g ∈ sJ , so that sG(g) > 0. Since sG(g) ∧ β ≤
sG(γ(g)), then sG(γ(g)) > 0, and so γ(g) ∈ sJ . Thus γ is an OSF algebra morphism
[10] γ : J [g2] → J [g1] such that γ(g2) = g1, i.e., g2vJ g1, and equivalently ψ1 � ψ2 as
desired.

A.1.3 Proofs for Section 4.7: Fuzzy OSF term unification

Theorem 4.53 (Correctness of Algorithm 5). Let ψ1 and ψ2 be normal OSF terms. If
(ψ, β) is the output of the procedure Unify(ψ1, ψ2) of Algorithm 5, then ψ = ψ1 4β ψ2.

Proof of Theorem 4.53. The fact that ψ = ψ14ψ2 is given by Theorem 4.52. Let us assume
that ψ is not the inconsistent clause, as otherwise β = 1 and the result follows immediately.

For i ∈ {1, 2}, let hi : Tags(ψi) → Tags(ψ) be the mapping defined by letting hi(X) =
Z [X] for all X ∈ Tags(ψi). Then h1 witnesses the syntactic subsumption ψ E· β1 ψ1, as it
satisfies the three conditions of Definition 4.47.
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1. Let RootTag(ψ1) = X1. Then by the construction of ψ = ψ(φ′) on Line 13 and the
fact that φ′ is rooted in Z [X1] it holds that h1(RootTag(ψ1)) = h1(X1) = Z [X1] =
RootTag(ψ).

2. Suppose thatX f−→ψ1 Y . Then φ on Line 2 contains the constraintX.f .= Y . Through-
out the application of the constraint normalization rules of Fig. 4.2 the variables X
and Y of this constraint may be substituted with other variables, possibly multiple
times. All of these substitutions are witnessed by equality constraints contained in
φ after the loop of Lines 3 and 4. By the definition of Eq on Line 9, after the loop
of Lines 11 and 12 the clause φ′ must contain the constraint Z [X].f → Z [Y ]. Fi-
nally, by the construction of ψ = ψ(φ′) on Line 13, it holds that Z [X]

f−→ψ Z [Y ], i.e.,
h1(X) f−→ψ h1(Y ), as required.

3. Since h1(X) = Z [X] for all X ∈ Tags(ψ1), the computation of β1 on Line 14 is
carried out in the same way as the definition of the syntactic subsumption degree in
Definition 4.47.

It can be proved analogously that h2 witnesses the syntactic subsumption ψ E· β2 ψ2.
It follows by Theorem 4.48 that �·(ψ,ψ1) = β1 and �·(ψ,ψ2) = β2, and, by Defini-

tion 4.51, that β = min(β1, β2) is the unification degree of ψ1 and ψ2.

A.1.4 Proofs for Section 4.8: Implementation

Proposition 4.55 (Support and reflexive-transitive closure). If ·C is a fuzzy binary
relation on a set S, then | ·C|∗ = | ·C⊛|.

Proof of Proposition 4.55. Note that | ·C|∗ def= | ·C|+ ∪{(x, x) | x ∈ X}, while ·C⊛(x, y) def= 1 if
x = y, and ·C⊛(x, y) def= ·C⊕(x, y) otherwise. To prove the statement of the proposition it
is then sufficient to show that | ·C⊕| = | ·C|+. This is a consequence of the fact that, for all
i ≥ 1,

∣∣ ·Ci∣∣ = | ·C|i, which can be proved by a simple induction.

Proposition 4.58 (MLBs in crisp and fuzzy posets). Let (S,�·) be a fuzzy poset and
let � def= |�·|. For all S ⊆ S, Sfmlb

�· = Smlb
� .

Proof of Proposition 4.58. The statement follows from the following facts, which are im-
mediate consequences of Definitions 1.6, 1.11, 1.37 and 1.38: for all S ⊆ S, (i) Sl

� = Sfl
�·,

and (ii) dSe = dSe·.

A.2 Proofs for Chapter 5: Similarity-Based Reasoning with
Order-Sorted Feature Logic
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A.2.1 Proofs for Section 5.2: Fuzzy similarity-subsumption preorder

Proposition 5.5 (Equivalent definition of ∼≺). Let (S,�) be a partial order3, let ∼ be
a similarity relation on S, and let ∼≺ be as in Definition 5.4. Then ∼≺ = (� ·◦ ∼)⊕.

