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ABSTRACT

Supermassive black hole binaries (SMBHBs) are binary systems formed by black holes with masses exceeding millions of solar
masses, and are expected to form and evolve in the nuclei of galaxies. The extremely compact nature of these objects leads to the
intense and efficient emission of gravitational waves (GWs), which can be detected by the Pulsar Timing Array (PTA) experiment
in the form of a gravitational wave background (GWB); that is, a superposition of GW signals coming from different sources. The
modelling of the GWB requires some assumptions as to the binary population, and exploration of the whole parameter space involved
is hindered by the great computational cost involved. We trained two neural networks (NN) on a semi-analytical modelling of the
GWB generated by an eccentric population of MBHBs that interact with the stellar environment. We then used the NN to predict
the characteristics of the GW signal in regions of the parameter space that we did not sample analytically. The developed framework
allows us to quickly predict the amplitude, shape, and variance of the GWB signals produced in different realisations of the universe.

Key words. black hole physics – gravitation – gravitational waves – methods: analytical – methods: numerical –
galaxies: kinematics and dynamics

1. Introduction

Discovering supermassive black hole binaries (SMBHBs) is
key for a complete understanding of the Universe, and
in particular an understanding of how galaxies form and
evolve through cosmic time. Their existence is strongly
favoured and predicted by all the theoretical models of
galaxy mergers (e.g., Begelman et al. 1980; Valtaoja et al.
1989; Milosavljević & Merritt 2003; Volonteri et al. 2003;
Merritt & Milosavljević 2005; Dotti et al. 2012; Colpi 2014;
Klein et al. 2016; Gualandris et al. 2017; Kelley et al. 2017b;
Tremmel et al. 2018; Dayal et al. 2019; Bonetti et al. 2019;
Chen et al. 2020; Barausse et al. 2020; Valiante et al. 2021, and
references therein); however, SMBHBs still remain elusive, with
only a number of candidates that are yet to be confirmed. A
very promising and timely way to gain insight into this elusive
SMBHB population is through the detection of a gravitational
wave background (GWB) signal at low (i.e., 10−9−10−7 Hz) fre-
quencies using millisecond pulsars as macroscopic clocks.

As pulsars are very precise clocks, tiny deviations from the
expected time of arrival of radio pulses on Earth can reveal
the passage of GWs (Verbiest et al. 2016). Pulsar Timing Array
(PTA) experiments are sensitive to low-frequency GWs emitted
by SMBHBs with masses of above 108 M� and whose inco-
herent superposition is expected to form a stochastic GWB
(Lentati et al. 2015). Very recently, all the PTA collaborations
across the globe (i.e., European PTA, Indian PTA, Parkes PTA,
North America Nanohertz Observatory for GWs (NANOGrav)

and Chinese PTA) found evidence of a stochastic process with
common amplitude and spectral slope across many monitored
pulsars with a statistical significance of between 2σ and 4σ
depending on the number of pulsars and on the employed analy-
sis technique (Antoniadis et al. 2023a,b,c,d, 2024; Smarra et al.
2023; Agazie et al. 2023a,b,c; Afzal et al. 2023; Reardon et al.
2023; Xu et al. 2023). This discovery clearly opens a com-
pletely new window on the Universe, allowing us to deepen
our knowledge of different phenomena and probe new astro-
physical and cosmological sources. Several theoretical inter-
pretations of this GW signal have been proposed since its
discovery (Antoniadis et al. 2024; Afzal et al. 2023), although
possibly the most plausible is a SMBHB population origin
(Antoniadis et al. 2024; Agazie et al. 2023d). Ideally, the signal
produced by a population of inspiralling SMBHBs would man-
ifest as a stochastic Gaussian process characterised by a power-
law Fourier spectrum of delays and advances of pulse arrival
times, with the characteristic inter pulsar correlations identified
by Hellings & Downs (1983). However, the overall signal might
be dominated by a handful of massive, nearby sources that might
result in a sufficiently strong signal to be individually resolved as
continuous GWs (CGWs, Sesana et al. 2009; Babak & Sesana
2012; Kelley et al. 2018). Furthermore, the signal might deviate
from the isotropy, Gaussianity, and stationarity that characterise
signals of primordial origin in the Universe (Ravi et al. 2012).

