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Abstract
We provide a multidimensional weighted Euler–MacLaurin summation formula on
polytopes and a multidimensional generalization of a result due to L. J. Mordell on
the series expansion in Bernoulli polynomials. These results are consequences of a
more general series expansion; namely, if χτP denotes the characteristic function of a
dilated integer convex polytopeP and q is a functionwith suitable regularity, we prove
that the periodization of qχτP admits an expansion in terms of multivariate Bernoulli
polynomials. These multivariate polynomials are related to the Lerch Zeta function.
In order to prove our results we need to carefully study the asymptotic expansion of
q̂χτP , the Fourier transform of qχτP .

Keywords Euler–MacLaurin summation formula · Bernoulli polynomials · Fourier
transform

Mathematics Subject Classification 11B68 · 65B15 · 42B05

1 Introduction

Our goal is to generalize to higher dimensions a result due to L. J. Mordell and to
deduce from this generalization a multidimensional weighted version of the classical

Communicated by Gabriela Steidl.

The authors are members of Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro
Applicazioni (GNAMPA) of Istituto Nazionale di Alta Matematica (INdAM).
A. Monguzzi was partially supported by the Hellenic Foundation for Research and Innovation (H.F.R.I.)
under the “2nd Call for H.F.R.I. Research Projects to support Faculty Members & Researchers” (Project
Number: 73342).

B A. Monguzzi
alessandro.monguzzi@unibg.it

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s00041-023-10011-9&domain=pdf
http://orcid.org/0000-0002-9670-9051
http://orcid.org/0000-0001-8714-4135
http://orcid.org/0000-0002-1642-679X
http://orcid.org/0000-0003-3233-5000


33 Page 2 of 49 Journal of Fourier Analysis and Applications (2023) 29 :33

Euler–MacLaurin formula and an associated quadrature rule. We first recall these
results in the one dimensional setting. In order to do so we introduce the classical
Bernoulli polynomials; there are two possible normalizations that differ by a n! factor
and we use the following one.

Definition 1 The periodizedBernoulli polynomials {Bn}n∈N are the periodic functions
that in the interval (0, 1) are defined recursively by the conditions

B0(x) = 1,
d

dx
Bn+1(x) = Bn(x),

∫ 1

0
Bn+1(x)dx = 0.

The value of these periodized functions when x is an integer is given by

Bn(x) = lim
ε→0+

Bn(x + ε) + Bn(x − ε)

2
.

Mordell’s theorem reads as follows.

Theorem 2 (Mordell 1966 [27, 28]) Let a < b and set

ω[a,b](x) =

⎧⎪⎨
⎪⎩
0 x < a or x > b,

1 a < x < b,

1/2 x = a or x = b.

(i) If q ∈ Cw+1(R) n ∈ N, then, for every x ∈ R,

+∞∑
n=−∞

ω[a,b](x + n)q(x + n)=
∫ b

a
q(y)dy +

+w∑
j=0

(d jq

dx j
(b)Bj+1(x − b)

− d jq

dx j
(a)Bj+1(x − a)

)

−
∫ b

a

dw+1q

dyw+1 (y)Bw+1(x − y)dy.

(ii) If q ∈ C∞(R) and

lim
w→+∞

(
1

2π

)w ∫ b

a

∣∣∣∣d
w+1q

dyw+1 (y)

∣∣∣∣ dy = 0,

then, for every x ∈ R,

+∞∑
n=−∞

ω[a,b](x + n)q(x + n)=
∫ b

a
q(y)dy +

+∞∑
j=0

(d jq

dx j
(b)Bj+1(x − b)

−d jq

dx j
(a)Bj+1(x − a)

)
.
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Mordell’s original result is essentially (i i) abovewitha = 0 andb = 1.Observe that
the assumption on the growth of the derivatives of q(x) implies that this function can
be analytically extended to the entire complex plane. The example q(x) = cos(2πx),
which is 1-periodic and has expansion zero, shows that this assumption is sharp.
Variants of this theorem seem to be prior to Mordell’s work (see e.g. [8]).

An immediate application of Theorem 2 is the classical Euler–MacLaurin summa-
tion formula. Indeed, from (i), when a, b ∈ Z and x = 0, since Bj+1(0) = 0 for even
values of j , we obtain, for q ∈ Cw+1 (R),

∣∣∣∣12q(a) + q(a + 1) + · · · + q(b − 1) + 1

2
q(b)

−
∫ b

a
q(y)dy −

�(w+1)/2�∑
j=1

(
d2 j−1q

dx2 j−1 (b) − d2 j−1q

dx2 j−1 (a)

)
B2 j (0)

∣∣∣∣

≤ π

6

(
1

2π

)w ∫ b

a

∣∣∣∣d
w+1q

dyw+1 (y)

∣∣∣∣ dy.

It is well known that the above Euler–MacLaurin formula provides a quadrature
rule. Indeed, settinga = 0,b = N ∈ Z

+ andq(x) = f (x/N ) /N with f ∈ Cw+1(R),
one obtains

∫ 1

0
f (y)dy = 1

N

(
1

2
f (0) + f

(
1

N

)
+ · · · + f

(
N − 1

N

)
+ 1

2
f (1)

)

+
�w/2�∑
j=1

1

N 2 j

(
d2 j−1 f

dx2 j−1 (0) − d2 j−1 f

dx2 j−1 (1)

)
B2 j (0) + O(N−w−1).

Notice that only even powers of N appear in the remainder terms.
To state our results in the multidimensional setting we need to introduce a number

of definitions.

Definition 3 Let P be a measurable subset in R

d . For every x ∈ R

d the normalized
solid angle at x is given by

ωP (x) = lim
ε→0+

1

|{|y| � 1}|
∫

|y|�1
χP (x − εy)dy.

Assuming that the above limit exists for every x ∈ R

d , then, for every continuous
function f (x) and for every positive integer N , we set

SN ( f ,P) = N−d
∑
n∈Zd

ωP (N−1n) f (N−1n).

When P is a convex polytope (the convex hull of a finite number of points) the
weight ωP (x) is well defined for every x ∈ R

d . When d = 3 the value of ωP (x)
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can be computed explicitly from the coordinates of the vertices of the polytope using
standard formulas of spherical trigonometry. See e.g. [17]. When d > 3 see [2], [5]
and [29].

These weightsωP (x) and weighted sums SN (q,P) are not new in the literature; for
example MacDonald showed that if P is a convex integer polytope (that is a convex
polytope with integer vertices) and τ is an integer dilation, then

∑
n∈Zd

ωτP (n) = (volP)τ d + ad−2τ
d−2 + · · · +

{
a1τ if d is odd,

a2τ 2 if d is even.

See e.g. [4] and [15].
An important property of these weights is that they are additive with respect to P .

More precisely, if P1 and P2 have disjoint interior then

ωP1∪P2(x) = ωP1(x) + ωP2(x).

This implies that also the weighted Riemann sums SN ( f ,P) are additive,

SN ( f ,P1 ∪ P2) = SN ( f ,P1) + SN ( f ,P2).

On the contrary, a different choice of weights may not guarantee the additivity.

Definition 4 For every multi-index of non-negative integers J = ( j1, j2, . . . , jd) and
every x = (x1, x2, . . . , xd) in R

d , define the multivariate Bernoulli polynomials

BJ (x) =
{
Bj1(x1)Bj2(x2) · · · Bjd (xd) if 0 ≤ xk < 1,

0 otherwise.

Moreover, for L ∈ GL(d, Z), define

BJ ,L(x) = |L|−1BJ

(
(L−1)t x

)
.

Finally, define the periodized Bernoulli polynomials

BJ ,L(x) =
∑
n∈Zd

BJ ,L(x + n).

At the points of discontinuity we assume the periodized Bernoulli polynomials to be
regularized so that

BJ ,L(x) = lim
ε→0+

1

|{|y| � 1}|
∫

|y|�1
BJ ,L(x − εy)dy.
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We refer the reader to Sect. 1 (Appendix B) for more comments on the construction
of the periodized multivariate Bernoulli polynomials and their connections with the
Lerch Zeta functions.

Thenext definitions aremore technical andwill be needed to describe the asymptotic
behavior along different directions of the Fourier transform of functions supported on
a simplex.

Definition 5 For every dimension d � 1, F (d) is a collection of 2d−1 bases of R

d ,

F (d) =
{
B(d)
1 , . . . ,B(d)

2d−1

}
.

Each basis B(d)
j consists of the vectors b(d)

j,k ,

B(d)
j =
{
b(d)
j,1, . . . , b

(d)
j,d

}
.

The vectors b(d)
j,k are defined recursively as follows. If d = 1, set b(1)

1,1 = 1. If d = 2,
set

b(2)
1,1 = (1, 0), b(2)

1,2 = (0, 1)

and

b(2)
2,1 = (1,−1), b(2)

2,2 = (0, 1).

More generally, for d � 2,

F (d) = F (d)
1 ∪ F (d)

2

where

F (d)
1 =
{
B(d)
1 , . . . ,B(d)

2d−2

}
,

F (d)
2 =
{
B(d)

2d−2+1
, . . . ,B(d)

2d−1

}

and for 1 � j � 2d−2 we set

b(d)
j,k =
(
b(d−1)
j,k , 0

)
, k = 1, . . . , d − 1,

b(d)
j,d = (0, . . . , 0, 1),

and for 2d−2 + 1 � j � 2d−1 we set

b(d)
j,k =
(
b(d−1)
j−2d−2,k

,−b(d−1)
j−2d−2,k

· 1d−1

)
, k = 1, . . . , d − 1,
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b(d)
j,d = (0, . . . , 0, 1),

where 1d−1 = (1, . . . , 1) ∈ R

d−1.Wewill also associate to every basisB ∈ F (d) with
d > 1 a (d − 1)-dimensional multi-index (v2, . . . , vd) ∈ {1, 2}d−1 in the following
way: vd = � if and only if B ∈ F (d)

� and, if d > 2, (v2, . . . , vd−1) is the multi-index
associated with the (d−1)-dimensional basisB′ used to defineB recursively. Observe
that there is a one to one correspondence between the bases in F (d)

� and the multi-
indices in {1, 2}d−1. Therefore, given a multi-index V = (v1, v2, . . . , vd) ∈ {1, 2}d ,
we will denote also by BV the basis corresponding to the vector (v2, . . . , vd).

The role of v1, the first component of the vector V , will be made clear in what
follows.

Definition 6 For every multi-index V = (v1, . . . , vd) ∈ {1, 2}d we define the vectors
λV ∈ R

d recursively as follows. For d = 1

λ1 = 0,

λ2 = 1.

If d = 2,

λ(1,1) = (0, 0),

λ(2,1) = (1, 0),

and

λ(1,2) = (0, 1),

λ(2,2) = (1, 0).

In general, for all d � 2, if vd = 1 we set

λ(v1,v2,...,vd ) = (λ(v1,v2,...,vd−1), 0
)
,

if vd = 2 we set

λ(v1,v2,...,vd ) = (λ(v1,v2,...,vd−1), 1 − λ(v1,v2,...,vd−1) · 1d−1
)
.

We state our main result. Let Sd ⊆ R

d be the standard simplex given by

Sd =
⎧⎨
⎩x ∈ R

d : x j � 0,
d∑
j=1

x j � 1

⎫⎬
⎭ .
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Table 1 The various bases and multi-indices of Definitions 5 and 6, for the dimensions d = 1, 2, 3

d V (v2, . . . , vd ) Fd λV

1 1 / B(1)
1 = {1} 0

2 1

2 (1, 1) 1 B(2)
1 = {(1, 0), (0, 1)} (0, 0)

(2,1) (1, 0)

(1, 2) 2 B(2)
2 = {(1, −1), (0, 1)} (0, 1)

(2, 2) (1, 0)

3 (1, 1, 1) (1, 1) B(3)
1 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} (0, 0, 0)

(2, 1, 1) (1, 0, 0)

(1, 2, 1) (2, 1) B(3)
2 = {(1,−1, 0), (0, 1, 0), (0, 0, 1)} (0, 1, 0)

(2, 2, 1) (1, 0, 0)

(1, 1, 2) (1, 2) B(3)
3 = {(1, 0, −1), (0, 1,−1), (0, 0, 1)} (0, 0, 1)

(2, 1, 2) (1, 0, 0)

(1, 2, 2) (2, 2) B(3)
4 = {(1,−1, 0), (0, 1,−1), (0, 0, 1)} (0, 1, 0)

(2, 2, 2) (1, 0, 0)

Theorem 7 Let P be a simplex in R

d with vertices 0,m1, . . . ,md ∈ Z

d , and let
M ∈ GL(d, Z) be the d × d matrix with columns m1,m2, . . . ,md , which maps
the standard simplex onto P . Let q ∈ Cw+1(Rd) with w ∈ N and for τ > 0, let
qτ,M (x) = q(τMx). Then, for every x ∈ R

d and for every τ > 0,

∑
n∈Zd

ωτP (x + n)q(x + n)

= det(M)
∑

V∈{1,2}d

∑
I∈{0,1}d

∑
|J |�w,J�I

τ d−|I |−|J | 〈μ(V , I , J ), qτ,M
〉
BJ+I ,(MDV )t

× (x − τMλV ) + Rw(x).

Here μ(V , I , J ) are certain integro-differential functionals that will be introduced in
Definition 28, DV = [b1|b2| · · · |bd ]where {b1, b2, . . . , bd} is the basisBV and J � I
means that jk = 0 if ik = 0. Moreover, for every δ > 0 and every τ0 > 0 there exists a
constant c depending on δ and τ0 but independent of q, M and w, such that for every
τ > τ0

|Rw(x)| � c det(M)τ d−w−1(2d−2π−1 + δ)w+1 sup
w−d+2�|α|�w+1

sup
x∈Sd

∣∣∣∣∂
αqτ,M

∂xα
(x)

∣∣∣∣ .

