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1 Introduction

The fact that holography defines a quantum theory of gravity in spacetimes that are
asymptotically AdS has led to spectacular progress in understanding quantum black holes [1–
8]. In this new understanding, quantum mechanics is fundamental and gravity is an emergent
phenomenon. It is now clear that black holes evaporate in a way that is perfectly consistent
with quantum mechanics and, moreover, this can be seen even in the semi-classical limit [9–
14]. The latter does not directly see the correlations within the Hawking radiation required
to recover unitarity, but it has a subtle way of performing the necessary book-keeping in
the form of ‘entanglement islands’ or ‘islands’ for short [15–37].
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The semi-classical analysis can describe how information, in the form of a system
carrying energy and entropy that falls into the black hole, can be recovered in the Hawking
radiation. In other words, the information-theoretic analysis of Hayden and Preskill [38]
can be verified using only semi-classical methods, as in the pioneering work of Penington [7].
The purpose of the present work is to consider this in detail in the context of the JT
gravity model [39, 40], where the backreaction of the infalling system can be solved exactly,
although one can expect a lot of the results to apply more universally.

Key to the recent progress in understanding quantum gravity at the semi-classical level
is the generalized entropy, or Quantum Extremal Surface (QES), formalism. This gives a
way to compute the entropy of the Hawking radiation R emitted by the black hole up to
some time as the solution of a variational problem over possible ‘islands’ I, which is defined
just in terms of quantities that can be calculated in the semi-classical regime

SpRq “ min
I
SIpRq , SIpRq ” ext

BI

"

AreapBIq
4GN

` S pρsc
RYIq

*

. (1.1)

In the above, I is a subregion of a Cauchy slice, containing R, that passes through the
co-dimensional 2 QES BI that are determined by the variational problem.1 The second
term is the entropy of the reduced state of the effective matter QFT on the subregion RY I
of the Cauchy slice, including the island I, defined on the fixed background metric of the
black hole. We will refer to the different islands that can compete in the variational problem
as ‘entropy saddles’ since they are computed at the semi-classical level by saddles of the
functional integral.

It is crucial to understand what the entropy SpRq refers to. It is not necessarily equal
to the entropy of the state of the radiation in the effective theory, the von Neumann entropy
Spρsc

Rq. This is why Hawking’s original conclusion for information loss is avoided. Rather,
it is the entropy of the microscopic state of the radiation ρR which is not the semi-classical
state ρsc

R . These two states are associated to different Hilbert spaces, the fundamental one of
quantum gravity (whatever that is), while the other is the space of excitations around a fixed
background. It is remarkable that the QES formula allows us to calculate this microscopic
entropy SpRq ” SpρRq even when we are ignorant of the details of the microscopic theory.

So there are two levels of description at play, a microscopic one described by a quantum
state ρ and an effective description describing QFT over a fixed background geometry with
a state ρsc.2 The effective state is then embedded in the microscopic description via a
linear map V : ρsc Ñ ρ, the ‘holographic map’. In the case where there is a holographic
description, like for the black hole in JT gravity, the microscopic state is a state of the dual
boundary non-gravitational theory. In such a scenario, there is clean split of the microscopic
system into the boundary theory and the radiation bath, a half Minkowski space that is
glued to the boundary of AdS2 and is used to collect the Hawking radiation [8, 35], so the
total microscopic Hilbert space factorizes H “ HB bHR. For a higher dimensional black

1More precisely, the island is the domain of dependence of this subregion.
2The discussion could be couched in more precise terms of operator algebras but it is simpler to talk

about states even if it is only approximate.
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hole in asymptotically flat space, HR can be identified as describing the outgoing Hawking
modes far from the black hole, effectively at I `.3

It is important for our analysis that R can also consist of disconnected subsets of the
outgoing Hawking radiation. In this case, the island I that dominates depends implicitly
via the variational problem on the choice of R. This allows us to calculate the correlation
between different subsets in the form of the mutual information IpR1, R2q “ SpR1q `

SpR2q ´ SpR1 YR2q.
The interpretation of the QES formula (1.1) is highly non-trivial. Firstly, the fact

that the entropy of the microscopic state ρR is not necessarily equal to the entropy of the
effective state ρsc

R is a consequence of the holographic map

ρ “ V ρscV : . (1.2)

In recent work [42], it has been argued that V is a non-isometric map that acts trivially
on the radiation. It is this fact that allows ρR ‰ ρsc

R , as is implicit in the QES formula
when the island is non-trivial. The QES formula implies that there is a ‘decoding map’,
an isometry that extracts the product state ρsc

RYI b ρ̃ out of ρR, where the second factor
accounts for the microscopic entropy that is responsible for the area term in (1.1) [43]. This
is clearer when the gravitational region also enjoys a holographic description, since we can
interpret the area term as the usual Ryu-Takayanagi contribution to the entropy evaluated
at the QES [3, 4].

The fact that the island, which is generally a behind-the-horizon region of the black
hole, appears encoded in the microscopic state of the radiation, means physically that the
quantum information inside the black hole has been evaporated out of the black hole. This
process is non-local from the point-of-view of the effective theory as a result of the fact that
V is non-isometric [42].4

The island formalism described above gives the following description of an evaporating
black hole. The map V undergoes a qualitative change at the Page time [44, 45] when the
entropy becomes dominated by an island saddle. In figure 1 we have a schematic picture of
the entanglement structure of an evaporating black hole. Before the Page time, Hawking
modes are produced as entangled partners either side of the horizon [46] and the inside of
the black hole grows. This is the ‘bridge to nowhere’ of [47] shown in (i). In this regime
there is no island and ρR « ρsc

R , so the entropy of the radiation is just the thermal entropy
of the radiation, up to a UV divergence, as calculated by Hawking [48]. At the Page time,
in (ii), there is an almost instantaneous change in the map V which affects the relation
between semiclassical and fundamental radiation state, ρR ff ρsc

R ; this is signaled by the
generalized entropy being dominated by an island saddle. The bridge to nowhere up to
the QES, which lies just inside the horizon, becomes the island. This is the way that the
effective theory accounts for the fact that the quantum state of the Hawking partners in
the island have been scrambled up and evaporated out of the black hole as represented in

3See, for example, [41], for the application of the island formula in gravitating baths.
4The non-isometric map V can be realized as an isometry along with post selection. The post-selection

allows information to leak out of the black hole via quantum teleportation.
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(i) t ă tPage (i) SpRq « SHawking
gr
ow

in
g

bridge to nowhere

horizon

(ii) t ą tPage

(ii) SpRq « SBH

QES

the island

the island in the stream

(iii) microscopic

Figure 1. The evolution of entanglement as the black hole evaporates. At early time (i) Hawking
modes and their entangled partners behind the horizon are pair produced and the ER ‘bridge to
nowhere’ grows from the horizon. The entropy of the radiation is the thermal entropy, as calculated
by Hawking. After the Page time (ii), a QES develops just behind the horizon and inside this is the
island. This is the semi-classical way of accounting for the fact that the island has been scrambled
and evaporated out in the radiation — the ‘island in the stream’ — at the microscopic level as
suggested in (iii). The entanglement between the Hawking modes and their partners is now cancelled
and the entropy of the radiation is proportional to the area of the QES, approximately SBH.

(iii). The radiation now includes both the Hawking modes and their partners and so their
entanglement no longer contributes to the entropy of the radiation. The latter now comes
from the area of the QES that divides the radiation and the black hole, approximately the
Bekenstein-Hawking entropy of the black hole SBH.

1.1 The Hayden-Preskill scenario

The purpose of this work is to consider what happens when an auxiliary system D carrying
energy and entropy, a diary, to use the terminology of Hayden and Preskill [38], falls into
a black hole. Information recovery is a key part of the analysis, so it might be useful to
quickly review this. Suppose we have some quantum system D which is added to some
other system to make a total system B0 which then undergoes some time evolution that
mixes up the systems. We want to know what it means to recover the information of D in
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some subsystem R Ă B0. For us R will be the radiation emitted by the black hole up to a
certain time and the complement B is the remaining black hole, so B0 “ B YR. In general,
the initial state of D can be mixed and it is a standard trick to introduce an auxiliary
system D that purifies it as a book-keeping device so SpDq “ SpDq.

Since the overall quantum state on RYBYD is pure, the entropies of the 3 subsystems
must form the sides of a triangle. This follows from subadditivity and the Araki-Lieb
inequality. The condition that D can be recovered in R is that the triangle degenerates in
the form:

Sp
B
q S

pD
q

SpRq

recovery SpBq SpDq

SpRq

so that we get maximal mutual information, i.e. maximal entanglement, between D and R:

SpRq “ SpDq ` SpBq ùñ IpD,Rq “ 2SpDq and IpD,Bq “ 0 . (1.3)

Note that this implies that the reduced state ρDB “ ρD b ρB completely factorizes.
Quantum information is more subtle than its classical counterpart in the sense that

the information in D can also be recovered in other tensor factors of the Hilbert space, a
feature that will be important in our analysis. This kind of redundancy is exploited by
Quantum Error Correcting Codes (QECC) and lies behind the robustness of these codes.

We will present three levels of analysis of information recovery, using the QES for-
mula (1.1) to compute the relevant entropies. The variational problem becomes tractable
in the case when the black hole is evaporating slowly, the quasi-adiabatic regime, which is
true for most of the black hole’s life. This approximation is used in Hawking’s analysis,
where it is meaningful to associate a slowly varying temperature T to the black hole, and
only breaks down near the end of the evaporation. In the first level, we assume that D is
essentially a shockwave, i.e. a very narrow pulse of energy and entropy, and the time scales
involved in recovering the information are large compared with the thermal time scale T´1

and also the longer scrambling time of the black hole T´1 logSBH{c, where c is the number
of free massless fields propagating in the effective QFT in the black hole background. In
the second level of analysis, we consider effects that are of the order of the scrambling time,
leading to refinements that are logarithmic in the entropies. In the final level of analysis,
we model D as a finite width pulse. This allows us to investigate numerically the so-called
python’s lunch associated to D which is conjectured to give a measure of the difficulty of
decoding D once sufficient information has been evaporated out of the black hole into the
radiation [47, 49].

