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Abstract

We provide a multidimensional weighted Euler—-MacLaurin summation formula on
polytopes and a multidimensional generalization of a result due to L. J. Mordell on
the series expansion in Bernoulli polynomials. These results are consequences of a
more general series expansion; namely, if x, denotes the characteristic function of a
dilated integer convex polytope P and ¢ is a function with suitable regularity, we prove
that the periodization of g x, admits an expansion in terms of multivariate Bernoulli
polynomials. These multivariate polynomials are related to the Lerch Zeta function.
In order to prove our results we need to carefully study the asymptotic expansion of
G x+p- the Fourier transform of g x,p.

Keywords Euler—MacLaurin summation formula - Bernoulli polynomials - Fourier
transform

Mathematics Subject Classification 11B68 - 65B15 - 42B05

1 Introduction

Our goal is to generalize to higher dimensions a result due to L. J. Mordell and to
deduce from this generalization a multidimensional weighted version of the classical
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Euler-MacLaurin formula and an associated quadrature rule. We first recall these
results in the one dimensional setting. In order to do so we introduce the classical
Bernoulli polynomials; there are two possible normalizations that differ by a n! factor
and we use the following one.

Definition 1 The periodized Bernoulli polynomials { B, },,cy are the periodic functions
that in the interval (0, 1) are defined recursively by the conditions

d 1

Bo) =1, “=Byuyi(x) = By(x), f Byy1(x)dx = 0.
dx 0

The value of these periodized functions when x is an integer is given by

By(x +¢&)+ By(x —¢)
lim .

e—>0+ 2

B,(x) =
Mordell’s theorem reads as follows.

Theorem 2 (Mordell 1966 [27, 28]) Let a < b and set

0 X <aorx >b,
W[a,p](x) =11 a<x<b,
1/2 x =aorx =0>.

() Ifg € C*TY(R) n € N, then, for every x € R,

Z O (5 + 1) (5 + ) f q(y)dy+2( L 6)By1(r )
- E‘f(u)B,-H(x ~a))
b w+1q
—/ W(}’)Bwﬂ(x_}’)d}’-

(i) If g € C*°(R) and

1\¥ rb|qw
w—+o0 \ 271 a

7 wH(y)'dy—O

then, for every x € R,

+00
> et +matetm= [ aidy + Z (LB~

n=-—00 a

d’
~= S @B —a).
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Mordell’s original resultis essentially (ii) above witha = Oand b = 1. Observe that
the assumption on the growth of the derivatives of g (x) implies that this function can
be analytically extended to the entire complex plane. The example g (x) = cos(2mx),
which is 1-periodic and has expansion zero, shows that this assumption is sharp.
Variants of this theorem seem to be prior to Mordell’s work (see e.g. [8]).

An immediate application of Theorem 2 is the classical Euler—-MacLaurin summa-
tion formula. Indeed, from (7), when a, b € Z and x = 0, since B;1(0) = 0 for even
values of j, we obtain, for g € C**! (R),

1 1
‘54(61)+Q(a+ D+ +q0b-1D+ EQ(b)

b L(w+1)/2] 42i-1 2j—1
q " q
—/a q(y)dy — X; <m(b) - m(@) sz(O)'
=
w1\ [P]d"Tq
SE(E) g dw+1()’)’dy

It is well known that the above Euler—MacLaurin formula provides a quadrature
rule. Indeed, settinga = 0,b = N € ZT andq(x) = f (x/N) /N with f € C*T(R),
one obtains

: (y)d _l<l © l N__l) 1 1
[ oy = (Grove s ()44 1 (F) +300)

Lw/2] 2j—1 2j—1
Lo (a¥ty o dd w-t
+ Zl W(d 71O — 5 (1)) B2j(0) + O(N™"™").
]:

Notice that only even powers of N appear in the remainder terms.
To state our results in the multidimensional setting we need to introduce a number
of definitions.

Definition 3 Let 7 be a measurable subset in R?. For every x € RY the normalized

solid angle at x is given by

1
wp(x) = —_— xp(x —ey)dy.
0+ Iyl < 1} Jiy<a

Assuming that the above limit exists for every x € R?, then, for every continuous
function f (x) and for every positive integer N, we set

Sn(f,P)y=N"1 Z wp(N"'n) fF(N"In).

neZd

When P is a convex polytope (the convex hull of a finite number of points) the
weight wp (x) is well defined for every x € RY. When d = 3 the value of wp(x)
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can be computed explicitly from the coordinates of the vertices of the polytope using
standard formulas of spherical trigonometry. See e.g. [17]. When d > 3 see [2], [5]
and [29].

These weights wp (x) and weighted sums Sy (g, P) are not new in the literature; for
example MacDonald showed that if P is a convex integer polytope (that is a convex
polytope with integer vertices) and t is an integer dilation, then

if d is odd,
Z wep(n) = (VOIP)T? +ag_rt4 2+ + 0172 1 %S 0
nezd art- if d is even.

See e.g. [4] and [15].
An important property of these weights is that they are additive with respect to P.
More precisely, if P; and P, have disjoint interior then

wp,uP, (X) = wp, (x) + wp, (x).
This implies that also the weighted Riemann sums Sy (f, P) are additive,
Sn(f, PrUP2) = Sn(f,P1)+ Sn(f,P2).

On the contrary, a different choice of weights may not guarantee the additivity.

Definition 4 For every multi-index of non-negative integers J = (ji, j2, ..., jq) and
every x = (x1,x2,...,Xq) in R4, define the multivariate Bernoulli polynomials
B, (x) = Bj (x1)Bj,(x2) -+ Bj,(xq) if0 < ).Ck <1,
0 otherwise.

Moreover, for L € GL(d, 7Z), define
By(o) = LI By (7).
Finally, define the periodized Bernoulli polynomials

ByL(x) = Z By p(x +n).

neZd

At the points of discontinuity we assume the periodized Bernoulli polynomials to be
regularized so that

1
B, Lx) = lim —F— By,L(x —ey)dy.
e=0+ [{[y] < 1} Jijy<i
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We refer the reader to Sect. 1 (Appendix B) for more comments on the construction
of the periodized multivariate Bernoulli polynomials and their connections with the
Lerch Zeta functions.

The next definitions are more technical and will be needed to describe the asymptotic
behavior along different directions of the Fourier transform of functions supported on
a simplex.

Definition 5 For every dimension d > 1, F@D is a collection of 2971 bases of R,
d d d
f():{Bi)""’Bédll .
Each basis B;d) consists of the vectors b;.dz,
(d) _ |4 (@ (d)
B = [ o)

The vectors b;dlz are defined recursively as follows. If d = 1, set bgli =1.1fd =2,
set

b = (1,0), b =(0,1)
and

bY) = (1, =1, b5 =(0,1).
More generally, ford > 2,

FO = FOyFD

where

FO = {Bgd% ...,BQZZZ},

F = 135241’ , _,B;;le}

andfor 1 < j < 242 we set

(d) d-1
bj’kz(bj’k ,o), k=1,...,d—1,
d
by =(0.....0,1),
and for 2972 +1 < j < 247! we set
(d) d—1) d—1)
bj,k = <bj—2d’2,k’ _bj—Zd’Z,k : ld—l) ’ k= la v 7d - 1,
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bj.f’j] =(0,...,0,1),

wherel; 1 =(,...,1) € R4—1, We will also associate to every basis B € F@ with
d > 1a (d — 1)-dimensional multi-index (vs, ..., vg) € {1,2}* ! in the following
way: vy = £ if and only if B € féd) and, if d > 2, (v2, ..., v4—1) is the multi-index

associated with the (d — 1)-dimensional basis B’ used to define B recursively. Observe
that there is a one to one correspondence between the bases in Féd) and the multi-
indices in {1, 2}¢~1. Therefore, given a multi-index V = (v, v2, ..., vg) € {1, 24,
we will denote also by By the basis corresponding to the vector (va, . .., vg).

The role of vy, the first component of the vector V, will be made clear in what
follows.

Definition 6 For every multi-index V = (vy, ..., vg) € {1, 2}? we define the vectors
Ay € R? recursively as follows. For d = 1

A =0,
A =1.
Ifd =2,
A,y = (0,0),
Ao = (1,0),
and
A2 = (0, 1),
A2 = (1,0).

In general, for alld > 2, if vy = 1 we set

Ai,vg,vg) = ()"(UIJJZ ,,,,, Vg—1)> O)’

if vy = 2 we set
)‘(vl,vz ,,,,, vg) = ()‘(vl,vz ,,,,, Va—1)» 1 - )‘(vl,vz ,,,,, Vg—1) * ldfl) .

We state our main result. Let S; € R be the standard simplex given by
d
Sq = xeRd:xj>0, ijgl .
Jj=1

Birkhauser
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Table 1 The various bases and multi-indices of Definitions 5 and 6, for the dimensions d = 1,2, 3

d v V2, ..., vg) Fd rv

1 1 / B = 0
2

2 1,1 1 B = ((1,0), 0, 1)) 0,0)
@.1) (1,0)
(1,2) 2 BY = {(1,-1), 0, 1)} O, )
2.2) (1,0)

3 (1,1,1) (1.1 BY = ((1,0,0), 0, 1,0), (0,0, 1)} (0.0,0)
2, 1,1 (1,0,0)
1,2,1 @1 BY = {(1,~1,0), (0, 1,0), (0,0, 1)} 0.1,0)
2,2, (1,0,0)
(1,1,2) 1,2) BY = {(1,0,=1), (0, 1, =1, 0,0, )} 0,0, 1)
2.1,2) (1,0,0)
(1,2,2) 2.2) BY = ((1,-1,0),(0,1,-1), (0,0, 1)} 0,1,0)
2,2,2) (1,0,0)

Theorem 7 Let P be a simplex in R? with vertices 0,my, ..., my € Z¢, and let

M € GL(d,7Z) be the d x d matrix with columns my, my, ..., my, which maps

the standard simplex onto P. Let ¢ € CYT(R?) with w € N and for t > 0, let
Ge.m(x) = q(tMx). Then, for every x € R? and for every T > 0,

Z wp(x +n)q(x +n)

neZd

:det(M) Z Z Z ‘L'd_lll_‘]l(/L(V,I, J)qu,M>sBJ+I,(MDV)’

ve{l,2)d 1€{0,1}d [J|<w,JEI
X (x —tMAiy) +Ryx).