For d = 2 a similar formula is contained in [9]. An immediate consequence is the
following corollary.
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Corollary 8 With the above notation, assume that q ∈ C∞(Rd) and that there exist
c, δ > 0 such that for every positive integer w

sup
|α|=w

sup
x∈Sd

∣∣∣∣∂
αqτ,M

∂xα
(x)

∣∣∣∣ � cτw(2d−2π−1 + δ)−w.

Then
∑

n∈Zd ωτP (x + n)q(x + n) can be expanded in a uniformly convergent series
of Bernoulli polynomials

∑
n∈Zd

ωτP (x + n)q(x + n)

= det(M)
∑

V∈{1,2}d

∑
I∈{0,1}d

∑
|J |≥0,J�I

τ d−|I |−|J | 〈μ(V , I , J ), qτ,M
〉
BJ+I ,(MDV )t

× (x − τMλV ).

The uniform convergence in the above corollary seems paradoxical, since the peri-
odized function in the left-hand side is a priori discontinuous, but observe that also in
the right-hand side there are a priori infinitely many Bernoulli polynomials that are
discontinuous.

Taking x = 0 and τ ∈ Z, since the functionsBJ ,L(x) are periodic, fromTheorem 7
one immediately obtains an Euler–MacLaurin formula.

Theorem 9 Let P be a simplex in R

d with vertices 0,m1, . . . ,md ∈ Z

d , and let
M ∈ GL(d, Z) be the d × d matrix with columns m1,m2, . . . ,md , which maps
the standard simplex onto P . Let q ∈ Cw+1(Rd) with w ∈ N and for τ > 0, let
qτ,M (x) = q(τMx). Then, for every positive integer τ > 0,

∑
n∈Zd

ωτP (n)q(n)

= det(M)
∑

V∈{1,2}d

∑
I∈{0,1}d

∑
|J |�w,J�I

τ d−|I |−|J | 〈μ(V , I , J ), qτ,M
〉
BJ+I ,(MDV )t (0)

+ Rw.

Moreover, for every δ > 0 and every τ0 > 0 there exists a constant c depending on δ

and τ0 but independent of q, M and w, such that for every τ > τ0,

|Rw| � c det(M)τ d−w−1(2d−2π−1 + δ)w+1 sup
w−d+2�|α|�w+1

sup
x∈Sd

∣∣∣∣∂
αqτ,M

∂xα
(x)

∣∣∣∣ .

We will see that when I = (0, . . . , 0) the only non-vanishing term in the above
sum corresponds to V = (1, . . . , 1) and is the integral of q over τP .

Similarly to the one dimensional case, Theorem 9 applied to the function
N−d f (x/N ) gives a quadrature formula for simplices. Then, the additivity of the
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weighted Riemann sums allows to extend this quadrature formula to more general set-
tings. Let us recall that a homogeneous simplicial d-complex is a simplicial complex
where every simplex of dimension less than d is a face of some simplex of dimension
d. It is known that every (bounded) convex polytope can be decomposed into simplices
without additional vertices. Hence, one can associate to a convex polytope a homoge-
neous simplicial complex with the same vertices. This is obvious in dimension d = 2,
less obvious in higher dimensions (see [16], see also Proposition 5.2 and Theorem 5.3
in [32, Chapter 5]).

Theorem 10 Let P be a homogeneous simplicial d-complex with integer vertices in
R

d . Let w be a non-negative integer and let f ∈ Cw+1(Rd). Then, there exists a
numerical sequence {γk}0<k�w/2 such that for every positive integer N we have

SN ( f ,P) =
∫
P

f (x)dx +
∑

0<k�w/2

γk N
−2k + O(N−w−1).

For d = 2 a similar formula is contained in [9]. A simple consequence of Theo-
rem 10 is the following.

Theorem 11 Let P be a homogeneous simplicial d-complex with integer vertices in
R

d . Let w be a non-negative integer and let f ∈ Cw+1(Rd). Finally, let
{
c j
}
0� j�w/2

be the solution of the Vandermonde system

⎡
⎢⎢⎢⎢⎢⎣

1 1 1 · · · 1
1 2−2 (2−2)2 · · · (2−2)�w/2�
1 2−4 (2−4)2 · · · (2−4)�w/2�
...

...
...

. . .
...

1 2−2�w/2� (2−2�w/2�)2 · · · (2−2�w/2�)�w/2�

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

c0
c1
c2
...

c�w/2�

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

1
0
0
...

0

⎤
⎥⎥⎥⎥⎥⎦

.

Then,

∫
P

f (x)dx =
∑

0� j�w/2

c j S2 j N ( f ,P) + O(N−w−1).

The coefficients γk in Theorem 10 are integro-differential functionals applied to
the function f (x). In Theorem 11 these cumbersome coefficients have disappeared
and only weighted Riemann sums are present.

We have not found a multidimensional analog of Mordell’s theorem in the litera-
ture. On the contrary the literature on multidimensional Euler–MacLaurin summation
formulas is vast and in continuous growth and to have a comprehensive list of refer-
ences is a challenging task. Here we recall a few of these results and we try to compare
them with ours, apologizing in advance with all the authors that we do not explicitly
mention.
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If P denotes a regular integral convex polytope, Karshon, Sternberg and Weitsman
obtained in [22] the weighted formula

∑
n∈Zd

σP (n)q(n) =
�∏

i=1

L2k(Di )

∫
P(h1,...,h�)

q(x) dx + R2k+1
P (q)

where q ∈ C2k+1 is compactly supported, R2k+1
P ( f ) is a remainder explicitly given,

� is the number of facets, i.e., faces of P of codimension 1 and P(h1, . . . , h�) is a
perturbation of the original polytope obtained expanding outward at distance hi in the
direction of th i-th facet. The weight function σP is defined to be 0 in the exterior of
P , 1 in the interior of P and σP (x) = 2−c(x) if x is on the boundary of P and where
c(x) is the codimension of the smallest face containing x . The operators L2k(Di ) are
the differential operators defined by the operators Di = ∂/∂hi , i = 1, . . . , d and the
functions

L2k(x) = 1 +
k∑
j=1

1

(2 j)!b2 j x
2 j

where the b2 j ’s are Bernoulli numbers. A similar formula is proved for simple poly-
topes in [23]. Such Euler–MacLaurin formula is quite close to our formula in the spirit,
but we highlight a main difference. On one hand the weight function σP is immediate
to compute, since it only depends on the codimension of a face at a given point. On
the other hand σP is not additive, whereas ωP is, and this allows to apply Theorem 9
to polytopes by glueing simplices together.

We also refer the reader to the paper [24] and the references therein; in this work
the authors review and discuss the results in [22, 23] together with previous results by
several different authors [11–13, 25]. See also [1].

Another result we recall is the Euler–MacLaurin summation formula in [7]. Let
P ⊆ R

d be a semi-rational convex polyhedron of dimension � ≤ d. Semi-rational
means that the facets of P are affine hyperplanes parallel to rational ones. Then, the
authors provide the asymptotic expansion, as N → +∞,

1

N �

∑
n∈NP∩Zd

f (N−1n) ∼
∫
P

f (x)dx +
∑
k≥1

ak(N )N−k .

The authors also discuss their results in comparison with other previous results [26,
33].

Finally, we also recall the works [3, 6, 19–21].
Our proofs exploit harmonic analysis techniques with classical tools such as the

Poisson summation formula. Recall that if f is an integrable function onR

d its Fourier
transform f̂ is defined as

f̂ (ξ) =
∫
Rd

f (x)e−2π iξ ·xdx .

The following lemmas are well known.
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Lemma 12 Let ϕ(x) be a non-negative, radial, smooth, function in R

d , with compact
support and integral one, and for every ε > 0 set ϕε(x) = ε−dϕ(ε−1x). Let P be a
convex polytope inR

d , let q(x) be a smooth function inR

d and let Q(x) = q(x)χP (x).
Then

lim
ε→0+ ϕε ∗ Q(x) = ωP (x)q(x).

Proof Integrate in polar coordinates. ��

Lemma 13 With the notation of the above lemma, for every ε > 0 and every x ∈ R

d

one has

∑
k∈Zd

ϕε ∗ Q(x + k) =
∑
k∈Zd

ϕ̂(εk)Q̂(k)e2π ik·x .

Moreover

∑
k∈Zd

ωP (x + k)q(x + k) = lim
ε→0+
∑
k∈Zd

ϕ̂(εk)Q̂(k)e2π ik·x .

The first series is a finite sum of smooth functions. The second series converges abso-
lutely and uniformly.

Proof This is the Poisson summation formula. ��

To prove our results we need an explicit formula for the asymptotic expansion of
q̂χP when P is a simplex, which requires a non-trivial effort to be proved (Lemmas
20 and 33). The 2-dimensional case was dealt with in [9, Lemma 5]. Very elegant
expansion formulas for χ̂P (that is when q ≡ 1) in any dimension d already appeared
in [10, 15]. See also [30] and the references therein.

The paper is organized as follows. In Sect. 2 we present a Fourier analytic proof of
Mordell’s theorem both for sake of completeness and for illustrating the proof strategy
that we will use in the multivariate setting. In Sect. 3 we study the Fourier transform of
a function supported on a simplex. In Sect. 4 we prove ourmain result on the expansion
of

∑
n∈Zd

ωτP (x + n)q(x + n)

in terms of our multivariate Bernoulli polynomials, that is Theorem 7 and Corollary 8,
whereas inSect. 5weproveTheorems10 and11.Wealso includeAppendixA (Sect. 1),
where we collect somewell-known results in harmonic analysis on groups that we use,
and Appendix B (Sect. 1), where a further description of the periodized multivariate
Bernoulli polynomials is given.
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2 Bernoulli Polynomials and a Theorem of Mordell

The classical Bernoulli polynomials have elegant trigonometric expansions, which
predate Fourier. Recall that if f is an integrable function on the torus T = R/Z, its
Fourier series at a point ξ is given by

∑
n∈Z

f̂ (n)e2π inξ

where the Fourier coefficient f̂ (n) is defined as

f̂ (n) =
∫ 1

0
f (x)e−2π inx dx .

Theorem 14 (L. Euler, 1752) If n � 1, then, for every x,

Bn(x) = −
∑

k∈Z\{0}

e2π ikx

(2π ik)n
.

Proof If n = 1 and 0 < x < 1, then

B1(x) = x − 1/2 =
+∞∑

k=−∞

(∫ 1

0
(y − 1/2)e−2π ikydy

)
e2π ikx = −

∑
k∈Z\{0}

e2π ikx

2π ik
.

The symmetric partial sumswith−K � k � K of the above series converge pointwise
for every 0 < x < 1, and by symmetry they also converge to zero for x = 0 and for
x = 1. Since d

dx Bn+1(x) = Bn(x), the Fourier expansion of Bn+1(x) follows by

integrating term by term the series of Bn(x). Since
∫ 1
0 Bn+1(x)dx = 0 the constant

of integration is zero. Observe that for n > 1 the Fourier series of Bn(x) converges
absolutely and uniformly. ��

The original proof of Euler is different and very interesting, see [18]. The following
bounds are a consequence of the above trigonometric expansions.

Corollary 15 The periodic Bernoulli polynomials Bn(x) with n � 0 are bounded by
(π2/3)(2π)−n. More precisely,

(2π)−n � sup
x∈[0,1]

|Bn(x)| � (π2/3)(2π)−n .

Proof If n = 0 then B0(x) = 1 and the lemma holds. If n = 1 and �x� denotes the
integer part of x , then

B1(x) = x − �x� − 1/2,
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so that

sup
x∈[0,1]

|B1(x)| = 1/2

and again the lemma holds. Finally, if n > 1,

|Bn(x)| =
∣∣∣∣∣∣
∑

k∈Z\{0}

e2π ikx

(2π ik)n

∣∣∣∣∣∣ � 2(2π)−n
+∞∑
k=1

k−n = 2(2π)−nζ(n).

Observe that ζ(n) � ζ(2) � π2/6. Also observe that the Fourier coefficient with
k = 1 is (2π i)−n , so that

(2π)−n �
∫ 1

0
|Bn(x)|dz � sup

x∈[0,1]
|Bn(x)|.

��
The following lemma provides an asymptotic expansion of the Fourier transform

of a piecewise smooth function.

Lemma 16 Let w � 0. If the function q(x) has w + 1 integrable derivatives in [a, b],
then for every ξ �= 0

∫ b

a
q(x)e−2π i xξdx =

w∑
j=0

(2π iξ)− j−1
(
e−2π iaξ d

jq

dx j
(a) − e−2π ibξ d

jq

dx j
(b)

)

+ (2π iξ)−w−1
∫ b

a

dw+1q

dxw+1 (x)e−2π i xξdx .

Proof Integrate by parts. ��
With the above results one easily obtains the following.

Proof of Theorem 2 By Lemma 16 and with the notation of Lemmas 12 and 13, for
every x ∈ R we have the chain of equalities

+∞∑
n=−∞

ω[a,b](x + n)q(x + n) = lim
ε→0+

+∞∑
k=−∞

ϕ̂(εk)Q̂(k)e2π ikx

= lim
ε→0+

+∞∑
k=−∞

ϕ̂(εk)

(∫ b

a
q(y)e−2π ikydy

)
e2π ikx

=
∫ b

a
q(y)dy + lim

ε→0+
∑
k �=0

ϕ̂(εk)

( w∑
j=0

(2π ik)− j−1
(
e−2π iak d

jq

dx j
(a)
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− e−2π ibk d
jq

dx j
(b)
))

e2π ikx

+ lim
ε→0+
∑
k �=0

ϕ̂(εk)

(
(2π ik)−w−1

∫ b

a

dw+1q

dyw+1 (y)e−2π iykdy

)
e2π ikx

=
∫ b

a
q(y)dy +

w∑
j=0

d jq

dx j
(a)

⎛
⎝ lim

ε→0+
∑
k �=0

ϕ̂(εk)(2π ik)− j−1e2π ik(x−a)

⎞
⎠

−
w∑
j=0

d jq

dx j
(b)

⎛
⎝ lim

ε→0+
∑
k �=0

ϕ̂(εk)(2π ik)− j−1e2π ik(x−b)

⎞
⎠

+
∫ b

a

dw+1q

dyw+1 (y)

⎛
⎝ lim

ε→0+
∑
k �=0

ϕ̂(εk)(2π ik)−w−1e2π ik(x−y)

⎞
⎠ dy

=
∫ b

a
q(y)dy −

w∑
j=0

d jq

dx j
(a)Bj+1(x − a) +

w∑
j=0

d jq

dx j
(b)Bj+1(x − b)

−
∫ b

a

dw+1q

dyw+1 (y)Bw+1(x − y)dy

and (i) is proved. The second part follows from Corollary 15. ��

The above proof is not the original one of Mordell but it is inspired by [14].