The questions to be addressed are:

1. How does D affect the transition at the Page time?

2. When is the information contained in D returned to the outside in the radiation (this
is the Hayden-Preskill scenario [38]).

– 5 –
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3. Can an arbitrarily complicated process on the radiation affect D inside the black hole?

4. What is the ‘experience’ of D given that their information is to be scrambled and
evaporated out of the black hole eventually? How much of the interior can D explore?

5. How does the consideration of the backreaction of D affect the A “ RB scenario
which involves an observer, i.e. D, falling into the black hole to verify that there is a
smooth horizon and no firewall.

6. Can the information in D be reconstructed in other subsets of the Hawking radiation
and, in particular, in the late radiation emitted after D falls in?

The paper is organized as follows. In section 2 we describe the generalized entropy
formalism when the black hole is evaporating slowly, the adiabatic regime, and when there
are also infalling objects, essentially shockwaves, carrying energy and entropy. This allows
us to describe the process of information recovery in terms of an exchange of saddles of
the generalized entropy. The main elements of the Hayden-Preskill analysis [38] follow in a
simple way. Information is only recovered after the Page time and after a delay that Hayden
and Preskill identified as a scrambling time for the black hole. Here, we will find that the
time delay is modified by the backreaction of the object. The details of the computations on
which this section is based, and in particular the extremization of the generalized entropy
in the shockwave geometry for an arbitrary number of radiation intervals and islands, are
presented in appendix A. In section 3 we consider the information recovery more precisely
and show that the result is subject to certain corrections logarithmic in the entropy of the
black hole and D. In the analysis we model the object as infinitely narrow in time but
relax this in section 4 in order to see how the generalized entropy behaves for a smooth
object. This shows that there exists a new extremum of the generalized entropy which has
a higher entropy than the two extrema that can dominate the entropy. This is precisely an
example of a python’s lunch which is known to be related to the difficulty of decoding, in
this case, the information of D in the radiation [47, 49]. In section 5 we discuss how the
backreaction of the infalling observer destroys the entanglement between a newly emitted
Hawking quantum and the old radiation, allowing for a smooth experience across the horizon.
However, the infalling observer must be, at a certain point, scrambled and evaporated out.
We then compute the endurance proper time inside the black hole for an ultra-relativistic
diary. We conclude in section 6 with a summary of the main results.

2 Islands-in-the-stream with infalling objects

The calculations in this section are done in the JT gravity model, however, we write the
results in a way which does not depend on the details of the model and, by analogy,
can be applied to higher-dimensional black holes, including Schwarzschild, in the s-wave
approximation that dominates Hawking emission.

2.1 Review of islands-in-the-stream without infalling objects

For most of its life a black hole evaporates slowly and the adiabatic, or quasi-static,
approximation applies. Specifically this is in the limit SBH " c and it is meaningful to
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associate a slowly varying temperature T puq to the black hole as a function of the outgoing
null Eddington-Finkelstein coordinate u on I `.5 If we collect the radiation in a set of large
intervals R “

Ť

jru2j´1, u2js Ă I `, then the entropy is just the thermodynamic entropy of
a relativistic gas of c species of particles contained in R:

SradpRq «
πc

6

ż

R
T puq du . (2.1)

‘Large’ in this context requires that the entropy of each sub-interval in R and its complement
is much larger than c, specifically we require |uj ´ uj`1| " 1{T pujq. In (2.1) « means
equality within the scope of the adiabatic approximation. The above expression assumes
that we have regularized the UV divergences that appear in the entropy of a subregion in a
QFT. Ultimately we are interested in entropy differences which are in any case UV safe.6

Equation (2.1) gives the entropy of the no-island I “ ∅ solution of the variational
problem (1.1). If we want to consider island saddles, we have to extremize the generalized
entropy (1.1). The extremization for a generic number of intervals was performed in [17].
In order to state the result, it is useful to introduce Kruskal-Szekeres (KS) null coordinates
pU, V q which are related to the Eddington-Finkelstein outgoing/ingoing coordinates pu “
t´ r˚, v “ t` r˚q via exponential maps

U “ ´e´σpuq , V “ eσpvq , (2.2)

where the function σptq in the adiabatic limit is related to the slowly varying temperature

dσ

dt
“ 2πT . (2.3)

The extremization gives the following results:

1. In the adiabatic limit, all the QES are very close to and inside the horizon, with KS
coordinates satisfying7

UV «
c

48SBHpvq
! 1 . (2.4)

In the above, SBHpvq is the instantaneous Bekenstein-Hawking entropy of the black
hole as a function of the infalling coordinate v of the QES, with the area interpreted
as the value of the dilaton in JT gravity.

2. The possible islands I are the domain of dependence of a set of intervals behind the
horizon on a Cauchy slice that includes R and the QES, the boundary BI, whose
reflection in the horizon U Ñ ´U denoted I Ñ Ĩ, are such that u

BĨ Ă BR.
5For a higher dimensional black hole the geometry outside the zone is described by an outgoing Vaidya

metric. For a black hole in JT gravity the situation is simpler since the geometry is fixed to be AdS2.
6In the following, we often consider adjoining subsets and assume SradpA Y Bq “ SradpAq ` SradpBq.

Implicitly, we assume a small gap between such sets that is bigger than the UV cut off.
7Here, we are assuming that the extremal entropy S˚ is negligible, otherwise one replaces SBHpvq by

SBHpvq ´ S˚.
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We call the image Ĩ the ‘island in the stream’ because it shows exactly where in the Hawking
radiation R the quantum information of modes in the island have been scrambled and
evaporated out of the black hole and are available for decoding on I `. The infalling v
coordinate of a QES is then related to the associated endpoint uj P BR on I `:

vBI “ uj ´
1

2πT pujq
log SBHpujq

c
` ¨ ¨ ¨ , (2.5)

For now, we will assume that the log term is subleading, although later and specifically in
section 3 we will take account of these corrections carefully because they are interpreted as
the scrambling time of the black hole.

It is now simple to calculate the various term in the generalized entropy. Since I
contains the purifiers of the Hawking modes, the modes in I add to the matter field entropy
Spρsc

RYIq unless they are in the intersection RX Ĩ on I ` in which case the entropy cancels
between modes and purifiers. Hence, we can write

Spρsc
RYIq « SradpRa Ĩq , (2.6)

in terms of the symmetric difference Ra Ĩ “ RY Ĩ ´RX Ĩ. On the other hand, the area
terms contribute as the instantaneous entropy of the black hole since the QES is very close
to the horizon, yielding

SIpRq «
ÿ

BĨ

SBHpuBĨq ` SradpRa Ĩq . (2.7)

The variational problem then determines that the endpoints of the island-in-the-stream
BĨ Ă BR to leading order.

A more accurate treatment of the problem would require introducing the greybody
factor to take into account that the Hawking modes must tunnel through a potential barrier
in order to reach I `. Following [19], we are restricting to the case where the greybody factor
just depends on the frequency and the black-hole temperature, which is only true for the
Schwarzschild case, where there is a single scale in the problem (the Schwarzschild radius),
or JT gravity, where the greybody factor can be introduced by hand as a semi-reflective
barrier between the gravity region and the bath. Given this assumption, the greybody
factor is simply described by an overall coefficient ξ which controls the reversibility of the
problem; in particular we have the following relation between the entropy flux of the black
hole and the radiation:

dSrad
dt

“ ´ξ
dSBH
dt

, (2.8)

where ξ Ñ 1 is the opaque limit which is the reversible case where evaporation is infinitely
slow, while ξ “ 2 is the completely transparent case with no back-scattering of Hawking
modes. In this section we leave 1 ă ξ ď 2 arbitrary. Note that integrating (2.8) on a
interval we find

Sradpu1, u2q “ ξ
`

SBHpu1q ´ SBHpu2q
˘

, (2.9)

so that we can write (2.7) entirely in terms of the Bekenstein-Hawking entropy.

– 8 –
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2.2 Adding infalling objects

It is possible to generalize these rules to include quantum objects D that fall into the hole.
We model D as a narrow pulse of energy and entropy with a constant energy density in
the time interval t P rt0, t0 ` εs on the AdS/Minkowski interface. Later in section 4 we will
resolve what happens for finite ε interval but for now we work in the limit εÑ 0.

In the following, it will be important to recognise that, as well as carrying entropy into
the black hole, D also carries energy which results in a non-trivial backreaction on the
geometry which will be crucial to include. The fact that D must also carry energy can be seen
as a consequence of the Generalized Second Law (GSL) of black hole thermodynamics [50]
which says that when a system, here D, carrying entropy SpDq, falls into a black hole then
the backreaction is such that the change in the black hole’s entropy satisfies

∆SBH ą SpDq . (2.10)

Here, ∆SBH “ SBHpt0 ` εq ´ SBHpt0q is the jump in the black hole entropy caused by D.
This changes the rate of entropy and energy flux in the Hawking radiation. We will assume
that the jump in the entropy of the hole is small compared with its entropy

∆SBH ! SBHpt0q , (2.11)

but large in the sense that it must be bigger than the radiation entropy emitted in a
thermal time

∆SBH Á c " 1 . (2.12)

This ensures that within the semi-classical approximation we are working in, D is big
enough to have interesting effects.

One concrete way to model D is as a smooth but narrow pulse created by a scalar
primary operator quench in the matter theory with an operator of conformal dimension h.
These pulses carry an energy that scales like

ED “
h

ε
. (2.13)

Hence, the backreaction produces

∆SBH ∼
ED
T pt0q

. (2.14)

Casini’s version [51] of the Bekenstein bound [52] implies an inequality between ED and SD
which can be used to show that the GSL is comfortably satisfied for this example.