Here u(V, I, J) are certain integro-differential functionals that will be introduced in
Definition 28, Dy = [b1|b2]| - - - |bgl where {by, by, . .., by} is the basis By and J T 1
means that jip = 0ifiy = 0. Moreover, for every § > 0 and every tg > 0 there exists a
constant ¢ depending on § and ty but independent of g, M and w, such that for every
T>T71)

0%qr.m

[Rw ()| < cdet(M)rd™w 12027~ 4 g)w! sup sup | —"
X

w—d+2 || <w+1 xeSy

o]

For d = 2 a similar formula is contained in [9]. An immediate consequence is the
following corollary.
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Corollary 8 With the above notation, assume that ¢ € C*®°(R?) and that there exist
¢, 8 > 0 such that for every positive integer w

0%qr, m

a ~ g crw(zd—ZjT—l +8)—w'
X

(x)

sup sup
|la|=w x€Sy

Then ), cza wrp(x +n)g(x + n) can be expanded in a uniformly convergent series
of Bernoulli polynomials

Z wrp(x +n)q(x +n)
nezd
= det(M) Z Z Z eV 1,0, ge) Bysr,upyy
ve{l,2)4 1€{0,1}4 [J|=0,JE!
X (x —tMMAy).

The uniform convergence in the above corollary seems paradoxical, since the peri-
odized function in the left-hand side is a priori discontinuous, but observe that also in
the right-hand side there are a priori infinitely many Bernoulli polynomials that are
discontinuous.

Taking x = Oand t € Z, since the functions B 1 (x) are periodic, from Theorem 7
one immediately obtains an Euler—-MacLaurin formula.

Theorem 9 Let P be a simplex in R? with vertices 0,my, ..., my € 7%, and let
M € GL(d,Z) be the d x d matrix with columns my, my, ..., my, which maps
the standard simplex onto P. Let ¢ € CVTY(R?) with w € N and for t > 0, let
Ge.m(x) = q(t Mx). Then, for every positive integer T > 0,

Y wrpn)g(n)

neZd
=detay Y > Y VWL D) grn) B sy (0)
ve{l,2}4 1€{0,1}d [J|<w,JEI
+ Ry-

Moreover, for every § > 0 and every 1o > 0 there exists a constant ¢ depending on &
and Ty but independent of g, M and w, such that for every T > 1y,

80(
IRl < cdet(M)rdw=1(24 271 4 sywt! sup sup | =M ().
w—d+2<|a|<w+1xeSy | 0X
We will see that when I = (0, ..., 0) the only non-vanishing term in the above
sum corresponds to V = (1, ..., 1) and is the integral of g over TP.

Similarly to the one dimensional case, Theorem 9 applied to the function
N~ f(x/N) gives a quadrature formula for simplices. Then, the additivity of the
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weighted Riemann sums allows to extend this quadrature formula to more general set-
tings. Let us recall that a homogeneous simplicial d-complex is a simplicial complex
where every simplex of dimension less than d is a face of some simplex of dimension
d.Itis known that every (bounded) convex polytope can be decomposed into simplices
without additional vertices. Hence, one can associate to a convex polytope a homoge-
neous simplicial complex with the same vertices. This is obvious in dimension d = 2,
less obvious in higher dimensions (see [16], see also Proposition 5.2 and Theorem 5.3
in [32, Chapter 5]).

Theorem 10 Let P be a homogeneous simplicial d-complex with integer vertices in
RY. Let w be a non-negative integer and let f € CYT1(RY). Then, there exists a
numerical sequence {yx}ox<w /2 such that for every positive integer N we have

SN(fa P) = / f(x)dx + Z )/kN_Zk + O(N—w—l).
P

O<k<w/2

For d = 2 a similar formula is contained in [9]. A simple consequence of Theo-
rem 10 is the following.

Theorem 11 Let P be a homogeneous simplicial d-complex with integer vertices in
RY. Let w be a non-negative integer and let f € C* 1 (R?). Finally, let {cj}
be the solution of the Vandermonde system

0<jsw/2

11 T I ¢ 1
L e R e Rt 1 0
1 274 2=H% ... (@ YHlw/a P _lo
| 2-2Lw/2) -2lw/2iy2 ... =2lwi2hwi2 | | ¢, 0

Then,

/;Df(x)dx: Z CjSsz(f,P)-l-O(N_w_l).

0<jsw/2

The coefficients y, in Theorem 10 are integro-differential functionals applied to
the function f(x). In Theorem 11 these cumbersome coefficients have disappeared
and only weighted Riemann sums are present.

We have not found a multidimensional analog of Mordell’s theorem in the litera-
ture. On the contrary the literature on multidimensional Euler—-MacLaurin summation
formulas is vast and in continuous growth and to have a comprehensive list of refer-
ences is a challenging task. Here we recall a few of these results and we try to compare
them with ours, apologizing in advance with all the authors that we do not explicitly
mention.
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If P denotes a regular integral convex polytope, Karshon, Sternberg and Weitsman
obtained in [22] the weighted formula

£
2_ opmam =]L*®) /p( g(x) dx + REH (q)
i=1

nezd hi,.she)

where g € C?**1 is compactly supported, R723k+1 (f) is a remainder explicitly given,
£ is the number of facets, i.e., faces of P of codimension 1 and P(hy,...,h¢) is a
perturbation of the original polytope obtained expanding outward at distance /; in the
direction of th i-th facet. The weight function op is defined to be 0 in the exterior of
P, 1 in the interior of P and op(x) = 27°™) if x is on the boundary of 7 and where
c(x) is the codimension of the smallest face containing x. The operators L?(D;) are
the differential operators defined by the operators D; = d/dh;, i = 1,...,d and the
functions

k
2k 1 2j
L (.X)= 1+Z(2—])’b2])€ J
j=1
where the b;;’s are Bernoulli numbers. A similar formula is proved for simple poly-
topes in [23]. Such Euler—MacLaurin formula is quite close to our formula in the spirit,
but we highlight a main difference. On one hand the weight function op is immediate
to compute, since it only depends on the codimension of a face at a given point. On
the other hand op is not additive, whereas wp is, and this allows to apply Theorem 9
to polytopes by glueing simplices together.

We also refer the reader to the paper [24] and the references therein; in this work
the authors review and discuss the results in [22, 23] together with previous results by
several different authors [11-13, 25]. See also [1].

Another result we recall is the Euler-MacLaurin summation formula in [7]. Let
P < R? be a semi-rational convex polyhedron of dimension ¢ < d. Semi-rational
means that the facets of P are affine hyperplanes parallel to rational ones. Then, the
authors provide the asymptotic expansion, as N — +00,

1
w2 f(N—ln)~/Pf(x)dx+2ak(zv)1v—k.

neNPNZd k>1

The authors also discuss their results in comparison with other previous results [26,
33].

Finally, we also recall the works [3, 6, 19-21].

Our proofs exploit harmonic analysis techniques with classical tools such as the
Poisson summation formula. Recall that if f is an integrable function on R its Fourier
transform fis defined as

&= / fe i dx.
R4
The following lemmas are well known.
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Lemma 12 Let ¢(x) be a non-negative, radial, smooth, function in R, with compact
support and integral one, and for every ¢ > 0 set ¢o(x) = ¢ %p(e~'x). Let P be a
convex polytope in R, Jet q(x) be a smooth function in RY and let Ox) =qgx)xpx).
Then

lim @ * Q(x) = wp(x)g(x).
e—0+

Proof Integrate in polar coordinates. O

Lemma 13 With the notation of the above lemma, for every & > 0 and every x € R?
one has

Z e * Q(x + k) = Z a(gk)/Q\(k)ezmk'x.

keZd keZd

Moreover

Y wpx+hgkx +k) =
kezd

> Bk Qe

lim
e—>0+
keZd

The first series is a finite sum of smooth functions. The second series converges abso-
lutely and uniformly.

Proof This is the Poisson summation formula. O

To prove our results we need an explicit formula for the asymptotic expansion of
g xp when P is a simplex, which requires a non-trivial effort to be proved (Lemmas
20 and 33). The 2-dimensional case was dealt with in [9, Lemma 5]. Very elegant
expansion formulas for x5 (that is when g = 1) in any dimension d already appeared
in [10, 15]. See also [30] and the references therein.

The paper is organized as follows. In Sect.2 we present a Fourier analytic proof of
Mordell’s theorem both for sake of completeness and for illustrating the proof strategy
that we will use in the multivariate setting. In Sect. 3 we study the Fourier transform of

a function supported on a simplex. In Sect. 4 we prove our main result on the expansion
of

> wrp(x+n)gx +n)

neZd

in terms of our multivariate Bernoulli polynomials, that is Theorem 7 and Corollary 8,
whereas in Sect. 5 we prove Theorems 10 and 11. We also include Appendix A (Sect. 1),
where we collect some well-known results in harmonic analysis on groups that we use,
and Appendix B (Sect. 1), where a further description of the periodized multivariate
Bernoulli polynomials is given.
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2 Bernoulli Polynomials and a Theorem of Mordell
The classical Bernoulli polynomials have elegant trigonometric expansions, which

predate Fourier. Recall that if f is an integrable function on the torus T = R/Z, its
Fourier series at a point & is given by

Z f’-\(n)e%rin’;‘

nez

where the Fourier coefficient f(n) is defined as

1
fn) = / Fx)e 2T gy
0

Theorem 14 (L. Euler, 1752) If n > 1, then, for every x,
e2nikx
B =— —_—
n(x) Z Qrik)"
keZ\{0}

Proof If n = 1and 0 < x < 1, then

e2nikx

2mik

+00 1
Bi(x)=x—1/2= Z (/ (v — 1/2)6—2m'kydy) o2mikx _ _
0

k=—o00 keZ)\(0}

The symmetric partial sums with —K < k < K of the above series converge pointwise
for every 0 < x < 1, and by symmetry they also converge to zero for x = 0 and for
x = 1. Since %Bn+ 1(x) = B,(x), the Fourier expansion of B, 4(x) follows by

integrating term by term the series of B, (x). Since fol B,+1(x)dx = 0 the constant
of integration is zero. Observe that for n > 1 the Fourier series of B, (x) converges
absolutely and uniformly. O

The original proof of Euler is different and very interesting, see [18]. The following
bounds are a consequence of the above trigonometric expansions.

Corollary 15 The periodic Bernoulli polynomials By, (x) with n > 0 are bounded by
(w2 /3)(27)™". More precisely,

Qm)™" < sup |Bu(x)] < (w?/3)(2m) "
x€[0,1]

Proof If n = 0 then By(x) = 1 and the lemma holds. If » = 1 and |x] denotes the
integer part of x, then

Bi(x) =x — [x] —1/2,
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so that

sup |Bi(x)| = 1/2
xel0,1]

and again the lemma holds. Finally, if n > 1,

2mikx
Bl =| Y. (;T—lk) 202m)" ”Zk " =20m) " (n).

keZ\{0} k=1

Observe that £(n) < ¢(2) < m2/6. Also observe that the Fourier coefficient with
k =11is 2mwi)™", so that

1
2m)" < / Bu()ldz < sup |Bu()l.
0 x€[0,1]

]

The following lemma provides an asymptotic expansion of the Fourier transform
of a piecewise smooth function.

