
Citation: Orsilli, J.; Caglio, S.

Combined Scanned Macro X-Ray

Fluorescence and Reflectance

Spectroscopy Mapping on Corroded

Ancient Bronzes. Minerals 2024, 14,

192. https://doi.org/10.3390/

min14020192

Academic Editors: Luminita Ghervase,

Monica Dinu and Ioana Maria Cortea

Received: 2 January 2024

Revised: 8 February 2024

Accepted: 9 February 2024

Published: 12 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

minerals

Article

Combined Scanned Macro X-Ray Fluorescence and Reflectance
Spectroscopy Mapping on Corroded Ancient Bronzes
Jacopo Orsilli * and Simone Caglio

Department of Material Science, University of Milano Bicocca, 20126 Milano, Italy; simone.caglio@unimib.it
* Correspondence: jacopo.orsilli@unimib.it

Abstract: Bronze is an alloy composed primarily of copper and tin and since its discovery is
widespread in the whole world. This alloy can thus be found in many archaeological sites and
its study can give information about the technology of production, the trading routes, or the warfare
within a region. However, bronze artefacts can undergo severe alteration processes, and the formation
of corrosion layers of different copper minerals can prevent the readability of the artefact or even de-
stroy it, as in the case of the ‘bronze disease’. Their preservation is crucial for maintaining a connection
to our cultural heritage. In this paper, we present the study of some corroded bronze artefacts found
in different burying conditions. They have been analysed through a scanner system that combines
two non-invasive techniques, macro XRF (MA-XRF) and visible, near infrared, short wave infrared
(VIS-NIR-SWIR) reflectance, to unravel information about the metal and the patina composition,
thickness, and distribution. As the corrosion of bronze depends on the burying conditions and the
alloy composition, these data are of the utmost importance to understanding the alteration processes
occurring in the archaeological site and to ensure the artefacts’ optimal preservation.

Keywords: macro X-ray fluorescence; VIS-NIR-SWIR reflectance spectroscopy; mapping; copper
corrosion products

1. Introduction

Metallic artifacts are among the artistic products that suffer most from degradation pro-
cesses, especially when they are stored in external, marine, or underground environments.
Corrosion of metals occurs in almost all burial environments [1–3] determining in some
cases not only the alteration of the surface and the complete loss of surface morphology but
also the loss of structural integrity. Copper artifacts are naturally subject to degradation,
and the resulting products largely depend on the type of environment in which they are
stored and whether they are pure or alloyed with other metals such as tin, zinc or lead [4].
For example, in the case of buried bronzes, a surface patina is often found characterized
by the enrichment of tin in the external layers of corrosion: the surface is covered by a
layer of passivation, called noble patina, characterized by an impoverishment of copper,
which protects the manufactured material by preserving all the artistic characteristics of the
surface and not reducing its structural resistance [5]. However, if the presence of copper
compounds, such as cuprous oxides and copper chlorides, are detected on the surface,
there is a corrosive phenomenon that causes a degradation process that continues over
time, creating irreparable damage to the object [6]. It is therefore clear that it is necessary to
be able to determine the type of surface corrosion products to be able to intervene in the
most correct way to preserve the integrity of the artistic artifact.

There are now consolidated methodologies for the recognition of corrosion products,
methods which, however, often involve sampling material from the object [7] or the use of
benchtop instruments which, therefore, cannot be used in situ [8,9]. When approaching ob-
jects of cultural importance, the use of non-invasive analytical methodologies with portable
instruments to study material composition is essential [10,11], especially if you want to
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perform extensive analyses on the whole, or most of, the surface of the artifact [12–16]. This
approach is commonly used in the case of paintings in which, before taking samples of
material to carry out any studies on the stratigraphy and organic compounds, localized
or mapping analyses are carried out with non-invasive spectroscopic techniques such as
X-ray fluorescence (XRF) and reflectance spectroscopy in the visible and infrared range
(VIS-NIR-SWIR RS) [17–22].

Precisely starting from this type of approach and considering that many of the copper
corrosion products have in fact been used since ancient times as pigments [23–25], we
decided to study the possibility of distinguishing, if not even recognizing, the products that
make up the corrosion patinas of two types of artifacts: some plaquettes mainly composed
of copper and a bronze alloy plate. Due to the nature of the investigated samples, which
present a high level of inhomogeneities (both on the surface and in-depth), we cannot only
rely on the data acquired on single points, as they are not representative of the nature
of the whole object. Furthermore, the choice of applying two very different techniques,
XRF, which gives the element composition, and VIS-NIR-SWIR RS, which investigates
the molecular structure, allows for observing differences where compositional variations
are negligible.