3 The Fourier Transform of a Function Supported on a Simplex

A key ingredient for the proofs of our main results is a precise estimate of the Fourier
transform of a function restricted to a simplex. We first consider the standard simplex.

3.1 The Standard Simplex

Let

Sd =
⎧⎨
⎩x ∈ R

d : x j � 0,
d∑
j=1

x j � 1

⎫⎬
⎭

be the standard simplex. We want to give an asymptotic expansion of the Fourier
transform of the function G(x) = g(x)χSd (x) where g ∈ Cw+1(Rd). In [10, 15],
see also [30] and the references therein, there are elegant symmetric formulas for
χ̂Sd (ξ). The formulas we obtain are less elegant but somehow more explicit and, in
particular, we provide a formula when ξ belongs to a singular direction as well. Since
the asymptotic behaviour of Ĝ(ξ) depends on the faces of Sd that are orthogonal to ξ ,
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it is natural to have different formulas in different regions. Hence, we need to partition
the space of frequencies into a finite number of cones Q(θ).

Definition 17 Let �d be the class of all subspaces of R

d generated by any possible
choice of vectors in all the bases of F (d). Then, �d induces a partition of R

d into a
finite number of (possibly disconnected) conical regions Q(θ), θ ∈ �d , defined as
follows: ξ ∈ Q(θ) if and only if ξ is orthogonal to all the vectors in θ , but it is not
orthogonal to any other vector in the bases of F (d) which is not in θ . Namely,

Q(θ) =
⎧⎨
⎩ξ ∈ R

d : for all b ∈
⋃

B∈F (d)

B, ξ · b = 0 iff b ∈ θ

⎫⎬
⎭

=
⎧⎨
⎩ξ ∈ θ⊥ :

∏
b∈B\θ

(b · ξ) �= 0, for all B ∈ F (d)

⎫⎬
⎭ .

We explicitly assume that the zero dimensional space belongs to �d and in this
case the associated cone has nonempty interior. In the other cases such cones have
empty interior.

Lemma 18 (i) {Q(θ)}θ∈�d
is a partition of R

d .
(ii) Let F(x) be a bounded function on T

d = R

d/Z

d and let θ be in �d . Then

∑
m∈Q(θ)∩Zd

F̂(m)e2π imx

is a bounded function and there exists c(θ) such that

sup
x

∣∣∣∣
∑

m∈Q(θ)∩Zd

F̂(m)e2π imx
∣∣∣∣ � c(θ) sup

x
|F(x)| .

Proof (i) For any ξ ∈ R

d , ξ ∈ Q(θξ ) where θξ =
〈
b ∈ ⋃

B∈F (d)

B : b · ξ = 0
〉
. On

the other hand if θ1 �= θ2, that is if there exists, say, v ∈ θ1 \ θ2, then there exists
b ∈ ⋃

B∈F (d)

B such that b ∈ θ1 \ θ2. Now if ξ ∈ Q(θ1) then ξ · b = 0. This implies that

ξ /∈ Q(θ2). Hence Q(θ1) ∩ Q(θ2) = ∅ and it follows that {Q(θ)}θ∈�d
is a partition of

R

d .
(i i) Let θ ∈ �d , let θ⊥ = {ξ ∈ R

d : ξ · b = 0 for every b ∈ θ
}
and for b /∈ θ let

θ⊥
b = θ⊥ ∩ 〈b〉⊥ .
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Also {b1, . . . , bN } =
{
b ∈ ⋃

B∈F (d)

B : b /∈ θ
}
. Then

Q(θ) = θ⊥ \
N⋃
j=1

θ⊥
b j

and therefore

∑
m∈Q(θ)∩Zd

F̂(m)e2π im·t =
∑

m∈θ⊥∩Zd

F̂(m)e2π im·t −
∑

m∈
⋃N

j=1L j

F̂(m)e2π im·t

where L j = θ⊥
b j

∩ Z

d . By the inclusion–exclusion principle

χ⋃N
j=1L j

(m) =
N∑

k=1

(−1)k−1
∑

I⊆{1,2,...,N }
|I |=k

χL I (m)

where L I =
⋂
j∈I

L j . Therefore

∑
m∈Q(θ)∩Zd

F̂(m)e2π im·t =
∑

m∈θ⊥∩Zd

F̂(m)e2π im·t

+
N∑

k=1

(−1)k
∑

I⊆{1,2,...,N }
|I |=k

∑
m∈L I

F̂(m)e2π im·t .

Observe now that θ⊥ ∩ Z

d and L I are subgroups of Z

d . To conclude the proof then it
suffices to recall that the restriction operator to a subgroup H

RHF(t) =
∑
m∈H

F̂(m)e2π im·t

is a bounded operator on L∞(Td). See Lemma 40 in Appendix A. ��
We also need the following elementary lemma.

Lemma 19 (i) Set n = (n′, nd) ∈ Z

d−1 × Z and (x ′, xd) ∈ R

d−1 × R. Assume that
H(n′) are the Fourier coefficients of a periodic function h(x ′) and K (nd) are the
Fourier coefficients of a periodic function k(xd). Then H(n′)K (nd) are the Fourier
coefficients of h(x ′)k(xd).

(ii)Assume that H(n)with n ∈ Z

d are the Fourier coefficients of a periodic function
bounded by A and assume that K (nd ) are theFourier coefficients of a periodic function
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bounded by B. Then H(n)K (nd) are the Fourier coefficients of a periodic function
bounded by AB.

(iii) Let T ∈ SL(d, Z), y ∈ R

d , and let H(n) be the Fourier coefficients of a
periodic function h(x). Then e2π iy·nH(Tn) are the Fourier coefficients of the periodic
function h

(
(T−1)t (x + y)

)
.

Proof The first part (i) is trivial. To prove (i i) let h(x) be the periodic function on T

d

with Fourier coefficients H(n) and k(xd) be the periodic function on T with Fourier
coefficients K (nd). Also, let μ be the product on the torus T

d of the Dirac delta
centered at the origin in the variables x ′ and k(xd). Then μ̂(n) = K (nd) and the total
variation ‖μ‖ of μ is bounded by B. Finally observe that H(n)K (nd) are the Fourier
coefficients of h ∗ μ(x) and

|h ∗ μ(x)| � sup |h(x)| ‖μ‖.

Finally, the proof of (i i i) is very simple. If suffices to observe that

∑
n∈Zd

e2π iy·nH(Tn)e2π in·x =
∑
n∈Zd

H(Tn)e2π in·(x+y) =
∑
m∈Zd

H(m)e2π im·(T−1)t (x+y).

��
With the notation introduced in Sect. 1, we have the following crucial lemma.

Lemma 20 Let Sd be the standard simplex in R

d . There exist linear functionals
{α(θ, V , J )} indexed by θ ∈ �d , V ∈ {1, 2}d , J ∈ N

d with the following properties.
(i) For any integer w � 1, for any g ∈ Cw+1(Rd), for every θ ∈ �d and for every

ξ ∈ Q(θ),

ĝχSd (ξ) =
∑

V∈{1,2}d

∑
|J |�w

〈α(θ, V , J ), g〉 e−2π iλV ·ξ∏
bk∈BV \θ (2π ibk · ξ) jk+1 + Rθ,w(g, ξ).

In the above formula we adopt the following convention: BV = {b1, . . . , bd} is the
basis associated to the multi-index V and J = ( j1, . . . , jd) with jk = 0 whenever
bk ∈ θ .

(ii) The coefficients 〈α(θ, V , J ), g〉 satisfy the estimates

|〈α(θ, V , J ), g〉| � c 2(d−1)|J | sup
|α|�|J |

sup
x∈Sd

∣∣∣∣∂
αg

∂xα
(x)

∣∣∣∣ .

(iii) The remainder Rθ,w(g, ξ) has the property that for every � > 1/(2π) and
every τ0 > 0 there exists U = U (d) = U (d,�, τ0) > 0 such that for every τ > τ0
and w � 1,

{
χQ(θ)(n)Rθ,w(g, τn)

}
n∈Zd
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are the Fourier coefficients of a function on the torus T

d bounded by

U (2d−1�τ−1)w+1 sup
w−d+2�|α|�w+1

sup
x∈Sd

∣∣∣∣∂
αg

∂xα
(x)

∣∣∣∣ .

Proof The proof is by induction on the dimension d. Let G (x) = g (x) χSd (x).
Case d = 1. This case is covered byLemma 16.Herewe reinterpret the result using the
formalism of the conesQ(θ). We haveF (1) = {B}whereB = {1} and�1 = {{0}, R}.

• θ = R. We have Q(θ) = {0}, and

Ĝ(0) =
∫ 1

0
g(x)dx,

so that

〈α (R, V , j) , g〉 =
{∫ 1

0 g(x)dx j = 0, V = 1,
0 otherwise,

and the remainder RR,w(g, 0) = 0 for every w.
• θ = {0}. We have Q(θ) = {ξ ∈ R, ξ �= 0}. In this case, by Lemma 16,

∫ 1

0
g(x)e−2π i xξdx =

w∑
j=0

d j g

dx j
(0) − e−2π iξ d

j g

dx j
(1)

(2π iξ) j+1

+ (2π iξ)−w−1
∫ 1

0

dw+1g

dxw+1 (x)e−2π i xξdx .

It follows that

〈α ({0}, 1, j) , g〉 = d j g

dx j
(0),

〈α ({0}, 2, j) , g〉 = −d j g

dx j
(1).

Moreover the remainder evaluated at the lattice points ξ = τn is

R{0},w(g, τn) = (2π iτn)−w−1
∫ 1

0

dw+1g

dxw+1 (x)e−2π iτnxdx
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Hence for every w � 1,

∣∣∣∣∣
∑
n∈Z

R{0},w(g, τn)χQ({0})(τn)e2π inx
∣∣∣∣∣ =
∣∣∣∣∣∣
∑
n �=0

R{0},w(g, τn)e2π inx

∣∣∣∣∣∣

� (2πτ)−w−1

⎧⎨
⎩
∑
n �=0

|n|−w−1

⎫⎬
⎭ sup

x∈[0,1]

∣∣∣∣d
w+1g

dxw+1 (x)

∣∣∣∣

� (2πτ)−w−1π2

3
sup

x∈[0,1]

∣∣∣∣d
w+1g

dxw+1 (x)

∣∣∣∣ .

Case d � 2. Assume that the theorem holds in dimension d −1. Fix θ ∈ �d . Observe
that the vector ed = (0, . . . , 0, 1) belongs to at least one (actually all) bases in F (d).

• ed ∈ θ . For all ξ ∈ Q(θ) one has ξd = 0. For this choice of θ and for all
ξ = (ξ ′, 0) ∈ Q(θ) we have the following formula

Ĝ(ξ) =
∫
Sd

g(x)e−2π i x ·ξdx =
∫
Sd−1

e−2π i x ′·ξ ′
[∫ 1−(x1+x2+···+xd−1)

0
g(x ′, xd )dxd

]
dx ′

=
∫
Sd−1

e−2π i x ′·ξ ′
F(x ′)dx ′.

Observe that ξ ∈ Q(θ) if and only if ξ ′ ∈ Q(θ ′) where θ ′ is the space of the vectors b′
such that (b′, bd) ∈ θ for some bd . Indeed, since ξ ·b = ξ ′ ·b′, ξ ′ is orthogonal to θ ′ if
and only if ξ is orthogonal to θ . Since θ ′ ∈ �d−1 (see Lemma 22 for details),we may
therefore apply the (d − 1)-dimensional formula corresponding to θ ′ to the function
F(x ′) so that

Ĝ(ξ) =
∑

V ′∈{1,2}d−1

∑
|J ′|�w

〈
α(θ ′, V ′, J ′), F

〉
e−2π iλV ′ ·ξ ′

∏
b′
k∈BV ′ \θ ′(2π ib′

k · ξ ′) j ′k+1
+ Rθ ′,w(F, ξ ′),

where j ′k = 0 if b′
k ∈ θ ′. Observe that this expression can be written in the form

Ĝ(ξ) =
∑

V=(V ′,1)∈{1,2}d

∑
J=(J ′,0), |J |�w

〈
α(θ ′, V ′, J ′), F

〉
e−2π iλV ·ξ∏

bk∈BV \θ (2π ibk · ξ) jk+1 + Rθ ′,w(F, ξ ′)

where jk = 0 if bk ∈ θ . The coefficients
〈
α(θ ′, V ′, J ′), F

〉
satisfy the estimates

∣∣〈α(θ ′, V ′, J ′), F
〉∣∣ � c 2(d−2)|J ′| sup

|α|�|J ′|
sup

x ′∈Sd−1

∣∣∣∣
(

∂

∂x ′

)α

F(x ′)
∣∣∣∣

� c 2(d−1)|J | sup
|α|�|J |

sup
x∈Sd

∣∣∣∣∂
αg

∂αx
(x)

∣∣∣∣ .
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Indeed, for every 1 � j, k, . . . � d − 1, we have

∂F

∂x j
(x ′) = ∂

∂x j

∫ 1−x ′·1d−1

0
g(x ′, xd)dxd

= −g(x ′, 1 − x ′ · 1d−1) +
∫ 1−x ′·1d−1

0

∂g

∂x j
(x ′, xd)dxd ,

∂2F

∂xk∂x j
(x ′) = − ∂g

∂xk
(x ′, 1 − x ′ · 1d−1) + ∂g

∂xd
(x ′, 1 − x ′ · 1d−1)

− ∂g

∂x j
(x ′, 1 − x ′ · 1d−1) +

∫ 1−x ′·1d−1

0

∂2g

∂xk∂x j
(x ′, xd)dxd ,

and so on. Thus

〈α (θ, V , J ) , g〉

=
{〈

α
(
θ ′, V ′, J ′) , ∫ 1−x ′·1d−1

0 g(x ′, xd)dxd
〉
if J = (J ′, 0

)
and V = (V , 1) ,

0 otherwise.