The GWB encodes precious information about the elu-
sive SMBHB population. In particular, the signal amplitude
and spectral shape are deeply connected to the galaxy merger
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rate and the dynamical properties of the emitting SMBHBs
(Kocsis & Sesana 2011; Sesana 2013; Ravi et al. 2014). While
current models try to describe the GWB in terms of normali-
sation and spectral shape, the actual SMBHB population, being
formed by discrete objects, also imprints an intrinsic variance
in the GWB. To model the GWB together with its variance,
Monte Carlo realisations of the entire population (millions of
SMBHBs) are needed (Sesana et al. 2008; Amaro-Seoane et al.
2010; Chen et al. 2017). Unfortunately, the computational cost
required to explore any wide parameter space is inhibitive, mean-
ing that only limited sampling of GW spectra at discrete points
in the multi-dimensional binary population parameter space is
feasible, which leaves a large fraction of the parameter space
unexplored. It is therefore crucial to find a way to ‘interpolate’
the GWB spectra across the multi-dimensional space, ultimately
extending the investigation over the whole parameter space. An
early attempt in this direction was made by Taylor et al. (2017),
who employed a Gaussian process (GP) emulator to interpo-
late over the parameter space represented by two main parame-
ters: initial binary eccentricity e0 and stellar density at influence
radius ρ. Agazie et al. (2023d) extended the work of Taylor et al.
(2017), introducing more parameters in the model, but always
using a GP-based regression tool. However, these latter authors
neglect the effect of SMBHB eccentricity and focus only on the
effects of the environment.

Here, we propose a new framework, where we use two
trained neural networks (NN) to evaluate the GWB in the whole
parameter space, beyond the region we use for the training of
the NN. The advantage of using NN resides in its determinis-
tic nature and its lower computational cost. NNs are also highly
flexible and can represent very complex functions with deep
architectures. We model the SMBHB population, taking into
account an agnostic parametrisation of the mass function shape
and normalisation, the presence of non-negligible eccentricity of
the binaries, and considering the influence of the stellar harden-
ing on the SMBHB evolution. We trained our NN using numer-
ous realisations of the GWB signals in different kinds of uni-
verses in order to efficiently assess their variance.

The paper is organised as follows. In Sect. 2 we summarise
the theoretical framework that we use to model the SMBHB pop-
ulation, highlighting the novelties in our approach. In Sect. 3,
we provide specific details of the NN algorithm used. In Sect. 4,
we present the results of our approach, while in Sect. 5 we dis-
cuss the implications of our algorithm, envisage its forthcoming
development and usage, and finally draw our conclusions.

2. Theoretical model

Assuming that the binaries in the Universe are circular and
evolve only due to gravitational wave emission, we can write
the GWB characteristic amplitude as a function of the number
density of mergers (Phinney 2001):

h2
c( f ) =

4G
π f 2c2

∫ ∞

0
dz

∫ ∞

0
dM

d2n
dzdM

1
(1 + z)

dEGW(M)
d ln fr

, (1)

whereM is the chirp mass, the 1/(1 + z) term takes into account
the redshift of gravitons, d2n/dzdM is the comoving number
density of GW events, usually inferred through numerical sim-
ulations or semi-analytical models, and EGW is the energy gen-
erated by an event. The rest-frame frequency is fr = (1 + z) f ,
where f is the observed frequency, and fr = 2 forb, where forb is
the rest-frame orbital frequency.

The comoving number density per unit of redshift and chirp
mass can be written as

d2n
dzdM

=
d3N

dzdMd ln fr

dz
dVc

d ln fr
dtr

dtr
dz
, (2)

where the first term on the right hand side indicates the comov-
ing number of binaries emitting in a given logarithmic frequency
interval with chirp mass and redshift in the range [M,M + dM]
and [z, z + dz], respectively, dVc is the comoving volume shell
between z and z + dz, and tr is the time measured in the source
rest frame.

From cosmology (Hogg 1999), we can write (see also
Chen et al. 2017)

dz
dVc

dtr
dz

=
1

(1 + z)4πcd2
M

, (3)

where dM is the proper-motion distance. For circular binaries, the
gravitational radiation is emitted at twice the orbital frequency,
and the sky- and polarisation-averaged strain amplitude is given
by (Thorne 1987)

h =
8π2/3

101/2

M5/3

dM(z)
f 2/3
r . (4)

The temporal evolution of the emission frequency is expressed
as

dtr
d fr

=
5c5π−8/3

96G5/3 M
−5/3 f −11/3

r , (5)

while the radiated energy per logarithmic frequency interval is
given by (Thorne 1987)

dEGW(M)
d ln fr

=
π2/3G2/3

3
M5/3 f 2/3

r =
dtr

d ln fr
π2d2

M(z) f 2
r h2. (6)

Substituting Eqs. (2) and (6) in Eq. (1), we obtain

h2
c( f ) =

∫ ∞

0
dz

∫ ∞

0
dM

d3N
dzdMd ln fr

h2( fr), (7)

which states that the observed characteristic-squared amplitude
of the GWB is given by the integral over all the sources emitting
in the frequency bin d ln fr multiplied by the squared strain of
each source (Sesana et al. 2008). The above expression can be
written with a normalization that depends on the details of the
SMBHB population as (Jenet et al. 2006)

hc( f ) = h1 yr

(
f

yr−1

)−2/3

, (8)

where h1 yr depends on the assumed model.