In addition to the backreaction caused by the energy of D there is also an entropy
backreaction. This is simple to account for in the generalized entropy formalism. If D lies
in the island according to its infalling coordinate, i.e. v “ t0, then its entropy contributes
positively to SIpRq but negatively to SIpRYDq:

SIpRq “ ¨ ¨ ¨ ` δI,DSpDq , SIpRYDq “ ¨ ¨ ¨ ` SpDq ´ δI,DSpDq , (2.15)

where δI,D “ 0 or 1 when D lies outside or inside the island I according to its infalling
coordinate.

– 9 –



J
H
E
P
0
1
(
2
0
2
3
)
1
3
9

We now describe how the islands-in-the-stream formalism is generalized to account
for D. The detailed proofs appear in appendix A. In the formalism, the QES BI have
an outgoing coordinate u that equals one of the end-points of the radiation region R at
I `. When the infalling object D is included, the entropy SBHptq must now include the
backreaction of D, i.e. jumps discontinuously by ∆SBH at t “ t0. In addition, there is a
possible new QES just before D falls in, i.e. with infalling coordinate v “ t0 and mirror
coordinate u “ t0 on I `. The more refined analysis in section 3 will give a more precise
understanding of where this new QES lies. Hence, for the outgoing coordinates of the QES
we have an enlarged set of possibilities u

BĨ Ă BRY tt0u.
We can use the diagrammatic representation of the possible islands introduced in [17] in

order to compute when the information in D is scrambled and evaporated out of the black
hole and available for decoding in the Hawking radiation. The diagrams show the regions
of R at I ` along with the island in the stream Ĩ and the symmetric difference Ra Ĩ.

2.3 Information recovery in the early radiation

The first scenario we consider is the one described by Hayden and Preskill [38] where the
radiation is collected from the beginning of the black hole at t “ 0, i.e. R “ r0, us. The
question is what is the minimum time needed to recover the information of D in R? In
other words, what is the minimal value for u in order that IpR,Dq “ 2SpDq?

Note that we must have at least u ą t0 and consequently we split the radiation into
two sets, R “ R1 YR2 with R1 “ r0, t0s and R2 “ rt0, us. Both SpRq and SpR YDq that
are needed to compute IpR,Dq each of which involve a competition of 3 saddles:

SpRq “ min
`

SradpRq, SBHpt0q ` SradpR2q, SBHpuq ` SpDq
˘

,

SpRYDq “ min
`

SradpRq ` SpDq, SBHpt0q ` SradpR2q ` SpDq, SBHpuq
˘

,
(2.16)

corresponding to the islands-in-the-stream Ĩ “ ∅, R1 and R, respectively. It is clear that
information recovery IpR,Dq “ 2SpDq requires that the island saddle Ĩ2 “ r0, us dominates
in both cases:

u0

R

Ĩ1

Ra Ĩ1

R1 R2

t0

R

Ĩ2

Ra Ĩ2

In these diagrams the red blob on the left is the QES of the extremal black hole, which
contributes the extremal entropy S˚, which existed before the black hole was excited by
some infalling matter at t “ 0. We will take S˚ to be negligible.8 The green circle is the

8Alternatively, in a higher dimensional black holes, the left blob might not be a QES but it can indicate
the origin of the polar coordinates.
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diary. So recovery requires

SBHpuq ` SpDq ă min
`

SradpRq, SBHpt0q ` SradpR2q
˘

. (2.17)

Hence, if D falls in before the Page time, i.e. SradpR1q ă SBHpt0q, then recovery
involves a direct transition between saddles with islands ∅ Ñ I2. This happens first for
SpRYDq when

SradpRq “ SBHpuq ´ SpDq , (2.18)

and signals the fact that IpR,Dq begins to rise. Note that this happens at a time which is
just before the Page time of the black hole SBHpRq “ SBHpuq. Recovery is then completed
when SpRq makes the transition which is just after the Page time. So the information comes
out continuously as R increases across the interval

ξ

ξ`1
`

SBHpt0q´SradpR1q`∆SBH´SpDq
˘

ďSradpR2q

ď
ξ

ξ`1
`

SBHpt0q´SradpR1q`∆SBH`SpDq
˘

.

(2.19)

So, if D falls in early, one will have to wait till after the Page time in order to recover
the information. Moreover, the information comes out continuously between the saddle
transition for RYD and R. This will emerge as a universal feature for information recovery.

On the other hand, if D falls in after the Page time, there are transitions ∅Ñ I1 Ñ I2,
the former being the transition at the Page time familiar in case with no D. Before the
second transition I1 Ñ I2, there is no information of D in the radiation IpR,Dq “ 0.
The transition happens first for SpRYDq when IpR,Dq starts to increase proportional to
SradpR2q until SpRq also makes the transition I1 Ñ I2 and all the information is recovered.
Hence, the mutual information is always continuous:

IpR,Dq “ max
ˆ

0 , ξ ` 1
ξ

SradpR2q ` SpDq ´∆SBH , 2SpDq
˙

, (2.20)

meaning that after a hiatus the information comes out continuously until it is all out in the
interval where R2 increases subject to

ξ

ξ ` 1
`

∆SBH ´ SpDq
˘

ď SradpR2q ď
ξ

ξ ` 1
`

∆SBH ` SpDq
˘

. (2.21)

These expressions show clearly the important rôle that the GSL plays in the analysis.
Let us call the radiation after D falls in, when the mutual information vanishes, R2 “ R6,

i.e. IpR1 YR
6, Dq “ 0. We have

SradpR
6q “

ξ

ξ ` 1
`

∆SBH ´ SpDq
˘

. (2.22)
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At recovery, we will write R2 “ R6 YR7; hence,

SradpR2q ” SradpR
6 YR7q “

ξ

ξ ` 1
`

∆SBH ` SpDq
˘

. (2.23)

One can view the time associated to the radiation in R6,

t „
∆SBH ´ SpDq

T
, (2.24)

as the time it takes for the black hole to ‘process’ the information in D and start to emit
its information in the radiation. The fact that there is a processing time was anticipated by
Hayden and Preskill [38] as the scrambling time of the black hole, an information theoretical
measure of how long it takes for the information in D to be widely distributed in the black
hole state. This time scale, however, is of order T´1 logSBH{c which in the present analysis
is a subleading effect that we will analyse more carefully section 3 when we solve for the
backreaction in JT gravity. However, we have found that the processing time also includes
the contribution (2.24) that involves the energy and entropy backreaction caused by D.

On the other hand, the time scale implicit in the radiation subset R7 is identified as
the time it takes to emit radiation with an entropy „ SpDq. Indeed, in the reversible limit
ξ Ñ 1, the entropy SpR7q is precisely SpDq.

Notice that even though the radiation R1 Y R6 is not correlated with D it can be
useful to decode D. This is because R1 Y R6 is entangled with the additional radiation
R7. This corresponds to the fact that, in the Hayden-Preskill scenario [38], Bob collects
all the radiation from when the black hole formed even though the early radiation never
actually interacts with D. This is a characteristic feature of QECC, decoding is aided by
having access to subsystems that never interacted with the encoded subsystem but which
are entangled with subsystems that did.

2.4 Recovery in the late radiation

On the other hand, the fact that IpR1 YR
6, Dq “ 0 implies that IppR1 YR

6q1, Dq “ 2SpDq,
where the superscript prime indicates the complement in the set of all the Hawking radiation.
In fact, we can be more specific by considering the conditions on an interval of late radiation
R̃ “ ru1, u2s, with u1 ą t0, for which recovery is possible, IpR̃,Dq “ 2SpDq. Recovery will
occur when SpR̃q and SpR̃YDq are dominated by the Ĩ “ rt0, u2s saddle:

u1 u2

R̃

Ĩ

R̃a Ĩ

R̃A

t0
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Once again this happen first for SpRYDq and then SpRq. During this interval, which can
be written,

ξ

ξ ` 1
`

2SBHpt0q `∆SBH ´ SpDq
˘

`
ξ ´ 1
ξ ` 1SradpAq ď SradpR̃q

ď
ξ

ξ ` 1
`

2SBHpt0q `∆SBH ` SpDq
˘

`
ξ ´ 1
ξ ` 1SradpAq , (2.25)

where A “ rt0` ε, u1s, the mutual information rises until recovery is attained when SradpR̃q

equals the upper bound of the interval. It follows that recovery is always possible for a
suitably small A and large enough R̃ with an upper bound on the former

SradpAq ă SradpR
6q ùñ A Ă R6 . (2.26)

This makes perfect sense because the subset R6 is not correlated with D and so need not
be included in R̃ in order to recover the information. Of course it can be included and does
make it easier to recover D because making A smaller lowers the recovery time.

2.5 Scrambling time

Hitherto we have worked at leading order and ignored contributions to the entropy that
are logarithmic in the Bekenstein-Hawking entropy. These corrections are interesting
because, physically, they express the scrambling time of the black hole [38]. The refinement
of (2.7) including the log corrections is derived in appendix A. The corrections modify the
contribution of the QES in (2.7):

SBHpujq ÝÑ SBHpujq ´
c

24 log SBHpujq

c
. (2.27)

The expression above is not valid for the QES that appears just before D falls in. The
correction for this QES will be calculated in section 3.

2.6 A quantum error correcting code

We have seen that the information in D can be recovered both in R “ r0, us and R̃ “ ru1, u2s.
This kind of redundancy of information recovery is characteristic of a QECC. It is precisely
why a QECC is robust against errors because one can obviously corrupt the complements
R1 or R̃1 and still recover the information in D. Let us develop this connection further.