Proof of Proposition 5.5. Let s, s′ ∈ S, and, for brevity, let R def= � ·◦∼. The fact that

∼≺(s, s′) = R⊕(s, s′) is given by the following equivalences:

∼≺(s, s′) = β ⇔1 β is the maximum such that there exists a sequence of sorts
s ∼β0 s0 � t1 ∼β1 s1 � t2 · · · sp−1 � tp ∼βp s′

with β = min0≤i≤p βi

⇔2 β is the maximum such that there exists a sequence of sorts
s Rβ′0 s

′
0 Rβ′1 s

′
1 . . . s

′
n−1 Rβ′n s

′ with β = min0≤i≤n β
′
i

⇔3 (∃n Rn(s, s′) = β) and (∀m ≥ 1, Rm(s, s′) ≤ β)

⇔4 R⊕ def= ⊍m≥1R
m = β

The equivalences are given by:

1. Definition 5.4;

2. R def= (� ·◦∼);

3. Definition 1.29 and S is finite;

4. Definition 1.30 and S is finite.

Proposition 5.7 (Similarity-subsumption preorder). The fuzzy relation ∼≺ of Defini-
tion 5.4 is a fuzzy preorder.

Proof of Proposition 5.7. Reflexivity holds since s ∼1 s for all s ∈ S.
For transitivity, let s0, s1, s2 ∈ S be such that

s0 ∼≺β0 s1, s1 ∼≺β1 s2, and s0 ∼≺β s2.

We want to prove that β ≥ min(β0, β1). By Definition 5.4 there exists chains

s0 ∼β(0,0) s(0,0) � · · · � s′(0,n) ∼β(0,n) s1,

s1 ∼β(1,0) s(1,0) � · · · � s′(1,m) ∼β(1,m) s2

such that β0 = min0≤i≤n β(0,i) and β1 = min0≤i≤m β(1,i). By joining them, these two chains
constitute a single similarity-subsumption chain of strength min(β0, β1) from s0 to s2. By
Definition 5.4, β ≥ min(β0, β1).
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A.2.2 Proofs for Section 5.3: Fuzzy similarity-subsumption partial order

Proposition 5.11 (Fuzzy preorder ∼≺·). The fuzzy relation ∼≺· of Definition 5.8 is a fuzzy
preorder.

Proof of Proposition 5.11. Reflexivity is given by �, and transitivity by the transitive clo-
sure.

Proposition 5.14 (Fuzzy partial order ∼≺· on S/≈). The fuzzy relation �· of Defini-
tion 5.12 is a fuzzy partial order on S/≈.

Proof of Proposition 5.14. First of all, note that, for all x, x′ ∈ S, whenever x ∈ [x′], then
�·(x, x′) > 0, �·(x′, x) > 0, and βx = βx′ . Also note that βx > 0 for all x ∈ S.

Reflexivity holds by definition.
For antisymmetry, let (a) �·([x], [y]) > 0 and (b) �·([y], [x]) > 0. We want to show that

[x] = [y]. Let x′ ∈ [x], and we want to show that x′ ∈ [y]. By (a), there are some x′′ ∈ [x]
and y′′ ∈ [y] such that �·(x′′, y′′) > 0. By (b), there are some x′′′ ∈ [x] and y′′′ ∈ [y] such
that �·(y′′′, x′′′) > 0. Then x′ �· x′′ �· y′′ �· y and y �· y′′′ �· x′′′ �· x′. Thus x′ ∈ [y]. The fact
that [y] ⊆ [x] is proved similarly.

For transitivity, let

�·([x], [y]) = βx ∧ βy ∧
∨

x′∈[x],y′∈[y]
�·(x′, y′) = β0, and

�·([y], [z]) = βy ∧ βz ∧
∨

y′∈[y],z′∈[z]
�·(y′, z′) = β1.

We want to show that �·([x], [z]) ≥ β0 ∧ β1.
Since S is finite, let x0 ∈ [x], y0, y1 ∈ [y], and z1 ∈ [z] be such that

(c) �·(x0, y0) =
∨

x′∈[x],y′∈[y]
�·(x′, y′) and (d) �·(y1, z1) =

∨
y′∈[y],z′∈[z]

�·(y′, z′).

Then:

∨
x′∈[x],z′∈[z]

�·(x′, z′) ≥1 �·(x0, z1) ≥2 �·(x0, y0) ∧ �·(y0, z1)

≥3 �·(x0, y0) ∧ �·(y0, y1) ∧ �·(y1, z1)

≥4 �·(x0, y0) ∧ βy ∧ �·(y1, z1)

≥5
∨

x′∈[x],y′∈[y]
�·(x′, y′) ∧ βy ∧

∨
y′∈[y],z′∈[z]

�·(y′, z′).