2.1. Binary population

We chose a simple and agnostic model for the comoving
number density per unit redshift z and binary total mass M
(Middleton et al. 2016):

d2n
dzd log10 M

= A
(

M
107M�

)−α
e
−

(
M

M0

)β
(1 + z)γe−z/z0 . (9)

We assume the parameters A, α,M0, γ, β, and z0 (i.e., the Uni-
verse parameters)1, which characterise the number density of the

1 In the following, we fix γ = 1 and z0 = 2. This choice is motivated by
the fact that those quantities weakly affect the mass function and fixing
their value allows us to reduce the number of parameters that the NN
model needs to account for.
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Table 1. Ranges of the parameters that characterise a chosen universe.

Quantity Range Units

A 10−7–10−2 Mpc−3 Gyr−1

α 0–1.5 –
β 0.5–2 –
M0 107–109 M�
ρ 1–105 M� pc−3

e0 0–0.99 –

GW sources that vary within a given range; see Table 1. From
Eq. (2), we calculate the number of binaries in each frequency
bin as

d3N
dzd log10 M1dqd forb

=
d2n

dzd log10 M
(1 + z)4πcd2

M
dtr

d forb
, (10)

where

dtr
d forb

=

(
d forb

dtr

∣∣∣∣∣
GW

+
d forb

dtr

∣∣∣∣∣
?

)−1

(11)

takes into account the frequency evolution due to GW emission
(effective at smaller scales) and stellar hardening (dominating
the large-scale evolution).

In particular, the contribution due to GW emission for a pop-
ulation of eccentric binaries is given by

d forb

dtr

∣∣∣∣∣
GW

=
96 G5/3(2π)8/3

5c5

qM5/3
1

(1 + q)1/3 f 11/3
orb F(e), (12)

where

F(e) =
1 + 73/24e2 + 37/96e4

(1 − e2)7/2 . (13)

The frequency evolution due to the presence of the stellar hard-
ening is given by

d forb

dtr

∣∣∣∣∣
?

=
3G4/3M1/3

(2π)2/3

Hρ
vdisp

f 1/3
orb , (14)

where M is the binary mass, H = 15 is a dimensionless constant
parametrising the efficiency of energy extraction by stars scatter-
ing on a SMBHB, ρ is the stellar density, and vdisp is the velocity
dispersion, both quantities calculated at the influence radius of
the binary (Sesana & Khan 2015).

Equating Eqs. (12) and (14), we define the decoupling fre-
quency that marks the transition between the GW- and stellar-
hardening-driven regimes:

fdec =

64G1/3(2π)10/3

5c5

vdisp

ρH
M2

1q
M2/3 F(e0)

−3/10

, (15)

where M1 is the mass of the primary, q = M2/M1 is the mass
ratio, and e0 is the eccentricity of the binary during the stel-
lar hardening phase, which we assume to remain constant until
the binary reaches the GW-driven regime. Above the decoupling
frequency, the binary circularises because of GW emission. The
orbital frequency and the eccentricity are bound by the following
equation:

forb

forb,0
=

1 − e2
0

1 − e2

(
e
e0

)12/19 1 + 121
304 e2

1 + 121
304 e2

0

870/2299
−3/2

. (16)

Table 2. Grid for binary population sampling.

Quantity Range Units Number of bins

z 0–10 – 40
log10 m1 7–10.5 M� 35
log10 q −2 to 0 – 25
forb 10−11–10−7 Hz 360
e 0–0.999 – 100

Notes. Bins are uniformly spaced in their respective ranges, except for
the redshift (log-uniform distributed from 0.005 to 2, while uniformly
distributed from 2 to 10) and the orbital frequency (90 uniform bins
covering each dex).

2.2. Discrete GWB signal construction

We have so far assumed that the binary population is described
by a continuous differential distribution. However, in reality, the
background is a superposition of discrete contributions from
binaries drawn from that continuous distribution. This means
that, in nature, the actual signal fluctuates depending on the spe-
cific draw realized in nature, and it is this intrinsic variance that
we want to properly capture with our approach. To this end, for
each value of the universe parameters (A, α,M, β, ρ, e0), we per-
form 100 realisations of the binary population, sampling the dis-
tribution in Eq. (10) in a Monte Carlo fashion.

We characterised the binary population as a function of red-
shift, primary mass, mass-ratio, orbital frequency and eccentric-
ity. Specifically, we translated Eq. (10) into a numerical dis-
tribution function of (z,M1, q, forb, e) with finite size bins, as
detailed in Table 2. We then sampled the discrete number of
sources, drawing an integer number from a Poisson distribution
with mean equal to the non-integer number of binaries in that bin
predicted by Eq. (10).

In each multi-dimensional bin, we draw a random number
between the lower and upper limit of (M1, q, z, forb, e) in order to
assign the properties to a binary source. We repeat this procedure
N times per bin, where N is the discrete number of binaries in
that bin. In the bins that have N > 50, we only sample 50 binaries
and we then multiply the resulting background by N/50.