It is an important consistency condition that the subsets R and R̃ have a non-trivial
minimal overlap, in fact it is precisely the set R7,

R7 Ă RX R̃ . (2.28)

At this point we could fall into a tempting fallacy and say that R7 must contain D’s
information. But quantum information is subtle, as pointed out in the introduction, and
actually the opposite is true: the information in D cannot be recovered from R7 since
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IpR7, Dq “ 0: the subset R7 by itself is not big enough. Counter-intuitively, this implies that
D’s information can actually be recovered in the complement pR7q1. This is just precisely
the way that information is encoded in a simple QECC: out of the three subsets of the
Hawking radiation R1 YR

6, R7 and R1 “ B, since the future radiation is equivalent to the
remaining black hole B, whose union is the complete set of radiation, the information in D
can recovered in any pair of subsets but not in any single subset:

R1 YR
6

R7

R1 “ B

R7R6R1

0 t0 8

The structure here is exactly like the simplest QECC, namely the three qutrit QECC,
reviewed in a holographic context in [53]. In this case, we can think of one of the qutrits Q1
as D that interacts with Q2, the black hole. Q3 plays the rôle of the radiation previously
emitted. The qutrit Q2 is entangled with Q3 but Q1 never interacts with Q3 (the radiation
Q3 has already dispersed). After time evolution generated by a unitary acting only on Q1
and Q2, the information contained in Q1 can be recovered from any pair of qutrits but not
from any single qutrit: IpQj , Q1q “ 0 while IpQj YQk, Q1q “ 2SpQ1q.

3 Solving the backreaction in JT gravity

For a more refined analysis, we need to able to solve for the backreaction of D on the
geometry as it falls in. In general, this is difficult problem and would need to be solved
numerically. Remarkably, however, in the model of JT gravity the backreaction can be
solved analytically. The analysis is particulary simple when D is a localised packet of energy
and momentum (i.e. a shockwave) which falls in along an ingoing null geodesic. The model
is itself remarkable as it is simple enough to be tractable yet also captures the dynamics of
the s-wave sector of the near-horizon limit of the near-extremal Reissner-Nordström (RN)
black hole in 3 ` 1 dimensions [54, 55]. What is particularly interesting for the present
work is that the model can describe an evaporating black hole with arbitrary infalling
matter. The focus will be on a localized packet of infalling matter D, carrying both energy
and entropy.

In the model, the geometry of the black hole is a dynamically determined patch of
AdS2 which is matched onto the boundary of a half Minkowski space, as described in [8].
The set up is shown in figure 2. The half Minkowski space region provides the auxiliary
subsystem R which collects the Hawking radiation. We can think of the radiation as being
collected at I ` as would be the case for a black hole in asymptotically flat space. The
matter is provided by a large-c CFT, which, for simplicity, can be a theory of a free bosons
or fermions. Large c ensures that there is a semi-classical limit.
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AdS Minkowksi

Ũ
“

0

U
“

0

I1

I2

D

t0

R
1

R
2

I
`

R
1

R
2

R 6

R 7

scr
am
ble
d D

inf
o

Figure 2. A suitable Cauchy slice (in blue) to calculate Spρsc
RYIq the entropy of the semi-classical

reduced state on RY I. The information recovery involves a competition of two saddles with QES
and island in green I1 and pink I2. R is split into R1YR2, the radiation submitted before D crosses
into the AdS region and R2 afterwards. The island I1 holds the purifier of R1 and I2 of R1 YR2.
When I1 dominates D experiences a smooth horizon before being scrambled and evaporated. After
a hiatus R6 Ă R2, the information in D is recovered continuously during the interval R7 Ă R2.

3.1 Some aspects of black holes in JT gravity

Whilst the metric in JT gravity is fixed to be that of AdS2, there is a dynamical scalar field φ,
the dilaton, which, in the semi-classical approximation, is sourced by the expectation value
of the energy-momentum tensor. In the context of the RN black hole in 3` 1 dimensions,
the dilaton is the area of the transverse S2. It is convenient to express the dynamics of
JT gravity in terms of the shape of the boundary curve [6, 56, 57]. Up to isometry, the
shape of the curve is specified by a single function V ptq, which relates the Minkowski null
coordinates (u “ t´ x, v “ t` x) of the bath region x ě 0 to the KS coordinates pU, V q of
the AdS2 region, with

V “ V pvq , U “ Upuq ” ´1{V puq . (3.1)

For later convenience, we will use the freedom to normalise V ptq so that V pt0q “ 1, which
ensures that D crosses the AdS-Minkowski interface at V “ ´U “ 1. Note that we use V
as a coordinate and also as the map V ptq and for the latter we will write the argument
explicitly. The metric in the AdS2 and Minkowski regions are given, respectively, by

ds2 “ ´
4dU dV
p1` UV q2 , ds2 “ ´du dv . (3.2)

The equation of motion for the dilaton can be solved exactly in terms of the map V ptq

in the case that TUU “ 0,9 i.e. no outgoing matter at the horizon, but with arbitrary
9Of course there will be a non-trivial flux of Hawking radiation Tuu ‰ 0 through the interface between

AdS and Minkowski regions.
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infalling matter:10

φpU, vq “ φ0 `
2GNc

3k

ˆ

V 2pvq

2V 1pvq ´
UV 1pvq

1` UV pvq

˙

. (3.3)

Here, φ0 determines the extremal entropy S˚ “ φ0{4GN which, for simplicity, we are
taking to be negligible. So, the solution boils down to finding V ptq for which the steps are
as follows:

1. Solve for the ADM energy E “ M ´M˚ by matching the energy flow across the
AdS-Minkowski interface11

dE

dt
“ Tvv ´ kE , (3.4)

where Tvv is the normal-ordered ingoing components of the energy-momentum tensor,
which can be interpreted as the energy flux of infalling matter, which, in this section,
is taken to be a shockwave. The second term is the flux of the Hawking radiation
across the boundary. In the above, M˚ is the mass of the extremal black hole.

2. The function V ptq is then determined by the Schwarzian equation

 

V ptq, t
(

“ ´
24πk
c

Eptq , (3.5)

whose general solution is given by

V ptq “
AF1ptq `BF2ptq

CF1ptq `DF2ptq
, (3.6)

with AD´BC ‰ 0 and where Fiptq are two independent solutions of the linear second
order ODE

F 2 ´
12πk
c

EptqF “ 0 . (3.7)

3. The constants of integration tA,B,C,Du are determined (up to overall scaling) by
imposing the continuity of V ptq, up to its second derivative, across the shockwave
of infalling matter. We assume that the black hole is formed by a shockwave of
collapsing matter at t “ 0 and, similarly, D is modelled as a shockwave sent in at a
later time t0.12

In the case that there is no infalling matter after the black hole is formed E “ E0e
´kt

for t ą 0 and the solution of (3.7) involves Bessel functions [8]

F1ptq “ K0pzq , F2ptq “ I0pzq , z “
2πT0
k

e´kt{2 , (3.8)

where T 2
0 “

πc
12kE0. There is a simpler approximate solution which is valid until very late

times. More precisely, it is valid for time scales of order k´1 but smaller than k´1 logpT0{kq.
10In the following, k “ GNc{3φr, where the constant φr determines the behaviour of the dilaton on the

AdS/Minkowski interface.
11This is simply the equation of motion for the map V ptq when TUU “ 0.
12Concretely, these shockwaves can be realised by a local quench on the boundary, as described in [15].
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In this regime, which we refer to as the adiabatic regime, there is a WKB-like solution
of (3.7)

V ptq “ exp
ˆ

2π
ż t

t0

T ptq dt

˙

, (3.9)

where
T ptq “ T0e

´kt{2 , (3.10)

can be interpreted as the instantaneous temperature of the Hawking radiation that passes
through the boundary x “ 0 at time t. Note that, in this approximation, the energy depends
on the temperature as

Eptq “
πc

12kT ptq
2 . (3.11)

The Bekenstein-Hawking entropy is given by evaluating the dilaton on the horizon, which is
located at U “ ´1{V p8q “ 0,

SBHptq “
φpU “ 0, v “ tq

4GN
“ S˚ `

c

6k
V 2ptq

2V 1ptq « S˚ `
πc

12

ż tevap

t
T pt1q dt1 , (3.12)

where the last expression is valid in the adiabatic limit. Alternatively, (3.12) can be derived
by integrating the thermodynamic relation dE “ T dS. In the above, tevap is the evaporation
time which is 8 in JT gravity and for the near-extremal RN black hole, while it is finite in
the Schwarzschild case. Note that in JT gravity the black hole entropy is linear in T , as
expected for a near-extremal black hole. Indeed, integrating (3.12) we find

SBHptq “ S˚ `
πc

6kT ptq . (3.13)

From this equation it is clear that the adiabatic approximation can be rephrased in more
general terms as:

SBHptq " c . (3.14)

In our analysis, we will assume that the extremal entropy is small compared with other
entropies in the problem so that we can neglect its contribution, effectively sending S˚ Ñ 0.
Notice that this is not the limit that is related to the near-extremal RN black hole in 3` 1,
but it simplifies the analysis. In this limit, we can introduce an analogue of a space-like
singularity which is signalled by the vanishing of the dilaton, i.e. the curve

U “
`

2V 1pvq2{V 2pvq ´ V pvq
˘´1

, (3.15)

which is approximately UV « 1 in the adiabatic regime.
Before concluding this review, we consider the entropy of a single interval in the bath

defined by a spacelike surface with endpoints pu1, v1q, pu2, v2q, u2 ą u1. The regularised
entropy, when there is no island, is given by the formula [58]

SpρRq “
c

6 log pU1 ´ U2qpv2 ´ v1q

Ω1Ω2
, (3.16)

where Ωi “
a

U 1puiq are the conformal factors that result from writing the metric in the
Unruh state i.e. the vacuum in the mixed frame, ds2 “ ´Ω´2dU dv. We consider the
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contribution from the infalling vacuum modes „ c logpv2 ´ v1q to be subleading so that it
can be safely ignored. In other words, to leading order, it does not matter what we take
for the infalling coordinate of the endpoints of R and so we choose to show R close to I `.
Ignoring the contribution of the infalling modes, we have

SpρRq “
c

6 log
sinh π

şu2
u1
T ptqdt

π
a

T pu1qT pu2q
«
πc

6

ż u2

u1

T ptqdt “ SradpRq , (3.17)

where the approximation holds when the argument of sinh is large, which corresponds to
u2 ´ u1 " OpT´1q. From now on, we will automatically neglect terms that are small in the
adiabatic approximation, replacing « with an equality. Equation (3.17) ignores the effect of
a greybody factor which in this model is a consequence of choosing transparent boundary
conditions for the matter fields across the AdS-Minkowski interface. In this section we set
the greybody coefficient (introduced in (2.8)) ξ “ 2. It is possible to relax this condition at
the expense of a more complicated analysis: see [19].