The inequalities are given by:
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1. Definition of the t-conorm ∨, x0 ∈ [x], and z1 ∈ [z];

2. Max-min transitivity of �·;

3. Max-min transitivity of �·;

4. Definition of βy (Definition 5.12), y0, y1 ∈ [y];

5. (c) and (d).

Finally:

�·([x], [z]) def=
∨

x′∈[x],z′∈[z]
�·(x′, z′) ∧ βx ∧ βz

≥
∨

x′∈[x],y′∈[y]
�·(x′, y′) ∧ βy ∧

∨
y′∈[y],z′∈[z]

�·(y′, z′) ∧ βx ∧ βz = β0 ∧ β1.

A.2.3 Proofs for Section 5.4: Fuzzy similarity-subsumption lattice

Proposition 5.17 (Fuzzy antichain lattice). If (S,�·) is a fuzzy poset, then (Anti-
chains(S),�·) from Definition 5.16 is a fuzzy lattice, where the GLB of C,C ′ ∈ Anti-
chains(S) is given by C1 4 C2 def= dC1↓· ∩ C2↓·e·. Moreover, (Antichains(S),�·) preserves
the GLBs that exist in (S,�·), i.e., if s0 4 s1 = s, then {s0} 4 {s1} = {s}.

Proof of Proposition 5.17. First of all, note that the following holds by Definition 5.16:

�·(C,C ′) ≥ β ⇔ ∀c ∈ C ∃c′ ∈ C ′ such that �·(c, c′) ≥ β.

This fact will be used throughout the proof.
Reflexivity of (Antichains(S),�·) is obvious, since, for any C ∈ Antichains(S), for all

c ∈ C: �·(c, c) = 1.
For transitivity, suppose that (i) �·(C0, C1) = β0 and (ii) �·(C1, C2) = β1. To show that

�·(C0, C2) ≥ min(β0, β1) it suffices to show that for any c0 ∈ C0 there exists a c2 ∈ C2 such
that �·(c0, c2) ≥ min(β0, β1). Thus, let c0 ∈ C0 be arbitrary. Then by (i) there is some
c1 ∈ C1 such that �·(c0, c1) ≥ β0, and by (ii) there is some c2 ∈ C2 such that �·(c1, c2) ≥ β1.
By max-min transitivity of (S,�·) then

�·(c0, c2) ≥ min(�·(c0, c1),�·(c1, c2)) ≥ min(β0, β1).

For antisymmetry, suppose that (iii) �·(C0, C1) > 0 and (iv) �·(C1, C0) > 0. To show
that C0 = C1, let c0 ∈ C0. Then by (iii) there is some c1 ∈ C1 such that �·(c0, c1) > 0 and
by (iv) there is some c2 ∈ C0 such that �·(c1, c2) > 0, implying �·(c0, c2) > 0. Because C0 is
an antichain, then c0 = c2, which implies c1 = c0 = c2 by fuzzy antisymmetry of (S,�·), so
that c0 ∈ C1. The other direction is proved similarly.
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Now let C0, C1 ∈ Antichains(S), and C def= dC0↓· ∩ C1↓·e·. Then C is the GLB of C0 and
C1 in (Antichains(S),�·).

• To prove that C �· C0 it suffices to show that for any c ∈ C there is some c0 ∈ C0

such that �·(c, c0) > 0. This immediately follows from the fact that if c ∈ C, then in
particular c ∈ C0↓·. The fact that C �· C1 is proved similarly.

• Suppose C ′ ∈ Antichains(S) is such that (v) C ′ �·C0 and (vi) C ′ �·C1. To show that
C ′ �· C, it is sufficient to show that for any c′ ∈ C ′ there is some c ∈ C such that
�·(c′, c) > 0. Hence let c′ ∈ C ′ be arbitrary. By (v) and (vi) there are some c0 ∈ C0

and c1 ∈ C1 such that c′ �· c0 and c′ �· c1. Then c′ ∈ C0↓· ∩C1↓·. Then by definition of
C there is some c ∈ C (possibly equal to c′) such that c′ �· c.

The map s0 7→ {s0} also satisfies the property whereby, if �·(s, s′) = β in (S,�·), then
�·({s}, {s′}) = β in (Antichains(S),�·).

Finally, suppose s is the GLB of s0, s1 in (S,�·). Then {s0} 4 {s1} = ds0↓· ∩ s1↓·e· =
{s}.
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