Lemma 16 Let w > 0. If the function q(x) has w + 1 integrable derivatives in [a, b],
then for every & # 0

b 2ixE - i—1 2 qu 2'b$djq
—2mix _ ceN—]— —2mia —2mi
/a g(x)e dx—j§:0(2m§) ! ( @ e i (b)>

cen—w—1 b dw+1 —2mix&
+ 2wi§) prTE (x)e dx.
a

Proof Integrate by parts. O
With the above results one easily obtains the following.

Proof of Theorem 2 By Lemma 16 and with the notation of Lemmas 12 and 13, for
every x € R we have the chain of equalities

+00 too
= 1 2 2) 2mik
Z w[a,b](x +n)g(x +n)= slir(r)lJr Z P(ck) O (k)e wikx
n=—00 oo
+00 b
=1l 7] —2miky 2rikx
Jim 3 g ([Cameay ) e
k=—00
_ d’
:/ C]()’)dy+ hm Zgo(gk)(Z(zr”k) - 1( ankd Cf(a)
“ k#O j=0
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od) q )
_ ,—2mibk 2mikx
e T (b)) ) e

b dw—H

. ~ o —w—1 q —2miyk 2mikx
+6£%‘+§0¢’(8k) ((2mk> fadyw (e dy)e

b w i
d’q . )
= = 3 oy oN—j—1 2mik(x—a)
= /a q(y)dy+]§_0 Tr) (a) 81_1>r51+k§#0<p(8k)(2mk) e

w o

d’ R ' '

_E £ (b) | lim E P(ek)2mik) i1 2mikx=b)
J=0 k50

b w+1q 1 ik )
: ~ S\ —W— mwik(x—y
+fa dyn ) Jg&i w(ek)(2mik) e dy
k0
w

b dq dig
=/ Q(y)dy—gm(G)B/’—H(X—a)+j§ﬁ(b)3j+l(x—b)

a
b w-Hq
—/u W(y)BWH(x — y)dy

and (7) is proved. The second part follows from Corollary 15. O

The above proof is not the original one of Mordell but it is inspired by [14].

3 The Fourier Transform of a Function Supported on a Simplex

A key ingredient for the proofs of our main results is a precise estimate of the Fourier
transform of a function restricted to a simplex. We first consider the standard simplex.

3.1 The Standard Simplex

Let
d
Sq = xeRd:xj>0, ijél
j=1

be the standard simplex. We want to give an asymptotic expansion of the Fourier
transform of the function G(x) = g(x)xs,(x) where g € CvtH(RY). In [10, 15],
see also [30] and the references therein, there are elegant symmetric formulas for
Xs,(&). The formulas we obtain are less elegant but somehow more explicit and, in
particular, we provide a formula when & belongs to a singular direction as well. Since
the asymptotic behaviour of G (&) depends on the faces of S; that are orthogonal to &,
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it is natural to have different formulas in different regions. Hence, we need to partition
the space of frequencies into a finite number of cones Q(6).

Definition 17 Let ®, be the class of all subspaces of R? generated by any possible
choice of vectors in all the bases of F@ . Then, ®4 induces a partition of R4 into a
finite number of (possibly disconnected) conical regions Q(6), 6 € ®, defined as
follows: £ € Q(6) if and only if £ is orthogonal to all the vectors in 0, but it is not
orthogonal to any other vector in the bases of F@ which is not in 6. Namely,

00)=1{&ecR? forallb e U B, &-b=0iffbeo
BeF@

={&eot: [] ®©-& #0,forall Be 7
beB\6

We explicitly assume that the zero dimensional space belongs to ®,; and in this
case the associated cone has nonempty interior. In the other cases such cones have
empty interior.

Lemma 18 (i) {Q(0)}yce, is a partition of R?.
(ii) Let F (x) be a bounded function on T¢ = R?/Z% and let 6 be in © 4. Then

Z f(m)e%n‘mx

meQO)NZ4

is a bounded function and there exists c(6) such that

Z f(m)eZnimx

meQ(0)NZ4

sup < c@)sup |F(x)]|.
X

Proof (i) For any & € RY, & € Q(¢) where ¢ = (b e U B:b-&=0).On
BeF@
the other hand if 6; # 6,, that is if there exists, say, v € 61 \ 6>, then there exists

be |J Bsuchthath € 8\ 6,. Now if £ € Q(6;) then & - b = 0. This implies that

BeFr@
& ¢ Q(62). Hence Q(01) N Q(2) = ¥ and it follows that {Q(0)}yc@, is a partition of

R4,
(i) Let0 € Oy, let 0+ = [ e R : £ . b =0 forevery b € 0} and for b ¢ 0 let

O =60+ n(b)*.
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Also {by, ..., by} = [be U B:b¢9}.Then
BeF@

N
QO) =6\ o,
j=1

and therefore

Z I’;-‘(m)e2rrim-t — Z ﬁ(m)eZNim-t _ Z i;v\(m)eZTrim-t

meQ0)NZd mehLnzd N
o melJjiL;

where L; = GbLj N Z®. By the inclusion-exclusion principle

N
X (m) =Y (=DH! X, (m)
Uévzle ]; Z t

IS{1,2,...N}
[1]=k
where L; = ﬂL j- Therefore
Jjel
Z f(m)eZﬂim-t — Z f(m)e2nim~t
meQ(0)NZI meoLnzd

N
D NS S o
k=1

1C{1,2,...NYmeL;
|I1=k

Observe now that 8- N Z? and L; are subgroups of Z¢. To conclude the proof then it
suffices to recall that the restriction operator to a subgroup H

RyF(t) =Y F(m)e*™ ™!
meH

is a bounded operator on L>(T%). See Lemma 40 in Appendix A. O
We also need the following elementary lemma.

Lemma19 (i) Setn = (n',ng) € Z4~' x Z and (x', x4) € R?~! x R. Assume that
H (n') are the Fourier coefficients of a periodic function h(x") and K (ng) are the
Fourier coefficients of a periodic function k(xy). Then H(n")K (ng) are the Fourier
coefficients of h(x")k(xy).

(ii) Assume that H (n) withn € 7% are the Fourier coefficients of a periodic function
bounded by A and assume that K (ng) are the Fourier coefficients of a periodic function
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bounded by B. Then H(n)K (ng) are the Fourier coefficients of a periodic function
bounded by AB.

(iii) Let T € SL(d,7Z), y € RY, and let H(n) be the Fourier coefficients of a
periodic function h(x). Then e*™"" H (T n) are the Fourier coefficients of the periodic
function h ((T_l)’(x + y)).

Proof The first part (¢) is trivial. To prove (ii) let 2(x) be the periodic function on T
with Fourier coefficients H (n) and k(x4) be the periodic function on T with Fourier
coefficients K (ng). Also, let u be the product on the torus T9 of the Dirac delta
centered at the origin in the variables x” and k(x,). Then /t(n) = K (ng4) and the total
variation ||u|| of u is bounded by B. Finally observe that H (n) K (n4) are the Fourier
coefficients of & * u(x) and

|h s p()] < sup [RQ)] [l

Finally, the proof of (ii7) is very simple. If suffices to observe that

Z eZﬂiynH(Tn)eZnin-x — Z H(Tn)eZNin-(x+y) — Z H(m)e%rim.(rfl)t(x+y).

neZd nezd meZd

With the notation introduced in Sect. 1, we have the following crucial lemma.

Lemma20 Let Sy be the standard simplex in RY. There exist linear functionals
{a(0, V, J)} indexed by 6 € Oy, V € {1,2}¢, J € N? with the following properties.

(i) For any integer w > 1, for any g € C*TYRY), for every 6 € Oy and for every
& € Q)

/\ 0,V,J —2mily-€
dmEe= Y Y eeree  Ro s, ).

Vell.2)d [/[<w nthBv\O(znlbk S)Jk-i—l

In the above formula we adopt the following convention: By = {by, ..., bg} is the
basis associated to the multi-index V and J = (j1, ..., jq) with jr = 0 whenever
bk € 6.

(1) The coefficients (x (0, V, J), g) satisfy the estimates

(@, V,J), gl < ¢2@=DUI sup sup
| <|J| x€Sy

—( )'

(iii) The remainder R ., (g, &) has the property that for every Q > 1/(2mw) and
every 19 > 0 there exists U = U(d) = U(d, 2, 19) > 0 such that for every T > 19
and w > 1,

{xo@)MRo.w(g, T}, 7
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are the Fourier coefficients of a function on the torus T% bounded by

o

a%g
—(x)

U @i-tQr=hwt! sup sup
ax¥

w—d2< || <w+1 xeSy

Proof The proof is by induction on the dimension d. Let G (x) = g (x) xs, (x).

Cased = 1. This case is covered by Lemma 16. Here we reinterpret the result using the

formalism of the cones Q(#). We have F() = {B} where B = {1} and ®; = {{0}, R}.
o § = R. We have Q(0) = {0}, and

1
G(0) = / g(x)dx,
0

so that

fo gx)dx j =0,V =1,

R, V,
o ( 7. 8) { otherwise,

and the remainder Rp 4, (g, 0) = 0 for every w.
e 0 = {0}. We have Q(0) = {&£ € R, & # 0}. In this case, by Lemma 16,

d—( ) — _2,,,-52;;3(1)
2mwixé x/ x/
/(; g(x)e™ dx = Z Gnigy T

coy—w—1 Lavtle —2mixE
+ (2ri) Ty e dx.
0

It follows that

d’/
(@ (10}, 1, /), g) = Ef(ox
d/
(o ({0}, 2, /). g) = ‘ﬁ“)'

Moreover the remainder evaluated at the lattice points & = tn is

dw-‘rl )
R{O},w(ga Tn) = (Zﬂifn)_W—I/ - w+1( x)e —2mrnxdx
0
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Hence for every w > 1,

ZR{O},w(g, T”)XQ({()})(rn)eZ”i”X — ZR{O},w(g, ‘L’n)e2”"’”‘

nez n#0
w+1
< Qrr)y ! In|~*~ 1} sup (x)
X ’; xe[0.1] dxw+l
2

T w+1
< (2m)—w—1— ‘

dwarl( x)

Case d > 2. Assume that the theorem holds in dimension d — 1. Fix 6 € ®,4. Observe
that the vector eg = (0, ..., 0, 1) belongs to at least one (actually all) bases in F @),

e ¢y € 0. For all £ € Q(0) one has & = 0. For this choice of 6 and for all
& = (¢/,0) € Q(0) we have the following formula

. o dwiv £ I—(x14x24-4x4-1)
GE) = / g(x)e 2 gy = / eI / g, xg)dxy | dx’
Sd Sd 1 0
- / e F () d
Sa—1

Observe that & € Q(0) if and only if &’ € Q(0’) where 6’ is the space of the vectors b’
such that (b', by) € 0 for some by. Indeed, since & -b = &' - b, &’ is orthogonal to 6 if
and only if & is orthogonal to 6. Since 8’ € ©4_ (see Lemma 22 for details),we may
therefore apply the (d — 1)-dimensional formula corresponding to 6’ to the function
F(x") so that

Ger= Yy >

NN/
V/e{1,2)d= 1 |JISw 1—Ib//cEBv’\g/(27-[lbk &)

(@', V', "), F)e~ 2k ,
+ RG/,w(Fa E )a

where j; = 0if b} € 6. Observe that this expression can be written in the form

(01(9/, V', Jh, F)e*ZNi)LV.g
[Ty \o @miby - §)dct!