For this purpose, we employed a portable instrument that allows simultaneous acqui-
sition of energy dispersive XRF (EDXRF) and RS spectra, both on a single point and as a
mapping of large surfaces.

2. Materials and Methods
2.1. Samples

The samples studied in this preliminary work were chosen for their certain archaeo-
logical provenance, for the clear presence of a surface patina, and for their small size, which
allowed further checks on the surface composition of the patina to be carried out through
the more consolidated Raman analyses.

The first materials analysed are several plaquettes found in 2007 in a tomb in the
archaeological area of Sipán, a region of present-day Peru (South America), and which can
be dated between the II and IX centuries AD. These materials have already been partly
analysed with non-invasive methodologies in 2011 to study their composition; starting
from these studies we wanted to deepen and extend our knowledge. These samples are
copper plates with a probable surface gilding which was hypothesised to be due to the
presence of gold in some analysed points, although the presence of the surface patina made
it difficult to detect [26–28]. Of the different samples available, in this work, two samples,
Sipan 2 and Sipan 6, were analysed (Figure 1a,b).

The second type of sample was found in an archaeological excavation in central Italy
and is probably of Etruscan workmanship dating back to around the II-III century BCE.
(Figure 1c). It is a bronze sheet, of approximately 22 × 17 mm; the plate has a patina
of corrosion widely green in colour, with shades ranging from light green to dark green
and with blue inclusions in some places. Also, grey regions with a dull green hue can be
observed in the upper part of the sample.

All the studied samples present a high level of degradation and the formation of a
thick patina layer on the surface (an example in Figure 1d); in some regions the patina is
so thick that the original material is no longer visible. Additionally, the patina is not even
homogeneous either in thickness or composition, as different alternated red and green
layers can be observed.
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Figure 1. Visible images of the examined samples: (a) Sipan plate no. 2; (b) Sipan plate no. 6; (c) 
Etruscan plate. Image (d) is theEtruscan plate upper border, where different layers of altera-
tion can be observed. The thickness of the plate is around 1.2mm. 

2.2. Methods 
For the study conducted in this work, a combined scanner for synchronous EDXRF 

and reflectance spectroscopy, in the visible to SWIR region, created for applications on 
cultural heritage objects was used. 

IRIS Combined X-Ray Fluorescence & Reflectance Spectroscopy Scanner System 
(XGLAB, Milan, Italy, 2023), the commercial name of the instrument produced by Bruker, 
is a system for non-destructive and non-contact analysis of materials, which allows both 
single-point measurements and continuous scanning analysis of the sample surface. The 
measuring head combines both an EDXRF system, consisting of an x-ray tube, SDD de-
tector, collimator, and filter wheel, and an optical system composed of optical fibres for 
VIS-NIR-SWIR spectroscopy. 

XRF is a non-invasive analytical technique that allows for elemental detection in the 
range between Si and U (for some portable instruments the detection of elements as light 
as F is feasible). In principle, with this technique it is possible to perform both a qualitative 
and a quantitative analysis; however, for the latter, a homogenous sample should be ana-
lysed. Homogeneity is very uncommon in cultural heritage objects, thus the information 
collected with this technique concerns the overall volume investigated. As X-rays can pen-
etrate for several micrometers inside of the sample (depending on the sample composi-
tion, density, and the energy of the photons) XRF is considered a bulk technique. Another 
issue to consider when performing quantitative analysis is that the theoretical description 
is performed assuming a perfectly flat sample and the density of each layer. These two 

Figure 1. Visible images of the examined samples: (a) Sipan plate no. 2; (b) Sipan plate no. 6; (c) Etruscan
plate. Image (d) is theEtruscan plate upper border, where different layers of alteration can be observed.
The thickness of the plate is around 1.2mm.

2.2. Methods

For the study conducted in this work, a combined scanner for synchronous EDXRF
and reflectance spectroscopy, in the visible to SWIR region, created for applications on
cultural heritage objects was used.