For each population realisation, the GWB can be computed
by summing the GW strain produced by each binary in our popu-
lation. Circular binaries emit a GW signal at 2 forb , while eccen-
tric ones also emit at multiple harmonics, fn = n forb, where n is
the harmonic number. The GW strain of each harmonic is given
by (see e.g., Amaro-Seoane et al. 2010)

hn( fn) = 2

√
32
5

G5/3

c4

M5/3

ndM

(
2π

fn
n

)2/3 √
g(n, e), (17)

where the dimensionless function g(n, e) determines the fraction
of the GW power that is emitted in each harmonic and reads

g(n, e) =
n4

32

[(
Jn−2(ne) − 2eJn−1(ne) +

2
n

Jn(ne)

+ 2eJn+1(ne) − Jn+2(ne)
)2

+ (1 − e2)
(
Jn−2(ne)

− 2Jn(ne) + Jn+2(ne)
)2

+
4

3n2 J2
n(ne)

]
, (18)

with Jn representing the nth-order Bessel function of the first
kind.
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The relevant frequency band for pulsar timing observations
is from ∆ f = 1/Tobs – where Tobs = 30 yr is the assumed total
observation time – to the Nyquist frequency 1/(2∆t), where ∆t
is the time between subsequent observations (around a couple
of weeks). We assume the observed frequency to vary between
1/Tobs and 6 × 10−8 Hz, uniformly spaced by ∆ f , yielding Nf =
56 values. The GWB in the frequency bin [ f j, f j+1] is therefore
given by the sum of the GW strain multiplied by the number of
cycles that each binary makes in the observation time:

h2
c( f j) =

N∑
i=1

n̄∑
n=1

h2
n,i( fn,i)

fn,i
∆ f (1 + z)

Θ

(
fn,i

1 + z

)
, (19)

where the 1 + z factor converts from rest frame to observing fre-
quency, fn,i = n forb,i is the orbital frequency of the ith binary,
and Θ

(
fn,i/(1 + z)

)
= 1 if f j ≤ fn,i/(1 + z) ≤ f j+1 and zero other-

wise. We note that the i index runs over the sample of binaries,
while the n index runs, for each binary, over the harmonics, with
n̄ chosen such that a sufficient number of them is included in
the computation of the signal. We take n̄ = 8nmax, where nmax is
a numerical proxy of the harmonic number at which the maxi-
mum GW power is emitted and can be accurately approximated
as (Hamers 2021)2

nmax(e) ≈ 2

1 +

4∑
k=1

ckek

 (1 − e2)−3/2, (20)

where c1 = −1.01678, c2 = 5.57372, c3 = −4.9271, and c4 =
1.68506.

Finally, we note that, as we generated 100 realisations of the
binary population, we have 100 GWB signals for each choice of
our universe parameters.

3. The neural network model

A large database of GWB realisations is required for each com-
bination of the universe parameters (A, α,M, β, ρ, e0) in order to
train a machine learning (ML) model for regression. We there-
fore generated approximately Ntot ∼ 5 × 105 GWB signals, cor-
responding to Nmodel = 5120 different universes and 100 realisa-
tions of the binary population within each universe. The parame-
ter values were selected using Sobol sequences within the ranges
specified in Table 1. The final dataset is therefore composed of
Ntot = Nmodel × 100 realisations of the GWB signal. For each
combination of the universe parameters, we computed the mean
µ and standard deviation σ for each of the Ntot distributions as a
function of frequency. We then created an input–output dataset,
where the input consists of the six universe parameters and the
frequency, and the outputs are the µ and the σ values. To assess
the performance and generalisation ability of our ML model, we
randomly partitioned the dataset into a training set (80%) and
a test set (20%). The training set was used to estimate the ML
model parameters, while the test set was reserved for evaluating
the final model performance. Additionally, because of variations
in the scale of input parameters (also referred to as features), we
standardised their values by centring each feature at a mean of 0
with a standard deviation of 1. This preprocessing step facilitates
the learning process for ML models such as the NN we employ
in the present work, as their parameters are estimated through
a gradient-based optimisation algorithm. Ultimately, we applied
the Box-Cox power transformation to the output values, aiming

2 For n > 1000 we group the harmonics in batches of 20 to speed up
the evaluation.

to obtain a normal distribution with a mean of 0 and a standard
deviation of 1. This crucial preprocessing step mitigates the risk
of training ML models with excessively low loss values, which
could lead to significant approximation errors.

The two output parameters µ and σ exhibit significant dif-
ferences, that is, of orders of magnitude. To address this vari-
ation and ensure effective training, we implemented two dis-
tinct ML models: one for predicting µ and another for pre-
dicting σ. Specifically, we employed two feed-forward NNs
(Goodfellow et al. 2016). Each of these models defines a map-
ping y = g(x, θ), where x represents the input (i.e., the universe
parameters and the frequency) and y represents the output (i.e., µ
and σ, respectively). Here, θ denotes the set of parameters defin-
ing the ML model, which are estimated using the training set.