+Row(F, &)

Ge= Y, >

V=V, De{1,2)d J=(J'.0), |[J|<w

where jx = 0if b € 6. The coefficients (a(6’, V', J'), F) satisfy the estimates

/ a \“
|(a(9’, V', J), F)| < 2@V sup  sup '(—/)
| IV ¥'eSq1 | \ X

o

ad
_g(x)

< 2Dl sup sup 5
X

lo|<|J| xeSy
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Indeed, forevery 1 < j, k,... <d — 1, we have

9 1—x"14_4

oF ,
— ) =— g(x’, xg)dxy
8)(]' 3)Cj 0

1—x"14_4 dg
— g 1 —x 1) +/ 98 (¢ x)dxa,
0 3Xj
92F
0x0x;

g g
() = —8—xk(x/» 1—x" 1421+ a(x/, 1—x"14-1)

9 1—x"14-4 92
- —g(x/, 1—x"-14-1) +/ g (x', xg)dxq,
0x; 0 0xp0x

and so on. Thus

(x(@,V,J]), g
B (a (O, v, J7), [ e, xd)dxd> if J = (J,0) and V = (V, 1),
0 otherwise.

For & € Q(0) set Ro,w(g,§) = Ry (F, &) (recall that § = (f;‘/, 0)) and observe
that

Y xow)MRow(g. T ™ = 3" 3o (. )R (8. (1, 0)) >

neZd n'eZd-1

= Z XQ(@’)(n/)RQ/’w(F’-L—n/)eznin’-x”

n'ezZd-1

By induction, {XQ(Q/) (nYRy (F, 1) }n’EZd*I are the Fourier coefficients of a func-
tion on the (d — 1)-dimensional torus bounded by
2 \* ,
( M) F(x")
8 o
< U — 1)QI2Qr Hwt! sup 219l sup (—) g(x)
w—d+2<la|<w+1  xeSq |\ 0X

a o
(8_x> g(x)

Hence, by (i) in Lemma 19 with K(ng) = 0ifng # 0 and K(ngy) = 1 if ng = 0 so
that k(xy) = 1, and H(n') = Ry, (F, tn’) it follows that

Uld — 14 2QrHwt! sup sup
w—d+3< || <w+1 x'eSy_y

<UWd -1 Q! sup sup
w—d+2<|a|<w+1 xeSy

/ | xowy(Re w(F,tn") ng =0,
HOOK ) = | 5 o
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are the Fourier coefficients of a function on the d-dimensional torus bounded by

8 o
(a) g(x)

eeg ¢ 0.Hence &; # 0 for all £ € Q(0). Then, by Lemma 16,

Ud - 1)Qi-1Qr—hwtl sup sup
w—d+2L || <w+1 xeSy

~ o 1—x"14-1 )
GE) = /S e mixE [ fo g(x’,xd)ehw@ddxd} dx’
d—1

w .
. Y
= Z (2ni§d)_/d_l/ e 2mixn € —.g(x/,O)dx’

J
ja=0 Sd—1 Bxdd
W 1 rix & iz’ 1 dJdg
_ Z (27”-%.‘1)7]{17 / e 2mix £ e~ wi(1—x"14-1)& - (x/, 1—y . ld,l)dx/
ja=0 Sa-1 axy
w+1 .
+ (2711'5,1)—"’—1/ B e e gy
Sa 3)6:;}4_

=I1+114+111.

The term 711 is part of the remainder. In view of Lemma 18 and since n €
Q(0) N Z4 implies ng # 0 it suffices to show that

w41

0 . .
O = (o e
Sa .Xd

neZd .ng#0

is the Fourier series of a bounded function. Observe first that the integrals in the above
sum are the Fourier coefficients of a bounded function on the torus,

1
/ 9" § x)672nix-rndx
X

d 1" o
o - — —2miy-n
=1 /Rd xs4(T7Y) ] (T y)e dy

w+1g

ad .
_ .—d —1 -1 —2miyn
=t /Td > Xs, (f v+ k)) —ax;;’“ (r (y+ k)) e dy.

keZd

The inner sum is finite and consists of at most ¢(1+17)? terms. By (ii) in Lemma 19 and
Corollary 15, multiplying by (27itng) " ~!, we obtain again the Fourier coefficients
of a periodic function bounded by
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2rp)—wl —d“z -1 9" *lg
Q2rT) T %— sup E xs; (T O +k)) ——
3 ¢ axw+]

YER |kezd d

(r_l(y +k))

w1

xw+l (x)
d

<ct U+ Qrr)y~ ! sup
xX€Sy

w+1

(x)
w41
Xa

g C(l +1_0—1)d(2d—19,[—1)w+1 Sup
)CESH'

with ¢ independent of w and g and 7 > 19 > 0.

Let us consider the term 1. Let 8; = {b’ : (b',0) € 0} € ©4_1 (see Lemma 22
for details). We claim that

§=(§.61) € Q) = & € Q).

Indeed, let £ € Q(0) and let b’ € 6; N ( U B). Then (¥, 0) € 6 and therefore
BeF@=D

0=¢-(b,0)=¢&-0.

Now,letd' € |J B,b ¢6),then (D,0) ¢ 6. Since (b',0) € |J B we have
BeFd=n Ber

0£&-b,0)=¢ 0.

Applying the d — 1 dimensional formula corresponding to 61 to the function % (x’,0)
we obtain

w i
. . e 00d
1=y (2m'gd)—-/d—1/ e 2mixE 08 (1 0y

ja=0 Sd-1 Bxid

w , (@1, V', 0"), @050 g (-, 0)) e=27Rvr

=Y @ity Y o
ja=0 Vie(l,2)d-1 |1 |<w—jg Hb,QEBVr\Ol (2mbk £y
" .
. e a]a'g

+ Z Qmigg)~/ 1R9|,IU*]}1 ( iz -, 0), 5/)

Ja=0 dxy

(@1, V', 9, /05014 (-, 0)) e 2TV E

kuEBv\9 Qriby - S)jk-‘rl

- ¥

V=(V',1)e{1,2}d |JI<w

w ) 9Jd
+ Z (ZNiéd)_'/d_lR(?l,w—jd <8g(’ 0), 5,) .

Jd
Ja=0 Xd
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The double sum is part of the main term in the asymptotic expansion and the last sum
is part of the remainder. By induction, since J = (J', jy),
9N\Y/ 9 \Ja
(50) () w0

<02(d_2)”| sup  sup —(x)
| <[J| xSy 19X

Ka(el,v/, J/),(8/8xd)j"g(-,0)>’ <@V G sup
lel || x€Sa

We now deal with the remainder in [ as follows. By the induction assumption

ajd sl !’
3 Rgl,w_jd< =50, tn)ezn’” x
o

n'eQ(0")NZA-1

is the Fourier expansion of a function F(x’) on T¢~! bounded by

. 9 9Jd
U — 1)Q4-2Q = hyw+i—ja sup sup ( ,) 8, 0)
w—jg—(d—1)+2<] | Sw—jg+1 /€S,y | \ X axéd
. 80(
U - 14 2Qr ywtl—ia sup sup —a(x)
w—d+3< || <w+1xeS, | 0%

Hence, —r_jd_lBjdH (xq) F (x/) is a function on T¢ bounded by

72 .
T —Jd— 1(27.[) Jd— 17 U(d 1)(2d—ZQT—1)w+1—]a’ sup sup 7()()
w—d+3< || Sw+1xeSy | 90X
= 4 2qog)—ia—1Z U(d DI 2QrHwt2 sup a( )‘
w— d+3<|a\<w+lx€Sd dx

and with Fourier expansion

Z |:(2”ir"d)_j"_l7zel,wjd (8 g( 0), n )i|627rin-x
dx

ng#0,n'€ Q(H))NZA~! d

. 9dd g .
= D XfngzoweQnzi-1}(n) [(2nimd)fd17zgl,w_,d (a -, 0), mn )} eFrinx,
xz

nezd a

Since Q(0) N Z4 C (Q(61) N Z4~") x (Z\ {0}), by Lemma 18,

i 3/ .
Z X{ﬂd#O,n’eQ(Gl)ﬁZd_'}(n) |:(2m.md) ! 17391,10—./' ( g( 0), zn )i| i
neQO)Nzd axa’

= Z |:(27'ri‘rnd)_j_1 Roy,w—j (3 g( 0),tn ):| Q2minx
ad

neQ®)Nzd xd
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is the Fourier series of a function on T¢ bounded by

o

a_g(x)

) 2
¢ (0) 242Q2m) 1 2 — 1422 sup sup |-
X

3 w—d+3<|a| w1 xSy

Adding up on j; we obtain that

w .

i 9/ g

X0 (n) E Qmitng) lel,w_jd <_jd (~,0),rn’)
ja=0 dxy

are the Fourier coefficients of a function on the d-dimensional torus bounded by

> e @ Qam) i

Ja=0

w2 d—2 1 2
?U(d— DHEI2QrHwt
0%g

sup sup | o

w—d+3<|a|<w+1 xeSy

72

w
=cO) UM - DRI Qr vt J.Zo(zd_zm”)_jd_l
=

(x)

0%g
sup sup
w—d+3<|a|<w+1xeSy | 0XY

2
- Ud-1)
<c(@) ———MmMm—
O 35Ty — 1
0%g
sup sup
w—d+3<|a|<w+1 xeSy dxv

2 Ud-1
g (C (0) n_#zd—ZQTOI) (Zd_IQ‘[_l)w+l

(x)

(Zd_ZQ‘L'_l)uH_Z

(x)

3 2d-1Qy — 1
0%g

sup sup | —
w—d-+3< || w1 xeS, | 0X

(x)

Here we used the assumption 2 > Q)L

The term /17 is similar to 7, but to estimate the remainder we need (iii) in
Lemma 19. Let 6, = {b’ (b, =b 1420 € 9} € ©4_1 (see Lemma 22 for details).
We claim that

£=(£,8)eQ0) = & —&14-1 € Q6).

Indeed, let & € Q(6) and let b € 6> N ( U B). Then (b, —b - 14_1) € 6 and
BeFd-n
therefore

0=§£-',=b 1) =&-b =&y - b = (E —E14-1) - b
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similarlyift' € (U B)\6x,then (b, =b' - 14-1) ¢ 6. Since (b, —b' - 14-1) €
BeF-D

U B, we have
BeF@

0#£&- (b, =0 -14-1) = ¢ —&414-1) - V.