3.2 Including an infalling system

As D falls in, during an interval of null time v P rt0, t0 ` εs with εÑ 0, the energy of the
black hole jumps discontinuously according to Ept0 ` εq “ Ept0q ` ED. Consequently, the
temperature also jumps

πc

12kT pt0 ` εq
2 “

πc

12kT pt0q
2 ` ED . (3.18)

Similarly, the map V ptq is no longer smooth across t “ t0 but only continuous up to its
second derivative. Using the recipe described in section 3.1, the new solution is related to
the adiabatic one (3.9) by a Möbius transformation

V ptq “
λ` exp

´

2π
şt
t0
T ptq dt

¯

1` λ exp
´

2π
şt
t0
T ptq dt

¯ , t ą t0 , (3.19)

where
λ “

T pt0 ` εq ´ T pt0q

T pt0 ` εq ` T pt0q
. (3.20)

The change in the map V ptq induced by D in (3.19) suggests that we should introduce a
new set of KS-type coordinates pŨ , Ṽ q with an associated map

Ṽ ptq “ exp
ˆ

2π
ż t

t0

T ptq dt

˙

, (3.21)

related to pU, V q by the Möbius transformations

Ṽ “
V ´ λ

1´ λV , Ũ “
U ` λ

1` λU . (3.22)

Since Möbius transformations are isometries of AdS2, the metric takes the same form as (3.2)
when written in terms of these new coordinates.
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The significance of these new coordinates is that they are adapted to the true event
horizon of the black hole Ũ “ 0 i.e. U “ ´λ, and not the original horizon U “ 0 without
shockwave. One is tempted to say that D causes the horizon to jump out as it is absorbed by
the black hole. However, this is not correct as the event horizon is a teleological concept so
was never really at U “ 0.13 Note that for the original map V ptq, D causes the asymptotic
behaviour to change to V p8q “ 1{λ, i.e. Ṽ “ 8. The shift in the black hole entropy with
or without the shockwave, introduced in section 2.2, can be explicitly computed using (3.13)
and (3.18):

∆SBH “
φpŨ“ 0, v“ t0`εq

4GN
´
φpU“0, v“ t0q

4GN
“ SBHpt0q

ˆ

T pt0 ` εq

T pt0q
´ 1

˙

«
ED
T pt0q

,

(3.23)
which is consistent with the first law (2.14) in the limit where the diary energy is much
smaller than initial energy of the black hole. In the same approximation, we can use (3.23)
to rewrite λ in terms of the initial black hole entropy and ∆SBH:

λ “
∆SBH

2SBH `∆SBH
«

∆SBH
2SBHpt0q

! 1 . (3.24)

3.3 Islands

Consider the entropy of the Hawking radiation collected at I ` in the interval of null time
R “ r´8, us. We assume that the black hole was formed by a shockwave sent into the
extremal black hole at t “ 0. As shown in [15, section 6], for early times, the entropy of R
is given by

SpRq “ SI0pRq “ S˚ ` SradpRq « Sradp0, uq , (3.25)

where I0 is an island that stretches from a QES in front of the shockwave which forms the
black hole (i.e. with ingoing coordinate v ă 0) to join up with R at spatial infinity. As we
are neglecting the contribution of the extremal entropy we see that the SI0pRq is simply
given by the thermal entropy of the radiation that crosses the AdS-Minkowski interface
from the formation of the black hole at t “ 0 up to time t “ u.

At later times, it becomes favourable to have an island with a QES behind the shockwave
i.e. with ingoing coordinate v ą 0. To investigate this possibility, we have to extremize the
generalized entropy (1.1). First of all, the exact expression for the dilaton is given in (3.3).
This gives the area term in (1.1). The term Spρsc

RYIq is the entropy of the Unruh state on
the interval RY I. A suitable Cauchy slice is shown in figure 2. This entropy can again be
computed using the formula

Spρsc
RYIq “

c

6 log pU1 ´ U2qpv2 ´ v1q

Ω1Ω2
, (3.26)

where pU1, v1q are the coordinates of the QES and pU2, v2q of the endpoint of R. The
conformal factors Ωi for the AdS2 and flat metric are

Ω´2
1 “

4V 1pv1q

p1` U1V1q2
, Ω´2

2 “
1

U 1pu2q
. (3.27)

13However, the apparent horizon moves after the shockwave.
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We now re-label the coordinates of the QES pU1, v1q Ñ pU, vq and the coordinate for the
endpoint of R, U2 Ñ Upuq. Hence, up to a constant and a UV divergence, we have

SgenpU, vq “
c

6k

"

V 2pvq

2V 1pvq ´
UV 1pvq

1` UV pvq

*

`
c

6 log

d

V 1pvq

U 1puq
¨
U ´Upuq
1` UV pvq ` SDpvq . (3.28)

We have also dropped the contribution to the entropy from the ingoing modes as they turn
out not to be important in the extremization. The final term accounts for the entropy of D
and is given by

SDpvq “

#

şv
0 sptq dt , R ,

SpDq ´
şv
0 sptq dt , RYD ,

(3.29)

where sptq is the entropy flux of the diary, which is supported in the interval rt0, t0 ` εs,
and the two cases correspond to whether the purifier D̄ of D is included or not. This term
accounts for the overlap of D with the island and adds to the entropy for R and subtracts
from the entropy for RYD. For a shockwave, the entropy flux is given by

sptq “ SpDqδpt´ t0q , (3.30)

so that, for R, SDpvq is SpDq if the shockwave passes through the island and 0 otherwise.
For RY D̄, the opposite is true.

For u, v ă t0, the backreaction of D is irrelevant and the generalized entropy simplifies to

SgenpU, vq « SBHpvqp1´ 2UV pvqq ` c

6 log

d

V 1pvq

U 1puq
pU ´Upuqq ` SD . (3.31)

This form assumes that the QES lies close to the horizon, in the sense that UV ! 1, which
is established ex-post facto.14 Extremizing with respect to U and v determines the position
of the QES

U “ ´
Upuq

3 , V pvq “ ´
c

16SBHpvq
¨

1
Upuq . (3.32)

From this, the expression for UV quoted earlier (2.4) follows. Since the black hole is
evaporating slowly, we have the approximate solution (2.5) and since UV ! 1, the QES lies
just inside the horizon.

We now turn to the entropy at the extremum. In the first instance, in addition to
the leading order contributions that are of order SBH, we will keep log terms that are of
order c logpSBH{cq and c logpSBH{∆SBHq. These are associated to time scales of order the
scrambling time of the black hole. Note that the log terms and scrambling times involve the
entropy and temperature and these can be evaluated either at t0 or u since the difference is
beyond the order to which we are working, therefore, we will not specify the arguments of
these terms. Other terms beyond these are subleading.

14Notice that equation (3.31) is written in such a way that it will apply to the s-wave sector of any black
hole including the Schwarzschild black hole.
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Keeping only the terms described above, we have

SBHpvq « SBHpuq `
c

24 log SBHpuq

c
,

c

6 log

d

V 1pvq

U 1puq
pU ´Upuqq « ´ c

12 log SBHpuq

c
,

(3.33)

and so the entropy of this saddle is

SI1pRq “ SBHpuq ´
c

24 log SBHpuq

c
. (3.34)

To adapt this expression for RYD, simply add SpDq.
Now suppose that u increases beyond t0, the time on the boundary where D falls in.

The solution (3.32) remains valid as long as v ă t0. However, we can no longer use the
approximation (3.9) as the map Upuq “ ´1{V puq is modified when u ą t0 as in (3.19).

It will important for the following analysis that for u ą t0, i.e. |Ũpuq| ă 1, and taking
account that λ ! 1, we have

Upuq « Ũpuq ´ λ (3.35)

and so as u increases from t0, for time scales that are large compared with the thermal time
scale, the log of minus the right-hand side is effectively a sharp crossover

logpλ´ Ũpuqq « ´min
ˆ

log SBHpt0q

∆SBH
, 2π

ż u

t0

T ptq dt

˙

. (3.36)

It then follows that the v coordinate of the QES is approximately equal to

v “ min
ˆ

u´
1

2πT puq log SBHpuq

c
, t0 ´

1
2πT pt0q

log ∆SBH
c

˙

. (3.37)

So as u increases, the v coordinate of the QES eventually freezes in front of D, v ă t0,
with coordinates

v Ñ t0 ´
1

2πT pt0q
log ∆SBH

c
, U Ñ

∆SBH
6SBHpt0q

, (3.38)

which is the same result obtained in [7, eq. (92)]. Notice that the inequality (2.12) is
necessary for having v ă t0, otherwise we would have that the QES never freezes before
the shockwave; for smaller diaries we would have that the shockwave backreaction, in our
approximations, is negligible.

Using this and splitting the radiation R “ R1 Y R2, where R1 “ r´8, t0s and R2 “

rt0, us, we have15

SI1pRq “ max
ˆ

SBHpuq ´
c

24 log SBHpuq

c
,

SBHpt0q `
c

8 log ∆SBH
c

´
c

6 log SBHpt0q

c
` SradpR2q

˙

.