IRIS Combined X-Ray Fluorescence & Reflectance Spectroscopy Scanner System
(XGLAB, Milan, Italy, 2023), the commercial name of the instrument produced by Bruker,
is a system for non-destructive and non-contact analysis of materials, which allows both
single-point measurements and continuous scanning analysis of the sample surface. The
measuring head combines both an EDXRF system, consisting of an x-ray tube, SDD de-
tector, collimator, and filter wheel, and an optical system composed of optical fibres for
VIS-NIR-SWIR spectroscopy.

XRF is a non-invasive analytical technique that allows for elemental detection in the
range between Si and U (for some portable instruments the detection of elements as light
as F is feasible). In principle, with this technique it is possible to perform both a qualitative
and a quantitative analysis; however, for the latter, a homogenous sample should be anal-
ysed. Homogeneity is very uncommon in cultural heritage objects, thus the information
collected with this technique concerns the overall volume investigated. As X-rays can
penetrate for several micrometers inside of the sample (depending on the sample composi-
tion, density, and the energy of the photons) XRF is considered a bulk technique. Another
issue to consider when performing quantitative analysis is that the theoretical descrip-
tion is performed assuming a perfectly flat sample and the density of each layer. These
two assumptions are also seldom required in cultural heritage samples, where alteration
layers are not flat and/or porose. Indeed, the quantification of layers where the layer
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density is not known can lead to over or underestimating the sample thickness or composi-
tion. [29–31]. To discriminate in-depth information with this technique alone, it is possible
to employ confocal lenses (confocal XRF) [32–35], fluorescence line ratio [36,37], or varying
geometry scanning, like Angle Resolved XRF or Grazing Emission/Incidence XRF [38–40];
however, the applicability of these techniques depends mostly on the maximum probed
depth, which is the ultimate limit, even if it is difficult to estimate the real volume in-
vestigated. If we consider the mean density of some copper compounds (malachite and
atacamite 3.8 g/cm3 or antlerite 3.9 g/cm3) we can estimate for the Cu Kα line a maximum
penetration of 60µm, which is compatible, if not thicker than the alteration layer.

The XRF head is equipped with a rhodium (Rh) transmission (1 µm) tube, with a
maximum power of 10W, covered with a Be window that is 250µm thick, and an SDD
detector (XGLAB, Milan, Italy, 2023) (active area of 50 mm2 and thickness of 450 µm) with a
resolution of approximately 138 eV at Mn Kα line protected by a Be window that is 12.5 µm
thick. The distance between the source and the analysed spot is 54 mm, while the distance
with the detector is 14 mm. The angle of detection and irradiation are, respectively, 52◦ and
68◦. The source is collimated with a cylindrical collimator that is 0.5 mm in diameter, and
the measurements have been performed with the unfiltered source.

VIS-NIR-SWIR reflectance spectroscopy is based on the absorption and reflection
properties of materials when stimulated by electromagnetic radiation in the visible (VIS),
near-infrared (NIR), and short-wave infrared (SWIR) ranges. In the visible and near-infrared
regions, the reflectance curve is mostly characterized by phenomena related to transitions
in atomic energy levels, charge transfer, or conduction band transitions. In SWIR, however,
the spectra are the result of energy absorption within the crystal lattice from vibrational
states. Like in infrared spectroscopies such as Fourier transform infrared (FTIR) and Raman
spectroscopy, absorption features occur at well-defined wavelengths because the vibrational
states of molecules correspond to distinct energy levels [41]. Reflectance measurements
refer to the percentage of incident radiation that is reflected by the sample; therefore, to
obtain correct reflectance spectra it is first necessary to perform a calibration on a white
standard which defines the upper limit (100% of reflected radiation) and a black one for the
lower one (0% of reflected radiation). Any measurements that exceed 100% would indicate
the presence of an emitted radiation by the sample itself. Generally, this occurs in the case
in which the excitation source generates luminescence phenomena in the sample, such as
luminescence induced by ultraviolet radiation (UVL) [42] or visible light (VIL) [43].

The system for reflectance measurements consists of a halogen lamp with a nominal
power of 9 mW whose radiation is transported through a bundle of optical fibres to the
head of the instrument, and the light is projected and focused on the sample. The reflected
light is then collected and transported by two different fibres of the same optical beam and
sent to two spectrometers: one dedicated to the visible range (VIS-NIR, 360–1000 nm with
a resolution of 1.5 nm) and one to the infrared (NIR-SWIR 900–2500 nm with a resolution
of 8.9 nm). The white reference is a PTFE-based material with a nominal reflectance of
98% in the 360–1000 nm range and 92% in the SWIR range. For black calibration the
instrument carries out a measurement with the lamp shutter closed, to use the ambient
lighting as a background reference. For an optimal measurement, it is best to carry out
the measurements in reduced or at least controlled light conditions, so as not to vary the
background light radiation. Finally, a visible camera and a system with two lasers (axial
and focus) are inserted into the head of the IRIS system for the correct positioning of the
head with respect to the sample.