By applying the (d — 1)-dimensional formula corresponding to 6, to the function
ajd g

(1= x" - 14-1) we get
0x;

w
. , 8
_ § (2ﬂi€d)7]d71/ 72711x £ 727‘[1(1 X' 1g—1)éq g(x/ 1_x ld 1)dx
=0 Sa—1 ax g

w . ) , 3Jdg
- Z(Z]‘[ié‘d)_./zl—le—b”fd/ 2 €=l 018 (g
Jja=0 Sa—1 axj,d

w
- _ Z (Zniéd)_j"_le_zni‘g‘l

Ja=0
5 (@2, V' 00, (00500 ) (1 = &7+ 1)t € —tila)
X
) ]
Vel 2110 | <w—ja [Ty B, e, (27ib) - (6" — Eala-1)"
w . ) 8
- Z(27‘[1'&1)7”71eizmé”Rgzwajd (3 g(x l—x ld 1) %’ —é;'dld 1)
Ja=0 d

- ¥ 3 — (@62, V', 1), ((0/0xa)" g) (&, 1 — x" - 1g_y)) e 2T4VE

i jk+1
V=(v'.2)e(1,2)¢ [JI<w [lyemyo @ribic - )7
e N— i1 —27i d/d g
- Z(zmd) i=le 2”‘5017292‘1”,;,( 1= 1), E = Eglae 1)
Jja=0 axd

By induction

‘(a(ez, v I, ((B/BXd)jd g> ', 1—x"- 1d—l)>‘

a\“ ,
(W) (ax]d(x 1—x -1d1)>‘.

§c2(d_2)|1/| sup  sup

la| <1 X' €8d-1

Observe that forevery 1 <k <d —1

9 [/ glatl
Sy 1) = -y 1)
dxk \ ax dxgdx)!

8]d+l ,
]d+1 ()C 1—x"- 1d—1)~
Xa

) Birkhduser



33 Page 26 0f 49 Journal of Fourier Analysis and Applications (2023) 29:33

Hence

B

28 %)

<29 sup  sup 3
X

|Bl=lal+ja x€Sa

b

9\ [ gJa
(—,) S 1= 140
0x 8xéd

so that, with the notation J = (J', jy),

‘<°‘(92’ VT, ((3/3Xd)jd g) &, 1—x"- ld—l))‘

8’3g
E)x_ﬁ(x)

9P
< W=Dl sup sup —;Z(x)
X

< 2@l sup  sup
1BI<|J| xS, |9

IBISIT |+ ja x€Sa

Let us consider the remainder and set T¢ = (§' — &414-1,67). Then T € SL(d, Z)
and, by (iii) in Lemma 19,

w
- Z XQ(O)(n)(zﬂiT”d)_]d_le_zmmd,Rﬂz,w*jd
Jja=0

a]dg / / /
S T—x “1g_1), R’ —tngly (D
axy’

are the Fourier coefficients of a bounded function if

w
— Z XT(Q0)) (n)(27n'rnd)ﬂr1e72”””"7§’,92,w_./d
Ja=0

§Ja
( S 1—x 140, rn/) )

Jd
dxy

are the Fourier coefficients of a bounded function, and the bound is the same. By
induction

dd g
{XQ(@z)(n/)Rez,w—jd <_a S = 1), rn/)}
X

d

are the Fourier coefficients of a function on the d — 1 dimensional torus bounded by

Ud — D42 Qe tywti—ia sup sup
w—jd—(d—1)+2§\a|x’esd,l
gw_jd‘l’l
a\* [k
(2 ()
x 0x;
<UWd — 1) 2Qehywtl—a sup Hlal

w—jg—(@d=D+2<|a|<w—ji+1
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sup  sup —ﬁ(x)
|Bl=lal+ja xeSq | 0%

< U - 1) Qe Hwtl-i sup
w—ja—(d—+2<]a| w—jg+1

sup  sup —ﬁ(x)
|Bl=la|+ja xeSq | 0%

g

<Ud - 1) IQr hwtl—ia sup sup
IxP

w—d+3<|BISw+1 x€Sy

(x)

Hence, by (i) in Lemma 19 and Corollary 15,

w
— Z Z Qritng) e mITAR,

ng#0,n'€Q(62) | ja=0
§Jd .
( jf (x/’ 1 _x/ . ld—l)s rn’>:| e2n1n'x
ox;

is the Fourier series of a function on T¢ bounded by

w

2 B
. . 9
Y (Eern v - ned-tar - sup sup —g(x)
oo\ 3 w—d+3<|B|<w+1 xeSy | 0%
2 A1~ w42 N (nd—1 jg—1 g
< U@ -t Yt f oy i sup sup |~ (x)
3 =0 w—d+3<|BI<w+1 xSy | 9%
2 B
T d—1c —1\w+2 1 ’g
<=—Ud-1DQR" ' Qrt ) —— sup sup x)] .
3 2971270Q — 1 y_a43<|BI<w+1 xS, | 0P

Since TQ(0) N Z¢ C (Q(62) NZ4~") x (Z\ {0}) (notice that & € Q(P) implies
& —&414_1 € Q(0,)), by Lemma 18, the remainder (2) and therefore (1) is bounded
by

2 _ B
ud-1 ad
cn—dl(i)(zdflgffl)“”rz sup sup 28w
3 20=127Q2 — 1 w—d+3<|B|<w+1 xeSy axP
2 _ B
ud-1 a
<ec ”—dfi)(zdflm(;‘) d-lqQr=hwtl sup sup —,§<x> :
3 24127 — 1 w—d+3<|BI<w+1 xeSy | 9%

This proves the formula when e; ¢ 6. In particular,
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<(x IRo) (aii)jdg(x/,0)> V= (v.1).
_<a (62, V', 1), (i)ﬂ g(x 1—x"- 1d1)> vV=(v.2).

(@ (@0,V,J)),8) =
x4
O

As mentioned, our formulas are not symmetric since they depend both on the faces
of Sy that are orthogonal to the considered point £ and on the way we iterate the
integration in our computation. However one can obtain more symmetric formulas
by averaging on all different ways of computing the Fourier transform m (§) as an
iterated integral.

In the following we obtain a precise expression for the functionals (6, V, J) that
makes explicit the dependence of the coefficients («(6, V, J), g) on the function g
andonf, V and J.

Definition 21 For every h = 2,...,d, let Uy, : R" — R be the operator that
removes the last coordinate. For every # € © and for every B € F™, let Py 50 be
the subspace of R"~! defined as follows:

Unt ife, €6,
Pygf = {Up (0 N {x ey =0}) ifey ¢ 0and Be 7",
Un@N{x-1, =0} ife, ¢ 0and B e Fy".

Here e, = (0, ..., 0, 1) is the last vector in the canonical basis of R”.

Observe that Py 6 is just the subspace 6’, 6i, or 6, used in the proof of
Lemma 20.

Lemma 22 With the above notation we have

P oo — |Un@Nix-en=0) ifBeF",
"B lun@nix 1, =0 ifBe FM.

Moreover, P, g0 € Op_;.

Proof Let IT;, : R" — R’ be the orthogonal projection
My (x1, ..., x5) = (x1,...,x5-1,0)
so that U, = UyI1y. It suffices to observe that if ej, € 6, then
[0 =1, 0@N{x-e,=0}) =1, @N{x-1, =0}).

Indeed, if x € I1;0 then x = Il,y for some y € 6, so that x = I, (I1,y). Since
My € 6 N{x -e;, = 0} we have I1,0 C I, (0 N{x e, =0}). Similarly x =
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Iy(IMpy — (v - 1p)ep) and Iy — (v - 1p)ep € 0 N {x - 1, = 0} so that [1,0 C
IT;,(6 N {x - 15 = 0}). The reverse inclusions are trivial.

Concerning the last point of the lemma, observe first that it follows easily from the
recurrence definition of the bases of F that

| B={ejee—e:1<j<hl<t<k<h}.

BeFm
Assume now that 6 = span{by,..., by} with b; € Ugcrm B. If e, € 6, then
P, g0 = Upd = span{Upby, ..., Upby}, and by construction each vector Upb;

belongs to | Jge za-1) B, so that P, g6 € ©p,_1. Assume B € f%h) (the case B € ]—"g’)

is treated similarly). If e, ¢ 6 andb-e; = Oforall j =1, ..., N,thenagain P, 56 =
Upo = span {Upby, ..., Upby} € ©p_1. If instead e, ¢ O but, say, by - ey # 0, then
in particular by - e, = —1 and

N N
Py =U,0N{x-e, =0}) =U, ch'bj : chbj -ep =0
j=1 j=1
N N-1 —1
=Uh chbj3CN=ZCjbj'€h = CjUh(bj+(bj~eh)bN)
j=1 j=1 j=1

Now if b; - e = 0 then Uy (b.,' + (bj . eh) bN) = Upb; € UBEJ_‘(hfl) B. If on
the contrary b; - e, # 0, then b; - e, = —1 and either b; + (b; - en) by = bj —
by or its opposite belong to |Jgerm B. It follows that Uy (b + (bj - ex) by) or
—Up (bj + (bj - en) by ) belong to | Jge 1) B. Thus, Py, g6 € ©_1. ]

Definition 23 Foreveryh =2, ...,d, and forevery B = {by, ..., by} € ]—"(h), define
PyB e Fh=D as P,B = {Upby, ..., Uyby_1}. Observe that by Definition 5, P, is
the basis used to construct 5.

Notation. In the next lemmas and definitions for a given basis B € F@, we shall
call By =B, B;_1 = PyBB,By_» = Py 1PyB, ..., By = P3Py... P;3, and B; =
PyP; ... PyB = {1}. Also, we denote by b,(f’) the k-th vector of the basis Bj,. Similarly,

e,(ch) denotes the k-th vector of the canonical basis of R”.

Lemma24 Forallh >2andforallk =1,....h —1, 6"V = U,b" € P, 56 if
and only lfb]((h) €0.