This model is referred to as feed-forward because infor-
mation flows through the function from the input x to
the output y without any feedback connections where the
model outputs influence itself. The NN model is defined by
simultaneously composing multiple functions gi, with i =
1, . . . ,N, arranged in a chain structure, resulting in g(x, θ) =

gN
(
gN−1

(
. . . g1 (x, θ1) . . .

)
, θN−1

)
. The length of the chain,

denoted N (where N ≥ 2), is referred to as the network depth.
The first function, g1, is known as the input layer, while the final
function is the output layer, responsible for producing a value
close to the target y. The intermediate layers are referred to as
hidden layers, as their outputs are not explicitly observed in the
training data. Each layer of the network typically represents a
vector value. In our case, the input layer contains seven neurons,
corresponding to the seven features. Each hidden layer i con-
sists of nhidden neurons and is a function of the preceding layer
i − 1. Typically, this connection involves an affine transforma-
tion followed by a fixed non-linear transformation, known as the
activation function. This process is expressed as follows:

hi = ai
(
Wihi−1 + bi

)
. (21)

Here, the matrix Wi and bi are the parameters of the affine trans-
formation, commonly referred to as weights and bias, respec-
tively, and ai is the activation function. It is worth noting that
h1(x) = x, and hN(x) = y.

For the output layer of the two networks, we employed a
linear activation function a(x) = x. Keeping the neural architec-
ture fixed, which includes the depth N of the network, the width
nhidden, and the activation function a for various hidden layers,
the network refines its parameters (i.e., the weights W i and biases
bi for each layer) by minimising a loss function during the train-
ing phase. In our scenario, we chose a weighted version of the
mean absolute error (MAE) between the true and predicted out-
puts as the loss function:
Ntot∑
k=1

wk( f )|yk
test − yk

pred|. (22)

Here, yk
test and yk

pred are the true and predicted outputs, and wk( f )
is a factor that weights the absolute error linearly as a function of
the different frequencies f . This weighting leads the NN to focus
more on better fitting the lower frequencies. The reason for this
choice is twofold: firstly, the low-frequency spectrum is the part
that is currently within the reach of PTA experiments, and sec-
ondly, the low-frequency end of the spectrum is less noisy and
therefore easier to model, because it is less sensitive to fluctua-
tions generated by ‘loud’ single sources.

We used the Adam optimiser (Kingma & Ba 2014) with a
positive learning rate lr to estimate the parameters of the two
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10−8

f [Hz]

10−15

10−14

h
c

e0 = 0, GW-driven

e0 = 0, hardening

e0 = 0.99, GW-driven

Fig. 1. Characteristic strain as a function of frequency for three different
universe models (log10 A = −2, α = 0.3, β = 1, log10 M0 = 8) featur-
ing: circular GW-driven binaries (blue), circular but stellar+GW-driven
binaries (ρ = 104 M� pc−3, orange), and eccentric GW-driven binaries
(e0 = 0.99 at 5 × 10−12 Hz, green). Thick lines denote the theoretical
GWB, while shaded areas denote the 10th and 90th percentiles of the
characteristic strain when different discrete realisations of the popula-
tion are considered. The thin line of the same colour denotes one such
realisation for each model.

10−8

f [Hz]

10−16

10−15

10−14

10−13

h
c

α = 0.3, β = 1,M0 = 108

α = 0.3, β = 0.5,M0 = 108

α = 0.3, β = 0.5,M0 = 109

α = 1, β = 0.5,M0 = 107

Fig. 2. Same as Fig. 1, but considering how the characteristic strain of
the GWB varies by changing the parameters controlling the shape of the
BH mass function (see labels). Higher cut-off masses (M0), shallower
power law (α < 1), and a shallower exponential cutoff (β < 1) produce a
more prominent GWB, which is also characterised by a larger variance.

networks. More specifically, we trained the NN for 100 epochs
using a batch size of 128 and an early stopping criterion to pre-
vent potential over-fitting, halting the training phase when the
MAE on a validation set (20% of the training set) ceased to
improve.

The hyper-parameters a(x), nhidden, and nneurons of the neu-
ral architecture, and the learning rate lr of the optimiser, were
determined using a hyper-parameter strategy based on Bayesian

optimisation (BO). BO is a sequential model-based approach
used to solve complex global optimisation problems based on
expensive-to-evaluate black-box functions, but is also com-
monly used to tune the hyper-parameters of ML algorithms
(Snoek et al. 2012; Galuzzi et al. 2020; Victoria & Maragatham
2021). At the end of the hyper-parametrisation optimisation, we
obtained a(x) = tanh(x), nhidden = 2, nneurons = 70, and lr = 0.001
for the NN associated with µ, and a(x) = Relu(x) = max (x, 0),
nhidden = 2, nneurons = 50, and lr = 0.001 for the NN associated
with σ.

The training of the ML model and the hyper-parameter opti-
mization are implemented using the Keras library (Chollet 2015;
O’Malley et al. 2019).