For ξ ∈ Q (θ) set Rθ,w(g, ξ) = Rθ ′,w(F, ξ ′) (recall that ξ = (ξ ′, 0
)
) and observe

that

∑
n∈Zd

χQ(θ)(n)Rθ,w(g, τn)e2π in·x =
∑

n′∈Zd−1

χQ(θ)(n
′, 0)Rθ,w

(
g, (τn′, 0)

)
e2π in

′·x ′

=
∑

n′∈Zd−1

χQ(θ ′)(n
′)Rθ ′,w(F, τn′)e2π in′·x ′

.

By induction,
{
χQ(θ ′)(n′)Rθ ′,w(F, τn′)

}
n′∈Zd−1 are the Fourier coefficients of a func-

tion on the (d − 1)-dimensional torus bounded by

U (d − 1)(2d−2�τ−1)w+1 sup
w−d+3�|α|�w+1

sup
x ′∈Sd−1

∣∣∣∣
(

∂

∂x ′

)α

F(x ′)
∣∣∣∣

� U (d − 1)(2d−2�τ−1)w+1 sup
w−d+2�|α|�w+1

2|α| sup
x∈Sd

∣∣∣∣
(

∂

∂x

)α

g(x)

∣∣∣∣
� U (d − 1)(2d−1�τ−1)w+1 sup

w−d+2�|α|�w+1
sup
x∈Sd

∣∣∣∣
(

∂

∂x

)α

g(x)

∣∣∣∣ .

Hence, by (i) in Lemma 19 with K (nd) = 0 if nd �= 0 and K (nd) = 1 if nd = 0 so
that k(xd) = 1, and H(n′) = Rw(F, τn′) it follows that

H(n′)K (nd) =
{

χQ(θ ′)(n′)Rθ ′,w(F, τn′) nd = 0,
0 nd �= 0
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are the Fourier coefficients of a function on the d-dimensional torus bounded by

U (d − 1)(2d−1�τ−1)w+1 sup
w−d+2�|α|�w+1

sup
x∈Sd

∣∣∣∣
(

∂

∂x

)α

g(x)

∣∣∣∣ .

• ed /∈ θ . Hence ξd �= 0 for all ξ ∈ Q(θ). Then, by Lemma 16,

Ĝ(ξ) =
∫
Sd−1

e−2π i x ′·ξ ′
[∫ 1−x ′·1d−1

0
g(x ′, xd )e−2π i xdξd dxd

]
dx ′

=
w∑

jd=0

(2π iξd )− jd−1
∫
Sd−1

e−2π i x ′·ξ ′ ∂ jd g

∂x jd
d

(x ′, 0)dx ′

−
w∑

jd=0

(2π iξd )− jd−1
∫
Sd−1

e−2π i x ′·ξ ′
e−2π i(1−x ′·1d−1)ξd

∂ jd g

∂x jd
d

(x ′, 1 − x ′ · 1d−1)dx
′

+ (2π iξd )−w−1
∫
Sd

∂w+1g

∂xw+1
d

(x)e−2π i x ·ξdx

= I + I I + I I I .

III The term I I I is part of the remainder. In view of Lemma 18 and since n ∈
Q(θ) ∩ Z

d implies nd �= 0 it suffices to show that

∑
n∈Zd ,nd �=0

[
(2π iτnd)

−w−1
∫
Sd

∂w+1g

∂xw+1
d

(x)e−2π i x ·τndx
]
e2π inx

is the Fourier series of a bounded function. Observe first that the integrals in the above
sum are the Fourier coefficients of a bounded function on the torus,

∫
Sd

∂w+1g

∂xw+1
d

(x)e−2π i x ·τndx

= τ−d
∫
Rd

χSd (τ
−1y)

∂w+1g

∂xw+1
d

(τ−1y)e−2π iy·ndy

= τ−d
∫
Td

⎡
⎣∑
k∈Zd

χSd

(
τ−1(y + k)

) ∂w+1g

∂xw+1
d

(
τ−1(y + k)

)⎤⎦ e−2π iy·ndy.

The inner sum is finite and consists of atmost c(1+τ)d terms. By (i i) in Lemma19 and
Corollary 15, multiplying by (2π iτnd)−w−1, we obtain again the Fourier coefficients
of a periodic function bounded by
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(2πτ)−w−1τ−d π2

3
sup
y∈Rd

∣∣∣∣∣∣
∑
k∈Zd

χSd

(
τ−1(y + k)

) ∂w+1g

∂xw+1
d

(
τ−1(y + k

)
)

∣∣∣∣∣∣
� cτ−d (1 + τ)d (2πτ)−w−1 sup

x∈Sd

∣∣∣∣∣
∂w+1g

∂xw+1
d

(x)

∣∣∣∣∣
� c(1 + τ−1

0 )d(2d−1�τ−1)w+1 sup
x∈Sd

∣∣∣∣∣
∂w+1g

∂xw+1
d

(x)

∣∣∣∣∣

with c independent of w and g and τ � τ0 > 0.
I Let us consider the term I . Let θ1 = {b′ : (b′, 0) ∈ θ} ∈ �d−1 (see Lemma 22

for details). We claim that

ξ = (ξ ′, ξd
) ∈ Q(θ) �⇒ ξ ′ ∈ Q(θ1).

Indeed, let ξ ∈ Q(θ) and let b′ ∈ θ1 ∩
( ⋃

B∈F (d−1)

B
)
. Then (b′, 0) ∈ θ and therefore

0 = ξ · (b′, 0) = ξ ′ · b′.

Now, let b′ ∈ ⋃
B∈F (d−1)

B, b′ /∈ θ1, then (b′, 0) /∈ θ . Since (b′, 0) ∈ ⋃
B∈F (d)

B we have

0 �= ξ · (b′, 0) = ξ ′ · b′.

Applying the d−1 dimensional formula corresponding to θ1 to the function
∂ jd g

∂x
jd
d

(x ′, 0)
we obtain

I =
w∑

jd=0

(2π iξd )− jd−1
∫
Sd−1

e−2π i x ′·ξ ′ ∂ jd g

∂x jd
d

(x ′, 0)dx ′

=
w∑

jd=0

(2π iξd )− jd−1
∑

V ′∈{1,2}d−1

∑
|J ′|�w− jd

〈
α(θ1, V

′, J ′), (∂/∂xd ) jd g(·, 0)
〉
e−2π iλV ′ ·ξ ′

∏
b′
k∈BV ′ \θ1(2π ib

′
k · ξ ′) j

′
k+1

+
w∑

jd=0

(2π iξd )− jd−1Rθ1,w− jd

(
∂ jd g

∂x jd
d

(·, 0), ξ ′
)

=
∑

V=(V ′,1)∈{1,2}d

∑
|J |�w

〈
α(θ1, V

′, J ′), (∂/∂xd ) jd g(·, 0)
〉
e−2π iλV ·ξ

∏
bk∈BV \θ (2π ibk · ξ) jk+1

+
w∑

jd=0

(2π iξd )− jd−1Rθ1,w− jd

(
∂ jd g

∂x jd
d

(·, 0), ξ ′
)

.
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The double sum is part of the main term in the asymptotic expansion and the last sum
is part of the remainder. By induction, since J = (J ′, jd),

∣∣∣
〈
α(θ1, V

′, J ′), (∂/∂xd ) jd g(·, 0)
〉∣∣∣ � c2(d−2)|J ′| sup

|α|�|J ′|
sup
x∈Sd

∣∣∣∣∣
(

∂

∂x ′
)α ( ∂

∂xd

) jd
g(x)

∣∣∣∣∣
� c2(d−2)|J | sup

|α|�|J |
sup
x∈Sd

∣∣∣∣∂
αg

∂xα
(x)

∣∣∣∣ .

We now deal with the remainder in I as follows. By the induction assumption

∑
n′∈Q(θ ′)∩Zd−1

Rθ1,w− jd

(
∂ jd g

∂x jd
d

(·, 0), τn′
)
e2π in

′·x ′

is the Fourier expansion of a function F(x ′) on T

d−1 bounded by

U (d − 1)(2d−2�τ−1)w+1− jd sup
w− jd−(d−1)+2�|α|�w− jd+1

sup
x ′∈Sd−1

∣∣∣∣∣
(

∂

∂x ′
)α ∂ jd g

∂x jd
d

(x ′, 0)
∣∣∣∣∣

� U (d − 1)(2d−2�τ−1)w+1− jd sup
w−d+3�|α|�w+1

sup
x∈Sd

∣∣∣∣∂
αg

∂xα
(x)

∣∣∣∣ .

Hence, −τ− jd−1Bjd+1 (xd) F
(
x ′) is a function on T

d bounded by

τ− jd−1(2π)− jd−1 π2

3
U (d − 1)(2d−2�τ−1)w+1− jd sup

w−d+3�|α|�w+1
sup
x∈Sd

∣∣∣∣∂
αg

∂xα
(x)

∣∣∣∣

= (2d−2�2π)− jd−1 π2

3
U (d − 1)(2d−2�τ−1)w+2 sup

w−d+3�|α|�w+1
sup
x∈Sd

∣∣∣∣∂
αg

∂xα
(x)

∣∣∣∣ ,

and with Fourier expansion

∑
nd �=0,n′∈Q(θ1)∩Zd−1

[
(2π iτnd )

− jd−1Rθ1,w− jd

(
∂ jd g

∂x jd
d

(·, 0), τn′
)]

e2π in·x

=
∑
n∈Zd

χ{nd �=0,n′∈Q(θ1)∩Zd−1}(n)

[
(2π iτnd )

− jd−1Rθ1,w− jd

(
∂ jd g

∂x jd
d

(·, 0), τn′
)]

e2π in·x .

Since Q(θ) ∩ Z

d ⊂ (Q(θ1) ∩ Z

d−1
)× (Z\ {0}), by Lemma 18,

∑
n∈Q(θ)∩Zd

χ{nd �=0,n′∈Q(θ1)∩Zd−1
}(n)

[
(2π iτnd )− j−1Rθ1,w− j

(
∂ j g

∂x j
d

(·, 0), τn′
)]

e2π in·x

=
∑

n∈Q(θ)∩Zd

[
(2π iτnd )− j−1Rθ1,w− j

(
∂ j g

∂x j
d

(·, 0) , τn′
)]

e2π in·x
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is the Fourier series of a function on T

d bounded by

c (θ) (2d−2�2π)− jd−1π2

3
U (d − 1)(2d−2�τ−1)w+2 sup

w−d+3�|α|�w+1
sup
x∈Sd

∣∣∣∣∂
αg

∂xα
(x)

∣∣∣∣ .

Adding up on jd we obtain that

⎧⎨
⎩χQ(θ)(n)

w∑
jd=0

(2π iτnd)
− jd−1Rθ1,w− jd

(
∂ jd g

∂x jd
d

(·, 0), τn′
)⎫⎬
⎭

are the Fourier coefficients of a function on the d-dimensional torus bounded by

w∑
jd=0

c (θ) (2d−2�2π)− jd−1π2

3
U (d − 1)(2d−2�τ−1)w+2

sup
w−d+3�|α|�w+1

sup
x∈Sd

∣∣∣∣∂
αg

∂xα
(x)

∣∣∣∣

= c (θ)
π2

3
U (d − 1)(2d−2�τ−1)w+2

w∑
jd=0

(2d−2�2π)− jd−1

sup
w−d+3�|α|�w+1

sup
x∈Sd

∣∣∣∣∂
αg

∂xα
(x)

∣∣∣∣

� c (θ)
π2

3

U (d − 1)

2d−1�π − 1
(2d−2�τ−1)w+2

sup
w−d+3�|α|�w+1

sup
x∈Sd

∣∣∣∣∂
αg

∂xα
(x)

∣∣∣∣

�
(
c (θ)

π2

3

U (d − 1)

2d−1�π − 1
2d−2�τ−1

0

)
(2d−1�τ−1)w+1

sup
w−d+3�|α|�w+1

sup
x∈Sd

∣∣∣∣∂
αg

∂xα
(x)

∣∣∣∣ .

Here we used the assumption � > (2π)−1.
II The term I I is similar to I , but to estimate the remainder we need (i i i) in

Lemma 19. Let θ2 = {b′ : (b′,−b′ · 1d−1) ∈ θ
} ∈ �d−1 (see Lemma 22 for details).

We claim that

ξ = (ξ ′, ξd
) ∈ Q(θ) �⇒ ξ ′ − ξd1d−1 ∈ Q(θ2).

Indeed, let ξ ∈ Q(θ) and let b′ ∈ θ2 ∩
( ⋃

B∈F (d−1)

B
)
. Then (b′,−b′ · 1d−1) ∈ θ and

therefore

0 = ξ · (b′,−b′ · 1d−1) = ξ ′ · b′ − ξd1d−1 · b′ = (ξ ′ − ξd1d−1) · b′.
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Similarly if b′ ∈
( ⋃

B∈F (d−1)

B
)
\θ2, then

(
b′,−b′ · 1d−1

)
/∈ θ . Since

(
b′,−b′ · 1d−1

) ∈
⋃

B∈F (d)

B, we have

0 �= ξ · (b′,−b′ · 1d−1
) = (ξ ′ − ξd1d−1) · b′.