Proof 1f B € F\" then b\ - " = 0. Thus if b" € 6 then, by Lemma 22, U;,b" €
Py, 6. Conversely, if th,((h) € P, g0 then there exists y € 6N {x ~e}(lh) = 0} such that
Uy, b,(ch) = Upy,sothat Uy (b,ih) —y) = 0. This implies that the first # — 1 coordinates of
b,((h) and y coincide. The last coordinate of y is 0 by construction, and since B € F (lh)
and k < h, the last coordinate of b,(fo also is 0. Thus b,({h) = y so that b,ih) €6.
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Similarly, if B € F3" then b{" - 1, = 0. Thus if 5" € 6 then Uyb" € P, 6.
Conversely, if thlgh) € Py, g0 then there exists y € 6 N {x - 1, = 0} such that
Uy, b,ih) = Upy, so that Uy, (b,((h) — y) = 0. This implies that the first # — 1 coordinates
of b,ih) and y coincide. The fact that b,Eh) -1, =0and y - 1;, = 0 implies that also the
last coordinate of b,((h) and y coincide. Thus b,(ch) = y so that b,((h) €0. O

Definition 25 For any given # € ®, and for every B € F@ the multi-index Z =
Zpo =(21,...,24) €10, l}d is defined recursively as follows:

za =0iffe{” €6

za—1 = 0iff e\ € Py 3,0

. d—2
Zd—2 = 0 iff 65172 ) S Pd—qud—l Pd’Bde

: d—3
2d-3 = 0 iff 6273 ) S Pd*Z,Bd,zpdfl,Bde,Bde
71 =0iff 1 € P27BZ v Pd—Z,Bd—zpd—l,Bd—l Pd,Bde

Definition 26 For any given § € ®4 and any multi-index V € {1,2}? define the
multi-index I = Iy g = (i1, ...,iq) € {0, 1}¢ by

k=0 < b o
where By = {bgd), R bfld)} € F@ ig the basis associated with V.
Lemma 27 For any given 6 € ©4 and for every By € F“, ZBy.o = 1vo.
Proof By definition, it suffices to observe that z; = 0 if and only if e;lh) belongs to

Phi1Bysy (- Pac1,B,, (PaB,0)). But e,(lh) = b;lh) is the last vector of the basis By
so that, by Lemma 24,

ey =b" € Purisy (- Pa-15, (Pag,),
which is equivalent to
bzhH) € Ppi2.Byss ( . (Pd—lde—l (Pd,Bde))) :
Proceeding iteratively, this is equivalent to
bV e Py p,0,

which, in turn, is equivalent to b,(qd) € 0 and therefore to i, = 0. O
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Definition 28 Fix V = (vi, v2,...,vq) € {1,2}4, I = (i1, ...,ig) € {0,1}¢, ] =
(j1, .- -, ja) anon-negative multi-index such that j, = 0if i, = 0, thatis J C I. For
eachh =1,...,d and for N > 1, define the operators

Thvhsihsjh : CN(Rh) N CN_I(Rh_l)

(if h = 1 then CN~1(R"~1) = C) as follows: if 1 = 1, set

1
T100, =/ e(e)doxy,
0

le,o,og _o.
RN _djlg

Tl 8= d.le (O)v
2L _ dfi

T, g= T (1).

If2 <h <d,forall x’ € R'! set

1—x"1
700 (x) = /0 g(x', xp)dxy,

2
770 (") =0,
9

1,1, 8
T, e () = —— (", 0),
axh
) oJn
Thz’l’j”g(x/) = Jf (x/, 1—x- 1).
axj,

Let us define the integro-differential functionals
M(V, I, J) — Tlvlsi1>j| T2U2>i2sj2 L T;dsidvjd.

Lemma29 Fix V = (v, va,...,vq) € {1,2}4, I = (i1,...,ig) € {0, 1}¢ and let
J = (j1,..., jd) be a non-negative multi-index such that j, = 0 if i, = 0, that
is J T 1. Let B= By € FD be the basis associated to the multi-index V, and let
0 € Oy be such that Iy c = I. Then

a®,V,J) =D, 1,0).

Proof One has to go through the proof of Lemma 20 and notice that §’, 8; and 6, are
all simply P; 3,0, and that B’ = P43 = B4_1. The conclusion follows proceeding
recursively and recalling that Zg g = Iy g. O

The above functional @ (6, V, J) is acompactly supported distribution, with support
contained in the simplex S;. In particular, the dependence of « (6, V, J) on V, 6 and
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J is condensed in the multi-indices V and /. Recall that each V € {1, 2} determines
a unique basis in F@, precisely By. On the other hand, given a basis B € F@
associated with the multi-index V, forany I € {0, 1}¢ there might be several subspaces
0 € ®g4 suchthat Iy ¢ = I.By the above lemma, all these subspaces therefore produce
identical coefficients @ (6, V, J).

Notice thatif vy = 2, then u(V, I, J) reduces to a linear combination of derivatives
of the Dirac delta centered at (1,0, ..., 0) of order at most |J|. This follows easily
from the fact that the only point in the simplex S; with first coordinate equal to 1 is
(1,0,...,0). If furthermore i; = 0, then u(V, I, J) = 0.

Assume v; = 1. We already mentioned that the support of ;«(V, I, J) is contained
in the simplex Sy. Furthermore, for any & > 2,

(1) if (vp, ip) = (1, 1) then the support of w(V, I, J) is contained in the hyperplane
x, = 0.

(2) If (vp, in) = (2, 1) then the support of w(V, I, J) is contained in the hyperplane
xp=1—(x14+...+xp-1).

(3) If (vp, in) = (2,0) then u(V, I, J) = 0.

(4) The couple (v, i) = (1, 0) gives no restrictions on the support of w(V, I, J).

Similarly, in the case h = 1,

(5) if (v1,i1) = (1, 1) then the support of u(V, I, J) is contained in the hyperplane
X1 = 0.
(6) The couple (vy,i1) = (1, 0) gives no restrictions on the support of w(V, I, J).

Remark 30 1f g is smooth with compact support in S, then g xs4(£) = g(&) has fast
decay atinfinity. Observe that this does not contradict the above theorem. Indeed, by the
previous remarks all coefficients (u(V, I, J), g) vanish except when V = (1,..., 1)
and I = (0, ..., 0) which implies that J = (0, ..., 0). This choice of V and I forces
6 = R? and Q(#) = {0}. In this case we have

gxsa(0) = fs g(x)dx.
d

For & # 0 all the coefficients (u(V, I, J), g) vanish so that
8xsd(&) = Ro.w(g, §).

3.2 General Simplex

With an affine change of variables Lemma 20 for the standard simplex can be trans-
ferred to a general simplex.

Definition31 Let M € GL(d,Z) and let B = {by, ..., bg} € F¥. Then we shall
denote by M B the basis {Mby, ..., Mby} and by MF @) the collection of the bases
MBwith B € F@_ Similarly M ®, is the collection of all the spaces M6 with6 € ©,.
Clearly M ®, consists of all subspaces generated by any possible choice of vectors in
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MF9 Forevery n € MO, we set

Qu(n) = {& eR :forallve | J MB.&-v=0iffven
BeF@

Lemma32 Let M € GL(d,Z). For every 0 € Qg
Qu(M6) = (M")~' Q).
Proof This follows immediately from the definitions. Observe that & € (M ’)_1 Q(0)
if and only if M'§ € Q(0) if and only if, forallb € |J B,
BeF@

Mg - b=¢-Mb=0iffb e,

if and only if, foreveryv e |J M5B,
BeF@),

E-v=0iffv e MO,

if and only if £ € Qp (M0). ]
Lemma 33 Letr P be a simplex in RY with vertices 0, mi,...,m; € 74 and let M €
GL(d, Z) be the d x d matrix with columns my, my, ..., mg, which maps the standard

simplex Sg onto P. Let ¢ € C*T1(RY) with w € N, let Q(x) = q(x)xrp(x) with
T > 0, and let q; p(x) = q(tMx). Then, following the definitions and notations of
the previous section, for every 0 € ®4 and & € Qu(M0),

o) = [ (e 2TV iy
P

—Dvel (w(V, Iy ¢, J), e~ 2mitMAy &
— 24 det(M) Z Z (=DMl {w(V, Iy 6, 1), 4z m)

i Y/
Ve(l,2) [J|<w,JE Iy g [b ey 0 @ritMby - §)

+ v det(M)Rg,w(qe.m, TM'E).

In the above formula we adopt the convention: By = {by, ..., by} is the basis asso-
ciated with the multi-index V. = (v1, va, ..., vq), Iv.g = (i1, ..., iq) € {0, l}" is the
multi-index such that iy = 0 if and only if by € 6, J T Iy g means that jr = 0 if
ixr = 0. The coefficients (,u(V, Ivg,J), q,,M) and the remainder Ry ., (qr. py, TM'E)
are the ones defined in Lemma 20 and Definition 28. In particular they satisfy the
following:

(1) the coefficients (,u(V, Ivg, J), %,M) satisfy the estimate

aa‘h,M
ax®

(x)

(V. Ivo. 1), ge)| < 297 P1 sup sup
le| <] xeSq
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(ii) The remainder Ry w(qr.m, TM'E) has the following property: for every
Q > 1/Q2m) and every t9 > O there exists a constant ¢ = c(d, 2, 19) >
0 independent of qry and w such that for every T > 1o the coefficients
{XQM(MQ)(H)RQ,UJ(QLM, rM'n)}neZ,, are the Fourier coefficients of a function on

the torus T¢ bounded by

0%qr,m

e 1Qrhwtl sup sup -
w—d+2<|a|<w+1xes; | 90X

(x)

Proof This lemma follows from Lemma 20 via an affine change of variables. Define
Gx) = Q(tMx) = q(tMx) xp(tMX) = qr i (X) x5, (X).

Then,

0(&)

/ Q(x)e—Zm‘S.xdx = -L-d det(M)/ Q(er)e_z”ig‘fodx
R4 Rd

4 det(M)/ O(tMx)e miTM'Ex g
Rd

¢ det(M)G (tM'€).

Applying Lemma 20 to the function G (x) we obtain the desired expansion. The same
lemma also shows that { x06) MRy, w(qr,m, TH) }n czd Are the Fourier coefficients of
a function on the torus bounded by

8aqLM

UQRITIQrhw+! sup sup
ox¢

w—d+2< || <w+1 xeSy

(x)

where U is the same constant that appears in Lemma 20. By Lemma 40 in Appendix
A, {>Q(9) (M'n)Ro.w(qe.m, TM'n) }neZd are the Fourier coefficients of a function on
the torus satisfying the same bound. O

4 Expansion in Multivariate Bernoulli Polynomials

In this section we shall prove our Theorem 7. Let us start with a lemma on the Fourier
expansion of the multivariate Bernoulli polynomials.

Lemma 34 Let ¢ be a non-negative, radial, smooth function in R, with compact
support and integral one. Let J = (ji1, j2, ..., ja) be a multi-index of non-negative
integers and let L € GL(d,Z). If *B..(x) are as in Definition 4, then, for every
x e R4,

2win-x

= lim { (D Plen) ——
By = lim DI V) iny?
neA(l,L)

Birkhauser



Journal of Fourier Analysis and Applications (2023) 29:33 Page350f49 33

Here, I = (i1, ...,iq) withiy = 0if jr = 0andir = 1if jr > 0, and the set A(I, L)
is the subset of frequencies in 7 defined by

A(I,L) = |n eZ: (Lny =0 iffiy = 0}.
Finally, in the denominators
QmiLn)! = mi (Ln)))' 2mi (Ln),y)”? --- Qi (Ln) )%

we adopt the convention that 0° = 1. In particular, all the denominators in the Fourier
expansion of B j 1 (x) are different from zero.