(3.39)

15In deriving this expression, we used Ũ 1puq « 2πT Ũpuq and SradpR2q “ ´c{12 log Ũpuq.
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The second term here wins out eventually and then the QES freezes as above. For RYD
one simply adds SpDq since D does not lie in I1.

When u ą t0 there is a new saddle with a QES that is behind D, i.e. with v ą t0. This
is simply the solution (3.32) in terms of the coordinates pŨ , Ṽ q. It is important that the
generalized entropy takes the same form in terms of these coordinates because they are
related to the old coordinates by a Möbius transformation. The new saddle requires that
u ą t0 ` p2πT pt0qq´1 logSBHpt0q{c in order that v ą t0. The entropy is as in (3.34) but
now D lies in the island and so

SI2pRq “ SBHpuq ´
c

24 log SBHpuq

c
` SpDq . (3.40)

For the case R Y D, one removes the term SpDq since now the island contains D, the
purifier of D.

3.4 Information recovery

Now we can discuss information recovery by evaluating the mutual information IpR,Dq.
We assume that the black hole has evaporated past the Page time so that the island I1
saddle dominates for u ă t0. In this case, it is immediately apparent that IpR,Dq “
0. As u increases through t0 the correlation continues to vanish until the island I2 is
favoured over I1 for SpR Y Dq. The upper bound for this vanishing correlation defines
R2 “ R6 “ rt0, us by

SradpR
6q “

2
3
`

∆SBH ´ SpDq
˘

`
c

12 log SBH
∆SBH

. (3.41)

This is a refinement of (2.22) to include the log corrections for the case ξ “ 2. We have
supressed the argument from the logSBH term since the difference between t0 and u is very
small because the black hole evaporates very slowly in the adiabatic regime.

The time interval associated to R6 is interpreted as the time delay for the black
hole to ‘process’ D and start to return its information via the radiation. The refinement
above has contributions that are logarithmic in the black hole’s entropy as anticipated by
Hayden and Preskill [38] but there is also a backreaction effect that we noted already in
the adiabatic analysis of section 2. As u increases further, the mutual information rises
until R2 “ R6 Y R7 “ rt0, us. Then, the saddle for SpRq transitions I1 Ñ I2 and, hence,
IpR,Dq “ 2SpDq, with

SradpR
6 YR7q “

2
3
`

∆SBH ` SpDq
˘

`
c

12 log SBH
∆SBH

, (3.42)

which is a refinement of (2.23).

4 Python’s lunch

In the analysis so far, we have not needed to resolve what happens to the generalized
entropy when the would-be QES is in the D interval v P rt0, t0 ` εs because the QES
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that dominate the entropy do not lie in this interval. However, it is also important to
investigate QES that are maxima of the generalized entropy, and these will lie in the D
interval. These maxima are related to the complexity of the decoding the information in
the emitted radiation, and have an important interpretation as ‘python’s lunches’ [47, 49].
These are configurations of two minimal QES with a maximum QES in between along a
Cauchy slice behind the horizon.

The intuition comes from thinking of the black hole geometry, or more precisely the
Einstein-Rosen bridge, as a tensor network. The notion of decoding the state of the radiation
can be viewed as the process of shortening the tensor network by acting with unitaries and
also performing post selections. It is the latter that act as an obstruction to decoding and
determine the exponential complexity. With this interpretation, the height of the lunch is
conjectured to quantify the complexity of decoding information that has been evaporated
out of the black hole.

Specifically, in the case that we are interested in, information allowing the recovery
of D is scrambled and evaporated out when the minimal QES exchange their dominance.
After this time, IpR,Dq “ 2SpDq is maximal and the information in D is available to be
decoded in R. This means that there is some decoding unitary Udec acting on R that distills
the entanglement with the purifier D into some convenient subspace rD Ă R. Finding a
suitable Udec is expected to be a complex operation and the python’s lunch configuration
of the QES quantifies this complexity. The conjecture of [47] is that the complexity of
decoding is dominated by the exponential behaviour

CpUdecq ∼ exp
“`

Smax ´ Smin
˘

{2
‰

, (4.1)

where we are neglecting the subleading proportionality factor. In the above, Smax is the
generalized entropy for R at the maximal QES that lies between the two minima. The
entropy Smin is defined as the minimum saddle with larger entropy.

In this section, we want to quantify the complexity of decoding the diary alone, assuming
that we have already decoded all the previously emitted radiation, or, equivalently, that
we have shortened the Einstein-Rosen bridge up to the moment the diary falls inside the
black hole. Since this lunch is given by a local maximum, we suggest to call it the ‘python’s
snack’, to differentiate it from the main one which is a global maximum. The interesting
case is when we take t0 after the Page time. In order to decode the diary we need R to be
past the recovery time, therefore we have that the QES stuck before the diary has higher
entropy, which means that in (4.1) Smin “ SI1pRq. In the next section we determine, both
analytically in the shockwave limit and numerically for finite ε, the location of the maximal
QES and Smax.

4.1 Finding the maximum QES

The infall of D in the εÑ 0 limit creates a discontinuity in the derivative of the generalized
entropy, due to the fact that the function V ptq is only continuous up to the second derivative
and the dilaton contains a term proportional to V 2pvq, see equation (3.3). This means that,
whilst BUSgen is continuous, BvSgen is discontinuous across v “ t0. We will now argue that
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this behaviour means there should be another QES which is a maximum of the generalized
entropy. We will then investigate the existence of the QES maximum numerically after
smoothing out D.

We first solve BUSgen “ 0 for U and substitute the result into BvSgen. For both the
QES before and after the shockwave, we find

´
12
c
SBHpt0q `

1
U ´Upuq “ 0 , (4.2)

where we have used V “ Ṽ “ 1. From this we get

U “
c

12SBH
`Upuq . (4.3)

We now use this result in the extremization of Sgen with respect to v for the QES before
the diary

BvSgen “ 2πT pt0q
´ c

24 ´ 2SBHpt0qUV
¯

“ 2πT pt0q
´

2SBHpt0q|Upuq| ´
c

8

¯

(4.4)

and after it

BvSgen “ 2πT pt0 ` εq
´ c

24 ´ 2SBHpt0 ` εqŨ Ṽ
¯

“ 2πT pt0 ` εq
´

2SBHpt0qp|Upuq| ´ λq ´
c

8

¯

.

(4.5)
Now we see that in the interval

c

16SBHpt0q
ă |Upuq| ă c

16SBHpt0q
` λ, (4.6)

(4.4) is positive while (4.5) is negative. This indicates the presence of a maximum,
i.e., a python’s lunch. Notice that, in terms of the Ũpuq coordinates, the lunch starts a
scrambling time after the shockwave u “ t0 `∆tscr. and it is present for every time after it
if |Upuq| ě λ ą c

16SBH
, i.e., ∆SBH ą c{8.16

In order to be more precise about the maximum of the python’s lunch, we perform
a numerical analysis of the exact generalized entropy (3.28) with D modelled as either a
pulse with constant energy and entropy density in the interval rt0, t0 ` εs or as an operator
quench in the matter sector. For the former, the solution in this interval is now built out of
the Bessel functions Yνpνe´kt{2q and Jνpνe´kt{2q where

ν “
4
k

c

3πED
cε

. (4.7)

At t “ t0 and t “ t0`ε one matches the solution to the adiabatic solutions with an arbitrary
Möbius transformation in order to ensure the continuity of V ptq up to the second derivative.
The Schwarzian equation (3.5) then ensures that the third derivative is continuous. This
will be sufficient to ensure that the generalized entropy is once differentiable.

When D is modelled as an operator quench, as in [15], the energy density has profile

Tvvpvq “
2h
πε
¨

ε3

ppv ´ t0q2 ` ε2q2
, (4.8)

where ε is a regulator and h is the conformal dimension of the operator.
16Notice that this is again consistent with (2.12).
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Figure 3. The off-shell generalized entropy for R (left) and R YD (right) for the square energy
pulse model as a function of v (with the U coordinate on-shell) for different values of the u coordinate
of the endpoint of R on I ` indicated by the colour from red through purple. The D interval of
energy density is the shown as the yellow region. When u ă t0 (red) there is a QES in front of D,
v ă t0. As u increase beyond t0 another QES develops with v ą t0. At a later u this QES has the
minimum entropy. It is also clear that there is a maximum QES with a coordinate v inside the D
interval. The configuration of 3 QES is a python’s lunch.

In both models, the map V pvq is found numerically. It is important that extremizing
with respect to U can be done exactly giving the U coordinate of the QES

U “ ´
k ` kUpuqV pvq `UpuqV 1pvq
kV pvq ` kUpuqV pvq2 ´ V 1pvq . (4.9)

So, the U coordinate of the QES is determined exactly and then the generalized entropy can
be plotted off shell as a function of v for various values of u, the coordinate of the endpoint
of R on I `. For some indicative values of the underlying parameters these off-shell plots
are shown in figure 3 for the simple energy pulse. In both cases, the minimal QES that
exists in front of D for u ă t0 is clearly visible and, as u increases beyond t0, a second
minimal QES appears behind D. At a later time this has the lowest entropy. The exchange
of minima indicates that the information allowing the recovery of D has been evaporated
out of the black hole. It is then obvious that there must be a maximum QES in between
and that this lies in, or on the boundary of, the D interval.

For the operator quench the results are very similar, see figure 4, showing that the
behaviour is rather universal.