By applying the (d − 1)-dimensional formula corresponding to θ2 to the function
∂ jd g

∂x
jd
d

(x ′, 1 − x ′ · 1d−1) we get

I I = −
w∑

jd=0

(2π iξd )
− jd−1
∫
Sd−1

e−2π i x ′ ·ξ ′
e−2π i(1−x ′ ·1d−1)ξd

∂ jd g

∂x jd
d

(x ′, 1 − x ′ · 1d−1)dx
′

= −
w∑

jd=0

(2π iξd )
− jd−1e−2π iξd

∫
Sd−1

e−2π i x ′ ·(ξ ′−ξd1d−1)
∂ jd g

∂x jd
d

(x ′, 1 − x ′ · 1d−1)dx
′

= −
w∑

jd=0

(2π iξd )
− jd−1e−2π iξd

×
∑

V ′∈{1,2}d−1

∑
|J ′ |�w− jd

〈
α(θ2, V ′, J ′),

(
(∂/∂xd ) jd g

)
(x ′, 1 − x ′ · 1d−1)

〉
e−2π iλV ′ ·(ξ ′−ξd1d−1)

∏
b′
k∈BV ′ \θ2

(
2π ib′

k · (ξ ′ − ξd1d−1)
) jk+1

−
w∑

jd=0

(2π iξd )
− jd−1e−2π iξdRθ2,w− jd

(
∂ jd g

∂x jd
d

(x ′, 1 − x ′ · 1d−1), ξ
′ − ξd1d−1

)

=
∑

V=(V ′,2)∈{1,2}d

∑
|J |�w

− 〈α(θ2, V ′, J ′),
(
(∂/∂xd ) jd g

)
(x ′, 1 − x ′ · 1d−1)

〉
e−2π iλV ·ξ∏

bk∈BV \θ (2π ibk · ξ) jk+1

−
w∑

jd=0

(2π iξd )
− jd−1e−2π iξdRθ2,w− jd

(
∂ jd g

∂x jd
d

(x ′, 1 − x ′ · 1d−1), ξ
′ − ξd1d−1

)
.

By induction

∣∣∣
〈
α(θ2, V

′, J ′),
(
(∂/∂xd)

jd g
)

(x ′, 1 − x ′ · 1d−1)
〉∣∣∣

� c2(d−2)|J ′| sup
|α|�|J ′|

sup
x ′∈Sd−1

∣∣∣∣∣
(

∂

∂x ′

)α
(

∂ jd g

∂x jd
d

(x ′, 1 − x ′ · 1d−1)

)∣∣∣∣∣ .

Observe that for every 1 � k � d − 1

∂

∂xk

(
∂ jd g

∂x jd
d

(x ′, 1 − x ′ · 1d−1)

)
= ∂ jd+1g

∂xk∂x
jd
d

(x ′, 1 − x ′ · 1d−1)

−∂ jd+1g

∂x jd+1
d

(x ′, 1 − x ′ · 1d−1).
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Hence
∣∣∣∣∣
(

∂

∂x ′

)α
(

∂ jd g

∂x jd
d

(x ′, 1 − x ′ · 1d−1)

)∣∣∣∣∣ � 2|α| sup
|β|=|α|+ jd

sup
x∈Sd

∣∣∣∣∂
βg

∂xβ
(x)

∣∣∣∣ ,

so that, with the notation J = (J ′, jd),
∣∣∣
〈
α(θ2, V

′, J ′),
(
(∂/∂xd)

jd g
)

(x ′, 1 − x ′ · 1d−1)
〉∣∣∣

� c2(d−2)|J ′|2|J ′| sup
|β|�|J ′|+ jd

sup
x∈Sd

∣∣∣∣∂
βg

∂xβ
(x)

∣∣∣∣ � c2(d−1)|J | sup
|β|�|J |

sup
x∈Sd

∣∣∣∣∂
βg

∂xβ
(x)

∣∣∣∣ .

Let us consider the remainder and set T ξ = (ξ ′ − ξd1d−1,ξd). Then T ∈ SL(d, Z)

and, by (i i i) in Lemma 19,

−
w∑

jd=0

χQ(θ)(n)(2π iτnd)
− jd−1e−2π iτndRθ2,w− jd

(
∂ jd g

∂x jd
d

(x ′, 1 − x ′ · 1d−1), τn
′ − τnd1d−1

)
(1)

are the Fourier coefficients of a bounded function if

−
w∑

jd=0

χT (Q(θ))(n)(2π iτnd)
− jd−1e−2π iτndRθ2,w− jd

(
∂ jd g

∂x jd
d

(x ′, 1 − x ′ · 1d−1), τn
′
)

(2)

are the Fourier coefficients of a bounded function, and the bound is the same. By
induction

{
χQ(θ2)(n

′)Rθ2,w− jd

(
∂ jd g

∂x jd
d

(x ′, 1 − x ′ · 1d−1), τn
′
)}

are the Fourier coefficients of a function on the d − 1 dimensional torus bounded by

U (d − 1)(2d−2�τ−1)w+1− jd sup
w− jd−(d−1)+2�|α|

�w− jd+1

sup
x ′∈Sd−1

∣∣∣∣∣
(

∂

∂x ′

)α
(

∂ jd g

∂x jd
d

(x ′, 1 − x ′ · 1d−1)

)∣∣∣∣∣
� U (d − 1)(2d−2�τ−1)w+1− jd sup

w− jd−(d−1)+2�|α|�w− jd+1
2|α|
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sup
|β|=|α|+ jd

sup
x∈Sd

∣∣∣∣∂
βg

∂xβ
(x)

∣∣∣∣
� U (d − 1)(2d−1�τ−1)w+1− jd sup

w− jd−(d−1)+2�|α|�w− jd+1

sup
|β|=|α|+ jd

sup
x∈Sd

∣∣∣∣∂
βg

∂xβ
(x)

∣∣∣∣

� U (d − 1)(2d−1�τ−1)w+1− jd sup
w−d+3�|β|�w+1

sup
x∈Sd

∣∣∣∣∂
βg

∂xβ
(x)

∣∣∣∣ .

Hence, by (i) in Lemma 19 and Corollary 15,

−
∑

nd �=0,n′∈Q(θ2)

⎡
⎣ w∑

jd=0

(2π iτnd)
− jd−1e−2π iτndRθ2,w− jd

(
∂ jd g

∂x jd
d

(x ′, 1 − x ′ · 1d−1), τn
′
)]

e2π in·x

is the Fourier series of a function on T

d bounded by

w∑
jd=0

(
π2

3
(2πτ)− jd−1U (d − 1)(2d−1�τ−1)w+1− jd sup

w−d+3�|β|�w+1
sup
x∈Sd

∣∣∣∣∣
∂βg

∂xβ
(x)

∣∣∣∣∣
)

� π2

3
U (d − 1)(2d−1�τ−1)w+2

w∑
jd=0

(2d−12π�)− jd−1 sup
w−d+3�|β|�w+1

sup
x∈Sd

∣∣∣∣∣
∂βg

∂xβ
(x)

∣∣∣∣∣

� π2

3
U (d − 1)(2d−1�τ−1)w+2 1

2d−12π� − 1
sup

w−d+3�|β|�w+1
sup
x∈Sd

∣∣∣∣∣
∂βg

∂xβ
(x)

∣∣∣∣∣ .

Since TQ(θ) ∩ Z

d ⊂ (Q(θ2) ∩ Z

d−1
) × (Z\ {0}) (notice that ξ ∈ Q(θ) implies

ξ ′ − ξd1d−1 ∈ Q(θ2)), by Lemma 18, the remainder (2) and therefore (1) is bounded
by

c
π2

3

U (d − 1)

2d−12π� − 1
(2d−1�τ−1)w+2 sup

w−d+3�|β|�w+1
sup
x∈Sd

∣∣∣∣∣
∂βg

∂xβ
(x)

∣∣∣∣∣

� c

(
π2

3

U (d − 1)

2d−12π� − 1
(2d−1�τ−1

0 )

)
(2d−1�τ−1)w+1 sup

w−d+3�|β|�w+1
sup
x∈Sd

∣∣∣∣∣
∂βg

∂xβ
(x)

∣∣∣∣∣ .

This proves the formula when ed /∈ θ . In particular,
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〈α (θ, V , J ) , g〉 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

〈
α
(
θ1, V ′, J ′) ,

(
∂

∂xd

) jd
g
(
x ′, 0
)〉

V = (V ′, 1
)
,

−
〈
α
(
θ2, V ′, J ′) ,

(
∂

∂xd

) jd
g
(
x ′, 1 − x ′ · 1d−1

)〉
V = (V ′, 2

)
.

��
As mentioned, our formulas are not symmetric since they depend both on the faces
of Sd that are orthogonal to the considered point ξ and on the way we iterate the
integration in our computation. However one can obtain more symmetric formulas
by averaging on all different ways of computing the Fourier transform ĝχSd (ξ) as an
iterated integral.

In the following we obtain a precise expression for the functionals α(θ, V , J ) that
makes explicit the dependence of the coefficients 〈α(θ, V , J ), g〉 on the function g
and on θ , V and J .

Definition 21 For every h = 2, . . . , d, let Uh : R

h → R

h−1 be the operator that
removes the last coordinate. For every θ ∈ �h and for every B ∈ F (h), let Ph,Bθ be
the subspace of R

h−1 defined as follows:

Ph,Bθ =

⎧⎪⎨
⎪⎩
Uhθ if eh ∈ θ,

Uh (θ ∩ {x · eh = 0}) if eh /∈ θ and B ∈ F (h)
1 ,

Uh (θ ∩ {x · 1h = 0}) if eh /∈ θ and B ∈ F (h)
2 .

Here eh = (0, . . . , 0, 1) is the last vector in the canonical basis of R

h .

Observe that Pd,Bθ is just the subspace θ ′, θ1, or θ2 used in the proof of
Lemma 20.

Lemma 22 With the above notation we have

Ph,Bθ =
{
Uh (θ ∩ {x · eh = 0}) if B ∈ F (h)

1 ,

Uh (θ ∩ {x · 1h = 0}) if B ∈ F (h)
2 .

Moreover, Ph,Bθ ∈ �h−1.

Proof Let �h : R

h → R

h be the orthogonal projection

�h(x1, . . . , xh) = (x1, . . . , xh−1, 0)

so that Uh = Uh�h . It suffices to observe that if eh ∈ θ, then

�hθ = �h (θ ∩ {x · eh = 0}) = �h (θ ∩ {x · 1h = 0}) .

Indeed, if x ∈ �hθ then x = �h y for some y ∈ θ , so that x = �h(�h y). Since
�h y ∈ θ ∩ {x · eh = 0} we have �hθ ⊆ �h (θ ∩ {x · eh = 0}). Similarly x =
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�h(�h y − (y · 1h)eh) and �h y − (y · 1h)eh ∈ θ ∩ {x · 1h = 0} so that �hθ ⊆
�h(θ ∩ {x · 1h = 0}). The reverse inclusions are trivial.

Concerning the last point of the lemma, observe first that it follows easily from the
recurrence definition of the bases of F (h) that

⋃
B∈F (h)

B = {e j , e� − ek : 1 ≤ j ≤ h, 1 ≤ � < k ≤ h
}
.

Assume now that θ = span {b1, . . . , bN } with b j ∈ ⋃B∈F (h) B. If eh ∈ θ , then
Ph,Bθ = Uhθ = span {Uhb1, . . . ,UhbN }, and by construction each vector Uhb j

belongs to
⋃

B∈F (h−1) B, so that Ph,Bθ ∈ �h−1. Assume B ∈ F (h)
1 (the case B ∈ F (h)

2
is treated similarly). If eh /∈ θ and b j ·eh = 0 for all j = 1, . . . , N , then again Ph,Bθ =
Uhθ = span {Uhb1, . . . ,UhbN } ∈ �h−1. If instead eh /∈ θ but, say, bN · eh �= 0, then
in particular bN · eh = −1 and

Ph,Bθ = Uh (θ ∩ {x · eh = 0}) = Uh

⎧⎨
⎩

N∑
j=1

c j b j :
N∑
j=1

c j b j · eh = 0

⎫⎬
⎭

= Uh

⎧⎨
⎩

N∑
j=1

c j b j : cN =
N−1∑
j=1

c j b j · eh
⎫⎬
⎭ =
⎧⎨
⎩

N−1∑
j=1

c jUh
(
b j + (b j · eh

)
bN
)
⎫⎬
⎭ .

Now if b j · eh = 0 then Uh
(
b j + (b j · eh

)
bN
) = Uhb j ∈ ⋃B∈F (h−1) B. If on

the contrary b j · eh �= 0, then b j · eh = −1 and either b j + (b j · eh
)
bN = b j −

bN or its opposite belong to
⋃

B∈F (h) B. It follows that Uh
(
b j + (b j · eh

)
bN
)
or

−Uh
(
b j + (b j · eh

)
bN
)
belong to

⋃
B∈F (h−1) B. Thus, Ph,Bθ ∈ �h−1. ��

Definition 23 For every h = 2, . . . , d, and for every B = {b1, . . . , bh} ∈ F (h), define
PhB ∈ F (h−1) as PhB = {Uhb1, . . . ,Uhbh−1}. Observe that by Definition 5, PhB is
the basis used to construct B.

Notation. In the next lemmas and definitions for a given basis B ∈ F (d), we shall
call Bd = B, Bd−1 = PdB, Bd−2 = Pd−1PdB, …, B2 = P3P4 . . . PdB, and B1 =
P2P3 . . . PdB = {1}.Also, we denote by b(h)

k the k-th vector of the basisBh . Similarly,

e(h)
k denotes the k-th vector of the canonical basis of R

h .

Lemma 24 For all h � 2 and for all k = 1, . . . , h − 1, b(h−1)
k = Uhb

(h)
k ∈ Ph,Bθ if

and only if b(h)
k ∈ θ.