Proof Recall thatif f(x)is an integrable function with Fourier transform f(é )and L is
a non-singular matrix, then f (L&) is the Fourier transform of |det L|~! f ((L_l)’x).
Moreover, if f(x) is a function with bounded support, the Poisson summation formula
gives

|dCtL|_1 Z 0 * f ((L—l)t(x +n)) — Z a(gn)f(Ln)eZNinx‘

neZd nezd

Observe that the series on the left is finite and the one on the right is absolutely
convergent and that the application of the summation formula is legitimate (see Lemma
13). Then the lemma follows by choosing f(x) = By(x) = Bj(x1)--- Bj,(xq).
Indeed, for every n in 74 one has

d ol
/d By (x)e 2T dx = 1_[/ Bj, (xy)e ™ 27 gy
R 0

k=1

—1/ Qming)’* if ji # 0and ng # 0,
if jx # 0and n; = 0,
if jx = 0 and ngx # 0,
if jx =0and n; = 0.

11

k=1

- o O

Hence, by the definition of A(Z, L),

/ By (x)e2Filn gy — (=D/@riLn)’ ifn e A(I, L),
Rd o ifn¢ AU, L).

We shall also need the following lemma.

Lemma 35 Fora fixed V € {1,2}? and for every I € {0, 1} we have

U [z nouwe)]=a(@. mbyy).
0e€®y:1y g=I
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Here if, as usual, By = {by, ..., by} is the basis associated with the multi-index V,
then Iy g = (i1, ..., iq) where iy = 0 ifand only if by € 0, and Dy is the matrix with
columns by, ..., by.

Proof Assume that

me J  [2nouwe)]

0e®y:1y g=1

Thenm € Qy(MO) for some 0 suchthat Iy g = I.Thus,if by € By,thenm-Mb, =0
if and only if by € 6, but since Iy o = I, then by € 6 if and only if iy = 0. Thus
m - Mby = 0 if and only if iy = 0, which impliesm € A (I, (MDV)’), since

A1, (MDyY) =|m ez?: (MDy)'m e = 0iff if = 0]

meZ4: (MDy)'m) e = 0iff iy = o}

m e 7¢: mek—Olfflk—O}

{
{
{m € 74 m' MDyey = 0iff i = 0}
[
{

meZm- Mbk—Olfflk—O}

Conversely, if m € A (I, (MDV)’) , that is if m € Z4 is such that Mby -m = 0if
and only if ix = 0, then, calling

6, = (b in the bases : Mb -m = 0),

we have Iy g, = I, (indeed, setting Iy g, = (r1,...,74), we have ry = 0 if and
only if by € 6,, if and only if Mby - m = 0 if and only if i = 0). Finally, obviously,
me Qyu(M6,). O

We are ready to prove our main result.
Proof of Theorem 7 Let Q(x) = x,p(x)g(x). We have

D @exQx+n) =Y Plen)Q(n)e "

neZd nezd

=Y. > PEemOmeT,

0€0q neZdNQ (M)

Since the multiplier ¢(en) is rapidly decreasing the series converge absolutely and the
rearrangements of the terms of the series are allowed. Then, by Lemma 33,
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D gexQ(x+n)

nezd

=Y Y dendddaon ¥ T E DIV By, J). e e 2T MR meRint
- ji+1

0€04 pezin Ve(1,2)d1JI<w [ienyrg GritMby -2

Qu (M)

+ Z Z P(em)t! det(M)Rg,w(qr.m» M p)eminx
0€Od neZdNQy (M)

Yo e+ Y W)

Ve(l,2)4 0€By 0e®y

where

(V. 0) =t det(M) Y (u(V.Ivg.]).qz.m)
[JI<w

x (=Dvel YT Gen)

neZanQy (M6)

e2ni(x—rMAV)~n

kuer\Q QuitMby - n)iktl’

Rearranging the sum we have

Y Toevo- ¥ ¥ X ews

Ve{l,2)d 0€0, Ve{l,2)4 1€{0,1})4 0€O4:1y o=1

Z Z Z ¢ det(M)

Ve(l1,2)4 1€{0,1)4 0€O4:1y g=1

> u vV 1.0). gem)

<w

| Z o2 (x—TtMAy)-n
2mwitMby - n)Jkt]
neZdNQy (M) kueBV\g( witMby - n)

=detM) > Y >t w(V.1.7). qrm)

Ve(l1,2)4 1€{0,1}4 |/ |<w

x(-nit Y 2, Pen
0€0y:1y g=1 neZiNQy (M)
i —TtMiy)n

kuelgv\g QritMby - n)it!

=det(M) Y Y Y VI 1), gem)

Ve{l,2}4 1€{0,1}4 [J|<w

% (=Ml Z Z P(en)
0€0y:1y g=1 neZdNQy (M0)
eZm'(x—rM)Lv)-n

I—[bkeBV QmriMby - n)jk+ik
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with the usual convention that in the denominators 0° = 1. Now, since Z¢ N
(UG:,N:, QM(MG)) = A (I, (MDy)") by Lemma 35, we have

eZni(xer)»V)n

Z Z @(8}1) kuEBV QriMby - n)jk+ik

0€0q:1y 9=1 neZINQ ) (M0)

e2nin»(x—fMAV)

= Z ©(en) : .
. Jktik
neA(I,(MDy)") kuer QRmiMby - n)

Observe that Mby - n = (byM")n = (D}, M")in = ((MDy)'n), = ((MDy)'n) - e.
Hence,

eZnin-(x—erv)

_1HI 5
(=D Z (p(gn)l—[bkeBV(zniMbk .n)jk+ik

neA(1,(MDy)')

=D Y Gen

neA(I,(MDy)")

627rin~(x—rMAV)

) . . N
[y e, @ri (M Dy)'n) - er) i
p2min-(x=tMiy)

neA(;%DV)r)(p " Qri(MDy)tn)’ !

=@ * By mpyy (X — TMAy).

Since J C [, the vanishing components of J + I appear in the same spots as those of
I,sothat A (I, (MDy)") = A (I +J, (MDy)"). Hence, the principal part becomes

Yo Y e,

Ve(l,2)4 0€B0y

=detM) > > Y W 1), gem)

Ve(l1,2)4 1€{0,1}4 |J|<w

@e * By mpyy (x —TMAy).
Let us consider now the remainder

V(o) = ¢ det(M) Z a(gn)RG,w(QT,M, TMtn)e2nin'x'
neZiNQy (M0)
For every 0 € ©4, by Lemma 33, W (0) is a function bounded by

aﬂl
‘i’o;M (x) ‘

etV det(M) (242~ 4 s)wt! sup sup
w—d+2<]a|<w+1xeSy | 0

It follows that Ze ey W (0) is abounded function, with the same bound. Lettinge — 0
gives the desired result. O

) Birkhduser



Journal of Fourier Analysis and Applications (2023) 29:33 Page390f49 33

5 Proofs of Theorems 10 and 11

Theorems 10 and 11 are corollaries of Theorem 7. In particular, Theorem 10 follows
applying the next result to a decomposition of the given polytope into simplices.

Theorem 36 Let S, be the standard simplex in Ré, letP = MS;withM € GL(d, 7).
Let p € 74, let w be a non-negative integer and let f € C¥T1(RY). Then, there exists
a numerical sequence {yx}o<k<w/2 Such that for every positive integer N we have

N_d Z wP+P(N_1n)f(N_1n) = / P fx)dx + Z )/kN_Zk + O(N_w_l).
p+

nezd O0<k<w/2
More precisely, with the notation in Theorem 7,
ve=detd) Yo Y Y VLD F(p+ M) By Dy ©).

Vel(l,2)d 1€{0,1}d JEI, |[I+J|=2k

Proof Assume first p = 0. Since

Ny opWT ) f(NTIm) = N~y onp () f(N '),

neZd nezd

we apply Theorem 9 with T = N to the function gy (x) = F(N~1x). Let gn.m(x) =
gN (N Mx), then

N~ onp@) f(N"In)

nezd

=det(M) Y Y Y NVEINW 1T, gnom) By y O

ve{l,2)4 1€{0,1}4 [J|<w,JTI

+ N7IR,(0)
with
9"
‘N_de(x)‘ < N7V det(M) (292~ + gyt sup sup gN M( )’
w—d+2<|o|<w+1 xeSy

Since gy m(x) = f (Mx), then

N=Y" oms,(N"'n) f(N""n)

neZd

=detd) Yo > Y NGV L), f (M) B 4s,0apyy (0)

Ve(l,2)4 1€{0,1}4 [J|<w,JET
+ N7R,(0).

Birkhauser



33 Page40of 49 Journal of Fourier Analysis and Applications (2023) 29:33

Now observe that when I = (0, ..., 0) and therefore J = (0, ..., 0) we have
uwv,1,J)=0

if V.#£(1,...,1), whereas when V = (1, ..., 1) we have

(w(V,1,J), f(M-)) =/ f(Mx)dx = det(M)™! So)dx.
Saq

MSy

Also observe that

By, mpyy(0) =0

whenever |J| + |I] is odd. Indeed, since A(1 + J, (M Dy)") is a cone and ¢ is radial,
by Lemma 34 we have

i P(en)
By s.mpyy (0) = lim { (=D 3 | _
o neA(I+J,(MDy)") (2mi(MDy)'n)
i @(en)
=1 — DMl )
8—1>I(I)1+ ( ) Z (_zni(MDv)tn)]+J

neA(I+7.(MDy)')
= (=D"1B 5 by y (0).

Therefore,
NN FIN T moys,(NTn)y = [ fdx
nezd MSq
FIONTE(den) 3D VL), f (M) Bys upyy )
k=1 Ve 12d1601}du\<w JCI,
|14+J|=2k
+ N7IR,(0)
= f fdx+ > pNF+ow™h
MSq 0<2k<w
where

ye =det(M) Y Yoo VL), f (M) Byr pyy 0.

Vell,2)4 1€{0,1)d JTI, |1 +J]=2k
Now assume p # 0. Then
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N wpp(N ') f(NT' ) = N4 wp(N~'n— p) f(N""n)
neZd nezd
=N Y op(NTIn) f(NTn+ p).

nezd

Hence, the case p # 0 follows from the case p = 0 applied to the function
f&x+p). O

Theorems 10 and 11 are now easily deduced.

Proof of Theorem 10 We use Theorem 36 and the additivity of Sy (f, P) with respect
to P. O

Proof of Theorem 11 By Theorem 10,

O<k<w/2
Then

Y Sun(fiP)

0<jsw/2

=( > c'j>/;)_f(x)dx+ > ykN_zk( > cj2—2’<1>+0(1v—w—1)

0<jsw/2 0<k<w/2 0<j<w/2

and the conclusion follows since the Vandermonde system is solvable. O

Funding Open access funding provided by Universitd degli studi di Bergamo within the CRUI-CARE
Agreement.