With this same instrument we have also measured some pure materials such as
malachite and azurite to retrieve their characteristic spectra; the other pure spectra have
instead been acquired from the literature [44].

As a verification of the interpretations performed through the joint reading of the RS
spectra and the XRF analyses, some Raman measurements were performed in the same
areas. The LabRAM HR (Horiba–Jobin Yvon) spectrometer, at the DST-UniMIB, with an
argon laser (488 nm) as an excitation source, in the spectral range of 200–1200 cm−1 has
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been used. Since this instrument has a better spatial resolution than the analyses performed
with IRIS, several spectra were acquired to cover a comparable area, and from these, all the
spectra that presented different characteristics were extracted [45]. The recognition was
then performed by comparison with online databases, in particular those of the RRUFF
Project [46].

2.3. Data Analysis

In order to obtain information from the acquisition of spectroscopic maps, some
analysis methods were employed. All the analytical procedures have been performed with
in-house codes written in Python (3.11.5) [47].

The data hypercubes containing the XRF measurements were processed to highlight
the presence of certain chemical elements of particular interest. To do this, regions of interest
(ROIs) are selected in the XRF spectrum around the energy value relating to the peak of
the element considered. In the colour gradient map, for each position (x, y), the number of
normalised counts relating to that ROI is therefore shown, indicating the detection of that
specific element in the considered position.

To study the hypercubes containing the reflectance data, the spectra correlation mapper
(SCM) was used; the SCM is an algorithm for evaluating the similarity between long vectors
and is an evolution of the more commonly used spectra angle mapper (SAM) [48]. Unlike
the SAM, the SCM can distinguish between correlation and anti-correlation, achieving
better precision in distinguishing reflectance spectra. Each spectrum hypervector inset in
the acquired hypercube is compared with a reference vector, called endmember, obtaining
a result that varies between -1 and 1 (which represents the degree of similarity between
the reference and the unknown spectrum). By associating the correlation value obtained
with each original (x, y) position, a colour gradient map is generated in which the degree
of correlation between what is recorded by the instrument and the chosen reference is
highlighted. As endmembers, to calculate the SCM we employed all the spectra collected
in the point analyses, and then we selected those that presented the widest correlation.

From the map obtained both with ROIs (for XRF) and with the SCM (for RS) we
calculated the representative spectrum of the map, through a weighted average of all the
acquired spectra, where the weights employed are the ROIs (or SCM) calculated values.
These spectra are thus characteristic only of the highlighted regions and can stress the
differences in the areas of the samples without checking all the acquired spectra.

A further elaboration was the construction of RGB (red, green, blue) colour maps
through the association of each colour channel with a different correlation map, obtained
by choosing three different endmembers (or ROIs). Differently from the XRF colour map,
which allows the identification of the areas of co-presence of different chemical elements,
the RGB map of the reflectance spectra allows for verification of the actual distribution
of the reference spectra and the verification of whether there are areas not covered by the
specific choice of endmembers and which therefore require further verification.

3. Results

To validate the approach used and the unitary reading of the data obtained with
the two spectroscopic techniques, the single-point spectra were first acquired then the
maps were recorded. The RS spectra of the individual measurements were compared with
previously published work and then used as references to generate the SCM maps.