Proof If B ∈ F (h)
1 then b(h)

k · e(h)
h = 0. Thus if b(h)

k ∈ θ then, by Lemma 22,Uhb
(h)
k ∈

Ph,Bθ . Conversely, ifUhb
(h)
k ∈ Ph,Bθ then there exists y ∈ θ ∩{x ·e(h)

h = 0} such that
Uhb

(h)
k = Uh y, so thatUh(b

(h)
k − y) = 0. This implies that the first h−1 coordinates of

b(h)
k and y coincide. The last coordinate of y is 0 by construction, and since B ∈ F (h)

1

and k < h, the last coordinate of b(h)
k also is 0. Thus b(h)

k = y so that b(h)
k ∈ θ .
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Similarly, if B ∈ F (h)
2 then b(h)

k · 1h = 0. Thus if b(h)
k ∈ θ then Uhb

(h)
k ∈ Ph,Bθ .

Conversely, if Uhb
(h)
k ∈ Ph,Bθ then there exists y ∈ θ ∩ {x · 1h = 0} such that

Uhb
(h)
k = Uh y, so thatUh(b

(h)
k − y) = 0. This implies that the first h − 1 coordinates

of b(h)
k and y coincide. The fact that b(h)

k · 1h = 0 and y · 1h = 0 implies that also the

last coordinate of b(h)
k and y coincide. Thus b(h)

k = y so that b(h)
k ∈ θ . ��

Definition 25 For any given θ ∈ �d and for every B ∈ F (d) the multi-index Z =
ZB,θ = (z1, . . . , zd) ∈ {0, 1}d is defined recursively as follows:

zd = 0 iff e(d)
d ∈ θ

zd−1 = 0 iff e(d−1)
d−1 ∈ Pd,Bd θ

zd−2 = 0 iff e(d−2)
d−2 ∈ Pd−1,Bd−1 Pd,Bd θ

zd−3 = 0 iff e(d−3)
d−3 ∈ Pd−2,Bd−2 Pd−1,Bd Pd,Bd θ

. . .

z1 = 0 iff 1 ∈ P2,B2 . . . Pd−2,Bd−2 Pd−1,Bd−1 Pd,Bd θ

Definition 26 For any given θ ∈ �d and any multi-index V ∈ {1, 2}d define the
multi-index I = IV ,θ = (i1, . . . , id) ∈ {0, 1}d by

ik = 0 ⇐⇒ b(d)
k ∈ θ

where BV =
{
b(d)
1 , . . . , b(d)

d

}
∈ F (d) is the basis associated with V .

Lemma 27 For any given θ ∈ �d and for every BV ∈ F (d), ZBV ,θ = IV ,θ .

Proof By definition, it suffices to observe that zh = 0 if and only if e(h)
h belongs to

Ph+1,Bh+1

(
. . . Pd−1,Bd−1(Pd,Bd θ)

)
. But e(h)

h = b(h)
h is the last vector of the basis Bh

so that, by Lemma 24,

e(h)
h = b(h)

h ∈ Ph+1,Bh+1

(
. . . Pd−1,Bd−1(Pd,Bd θ)

)
,

which is equivalent to

b(h+1)
h ∈ Ph+2,Bh+2

(
. . .
(
Pd−1,Bd−1(Pd,Bd θ)

))
.

Proceeding iteratively, this is equivalent to

b(d−1)
h ∈ Pd,Bd θ,

which, in turn, is equivalent to b(d)
h ∈ θ and therefore to ih = 0. ��
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Definition 28 Fix V = (v1, v2, . . . , vd) ∈ {1, 2}d , I = (i1, . . . , id) ∈ {0, 1}d , J =
( j1, . . . , jd) a non-negative multi-index such that jh = 0 if ih = 0, that is J � I . For
each h = 1, . . . , d and for N ≥ 1, define the operators

T vh ,ih , jh
h : CN (Rh) → CN−1(Rh−1)

(if h = 1 then CN−1(Rh−1) = C) as follows: if h = 1, set

T 1,0,0
1 g =

∫ 1

0
g(x1)dx1,

T 2,0,0
1 g = 0,

T 1,1, j1
1 g = −d j1g

dx j1
(0),

T 2,1, j1
1 g = d j1g

dx j1
(1).

If 2 ≤ h ≤ d, for all x ′ ∈ R

h−1, set

T 1,0,0
h g(x ′) =

∫ 1−x ′·1

0
g(x ′, xh)dxh,

T 2,0,0
h g(x ′) = 0,

T 1,1, jh
h g(x ′) = −∂ jh g

∂x jh
h

(x ′, 0),

T 2,1, jh
h g(x ′) = ∂ jh g

∂x jh
h

(x ′, 1 − x ′ · 1).

Let us define the integro-differential functionals

μ(V , I , J ) = T v1,i1, j1
1 T v2,i2, j2

2 . . . T vd ,id , jd
d .

Lemma 29 Fix V = (v1, v2, . . . , vd) ∈ {1, 2}d , I = (i1, . . . , id) ∈ {0, 1}d and let
J = ( j1, . . . , jd) be a non-negative multi-index such that jh = 0 if ih = 0, that
is J � I . Let B = BV ∈ F (d) be the basis associated to the multi-index V, and let
θ ∈ �d be such that IV ,⊆ = I . Then

α(θ, V , J ) = (−1)|I |μ(V , I , J ).

Proof One has to go through the proof of Lemma 20 and notice that θ ′, θ1 and θ2 are
all simply Pd,Bd θ , and that B′ = PdB = Bd−1. The conclusion follows proceeding
recursively and recalling that ZB,θ = IV ,θ . ��

The above functionalα(θ, V , J ) is a compactly supported distribution,with support
contained in the simplex Sd . In particular, the dependence of α(θ, V , J ) on V , θ and
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J is condensed in the multi-indices V and I . Recall that each V ∈ {1, 2}d determines
a unique basis in F (d), precisely BV . On the other hand, given a basis B ∈ F (d)

associatedwith themulti-index V , for any I ∈ {0, 1}d theremight be several subspaces
θ ∈ �d such that IV ,θ = I . By the above lemma, all these subspaces therefore produce
identical coefficients α(θ, V , J ).

Notice that if v1 = 2, thenμ(V , I , J ) reduces to a linear combination of derivatives
of the Dirac delta centered at (1, 0, . . . , 0) of order at most |J |. This follows easily
from the fact that the only point in the simplex Sd with first coordinate equal to 1 is
(1, 0, . . . , 0). If furthermore i1 = 0, then μ(V , I , J ) = 0.

Assume v1 = 1. We already mentioned that the support of μ(V , I , J ) is contained
in the simplex Sd . Furthermore, for any h ≥ 2,

(1) if (vh, ih) = (1, 1) then the support of μ(V , I , J ) is contained in the hyperplane
xh = 0.

(2) If (vh, ih) = (2, 1) then the support of μ(V , I , J ) is contained in the hyperplane
xh = 1 − (x1 + . . . + xh−1).

(3) If (vh, ih) = (2, 0) then μ(V , I , J ) = 0.
(4) The couple (vh, ih) = (1, 0) gives no restrictions on the support of μ(V , I , J ).

Similarly, in the case h = 1,

(5) if (v1, i1) = (1, 1) then the support of μ(V , I , J ) is contained in the hyperplane
x1 = 0.

(6) The couple (v1, i1) = (1, 0) gives no restrictions on the support of μ(V , I , J ).

Remark 30 If g is smooth with compact support in Sd , then ĝχSd(ξ) = ĝ(ξ) has fast
decay at infinity.Observe that this does not contradict the above theorem. Indeed, by the
previous remarks all coefficients 〈μ(V , I , J ), g〉 vanish except when V = (1, . . . , 1)
and I = (0, . . . , 0) which implies that J = (0, . . . , 0). This choice of V and I forces
θ = R

d and Q(θ) = {0}. In this case we have

ĝχSd(0) =
∫
Sd

g(x)dx .

For ξ �= 0 all the coefficients 〈μ(V , I , J ), g〉 vanish so that

ĝχSd(ξ) = Rθ,w(g, ξ).

3.2 General Simplex

With an affine change of variables Lemma 20 for the standard simplex can be trans-
ferred to a general simplex.

Definition 31 Let M ∈ GL(d, Z) and let B = {b1, . . . , bd} ∈ F (d). Then we shall
denote by MB the basis {Mb1, . . . , Mbd} and by MF (d) the collection of the bases
MBwithB ∈ F (d). SimilarlyM�d is the collection of all the spacesMθ with θ ∈ �d .
Clearly M�d consists of all subspaces generated by any possible choice of vectors in
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MF (d). For every η ∈ M�d we set

QM (η) =
⎧⎨
⎩ξ ∈ R

d : for all v ∈
⋃

B∈F (d)

MB, ξ · v = 0 iff v ∈ η

⎫⎬
⎭ .

Lemma 32 Let M ∈ GL(d, Z). For every θ ∈ �d

QM (Mθ) = (Mt )−1Q(θ).

Proof This follows immediately from the definitions. Observe that ξ ∈ (Mt )−1Q(θ)

if and only if Mtξ ∈ Q(θ) if and only if, for all b ∈ ⋃
B∈F (d)

B,

Mtξ · b = ξ · Mb = 0 iff b ∈ θ,

if and only if, for every v ∈ ⋃
B∈F (d),

MB,

ξ · v = 0 iff v ∈ Mθ ,

if and only if ξ ∈ QM (Mθ). ��
Lemma 33 Let P be a simplex in R

d with vertices 0,m1, . . . ,md ∈ Z

d and let M ∈
GL(d, Z) be the d×d matrix with columnsm1,m2, . . . ,md , whichmaps the standard
simplex Sd onto P . Let q ∈ Cw+1(Rd) with w ∈ N, let Q(x) = q(x)χτP (x) with
τ > 0, and let qτ,M (x) = q(τMx). Then, following the definitions and notations of
the previous section, for every θ ∈ �d and ξ ∈ QM (Mθ),

Q̂(ξ) =
∫

τP
q(x)e−2π i x ·ξdx

= τ d det(M)
∑

V∈{1,2}d

∑
|J |�w,J�IV ,θ

(−1)|IV ,θ | 〈μ(V , IV ,θ , J ), qτ,M
〉
e−2π iτMλV ·ξ

∏
bk∈BV \θ (2π iτMbk · ξ) jk+1

+ τ d det(M)Rθ,w(qτ,M , τMtξ).

In the above formula we adopt the convention: BV = {b1, . . . , bd} is the basis asso-
ciated with the multi-index V = (v1, v2, . . . , vd), IV ,θ = (i1, . . . , id) ∈ {0, 1}d is the
multi-index such that ik = 0 if and only if bk ∈ θ , J � IV ,θ means that jk = 0 if
ik = 0. The coefficients

〈
μ(V , IV ,θ , J ), qτ,M

〉
and the remainder Rθ,w(qτ,M , τMtξ)

are the ones defined in Lemma 20 and Definition 28. In particular they satisfy the
following:

(i) the coefficients
〈
μ(V , IV ,θ , J ), qτ,M

〉
satisfy the estimate

∣∣〈μ(V , IV ,θ , J ), qτ,M
〉∣∣ � c2(d−1)|J | sup

|α|�|J |
sup
x∈Sd

∣∣∣∣∂
αqτ,M

∂xα
(x)

∣∣∣∣ .
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(ii) The remainder Rθ,w(qτ,M , τMtξ) has the following property: for every
� > 1/(2π) and every τ0 > 0 there exists a constant c = c(d,�, τ0) >

0 independent of qτ,M and w such that for every τ > τ0 the coefficients{
χQM (Mθ)(n)Rθ,w(qτ,M , τMtn)

}
n∈Zd are the Fourier coefficients of a function on

the torus T

d bounded by

c(2d−1�τ−1)w+1 sup
w−d+2�|α|�w+1

sup
x∈Sd

∣∣∣∣∂
αqτ,M

∂xα
(x)

∣∣∣∣ .

Proof This lemma follows from Lemma 20 via an affine change of variables. Define

G(x) = Q(τMx) = q(τMx)χτP (τMx) = qτ,M (x)χSd (x).

Then,

Q̂(ξ) =
∫
Rd

Q(x)e−2π iξ ·xdx = τ d det(M)

∫
Rd

Q(τMx)e−2π iξ ·τMxdx

= τ d det(M)

∫
Rd

Q(τMx)e−2π iτMt ξ ·xdx

= τ d det(M)Ĝ(τMtξ).

Applying Lemma 20 to the function G(x) we obtain the desired expansion. The same
lemma also shows that

{
χQ(θ)(n)Rθ,w(qτ,M , τn)

}
n∈Zd are the Fourier coefficients of

a function on the torus bounded by

U (2d−1�τ−1)w+1 sup
w−d+2�|α|�w+1

sup
x∈Sd

∣∣∣∣∂
αqτ,M

∂xα
(x)

∣∣∣∣

where U is the same constant that appears in Lemma 20. By Lemma 40 in Appendix
A,
{�Q(θ)(Mtn)Rθ,w(qτ,M , τMtn)

}
n∈Zd are the Fourier coefficients of a function on

the torus satisfying the same bound. ��

4 Expansion in Multivariate Bernoulli Polynomials

In this section we shall prove our Theorem 7. Let us start with a lemma on the Fourier
expansion of the multivariate Bernoulli polynomials.

Lemma 34 Let ϕ be a non-negative, radial, smooth function in R

d , with compact
support and integral one. Let J = ( j1, j2, . . . , jd) be a multi-index of non-negative
integers and let L ∈ GL(d, Z). If BJ ,L(x) are as in Definition 4, then, for every
x ∈ R

d ,

BJ ,L(x) = lim
ε→0+

⎧⎨
⎩(−1)|I |

∑
n∈�(I ,L)

ϕ̂(εn)
e2π in·x

(2π i Ln)J

⎫⎬
⎭ .
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Here, I = (i1, . . . , id) with ik = 0 if jk = 0 and ik = 1 if jk > 0, and the set �(I , L)

is the subset of frequencies in Z

d defined by

�(I , L) =
{
n ∈ Z

d : (Ln)k = 0 iff ik = 0
}

.