OpenAccess Thisarticleis licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix A: Some Basic Facts on the Harmonic Analysis on Commuta-
tive Groups

The following results on the harmonic analysis on groups, subgroups and quotient
spaces are well known (see [31, Sect. 2.7]). We include the case of the torus for the

reader’s convenience.
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Definition 37 Let H be asubgroup of Z¢. The annihilator of 7 is the compact subgroup
HL of T¢ given by

HLz{teﬁrd:VheH, t.hez}z[hezd:weH{eZ””'hzl].
Lemma 38 We have
H:{hezd:VzeHl,t-heZ}.

This is a particular case of Lemma 2.1.3 in [31]. The following is a direct elementary
proof.

Proof Let h € 'H, then by definition ¢ - h € Z for every t € H*. To show the converse
observe that since every subgroup of Z is a lattice, there exists an integer d x ¢ matrix
B, with ¢ < d, of maximal rank such that
H={Bz:z€Z%}.
Then
HE={reT!ivient, Bz ren) =lreT! Vet 2 B ez
=[te']1‘d:B’teZq}.

Since B has rank ¢ we can assume without loss of generality that there existsa g x ¢
invertible matrix C and a g x (d — ¢) matrix D such that B' = [ C D ]. Hence for
t=(t1, ),

B't=Cti+ Dty =z €79,
It follows that

HE = {(C—l(z — Dn), r2) €7 e T‘f—‘f} .

Now, letm € Z such that for everyt € Ht wehavem -t € Z. Then, if m = (my, mp),
foreveryz € Z4,1, € T9~4 we have

(my, my) - (C_l(z — Dny), tz) =m-C lz—=m-C'Diy+1r-myeZ. (3)

Let t, = 0. Then m; - C~'z € 7Z and hence (C’])Zml -z € Z for every z € 74.
Therefore (C’])t my € Z4. 1t follows that m; = C'h for some h € Z4. From (3) we

obtain that

C'h-C'z—C'h-C'Dta+ 1o -m»
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=h-z—h-Dth+1t) -my
is an integer for every r, € T¢~4. It follows that for every t, € T¢~4 we have
(my—D'h) -t eZ,

this implies that m, = D'h and therefore m = Bh € H. O

Let du be the Haar measure on . Since H~ is compact we can assume that
ldu| = 1.

Lemma 39 With the normalized Haar measure dj on H>, for every m € 74 we have

; 1 meH
2mm~td — y
/HL € wo) 0 mé¢H.

Proof The case m € H is immediate since e2™""* = 1 for every t € H . Letm ¢ H.
By Lemma 38 there exists 7y € H* such that ¢>7/"%0 = 1. By the invariance of the
Haar measure we have

/ ezmm'td,u(t) — / eZnim(toH)dM(t) — eZninMo/ eZnim~th(t)'
Hl HL Hl

Hence

/ eznim-tdu(t) — 0
HL

O
Lemma 40 Let H be a subgroup of Z¢ and let d i be the normalized Haar measure on

the annihilator H*. In particular d is a probability measure on T%. Let f € L' (T%)
and let g(s) = u * f(s), that is

g(s) = / F(s = Ddu(o).
HL

Then,
D llglloo < I1flloos
(ii)

) — Jm) me™H,
SMZN0 men
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Proof (i) follows from the fact that the convolution with a probability measure is
an operator with norm 1 on L™ (']I‘d ) (ii) follows from the fact that p x f(m) =
(m) f (m) and

1 meH,

-~ _ —2mim-t _
MMD—A“e dmw—{0m¢H.

Appendix B: Bernoulli Polynomials and Lerch Zeta Functions

Here we give a different description of the functions B 1 (x). Such functions were
defined (Definition 4) starting with a product of Bernoulli polynomials, restricting
this product to the unit cube, composing it with an affine transformation and finally
periodizing. One may ask if these operations commute and if these functions can be
obtained as a linear combination of affine transformation of the periodic multivariate
Bernoulli polynomials B 14 (here Id denotes the identity matrix).

We start from the Fourier expansion

eZmnx

By = lim DI Y Gem s

neA(,L)

with the usual conventions on the notation (Lemma 34). In particular, the multi-index
I = (i1,...,ig) issuch that iy = O if jz = 0 and iy = 1 if jz > 0. Recall that
in the points of discontinuity the definition of B; ; is by regularization and that
L € GL(d,Z). Assume now that x is a point of continuity, so that the mollifier
¢ may not be taken to be necessarily radial. More precisely, we may set ¢(x) =
|det L| =1y ((LT)"'x) where

U(x) =n(x1) ... n(xa)

and 7 is a non-negative smooth function with compact support and integral one. In
particular

P(E) = Y(LE).

Since L has integer entries, L has a unique (column) Hermite normal form H, that
is, L = HU, where H is a lower triangular matrix with positive coefficients on the
diagonal and such that all the other coefficients are nonnegative and smaller than the
diagonal coefficient in the same row, whereas U is a unimodular integer matrix. The
invertibility of the linear map n — Un in Z¢ immediately implies that the lattice LZ4
coincides with the lattice HZ?, and more specifically

{Ln:ne AI,L)}={HUn:ne A(I,L)}={Hm :m e A(I, H)}.
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Thus, setting y = (L~1)7 x, one obtains
"l e2nin'x
B x) = lim (—1 o(en) ———
s = lim DI 90 ) Griln)?
neA(l,L)
" | eZniLn-y
= lim (-1 o(eL™ Ln)———
£—>0+( ) Z v )(ZniLn)J
neA(l,L)
] | eZm’Hm-y
= lim (-1 ¢o(eL™ Hm)————
L (=D 2. W ) GritHm)
meA(I,H)
] . eZm’Hm-y
= lim (-1 eHm)———.
€%0+( ) Z v )(ZniHm)J
meA(l,H)
Let now H = (hji), k; = ]_[f:j hss forall j = 1,...,d, and set K =
diag(ky, ..., kq) to be the corresponding diagonal matrix. We claim that KZ¢ <

HZ4. Indeed, it suffices to show that all vectors Ke ; belong to H 74. Obviously,

Keq = hggeq = Heq. By induction, assuming that Ke, € HZ4 for all s
J+1,j+2,...,d,letus show that Ke; € HZ. We have

Kej=hjj---hqaej

d d
= Zhs,,/hj+1,j+1 cohgges — Z hs jhjt1j+1---haaes
s=j s=j+1
d
=Hhjt1,j+1... haaej) — Z By jhjs1,js1e (Bss - - - ha.aes)
s=j+1
d
=H(hj1,j11..-haaej) — Z hs jhji1,j11.-hs—15-1Kes € HZ¢
s=j+1

and the claim is proved. Observe that there is a finite number of different integer
translates of K Z¢ (precisely k1k» . . . kg). Take any point of HZ4 which is not in K Z¢,
say v1. By linearity it follows that v + KZ? is contained in HZ¢ and is disjoint
from K Z¢ . Take again a second vector in HZ¢ whichis notin K Z4 UM + K Z4), say
v® . Then v 4 K Z4 is contained in HZ¢ (and is disjoint from K Z? U (v1) + K Z%)).
We can iterate this procedure until we exhaust all of HZ?. In other words, we have

L
Lz = Hz' = | ' + k2%
=1
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where the union is a disjoint union. Thus, recalling that y = (L’I)Tx,

" R eZm'Hmy
B x) = lim (-1 eHm)———
s = lim (=1) 2. W )(2mHm)J
meA(l,H)
L R 2O +Km)y
= 1im (D'} 3 ” (e(v“) n Km)) .
e—0+ = ezd (Zni(v(e) + Km))
09 4 (Km)s=0 iff i;=0
L d o
= lim (~D) 2mivs " s
Jim DY ST e
=1 s=1
s.t.ig=1
2riksmgys
. e
Z n (E(vs(e) + ks’"s)) Js
msezz (2ni(v§£) + ksms)>
©
my#— =
L d ®
— l—[ (Zniks)_hezmvf Ys i
=1 s=1
s.t.ig=1
) 2mimg (kg ys)
. ) e
x lim (—1) Z ek | =— +my )| ———
e—>0+ p ks NG Js
my€ o S—r + my
ms#_%
L d 0
. (0) . 1)
_ Z 1_[ e2ivs ¥ Qriks) ™ Ljs (ksy“ k‘_)
=1 s=1 s
s.t.ig=1

where for j > 1 we set

2winx

Li(x,r) = —Sl_i)r(r)1+ Z T(en+r) PR

nezZ\{—r}
Observe that forr € Z
Li(x,r)=e """ (2mi)! Bj(x)

where Bj(x) is the j-th Bernoulli polynomial, whereas when r ¢ Z the function
L j(x, r) is related to the Lerch Zeta function

+00 i
eZmnx

E(X,j,r):Zm.

n=0
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Indeed, formally,

2winx

e . . . .
Lixr)=— Y m=—£(x,J,r)—(—1)!1:(—x,],—r)+r 7
niﬁo

Moreover, when r = p/q is rational, it is not difficult to write L (x, r) in terms
of periodic Bernoulli polynomials. Indeed, one can verify that for every periodic
integrable function f (x),

g—1
l 2672nz§(x+a)f (x +a) _ Zf(nq +p) p2minx
9.5 q

nez

Therefore, with f (x) = B; (x),

Z eZm'nx . Z -1 i
Lj(x,p/q) = ——— = (2rwiq)’ —e
/ = (n+plg) = (Qmi(ng + p))’
n+p/q#0 nq+p#0
) —~ . o _oin |
= 2nig)’ Z B; (nq + p) p2minx _ 2rig) e 2711xf{' L
nez 4
q—1 o +
Ze—2maaBj <x a) .
a=0 4
Thus,
L4 2rin® . {0
B — s Vs ik ) IS L: | k ’S_
J,L(x) Z 1_[ e 2miky) Js sYs ks
=1 s=1
s.t.ig=1
L d 1 ks—1 O]
= Z H T e By, (YA + k_)
=1 s=1 % a=0 §
s.t.ig=1
Now, recalling that K = diag(kq, ..., kg), if we set K/ = diag(kilf “,,k;d) S0
that ks is replaced with 1 whenever i; = 0, then
L d 1 ks—1 L0
_ —2mi a “
Buwm=% I] £ X n, (5 )
(=1 s=1 a=0
s.t.ig=1
i (©
£ k-1 | it .
Y S e (e
=1 a1= ki ki
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iy ©
kg =1 1 —2ni‘f-—dad
k
2 me Bt g
aqg= d d
£ -1 Iy—1 10
_ Zdet <K1> Z o 2mi((KH™HAw
=1 0<ALK!—1
By (@D x+ (KD 4),
where 0 < A = (ay,...,a7) < K' — 1 means 0 < ay < kY — 1.
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