4. Results

Here, we first present the results we obtained from the MC gen-
eration of the GWB signals dataset, discussing its properties, and
then we show the results of the training of the NN on our sample.

4.1. Dataset properties

As our dataset is relatively large, it is useful to summarise its
main properties and comment on the main features that can be
captured by varying different parameters. The parameter A acts
as a normalisation, shifting the amplitude of the GWB up and
down without affecting its shape. Nevertheless, by controlling
the number of binaries in a universe, this parameter could in prin-
ciple be linked to relevant astrophysical parameters. The effec-
tive modelling employed in our work can indeed be recast in
terms of observable quantities, as done in Chen et al. (2017).

A more substantial role in shaping the GWB is instead
played by the parameters e0 and ρ. Both parameters affect the
GWB spectral shape and are specifically responsible for low-
frequency turnovers. However, disentangling the effects of stellar
hardening and the presence of eccentric binaries is not straight-
forward, as the two cause a similar behaviour, that is, a turnover
in the GWB amplitude at low frequencies. The attenuation of the
GWB signal is due to the fact that both the presence of a stellar
(or gaseous) component and a non-zero initial eccentricity cause
the binary to spend less time emitting GWs in a given frequency
range. In particular, the interaction of SMBHBs with their envi-
ronment is important at frequencies f � 1 yr−1 where GW emis-
sion is still efficient (Kocsis & Sesana 2011). Figure 1 shows
the signals generated from a population of circular GW-driven
binaries (blue line), circular binaries that are affected by stellar
hardening (orange line), and a population of extremely eccen-
tric solely GW-driven binaries (green line). Although both stel-
lar hardening and eccentricity produce a low-frequency turnover,
there is a clear difference between the orange and green popu-
lations. While the signal affected by stellar hardening is simply
lower than the circular GW-driven one, the GWB generated from
eccentric binaries shows both a turnover at low frequencies and a
bump, which for the specific model represented is above 10−8 Hz
(Sesana 2013; Chen et al. 2017; Kelley et al. 2017a). We note
here that the turnover at low frequency is significant for very
high eccentricities only. Decreasing the eccentricity to e0 = 0.9
leads to a much milder effect at low frequencies. The latter is
due to fact that eccentric binaries emit the GW power at mul-
tiple harmonics of the orbital frequency, effectively shifting the
power from lower to higher frequencies instead of simply deplet-
ing the spectrum at lower frequencies by evolving faster, as is
the case for stellar hardening. This behaviour of the eccentricity
also implies that GWB generated by eccentric SMBHBs might
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Fig. 3. Corner plot showing the dependence of GWB variance (colour scale) on the model parameters, considering the lowest (left) and highest
(right) frequency bin. As can be inferred from the colour scale (more evident in the left panel), lower values of α and β combined with a high
cutoff mass M0 are linked to a larger scatter, which is caused by the increased probability of having more massive binaries that can produce spikes
in the signal. Finally, the figure also shows that the sampling of the parameter space is sufficient to cover it uniformly.

show a certain degree of correlation among frequency bins, as
the same binary can distribute the GW power in several of them.

The most important information for the GWB interpolation
across the whole parameter space is how the variance changes
as a function of the parameters that characterize the universe
(A, α, β, M0, ρ, e0). In Fig. 1, the shaded areas denote the intrin-
sic span of the signal generated by different realisations of
the SMBHB population. The higher the frequency, the fewer
the sources per bin and therefore the stronger the influence of
the granularity of the population on the GWB spectrum, effec-
tively increasing the variance of the signal, which possibly fea-
tures strong spikes due to rare but loud binaries. The various
effects of SMBHB population granularity are more evident from
Fig. 2, which shows four different signals generated by changing
the universe parameters that describe the SMBHB mass func-
tion, namely α, β, and M0, which are responsible for the GWB
variance.

A SMBHB population characterised by a prominent high-
mass tail (see green curve of Fig. 2) can drastically affect the
GWB spectrum both in terms of normalisation and variance.
We can see that if the power-law decay of the mass distribu-
tion is shallower (i.e., α < 1) and correspondingly so is the
exponential cutoff at high masses (β < 1 values), the variance
between different realisations is larger, resulting in a very high
scattering in the signal at different frequencies. The comparison
between the green and orange curve shows the effect of increas-
ing the mass cutoff value; an order-of-magnitude increase results
in a significantly reduced variance and an order-of-magnitude-
weaker signal. If the SMBHB mass function is characterised
instead by a steeper exponential decay (blue line, β = 1) but
at the same cutoff value (i.e., 108 M�), the variance is further
reduced, the normalisation is lower and there is a much more
prominent turnover at lower frequencies compared to the shal-
lower exponential decay. Finally, a steeper power-law decay dis-
tribution coupled with a smaller mass cutoff value and a shallow
exponential decay causes the variance in the signal to drop to a
minimum, affecting only the GWB at high frequencies, as shown

by the red line. This is consistent with the fact that it is less likely
to have very massive SMBHBs strongly influencing each GWB
signal realisation. However, in this latter case, the amplitude of
the signal might be too low to be detectable in the PTA band.