Finally, in the denominators

(2π i Ln)J = (2π i (Ln)1)
j1(2π i (Ln)2)

j2 · · · (2π i (Ln)d)
jd

we adopt the convention that 00 = 1. In particular, all the denominators in the Fourier
expansion of BJ ,L(x) are different from zero.

Proof Recall that if f (x) is an integrable functionwith Fourier transform f̂ (ξ) and L is
a non-singular matrix, then f̂ (Lξ) is the Fourier transform of | det L|−1 f

(
(L−1)t x

)
.

Moreover, if f (x) is a function with bounded support, the Poisson summation formula
gives

| det L|−1
∑
n∈Zd

ϕε ∗ f
(
(L−1)t (x + n)

)
=
∑
n∈Zd

ϕ̂(εn) f̂ (Ln)e2π inx .

Observe that the series on the left is finite and the one on the right is absolutely
convergent and that the application of the summation formula is legitimate (see Lemma
13). Then the lemma follows by choosing f (x) = BJ (x) = Bj1(x1) · · · Bjd (xd).
Indeed, for every n in Z

d , one has

∫
Rd

BJ (x)e
−2π in·xdx =

d∏
k=1

∫ 1

0
Bjk (xk)e

−2π ink ·xk dxk

=
d∏

k=1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−1/ (2π ink) jk if jk �= 0 and nk �= 0,

0 if jk �= 0 and nk = 0,

0 if jk = 0 and nk �= 0,

1 if jk = 0 and nk = 0.

Hence, by the definition of �(I , L),

∫
Rd

BJ (x)e
−2π i Ln·xdx =

{
(−1)|I |/(2π i Ln)J if n ∈ �(I , L),

0 if n /∈ �(I , L).

��
We shall also need the following lemma.

Lemma 35 For a fixed V ∈ {1, 2}d and for every I ∈ {0, 1}d we have

⋃
θ∈�d :IV ,θ=I

[
Z

d ∩ QM (Mθ)
]

= �
(
I , (MDV )t

)
.
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Here if, as usual, BV = {b1, . . . , bd} is the basis associated with the multi-index V ,
then IV ,θ = (i1, . . . , id) where ik = 0 if and only if bk ∈ θ , and DV is the matrix with
columns b1, . . . , bd .

Proof Assume that

m ∈
⋃

θ∈�d :IV ,θ=I

[
Z

d ∩ QM (Mθ)
]

Thenm ∈ QM (Mθ) for some θ such that IV ,θ = I . Thus, if bk ∈ BV , thenm ·Mbk = 0
if and only if bk ∈ θ , but since IV ,θ = I , then bk ∈ θ if and only if ik = 0. Thus
m · Mbk = 0 if and only if ik = 0, which implies m ∈ �

(
I , (MDV )t

)
, since

�
(
I , (MDV )t

) = {m ∈ Z

d : (MDV )tm · ek = 0 iff ik = 0
}

=
{
m ∈ Z

d :
(
(MDV )tm

)t
ek = 0 iff ik = 0

}

=
{
m ∈ Z

d : mtMDV ek = 0 iff ik = 0
}

=
{
m ∈ Z

d : mtMbk = 0 iff ik = 0
}

=
{
m ∈ Z

d : m · Mbk = 0 iff ik = 0
}

.

Conversely, if m ∈ �
(
I , (MDV )t

)
, that is if m ∈ Z

d is such that Mbk · m = 0 if
and only if ik = 0, then, calling

θm = 〈b in the bases : Mb · m = 0〉 ,

we have IV ,θm = I , (indeed, setting IV ,θm = (r1, . . . , rd), we have rk = 0 if and
only if bk ∈ θm if and only if Mbk · m = 0 if and only if ik = 0). Finally, obviously,
m ∈ QM (Mθm). ��

We are ready to prove our main result.

Proof of Theorem 7 Let Q(x) = χτP (x)q(x). We have

∑
n∈Zd

ϕε ∗ Q(x + n) =
∑
n∈Zd

ϕ̂(εn)Q̂(n)e2π in·x

=
∑
θ∈�d

∑
n∈Zd∩QM (Mθ)

ϕ̂(εn)Q̂(n)e2π in·x .

Since the multiplier ϕ̂(εn) is rapidly decreasing the series converge absolutely and the
rearrangements of the terms of the series are allowed. Then, by Lemma 33,
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∑
n∈Zd

ϕε ∗ Q(x + n)

=
∑
θ∈�d

∑
n∈Zd∩

QM (Mθ)

ϕ̂(εn)τ d det(M)
∑

V∈{1,2}d

∑
|J |�w

(−1)|IV ,θ | 〈μ(V , IV ,θ , J ), qτ,M
〉
e−2π i(τMλV )·ne2π in·x∏

bk∈BV \θ (2π iτMbk · n) jk+1

+
∑
θ∈�d

∑
n∈Zd∩QM (Mθ)

ϕ̂(εn)τ d det(M)Rθ,w(qτ,M , τMtn)e2π in·x

=
∑

V∈{1,2}d

∑
θ∈�d

�(V , θ) +
∑
θ∈�d

�(θ)

where

�(V , θ) = τ d det(M)
∑

|J |�w

〈
μ(V , IV ,θ , J ), qτ,M

〉

× (−1)|IV ,θ | ∑
n∈Zd∩QM (Mθ)

ϕ̂(εn)
e2π i(x−τMλV )·n∏

bk∈BV \θ (2π iτMbk · n) jk+1 .

Rearranging the sum we have

∑
V∈{1,2}d

∑
θ∈�d

�(V , θ) =
∑

V∈{1,2}d

∑
I∈{0,1}d

∑
θ∈�d :IV ,θ=I

�(V , θ)

=
∑

V∈{1,2}d

∑
I∈{0,1}d

∑
θ∈�d :IV ,θ=I

τ d det(M)

∑
|J |�w

〈
μ(V , I , J ), qτ,M

〉

× (−1)|I |
∑

n∈Zd∩QM (Mθ)

ϕ̂(εn)
e2π i(x−τMλV )·n∏

bk∈BV \θ (2π iτMbk · n) jk+1

= det(M)
∑

V∈{1,2}d

∑
I∈{0,1}d

∑
|J |�w

τ d
〈
μ(V , I , J ), qτ,M

〉

× (−1)|I |
∑

θ∈�d :IV ,θ=I

∑
n∈Zd∩QM (Mθ)

ϕ̂(εn)

e2π i(x−τMλV )·n∏
bk∈BV \θ (2π iτMbk · n) jk+1

= det(M)
∑

V∈{1,2}d

∑
I∈{0,1}d

∑
|J |�w

τ d−|J |−|I | 〈μ(V , I , J ), qτ,M
〉

× (−1)|I |
∑

θ∈�d :IV ,θ=I

∑
n∈Zd∩QM (Mθ)

ϕ̂(εn)

e2π i(x−τMλV )·n∏
bk∈BV

(2π iMbk · n) jk+ik
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with the usual convention that in the denominators 00 = 1. Now, since Z

d ∩(⋃
θ :IV ,θ=I QM (Mθ)

)
= �
(
I , (MDV )t

)
by Lemma 35, we have

∑
θ∈�d :IV ,θ=I

∑
n∈Zd∩QM (Mθ)

ϕ̂(εn)
e2π i(x−τMλV )·n∏

bk∈BV
(2π iMbk · n) jk+ik

=
∑

n∈�(I ,(MDV )t)

ϕ̂(εn)
e2π in·(x−τMλV )∏

bk∈BV
(2π iMbk · n) jk+ik

.

Observe that Mbk · n = (btkM
t )n = (Dt

V M
t )kn = ((MDV )t n

)
k = ((MDV )t n

) · ek .
Hence,

(−1)|I |
∑

n∈�(I ,(MDV )t)

ϕ̂(εn)
e2π in·(x−τMλV )∏

bk∈BV
(2π iMbk · n) jk+ik

= (−1)|I |
∑

n∈�(I ,(MDV )t)

ϕ̂(εn)
e2π in·(x−τMλV )

∏
bk∈BV

(2π i ((MDV )t n) · ek) jk+ik

= (−1)|I |
∑

n∈�(I ,(MDV )t)

ϕ̂(εn)
e2π in·(x−τMλV )

(2π i(MDV )t n)J+I

= ϕε ∗ BJ+I ,(MDV )t (x − τMλV ).

Since J � I , the vanishing components of J + I appear in the same spots as those of
I , so that �

(
I , (MDV )t

) = �
(
I + J , (MDV )t

)
. Hence, the principal part becomes

∑
V∈{1,2}d

∑
θ∈�d

�(V , θ)

= det(M)
∑

V∈{1,2}d

∑
I∈{0,1}d

∑
|J |�w

τ d−|J |−|I | 〈μ(V , I , J ), qτ,M
〉

ϕε ∗ BJ+I ,(MDV )t (x − τMλV ).

Let us consider now the remainder

�(θ) = τ d det(M)
∑

n∈Zd∩QM (Mθ)

ϕ̂(εn)Rθ,w(qτ,M , τMtn)e2π in·x .

For every θ ∈ �d , by Lemma 33, �(θ) is a function bounded by

cτ d−w−1 det(M)(2d−2π−1 + δ)w+1 sup
w−d+2�|α|�w+1

sup
x∈Sd

∣∣∣∣∂
αqτ,M

∂xα
(x)

∣∣∣∣

It follows that
∑

θ∈�d
�(θ) is a bounded function,with the same bound. Letting ε → 0

gives the desired result. ��
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5 Proofs of Theorems 10 and 11

Theorems 10 and 11 are corollaries of Theorem 7. In particular, Theorem 10 follows
applying the next result to a decomposition of the given polytope into simplices.

Theorem 36 Let Sd be the standard simplex inR

d , letP = MSd with M ∈ GL(d, Z).
Let p ∈ Z

d , let w be a non-negative integer and let f ∈ Cw+1(Rd). Then, there exists
a numerical sequence {γk}0<k�w/2 such that for every positive integer N we have

N−d
∑
n∈Zd

ωp+P (N−1n) f (N−1n) =
∫
p+P

f (x)dx +
∑

0<k�w/2

γk N
−2k + O(N−w−1).

More precisely, with the notation in Theorem 7,

γk = det(M)
∑

V∈{1,2}d

∑
I∈{0,1}d

∑
J�I , |I+J |=2k

〈μ(V , I , J ), f (p + M ·)〉BJ+I ,(MDV )t (0).

Proof Assume first p = 0. Since

N−d
∑
n∈Zd

ωP (N−1n) f (N−1n) = N−d
∑
n∈Zd

ωNP (n) f (N−1n),

we apply Theorem 9 with τ = N to the function qN (x) = f (N−1x). Let gN ,M (x) =
qN (NMx), then

N−d
∑
n∈Zd

ωNP (n) f (N−1n)

= det(M)
∑

V∈{1,2}d

∑
I∈{0,1}d

∑
|J |�w,J�I

N−|J |−|I | 〈μ(V , I , J ), gN ,M
〉
BJ+I ,(MDV )t (0)

+ N−dRw(0)

with

∣∣∣N−dRw(x)
∣∣∣ � cN−w−1 det(M)(2d−2π−1 + δ)w+1 sup

w−d+2�|α|�w+1
sup
x∈Sd

∣∣∣∣∂
αgN ,M

∂xα
(x)

∣∣∣∣ .

Since gN ,M (x) = f (Mx), then

N−d
∑
n∈Zd

ωMSd (N
−1n) f (N−1n)

= det(M)
∑

V∈{1,2}d

∑
I∈{0,1}d

∑
|J |�w,J�I

N−|J |−|I | 〈μ(V , I , J ), f (M ·)〉BJ+I ,(MDV )t (0)

+ N−dRw(0).
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Now observe that when I = (0, . . . , 0) and therefore J = (0, . . . , 0) we have

μ(V , I , J ) = 0

if V �= (1, . . . , 1), whereas when V = (1, . . . , 1) we have

〈μ(V , I , J ), f (M ·)〉 =
∫
Sd

f (Mx)dx = det(M)−1
∫
MSd

f (x)dx .

Also observe that

BJ+I ,(MDV )t (0) = 0

whenever |J | + |I | is odd. Indeed, since �(I + J , (MDV )t ) is a cone and ϕ is radial,
by Lemma 34 we have

BI+J ,(MDV )t (0) = lim
ε→0+

⎧⎨
⎩(−1)|I |

∑
n∈�(I+J ,(MDV )t )

ϕ̂(εn)

(2π i(MDV )t n)I+J

⎫⎬
⎭

= lim
ε→0+

⎧⎨
⎩(−1)|I |

∑
n∈�(I+J ,(MDV )t)

ϕ̂(εn)

(−2π i(MDV )t n)I+J

⎫⎬
⎭

= (−1)|I+J |BI+J ,(MDV )t (0).

Therefore,

N−d
∑
n∈Zd

f (N−1n)ωMSd (N
−1n) =

∫
MSd

f (x)dx

+
∑
k≥1

N−2k
(
det(M)

∑
V∈{1,2}d

∑
I∈{0,1}d

∑
|J |�w,J�I ,

|I+J |=2k

〈μ(V , I , J ), f (M ·)〉BJ+I ,(MDV )t (0)
)

+ N−dRw(0)

=
∫
MSd

f (x)dx +
∑

0<2k�w

γk N
−2k + O(N−w−1)

where

γk = det(M)
∑

V∈{1,2}d

∑
I∈{0,1}d

∑
J�I , |I+J |=2k

〈μ(V , I , J ), f (M ·)〉BJ+I ,(MDV )t (0).

Now assume p �= 0. Then
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N−d
∑
n∈Zd

ωp+P (N−1n) f (N−1n) = N−d
∑
n∈Zd

ωP (N−1n − p) f (N−1n)

= N−d
∑
n∈Zd

ωP (N−1n) f (N−1n + p).