3.1. Point Data Results

To determine the nature of the materials from which the samples are made, single-
point measurements were acquired, both with XRF and RS. The composition of the Sipán
samples was known from previous analyses [26], so we focused on analysing the surface
areas that had a patina. Data were therefore acquired from the surfaces of different objects
in regions that had different chromatic shades and could therefore be hypothesised to
be different compositions. In Figure 2 the XRF spectra, Panel (a), and RS spectra, Panels
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(b) and (c) of these points are shown. It is evident that the elemental composition differs
slightly between the different points analysed showing a conspicuous presence of copper.
In the Etruscan plate, it is possible to observe the tin K lines in all the samples; however,
only on the spot referring to the bulk, collected in a point in which the patina has detached,
is it possible to observe the Sn-L lines. As these are less energetic, they are more prone to
be attenuated and are a hint of the tin present on the surface of the sample. For this very
reason, if a noble patina was investigated (with a depletion of copper and an enrichment
of tin on the surface) we would expect to detect both the K and L lines of this element. In
the Sipán sample, instead, no tin can be observed as the plate is made solely of copper.
Referring to the elements characterised in the alterations, we can observe that the Etruscan
plate has a higher peak of Si (probably due to the burial environment) while more intense
peaks of S and Cl can be observed on the Sipan samples.
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By examining the reflectance curves instead, we can distinguish the contribution
from the visible range to that of the IR ranges. The identification of copper compounds
from the visible component of the reflectance spectra alone is extremely difficult, if not
impossible, while the main contribution comes from the near-infrared wavelengths, in
which the presence of absorptions at specific wavelengths helps in the identification of
materials [49,50]. Both in the Sipán samples and the light green area (LG) of the Etruscan
plate we can see the absorptions at 2210, 2273, and 2352 nm, which characterize malachite.
The absorptions at 1465, 1855, 1987, and 2159 nm, which are instead visible only in the
Sipán samples, are attributable to the atacamite. [44]. Finally, in the Etruscan sample, the
presence of a broad absorption band between 1855 and 2050 nm together with the one at
1417 nm can lead us to assume the presence of basic copper sulphate mixed with other
material which is currently unidentifiable, and which modifies the reflectance spectrum
compared to the pure reference [44].

Raman spectroscopy identified the presence of both malachite and atacamite along
with eriochalcite as the copper corrosion products in the Sipán samples, and calcite was
identified as a probable inclusion deriving from the discovery sites as shown in Figure 3.
In the same figure, malachite and antlerite, a basic copper sulfate, are identified in the
Etruscan samples.
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Figure 3. Selected Raman spectra of the corrosion layer of the different samples with an indi-
cation of the recognized minerals: M—malachite, C—calcite, E—eriochalcite, An—antlerite, and
At—atacamite.

3.2. Mapping Results

Maps were performed on two of the Sipan samples (samples 2 and 6) and on the
Etruscan plate by combining XRF spectroscopy and reflectance spectrometry. In this way,
we obtained hypercubes of data in which for each spatial position (x, y) an XRF spectrum
and two reflectance spectra (one for the visible range and one for the infrared range) were
recorded. The XRF data were then processed to obtain elemental intensity maps through
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the selection of ROIs, while similarity maps were processed with the reflectance data using
the spectra correlation mapper as the algorithm and single spectra as the endmembers.

The tin distribution can be observed through the intensity signal of tin K (Figure 4a)
and L lines; however, as no L lines can be detected for this element, we can exclude its
presence from the surface of the sample. For this reason, the intensity of K lines can mostly
reflect the thickness of the patina layer, as we expect the original material to be (more or
less) homogeneous in composition (also considering the small size of the sample). It is thus
possible to notice the higher intensity of tin in the upper part of the sample and in a spot in
the central part; thus, we can deduce a high variation in the thickness of the patina layer.
In Figure 4b, instead, it is possible to observe the distribution of Ca and Fe. Calcium is
more present in the upper part of the sample, while iron is detected in areas in the central
parts; however, their presence is also very inhomogeneous. If we compare the Ca region
with the visible image (Figure 1a), we can observe its correspondence with the dull green
patina. Regarding the RS data (Figure 4c), we observe that the point spectra collected on the
sample roughly describe all the areas of the sample; in particular, the spectrum collected
on the medium green region (MG) describes the upper part of the sample, relating with
Sn and Ca, while the dark green (DG) describes mostly the lower part of the sample, and
the light green (LG) is found in only small spots. The RS spectra obtained from the three
regions are quite similar to each other, in particular those coming from the green and blue
areas of the map.
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In the two Sipán samples (Figures 5 and 6) we can observe the distribution of chlorine,
which is quite homogeneous all over the surface of the sample (Panel a), while sulfur,
calcium, and iron are present in spots. In particular, in sample 2 (Figure 5, Panel b) we
can observe that S and Ca are quite related (the red areas of S present an orange hue on
the map, indicating the presence of both sulfur and calcium). Also, we can observe that
the regions in which chlorine has a lower intensity are related to a higher intensity of iron.
Instead, in sample 6 (Figure 6, Panel b) sulfur and calcium are not related, and instead
calcium seems to be localized only in the lower part of the sample, in the same region
in which the intensity of chlorine decreases. In sample 6 that region corresponds to the
white patina (Figure 1, Panel b). For the RS analyses, we observe that the spectra that better
describe the sample are not always those collected on the sample itself; indeed, the blue
region on the Sipan 2 sample is obtained using the measurement collected from the Sipan
3 sample (Figure 5, panel c), while the blue region on the Sipán 6 (Figure 6, Panel c) sample
is obtained using a measurement from the Sipan 5 sample. Since these samples have the
same composition and the same history (burial conditions), the alterations on them are the
same. As point analyses are not representative of the whole samples when the materials
are so inhomogeneous, it is possible that the spectrum collected from a similar sample is
more representative than one collected on the same sample, which however refers only to
that small region analysed. All the spectra obtained from the highlighted regions are quite
similar. For sample 2 (Figure 5, Panel c), what is observed is that the red spectra (thus the
red region in the map) present the two much less intense absorption bands at 1950–2000 nm,
with a similar ratio, while the other two spectra present much more intense bands, with
a different ratio. Additionally, the red spectrum shows a high absorption at 2273 nm
and nearly no absorption at 2352 nm, clearly indicating a different compound. In sample
6 (Figure 6, Panel c) all the spectra are quite similar; indeed, the blue and red regions in the
map are widely overlapped (magenta areas), and only the green area is clearly different.
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4. Discussion