It is clear from the numerical analysis that for R the maximum QES is at the far edge
of D at v “ t0` ε whereas for RYD it lies inside the interval. This is simple to understand,
the important terms in the generalized entropy that determine the v coordinate of the QES
when v is in the D interval are

Sgenpvq ∼ SBHpvq ` SDpvq , (4.10)

with SDpvq defined for R and RYD in (3.29). Here, SBHpvq is a monotonically increasing
function of v, due to the backreaction of D, whilst SDpvq monotonically increases, for R,
and decreases, for RYD. Hence, for R the maximum will lie at the edge of the D interval
at v “ t0` ε while for RYD there is a competition between the two terms and the position
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Figure 4. The off-shell generalized entropy for R (left) and RYD for the operator quench model
as a function of v for several values of t from red to blue. The region in yellow shows the region
where the energy density is localized. For this plot, the parameters are: k “ 0.1, c “ 10, h “ 5, hD “

1, ε “ 0.5, t0 “ 2{k.

of the maximum in somewhere in the D interval depending on the detailed form of the
functions. These features are clear in the numerical analysis.

In the case of R, the approximate coordinates of the QES at the recovery time are
given by v “ t0 ` ε and (4.3).17 The entropy of R at the maximum is therefore given by

SmaxpRq « SBHpt0 ` εq ` SpDq ` SradpR2q “ SBHpt0q `∆SBH ` SpDq ` SradpR2q . (4.11)

We can now estimate the decoding complexity of D from (4.1), since

Smin “ SI1pRq “ SBHpt0q ` SradpR2q , (4.12)

we have that
C ∼ exp

“

p∆SBH ` SpDqq{2
‰

. (4.13)

In the reversible case ∆SBH “ SD so the decoding complexity for the diary is dominated by
the exponential C „ exppSpDqq, in agreement with the prediction in [47] and [59]. Notice
that the irreversibility of the process of the black hole absorbing the diary increases the
computational cost of decoding the diary.

4.2 Island in the stream and python’s lunch

Let us now discuss a simplified way of deriving the complexity of decoding which involves
the island in the stream formalism introduced in section 2. The procedure of shortening the
bridge can be related to an off-shell sweep of the generalized entropy [47] SIO-SpRq with an
‘off-shell’ island IO-S whose end points are not necessary QES. In the island in the stream
formalism there is a natural way to define the generalized entropy off shell: simply use the
islands in the stream formula (2.7) but do not insist the end points BĨ lie in the subset BR.
Varying one of the points BĨ gives rise to a sweep.

17One can arrive at the same result using (4.9).
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ũO´S
0 t0 u

SpDq `∆SBH
SradpRq

Smin
I1 I2

SIO-SpRq

Figure 5. The sweep SIO-SpRq with ĨO-S “ r0´, uO´Ss. The blue blobs are extrema of the
generalized entropy. The sweep through the diary reveals a local maximum, a python’s snack.

Now consider the shockwave geometry case, and define a sweep corresponding to the
generalized entropy with an off-shell island ĨO-S “ r0´, uO´Ss.

t0

u

R

ĨO-S

Ra ĨO-S

The sweep is shown in figure 5, it starts with an island just before the black hole is
created, and then the entropy jumps by SBHp0q as ũ crosses 0. It then decreases until the
diary is thrown in when ũ “ t0. Here, there is another minimum, which corresponds to
the island saddle that gets stuck in front of the diary. Between this minimum and the
dominating QES, there is a maximum which is given by the island saddle which sits just
after the diary, which differs by the previous QES just by diary energy and entropy, as
computed in (4.11) and (4.12).

5 Effect of the infalling system

The infalling system has some important consequences that sheds further light on some
interesting issues.

5.1 Measurements outside affecting the inside

It is a remarkable feature of the generalized entropy formalism that the island I behind the
horizon of a post Page-time black hole is in the entanglement wedge of R and so the action
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of an operator acting in the effective theory on I can be reconstructed at the microscopic
level as an operator acting on the radiation R [7, 11]. This seems to imply a breakdown of
locality because it means that there are operators on the radiation that can manipulate the
inside of the black hole.

In order to shed more light on this apparent feature of the formalism, let us ask the
following concrete question. Can any operation on the radiation R “ r0, us affect an object
D that falls into the hole at some time t0 ą u? It is important that t0 ą u because
otherwise information allowing the recovery of D itself will have been evaporated out and
be encoded in the radiation and the question becomes moot. This answer is simple because
we know that information cannot be recovered in the radiation until D actually falls in;
more precisely IpR,Dq “ 0 for t0 ą u. Actually we have shown that u can be slightly
greater than t0 to include the subset R6 described in section 2. So there is no correlation
between the radiation R and the purifier of D meaning that the reduced state factorizes
ρDR “ ρR b ρD. This means that no operation on R, i.e. any generalized measurement
that can be represented as a quantum channel acting on R, can affect D. This is entirely
consistent with the analysis in [60]. This is consistent with the idea that after the Page
time the island region inside of the black hole has been evaporated out into the radiation
and is not in any meaningful sense behind the horizon any more.18 This breakdown of the
semiclassical description might be signaled by a new kind of singularities, called ‘quantum
singularities’, discussed in [61].

5.2 Encoding of Hawking partners

The entanglement monogamy problem and the implication for the existence of a firewall
at the horizon are well known [62, 63]. In short, the entropy of a Hawking mode R2 is
identified as due to its entanglement with its partner mode R2 behind the horizon in order
to have the ingoing vacuum state around the horizon. Any disruption to this entanglement,
for example, replacing the Unruh state by the Boulware state would lead to a divergence in
the energy density at the horizon, i.e. a firewall. On the other hand, for a black hole past
the Page time, the Hawking mode must be correlated with the early radiation R1. The
Hawking mode cannot be correlated with both R2 and R1 since this violates the monogamy
of entanglement.

In the generalized entropy formalism, the monogamy problem evaporates. The purifier
R2 is encoded in a redundant way in the early radiation R1 and the remaining black hole.
To be more specific, define R2 “ rt0, t1s (with |t1 ´ t0| " T´1) to be a small subset of
Hawking modes emitted past the Page time. In this case, the modes in R2 are correlated
with the early radiation R1 “ r0, t0s since the island I1 “ r0, t0s dominates for R1, giving

SpR1q “ SI1pR1q “ SBHpt0q , (5.1)

and the island I2 “ r0, t1s for R1 YR2, giving

SpR1 YR2q “ SI2pR1 YR2q “ SBHpt1q . (5.2)
18More precisely, it is the information allowing the recovery of the Hawking partner modes that has been

evaporated out of the black hole.
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Hence,
IpR1, R2q “ SradpR2q ` SBHpt0q ´ SBHpt1q “

ξ ` 1
ξ

SradpR2q . (5.3)

In the above, since R2 is a small interval SpR2q “ S∅pR2q “ SradpR2q.
Note that the purifier R2 can also be located in the remaining black hole, or equivalently

the late radiation R3 “ rt1,8s, and a subset of the early radiation R1. The fact that some
of the early radiation is needed follows from the fact R2 has non-vanishing correlation with
the early radiation R1.

If the partner modes R2 are encoded partially in the early radiation then this presents
a potentially paradoxical situation for a freely falling observer who crosses the horizon.
The observer who falls in at time t0 needs to experience the Hawking modes R2 and their
partners R2 in the entangled Unruh state but if the partners are partially encoded in the
early radiation how can that be unless there is some extreme form of non-locality?

However, as observed by Yoshida [60, 64–66], it is important to take into account the
backreaction created by D. In the present context, the infall of D creates a competition
between the islands I1 and I2 for SpRq (as before R “ R1 YR2) and so now the correlation
between the Hawking modes R2 and the early radiation is

IpR1, R2q “ max
ˆ

0, ξ ` 1
ξ

SradpR2q ´∆SBH ´ SpDq

˙

, (5.4)

ignoring the log terms. So a small enough set of modes R2 are now completed uncorrelated
with the early radiation. The largest set of modes with this property is the set R2 “ R6YR7

defined earlier, precisely the minimum amount of radiation needed to recover D. This is
clear from figure 2: when I1 dominates for R1 YR2 there are a set of partner modes behind
the true horizon Ũ “ 0 that do not lie in the island I1. It is only when R2 gets sufficiently
large that the island I2 dominates. So D can experience the entangled state, the inertial
vacuum, across the true horizon as it falls into the black hole and there is no need to invoke
some extreme form of non-locality.

Given that D’s fate is to have its state scrambled and information evaporated out of
the black hole, it is interesting to ask how long does D last inside the black hole from its
own perspective rather than from the perspective of an observer outside the black hole who
collects the radiation. In order to make this a meaningful question we first have to make
D’s trajectory slightly time-like so we can talk about D’s proper time. A time-like geodesic
in AdS2 in KS coordinates has the form

Ũ “ µ
sinpτ{2q

sinpτs ´ τ{2q
, Ṽ “ µ´1 cospτs ´ τ{2q

cospτ{2q , (5.5)

where τ is the proper time and µ and τs are constants. Horizon crossing occurs at τ “ 0
and the singularity is reached at τ “ τs. For an almost null trajectory of D (which has
Ṽ “ 1), τs is small and the geodesic is approximately

Ũ «
τ

2τs ´ τ
, Ṽ « 1 . (5.6)

valid in the region inside the black hole.
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Now that we can talk about D’s proper time, the question then is how to judge when
D has been scrambled and its information evaporated out of the black hole in its own frame.
If we accept the premise that QFT modes that lie in the island (in this case the island I1)
have been partially evaporated out of the black hole and are now encoded in the radiation,
since they lie in the entanglement wedge of the radiation R1 emitted prior to D falling in,
and are no longer present inside the black hole then this puts a limit on the amount of the
interior available to D. We propose that this sets a limit on how much of the interior D
can experience before being scrambled and evaporated out. The Ũ coordinate of the QES
of the island I1 is Ũ “ 4λ{3 and D will reach this at proper time τ “ 8λτs{3. Hence, the
ratio of proper times for an ultra-relativistic infalling object is

time inside
time to singularity «

8λ
3 ∼

∆SBH
SBH

, (5.7)

where the time to the singularity τs is defined in the classical spacetime.