It is also interesting to observe how the GWB variance
correlates among the model parameters. However, as all gen-
erated GWB have relatively different amplitudes, we cannot
simply compare the different variances (at various frequen-
cies) associated with a specific set of universe parameters
(A, α, β, M0, ρ, e0). However, as ρ and e0 are the same for all
simulations in Fig. 2, we can see from the comparison between
the blue and red lines that the bending occurs at higher frequen-
cies if the signal is strongly dominated by lighter systems (red
lines). In order to get rid of the GWB normalisation and to focus
on the spread of the signal, at each frequency, we divide the
GWB signal of each realisation by the mean value (computed
over the 100 realisations for a specific set of universe parame-
ters). This allows us to compare the intrinsic spreads of GWBs
with different strength levels. This information is shown in the
corner plots in the left and right panel of Fig. 3, where the
colour scale shows the ‘intrinsic’ variance of the GWB signal
in the lowest and highest frequency bins, respectively. Darker
(lighter) regions correspond to lower (higher) variance. In gen-
eral, comparing the two panels of Fig. 3, it is clear that the vari-
ance is higher at higher frequencies (as expected). Moreover, we
can also identify regions of the subpanels showing correlations.
Specifically, as already noted above, universes characterised by
shallower power laws (small α), shallower exponential cutoff
(small β), and high-mass cutoff (large M0) show a clearly larger
intrinsic variance. Another interesting pattern is shown by the
correlation of A and ρ, where universes with small A and large ρ
seem to show a relatively large variance. This is because that
combination of parameters quite drastically reduces the num-
ber of binaries per frequency bin, increasing therefore the gran-
ularity and making that frequency bin more susceptible to the
influence of rarer but more massive systems, possibly producing
spikes in the GWB.
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Fig. 4. Performance of our algorithm in the explored parameter space. Left panels: density contours of the relative error (i.e., the difference between
the predicted value and the true value, which is the value of the test set) divided by the true value, as a function of the predicted quantity, either
mean µpred (top) or standard deviation σpred (bottom). The colour scale denotes the number counts within each bin where the error was computed.
Right panels: relative error on mean (top) and standard deviation (bottom) as a function of frequency. The box plot highlights the median enclosed
by the 25th and 75th percentiles of the error distribution at each frequency, with the error bars enclosing the full spread of values. The mean and
standard deviation are computed in logscale. The blue dashed line marks the zero relative error.

4.2. Model prediction

We now focus on the performance of the NN model. The pan-
els of Fig. 4 show the overall accuracy in reproducing the test
set mean µ and standard deviation σ for each Universe. The left
panels show the density contours of the relative error of each
quantity as a function of the predicted quantity itself. The upper
left panel represents the mean µ, while the lower left panel rep-
resents the standard deviation σ. We can clearly see that the dis-
tribution of the relative error is centred at zero for both the mean
and standard deviation.

We achieve a remarkably low relative error for the µ value.
Specifically, only 2.1% of our sample exhibits an error exceeding
25%. Conversely, the bottom left panel of Fig. 4 shows that there
are data points with relatively large errors for the σ value, even
at the lower end of the frequency range. However, only 12.6% of
our sample has a relative error of larger than 50%.

The dependence of the model performance on frequency is
better displayed in the right panels of Fig. 4, where the relative
errors on the mean (upper right panel) and standard deviation
(lower right panel) are plotted against frequency. At each fre-
quency, the box plot shows the value of the median error lim-
ited by the 25th and 75th percentile (colour box), with error bars
showing the full spread of these values. This provides impor-
tant information about the distribution of the outliers, as the

Table 3. The MAE, mean absolute percentage error (MAPE), square
correlation coefficient (R2), and Spearman correlation (SC) computed
on the test set.

MAE MAPE R2 SC

µpred 9.86e−18 0.013 0.9914 0.9992
σpred 1.183e−17 0.0373 0.7004 0.9772

box size is significantly larger at higher frequencies, where sin-
gle loud sources dominate the GWB signal. We further note
that the errors tend to be smaller at lower frequencies for the
µ value, where we instructed the NN to achieve the best possible
performance.