Hence, the case p �= 0 follows from the case p = 0 applied to the function
f (x + p). ��
Theorems 10 and 11 are now easily deduced.

Proof of Theorem 10 We use Theorem 36 and the additivity of SN ( f ,P) with respect
to P . ��
Proof of Theorem 11 By Theorem 10,

SN ( f ,P) =
∫
P

f (x) dx +
∑

0<k�w/2

γk N
−2k + O

(
N−w−1

)
.

Then

∑
0� j�w/2

c j S2 j N ( f ,P)

=
( ∑

0� j�w/2

c j

)∫
P

f (x)dx +
∑

0<k�w/2

γk N
−2k
( ∑

0� j�w/2

c j2
−2k j
)

+ O(N−w−1)

and the conclusion follows since the Vandermonde system is solvable. ��
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Appendix A: Some Basic Facts on the Harmonic Analysis on Commuta-
tive Groups

The following results on the harmonic analysis on groups, subgroups and quotient
spaces are well known (see [31, Sect. 2.7]). We include the case of the torus for the
reader’s convenience.

http://creativecommons.org/licenses/by/4.0/
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Definition 37 LetH be a subgroupofZd . The annihilator ofH is the compact subgroup
H⊥ of T

d given by

H⊥ =
{
t ∈ T

d : ∀h ∈ H, t · h ∈ Z

}
=
{
h ∈ Z

d : ∀t ∈ H⊥, e2π i t ·h = 1
}

.

Lemma 38 We have

H =
{
h ∈ Z

d : ∀t ∈ H⊥, t · h ∈ Z

}
.

This is a particular case of Lemma 2.1.3 in [31]. The following is a direct elementary
proof.

Proof Let h ∈ H, then by definition t · h ∈ Z for every t ∈ H⊥. To show the converse
observe that since every subgroup ofZ

d is a lattice, there exists an integer d×q matrix
B, with q � d, of maximal rank such that

H = {Bz : z ∈ Z

q} .
Then

H⊥ =
{
t ∈ T

d : ∀z ∈ Z

q , Bz · t ∈ Z

}
=
{
t ∈ T

d : ∀z ∈ Z

q , z · Bt t ∈ Z

}

=
{
t ∈ T

d : Bt t ∈ Z

q
}

.

Since B has rank q we can assume without loss of generality that there exists a q × q
invertible matrix C and a q × (d − q) matrix D such that Bt = [C D

]
. Hence for

t = (t1, t2),

Bt t = Ct1 + Dt2 = z ∈ Z

q .

It follows that

H⊥ =
{(

C−1(z − Dt2), t2
)

: z ∈ Z

q , t2 ∈ T

d−q
}

.

Now, letm ∈ Z

d such that for every t ∈ H⊥ we havem ·t ∈ Z. Then, ifm = (m1,m2),
for every z ∈ Z

q , t2 ∈ T

d−q we have

(m1,m2) ·
(
C−1(z − Dt2), t2

)
= m1 · C−1z − m1 · C−1Dt2 + t2 · m2 ∈ Z. (3)

Let t2 = 0. Then m1 · C−1z ∈ Z and hence
(
C−1
)t
m1 · z ∈ Z for every z ∈ Z

q .

Therefore
(
C−1
)t
m1 ∈ Z

q . It follows that m1 = Cth for some h ∈ Z

q . From (3) we
obtain that

Cth · C−1z − Cth · C−1Dt2 + t2 · m2
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= h · z − h · Dt2 + t2 · m2

is an integer for every t2 ∈ T

d−q . It follows that for every t2 ∈ T

d−q we have

(m2 − Dth) · t2 ∈ Z,

this implies that m2 = Dth and therefore m = Bh ∈ H. ��
Let dμ be the Haar measure on H⊥. Since H⊥ is compact we can assume that

|dμ| = 1.

Lemma 39 With the normalized Haar measure dμ on H⊥, for every m ∈ Z

d we have

∫
H⊥

e2π im·t dμ(t) =
{
1 m ∈ H,

0 m /∈ H.

Proof The case m ∈ H is immediate since e2π im·t = 1 for every t ∈ H⊥. Let m /∈ H.
By Lemma 38 there exists t0 ∈ H⊥ such that e2π im·t0 �= 1. By the invariance of the
Haar measure we have

∫
H⊥

e2π im·t dμ(t) =
∫
H⊥

e2π im·(t0+t)dμ(t) = e2π im·t0
∫
H⊥

e2π im·t dμ(t).

Hence

∫
H⊥

e2π im·t dμ(t) = 0.

��
Lemma 40 LetH be a subgroup of Zd and let dμ be the normalized Haar measure on
the annihilator H⊥. In particular dμ is a probability measure on T

d . Let f ∈ L1(Td)

and let g(s) = μ ∗ f (s), that is

g(s) =
∫
H⊥

f (s − t)dμ(t).

Then,
(i) ‖g‖∞ � ‖ f ‖∞;
(ii)

ĝ(m) =
{
f̂ (m) m ∈ H,

0 m /∈ H.
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Proof (i) follows from the fact that the convolution with a probability measure is
an operator with norm 1 on L∞ (

T

d
)
. (i i) follows from the fact that ̂μ ∗ f (m) =

μ̂(m) f̂ (m) and

μ̂(m) =
∫
H⊥

e−2π im·t dμ(t) =
{
1 m ∈ H,

0 m /∈ H.

��

Appendix B: Bernoulli Polynomials and Lerch Zeta Functions

Here we give a different description of the functions BJ ,L(x). Such functions were
defined (Definition 4) starting with a product of Bernoulli polynomials, restricting
this product to the unit cube, composing it with an affine transformation and finally
periodizing. One may ask if these operations commute and if these functions can be
obtained as a linear combination of affine transformation of the periodic multivariate
Bernoulli polynomials BJ ,Id (here Id denotes the identity matrix).

We start from the Fourier expansion

BJ ,L(x) = lim
ε→0+(−1)|I |

∑
n∈�(I ,L)

ϕ̂(εn)
e2π inx

(2π i Ln)J

with the usual conventions on the notation (Lemma 34). In particular, the multi-index
I = (i1, . . . , id) is such that ik = 0 if jk = 0 and ik = 1 if jk > 0. Recall that
in the points of discontinuity the definition of BJ ,L is by regularization and that
L ∈ GL(d, Z). Assume now that x is a point of continuity, so that the mollifier
ϕ may not be taken to be necessarily radial. More precisely, we may set ϕ(x) =
| det L|−1ψ

(
(LT )−1x

)
where

ψ(x) = η(x1) . . . η(xd)

and η is a non-negative smooth function with compact support and integral one. In
particular

ϕ̂(ξ) = ψ̂(Lξ).

Since L has integer entries, L has a unique (column) Hermite normal form H , that
is, L = HU , where H is a lower triangular matrix with positive coefficients on the
diagonal and such that all the other coefficients are nonnegative and smaller than the
diagonal coefficient in the same row, whereas U is a unimodular integer matrix. The
invertibility of the linear map n �→ Un in Z

d immediately implies that the lattice LZ

d

coincides with the lattice HZ

d , and more specifically

{Ln : n ∈ �(I , L)} = {HUn : n ∈ �(I , L)} = {Hm : m ∈ �(I , H)} .
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Thus, setting y = (L−1)T x , one obtains

BJ ,L(x) = lim
ε→0+(−1)|I |

∑
n∈�(I ,L)

ϕ̂(εn)
e2π in·x

(2π i Ln)J

= lim
ε→0+(−1)|I |

∑
n∈�(I ,L)

ϕ̂(εL−1Ln)
e2π i Ln·y

(2π i Ln)J

= lim
ε→0+(−1)|I |

∑
m∈�(I ,H)

ϕ̂(εL−1Hm)
e2π i Hm·y

(2π i Hm)J

= lim
ε→0+(−1)|I |

∑
m∈�(I ,H)

ψ̂(εHm)
e2π i Hm·y

(2π i Hm)J
.

Let now H = (h j,k), k j = ∏d
s= j hs,s for all j = 1, . . . , d, and set K =

diag(k1, . . . , kd) to be the corresponding diagonal matrix. We claim that KZ

d ⊆
HZ

d . Indeed, it suffices to show that all vectors Ke j belong to HZ

d . Obviously,
Ked = hd,ded = Hed . By induction, assuming that Kes ∈ HZ

d for all s =
j + 1, j + 2, . . . , d, let us show that Ke j ∈ HZ

d . We have

Ke j = h j, j · · · hd,de j

=
d∑

s= j

hs, j h j+1, j+1 . . . hd,des −
d∑

s= j+1

hs, j h j+1, j+1 . . . hd,des

= H(h j+1, j+1 . . . hd,de j ) −
d∑

s= j+1

hs, j h j+1, j+1...
(
hs,s . . . hd,des

)

= H(h j+1, j+1 . . . hd,de j ) −
d∑

s= j+1

hs, j h j+1, j+1...hs−1,s−1Kes ∈ HZ

d

and the claim is proved. Observe that there is a finite number of different integer
translates of KZ

d (precisely k1k2 . . . kd ). Take any point of HZ

d which is not in KZ

d ,
say v(1). By linearity it follows that v(1) + KZ

d is contained in HZ

d and is disjoint
from KZ

d . Take again a second vector in HZ

d which is not in KZ

d∪(v(1)+KZ

d), say
v(2). Then v(2)+KZ

d is contained in HZ

d (and is disjoint from KZ

d ∪(v(1)+KZ

d)).
We can iterate this procedure until we exhaust all of HZ

d . In other words, we have

LZ

d = HZ

d =
L⋃

�=1

(v(�) + KZ

d)
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where the union is a disjoint union. Thus, recalling that y = (L−1)T x ,

BJ ,L(x) = lim
ε→0+(−1)|I |

∑
m∈�(I ,H)

ψ̂(εHm)
e2π i Hmy

(2π i Hm)J

= lim
ε→0+(−1)|I |

L∑
�=1

∑
m∈Zd

v
(�)
s +(Km)s=0 iff is=0

ψ̂
(
ε(v(�) + Km)

) e2π i(v
(�)+Km)y

(
2π i(v(�) + Km)

)J

= lim
ε→0+(−1)|I |

L∑
�=1

d∏
s=1

s.t. is=1

e2π iv
(�)
s ys

∑
ms∈Z

ms �=− v
(�)
s
ks

η̂
(
ε(v(�)

s + ksms)
) e2π iksms ys

(
2π i(v(�)

s + ksms)
) js

=
L∑

�=1

d∏
s=1

s.t. is=1

(2π iks)
− js e2π iv

(�)
s ys×

× lim
ε→0+(−1)

∑
ms∈Z

ms �=− v
(�)
s
ks

η̂

(
εks

(
v

(�)
s

ks
+ ms

))
e2π ims (ks ys )

(
v

(�)
s
ks

+ ms

) js

=
L∑

�=1

d∏
s=1

s.t. is=1

e2π iv
(�)
s ys (2π iks)

− js L js

(
ks ys,

v
(�)
s

ks

)

where for j ≥ 1 we set

L j (x, r) = − lim
ε→0+

∑
n∈Z\{−r}

η̂ (ε(n + r))
e2π inx

(n + r) j
.

Observe that for r ∈ Z

L j (x, r) = e−2π ir x (2π i) j B j (x)

where Bj (x) is the j-th Bernoulli polynomial, whereas when r /∈ Z the function
L j (x, r) is related to the Lerch Zeta function

L(x, j, r) =
+∞∑
n=0

e2π inx

(n + r) j
.
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Indeed, formally,

L j (x, r) = −
∑
n∈Z

n+r �=0

e2π inx

(n + r) j
= −L(x, j, r) − (−1) jL(−x, j,−r) + r− j .

Moreover, when r = p/q is rational, it is not difficult to write L j (x, r) in terms
of periodic Bernoulli polynomials. Indeed, one can verify that for every periodic
integrable function f (x),

1

q

q−1∑
a=0

e−2π i p
q (x+a) f

(
x + a

q

)
=
∑
n∈Z

f̂ (nq + p) e2π inx .

Therefore, with f (x) = Bj (x),

L j (x, p/q) = −
∑
n∈Z

n+p/q �=0

e2π inx

(n + p/q) j
= (2π iq) j

∑
n∈Z

nq+p �=0

−1

(2π i(nq + p)) j
e2π inx

= (2π iq) j
∑
n∈Z

B̂ j (nq + p) e2π inx = (2π iq) j e−2π i x p
q
1

q

q−1∑
a=0

e−2π ia p
q B j

(
x + a

q

)
.

Thus,

BJ ,L(x) =
L∑

�=1

d∏
s=1

s.t. is=1

e2π iv
(�)
s ys (2π iks)

− js L js

(
ks ys,

v
(�)
s

ks

)

=
L∑

�=1

d∏
s=1

s.t. is=1

1

ks

ks−1∑
a=0

e−2π i v
(�)
s
ks

a B js

(
ys + a

ks

)
.

Now, recalling that K = diag(k1, . . . , kd), if we set K I = diag(ki11 , . . . , kidd ) so
that ks is replaced with 1 whenever is = 0, then

BJ ,L(x) =
L∑

�=1

d∏
s=1

s.t. is=1

1

ks

ks−1∑
a=0

e−2π i v
(�)
s
ks

a B js

(
ys + a

ks

)

=
L∑

�=1

k
i1
1 −1∑
a1=0

1

ki11
e
−2π i

v
(�)
1

k
i1
1

a1
Bj1

(
y1 + a1

ki11

)
· · ·
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k
id
d −1∑
ad=0

1

kidd
e
−2π i

v
(�)
d

k
id
d

ad
B jd

(
yd + ad

kidd

)

=
L∑

�=1

det
(
K I
)−1 ∑

0�A�K I−1

e−2π i((K I )−1)A·v(�)

BJ ,Id

(
(L−1)T x + (K I )−1A

)
,

where 0 � A = (a1, . . . , ad) � K I − 1 means 0 � as � kiss − 1.
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