6 Discussion

We have considered how information is recovered in a model of an evaporating black hole
in JT gravity where the backreaction problem for an infalling object is exactly solvable.
In the case that we collect all the Hawking radiation from the beginning of evaporation,
as discussed in section 2.3, we have seen how the generalized entropy formalism leads to
information recovery in the way anticipated by Hayden and Preskill in their pioneering
work [38]. The formalism we developed allowed us to show that we can also recover the
information from the radiation emitted after the diary falls in, as discussed in section 2.4.
The fact that the information in the diary can be recovered in different subsets of the
Hawking radiation can be seen as a consequence of the relationship between entanglement
wedge reconstruction and quantum error correction.

In addition to previous work [17], in this paper we have also considered corrections to
the entropy which are logarithmic in the black hole entropy and the shift in the black hole
entropy, the latter arising from the backreaction of the diary. This refinement is necessary
in order to evaluate the time needed for the information in the diary to start appearing in
the radiation. This time was identified in [38] as the scrambling time and, interestingly,
it involves two terms (3.41): one term is proportional to c logSBH{∆SBH, where ∆SBH
is the shift in the black hole entropy due to the backreaction of the infalling object, and
can be interpreted as the usual scrambling time, whilst the other term is proportional to
∆SBH´SpDq, where SpDq is the entropy of the diary. This other term has a thermodynamic
origin; it is due to the fact that the process of the black hole absorbing the diary is an
irreversible process if the first law ∆SBH ě SpDq is not saturated. Therefore, irreversibly
delays the time at which the black hole returns the information in the diary to the radiation
and so the black hole doesn’t behave as a mirror anymore.

Irreversibly also increases the complexity of decoding the diary in the radiation. In
section 4, using the conjecture of [47], which relates the complexity C to the size of the
python’s lunch, we found log C „ p∆SBH ` SpDqq{2 ě SpDq, where SpDq is the estimate
based on reversible qubit models [59].
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In section 5 we considered the experience of an infalling observer as they pass through
the horizon. Due to their backreaction, we found that the Hawking quanta emitted when
the observer is crossing the horizon are not entangled with the early radiation, avoiding
the entanglement monogamy paradox and granting a smooth experience for the observer
through the horizon. However, we know that at a certain point the information of the
infalling observer is accessible on the outside, which means that they have be scrambled in
the Hawking radiation. This happens roughly when the observer crosses the island. We
propose that this sets a limit on how much of the interior they can experience and calculated
the endurance time for an ultra-relativistic infalling observer, which turns out to depend on
the diary backreaction ∆SBH as in equation (5.7).
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A Multipartite generalized entropy in the shockwave geometry

In this section, we show how the simple result for solution of the variational problem in
the adiabatic limit (1.1) follows in the general case when R consists of an arbitrary set of
intervals and there is an infalling object D as described in section 2 in the adiabatic limit.
In this section we assume that the matter theory consists of c massless Dirac fermions, as
the formula for the entropy for multiple intervals is known for this case [67].

We will label the QES with a, b, . . . while the intervals endpoints at I ` with i, j, . . . .
We also use Greek letters to cover all the indices α “ pa, iq ordered along a Cauchy slice.
The expression for the generalized entropy simplifies in the adiabatic limit because, in this
limit, the QES are close to the horizon. This is the would-be horizon U “ 0, for QES with
Va ă 1, and the true horizon Ũ “ 0, for QES with Va ą 1:19

UaVa ! 1 , for Va ă 1 , ŨaṼa ! 1 , for Va ą 1 . (A.1)

Our approach is to assume that this is true and then show that the solutions of the
variational problem we find are consistent with this.

In the adiabatic approximation, and assuming that the QES are close to their appropriate
horizons, the QES contribution to the generalized entropy simplifies to

SQES “
ÿ

Vaă1
SBHpvaqp1´ 2UaVaq `

ÿ

Vaą1
SBHpvaqp1´ 2ŨaṼaq . (A.2)

The QFT contribution to the generalized entropy is

Spρsc
RYIq “ ´

c

6
ÿ

αăβ

p´1qα´β logpUα ´ Uβq ´
c

12
ÿ

α

logU 1α `
c

12
ÿ

a

log V 1aU
1
a

p1` UaVaq2
.

(A.3)
19Remember that we have normalized our coordinates so that D falls in along V “ Ṽ “ 1.
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where V 1a “ V 1pvaq and U 1α “ U 1puαq and for the QES we define the coordinate ua so
that Ua “ ´Upuaq. The above can also be expressed in terms of the pŨ , Ṽ q coordinates
in an identical way. Moreover, each term in the third sum is invariant under a Möbius
transformation by itself.

We can now apply the assumption (A.1) and also the following expressions,

V 1

V
ptq “ ´

U 1

U
ptq “ 2πT ptq for t ă t0 ,

Ṽ 1

Ṽ
ptq “ ´

Ũ 1

Ũ
ptq “ 2πT ptq for t ą t0 ,

(A.4)
valid in the adiabatic limit, for writing:

Spρsc
RYIq “ ´

c

6
ÿ

αăβ

p´1qα´β logpUα ´ Uβq ´
c

12
ÿ

|Uα|ą1
log |Uα|

´
c

12
ÿ

|Uα|ă1
log |Ũα| `

c

12
ÿ

Vaă1
log VaUa `

c

12
ÿ

Vaą1
log ṼaŨa ,

(A.5)

up to some subleading terms of order c log T . In the above, we have used the approximation
U “ Ũ ´ λ so that U 1 « Ũ 1 valid when |U | ă 1.

Varying the generalized entropy with respect to Va for QES with Va ă 1 and Ṽa for
QES with Va ą 1, yields the approximate solutions

VaUa “
c

48SBHpvaq
! 1 , ṼaŨa “

c

48SBHpvaq
! 1 , (A.6)

respectively. Since SBH " c in the adiabatic approximation, this justifies our earlier
assumption (A.1). These conditions have the approximate solution

va “ ua ´
1

2πT puaq
log SBHpuaq

c
, (A.7)

where the second term is assumed to be small compared with the size of the intervals which
means for any interval Rj Ă R, we have SradpRjq " c logSBH{c.

Now let us turn to extremization with respect to Ua. We split the case when the QES
is in front of D, i.e. va ă t0, into two cases, depending whether ua ž t0. Taking the case
ua ă t0 first. Differentiating the generalized entropy with respect to Ua and using (A.6)
we have

va ă t0
ua À t0

: 1
4 `

ÿ

α‰a

p´1qa´α Ua
Ua ´ Uα

“ 0 , (A.8)

which is familiar form the analysis in [17]. Solutions to this equation are simple because
there is a hierarchy of scales amongst the coordinates because the intervals in R are large
compared with the thermal scale, so ui ą uj implies |Ui| ! |Uj |.20 The implication is that
each QES coordinate lies close to an end point in the sense that Ua “ κ|Uj | for a numerical
factor κ “ Op1q and the sum is well approximated by

va ă t0
ua À t0

: 1
4 ´

Ua
Ua ´ Uj

“ 0 ùñ Ua “
1
3 |Uj | . (A.9)

20Notice that, since the diary is small λ ! 1, we have that the hierarchy between the KS coordinates will
hold true also when ua „ t0, as indicated in equation (A.8), i.e. until |Ũa| " λ.
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There is a subtlety here. If we order the coordinates tUαu “ tUju Y tUau in order of
magnitude |Uα| then the number of coordinates that have |Uα| ! |Uj | must be even. The
case when the number is odd also give solutions but these always turn out to be maxima of
the generalized entropy and we are not interested in these.

Now consider the case with va ă t0 but now with ua ą t0. We have the same
equation (A.8) but the presence of D complicates the discussion since we have that all
the radiation endpoints with ui ą t0 have coordinates Ui „ ´λ and we expect Ua “ Opλq,
indeed we will consider an ansatz of the form Ua “ κλ. In this case we can neglect in (A.8)
all the terms with |Ui| " λ while all the other ones have an identical contribution. However,
considering again the case where we have an even number of coordinates λ „ |Uα| ! 1, we
get that all these terms will exactly cancel each other leaving us with:

va ă tD
ûa ą tD

: 1
4 ´

Ua
Ua ` λ

“ 0 ùñ Ua “
1
3λ . (A.10)

Finally, consider the case where the QES is after D, va ą t0. The extremization with
respect to Ua leads to:

va ą t0 : 1
4 `

ÿ

α‰a

p´1qa´α Ũa
Ua ´ Uα

“ 0 . (A.11)

Again, the presence of D affects the discussion, but the key point is that it does not change
the hierarchy amongst the coordinates, in the sense that, for ui ą uj ,

Ui ´ Uj «

#

´Uj uj ă t0 ,

´Ũj uj ą t0 ,
(A.12)

where we have used Uj “ ´λ` Ũj for uj ą t0. So, the hierarchy of scales amongst the Uα
coordinates can still be exploited to give a solution

va ą t0 : Ũa “
1
3 |Ũj | . (A.13)

It is noteworthy that when uj ą tD there are two saddles that have va ż t0. When the
QES is in front of D, we have Ua “ λ{3 and, approximately,

va “ t0 ´
1

2πT pt0q
log ∆SD

24c . (A.14)

The other saddle has
va “ uj ´

1
2πT pujq

log SBHpujq

c
ą t0 . (A.15)

Using (A.14) and (A.15), we can compute the logarithmic corrections to entropy of the
saddle. Each QES contributes a correction which gives (2.27) plus a correction specific for
the case where the QES gets stuck before the diary (δuBĨ ,t0 “ 1)

SI “
ÿ

BĨ

SBHpuBĨq`SradpRaĨq´
c

24
ÿ

BĨ

„

log SBHpuBĨq

c
´ 3δuBĨ ,t0 log ∆SBH

SBHpt0q



. (A.16)

This is a refinement of (2.7).
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