In Table 3, we report some standard accuracy indicators: the
MAE, the mean absolute percentage error (MAPE), the square
correlation coefficient (R2), and the Spearman correlation (SC),
all of which are computed on the test set. All the indicators show
the satisfactory performance of our NN model. Specifically, the
small values of MAE and MAPE imply that the NN model pre-
dictions are in agreement with the true values of the test set,
while the values of R2 and SC very close to unity for both the
mean and standard deviation indicate that the performance of the
model is overall very good.
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Fig. 5. GWB prediction of the NN model compared to three models of the test set of the database. Shaded areas denote the 10th and 90th
percentiles of the characteristic strain, while the thin lines with the same colour represent one GWB realisation for each model. Left panel:
universe parameters are log10 A = 2.359, α = 0.343, β = 1.926, log10 M0 = 8.041, log10 ρ = 2.267, and e0 = 0.056. Middle panel: universe
parameters are log10 A = −6.599, α = 0.197, β = 1.109, log10 M0 = 8.806, log10 ρ = 0.562, and e0 = 0.079. Right panel: universe parameters are
log10 A = −5.51, α = 1.293, β = 0.578, log10 M0 = 7.533, log10 ρ = 0.73, and e0 = 0.957.

10−9 10−8

f [Hz]

10−17

10−16

h
c

predicted

data

10−9 10−8

f [Hz]

10−16

10−15

h
c

predicted

data

10−9 10−8

f [Hz]

10−15

10−14

h
c

predicted

data

Fig. 6. Same as Fig. 5, but for different universe parameters. Left panel: universe parameters are log10 A = −4.674, α = 0.655, β = 1.159, log10 M0 =
8.16, log10 ρ = 4.312, and e0 = 0.939. Middle panel: universe parameters are log10 A = −3.743, α = 0.549, β = 1.726, log10 M0 = 8.714, log10 ρ =
4.389, and e0 = 0.041. Right panel: universe parameters are log10 A = −2.135, α = 1.273, β = 0.842, log10 M0 = 8.905, log10 ρ = 0.069, and
e0 = 0.918.

Finally, we represent the predicted GWB for a sample of
different Universes in Figs. 5 and 6. We show the comparison
between the GWB constructed following the procedure outlined
in Sect. 2.2 (red) and the signal predicted by our NN framework
(blue) for six different choices of the Universe parameters. The
shaded areas denote the 10th and 90th percentiles of the hc distri-
bution at each frequency, while the thin lines represent one reali-
sation of the signal. The NN prediction is in very good agreement
with the simulated data, that is, in terms of the mean, variance,
and shape of the GWB for all the examples shown in Figs. 5
and 6.

Therefore, we conclude that, despite the possible dip in per-
formance in a narrow region of the parameter space, the NN
framework presented here accurately predicts the shape and
amplitude of the diverse GWB signals.

5. Discussion and conclusions

In this work, we built a model composed of two NNs that effi-
ciently interpolate the stochastic GWB emitted by SMBHBs
across the wide parameter space that describes their popula-

tion. We concentrate in particular on the low-frequency part
of the spectrum, as this is currently being surveyed by PTA
experiments.

We generated a large dataset of GWB by considering an
agnostic modelisation of the underlying SMBHB population.
GWBs are generated from the discrete population of SMBHBs,
significantly improving the simple power-law description of the
GWB signal. We explored Nmodel = 5120 different universes
(i.e., different parameter configurations) – computing 100 real-
isations of the GWB for each of them – in order to uniformly
cover the possible deviations from the power-law prediction
due to the eccentricity and hardening of the SMBHB popula-
tion. This approach allowed us to trace not only the shape and
amplitude but also the variance of the GWB signal, which is
ultimately influenced by the discrete nature of the SMBHB pop-
ulation; the GWB signal itself can be mainly composed of strong
signals coming from very massive and/or nearby binaries. We
note here that we computed the sky-polarisation-averaged strain,
essentially neglecting the effect of the inclination angle of bina-
ries with respect to the line of sight. Taking into account the
inclination could potentially introduce more variance, as face-on
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binaries will produce a stronger signal compared to edge-on sys-
tems. However, we find this effect to be negligible for the back-
ground represented by both the green and blue line in Fig. 2.

We used the generated dataset to train the two NNs to effi-
ciently explore the parameter space, therefore overcoming the
bottleneck represented by the expensive MC sampling of realis-
tic SMBHB populations for GWB generation. We find that our
model performs very well, and is able to reproduce the shape,
amplitude, and variance of the GWB signals of the test set. We
show that our model performs better at lower frequencies, where
by design it has been instructed to achieve a better accuracy,
as current data are now available in that range and the signal
is easier to model owing to the lack of a strong single-source
contribution. Our trained NN model allows us to efficiently
explore the parameter space of our agnostic modelisation. We
plan to include the NN model in an end-to-end Bayesian infer-
ence pipeline that will be used to produce informed posterior dis-
tributions on our model parameters. This will allow us to make
astrophysical inferences from the signal detected by PTA collab-
orations, possibly providing constraints on the elusive SMBHB
populations. The ab initio inclusion of the GWB variance in
our modelisation is crucial for the inference of the SMBHB
parameters. As we have access to only one Universe (ours), a
reliable assessment of the cosmic variance of our SMBHB pop-
ulation is of capital importance in order to correctly interpret the
nature of the current and future PTA detections. We defer the
application of our model to actual PTA data to a forthcoming
publication.
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