As can be seen from the obtained results, the joint use of elementary and molecular
spectroscopic techniques can be a good starting point for the completely non-invasive and
in situ identification of the nature of surface patinas on metal materials, and in particular,
of copper and bronze. The possibility of performing mapping on the surfaces, or on part of
them, together with the use of recognition algorithms such as the selection of elementary
ROIs and the SCM for the reflectance spectra allows us to clearly distinguish the presence
of differences which otherwise, with the naked eye alone, would not always be identifiable.
The SCM algorithm, unlike the SAM, having the possibility of distinguishing between
correlated and anti-correlated vectors, allows greater precision in the correlation of the
spectra to be achieved and eliminates the possibility of false positives.

The use of internal references such as endmembers for the creation of correlation maps
has the advantage of defining areas of similarity on the surface of the examined samples.
From these areas, which are homogeneous according to the SCM analysis, the characteristic
reflectance curves can then be extracted; these curves can then be further compared to
external standards for compound recognition. This comparison can be carried out by direct
comparison, through similarity algorithms such as the spectra correlation mapper used
here or through Machine Learning methods [51]. In all these cases, the fundamental thing
is to have standard references on which to base the recognitions, with references of both
pure materials and mixtures of compounds: it is in fact known, in the case of pigments,
how mixtures of different materials can modify the spectrum of reflectance according to the
theories of Kubelka–Munk [52,53]. The authors intend to continue this study by acquiring
reflectance and X-ray fluorescence data and VIS-NIR-SWIR Reflectance spectra of pure
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standards and mixtures with known concentrations with the instrument used to create a
reference database to be used in future works.

An intrinsic limit of the techniques used in this work is the evaluation of the volumes
investigated: in XRF analyses, the thicknesses investigated typically depend on the atoms
that make up the material and on their absorption of X radiation; otherwise, reflectance
spectrometry is generally indicated as a superficial technique even though we know that
in the infrared range, from about 800nm onwards, scattering phenomena are possible
which allow us to excite and obtain information on the deeper layers, in the order of
micrometres [54]. However, the joint use of techniques that employ different volumes of
analysis can lead to obtaining information relating to the inhomogeneity of the sample,
which is a typical factor in the context of cultural projects and all those processes of
uncontrolled natural degradation, such as the case of patina formation. Once again, the
analysis of known materials used as reference standards is essential for the characterization
of the instruments used [55].

5. Conclusions

The work presented here shows the potentials, the limits, and the future steps needed
to increase the performance of the joint use of two non-invasive and non-contact techniques
such as X-ray fluorescence and VIS-NIR-SWIR reflectance spectrometry in mapping con-
figuration for the characterization of the corrosion materials that make up the patinas of
copper-based metallic objects. This approach can be extended to other materials with the
necessary creation of a reference database of known materials and the characterization of
the investigation volumes of the two techniques for the specific instrument used.
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