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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Data are the most important elements of bioinformatics: Computational analysis of bioinfor-

matics data, in fact, can help researchers infer new knowledge about biology, chemistry,

biophysics, and sometimes even medicine, influencing treatments and therapies for

patients. Bioinformatics and high-throughput biological data coming from different sources

can even be more helpful, because each of these different data chunks can provide alterna-

tive, complementary information about a specific biological phenomenon, similar to multiple

photos of the same subject taken from different angles. In this context, the integration of bio-

informatics and high-throughput biological data gets a pivotal role in running a successful

bioinformatics study. In the last decades, data originating from proteomics, metabolomics,

metagenomics, phenomics, transcriptomics, and epigenomics have been labelled -omics

data, as a unique name to refer to them, and the integration of these omics data has gained

importance in all biological areas. Even if this omics data integration is useful and relevant,

due to its heterogeneity, it is not uncommon to make mistakes during the integration phases.

We therefore decided to present these ten quick tips to perform an omics data integration

correctly, avoiding common mistakes we experienced or noticed in published studies in the

past. Even if we designed our ten guidelines for beginners, by using a simple language that

(we hope) can be understood by anyone, we believe our ten recommendations should be

taken into account by all the bioinformaticians performing omics data integration, including

experts.

Introduction

Integration of omics data is a pillar of bioinformatics: Incorporating data of genomics, proteo-

mics, metabolomics, metagenomics, phenomics, transcriptomics, epigenomics, and other

-omics areas in a unique database, in fact, can provide a larger picture of a specific biological

aspect and, therefore, facilitate the discovery of more relevant, interesting, and solid scientific

results. Just like in photography, where photos of the same subject taken from different angles

can provide different perspectives and pieces of information about the same phenomenon,

bioinformatics data chunks of different types and coming from different sources can be more

informative than a single-source dataset.
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Multi-omics data integration, however, can bring several problems, especially if performed

by beginners or apprentice researchers. For example, apprentice bioinformaticians sometimes

produce multi-omics resources based solely on their perspective, without taking into account

what the analysts would really need. The final database then becomes difficult to use and gets

underutilized in the bioinformatics community, possibly generating a waste of effort, time,

energy, and funds. Or, sometimes, apprentice bioinformaticians do not give enough impor-

tance to the metadata, only realizing too late that their biological data do not have enough

descriptive metadata to be used broadly by the scientific community. To avoid these and other

pitfalls and common mistakes, we propose this study where we describe a few guidelines to

keep in mind when performing multi-omics data integration. We designed these quick tips for

data curators, biomedical data scientists, machine learning analysts, computational biologists,

bioinformaticians, and students who are going to perform a multi-omics data integration

phase to produce an omics data resource to be used by analysts.

The potentials and advantages of multi-omics data integration were described in several

studies. Sijia Huang and colleagues [1], for example, reported the recent progress in the field

by explaining the most common and successful techniques for this scope. A more recent article

by Indhupriya Subramanian and colleagues [2], on another hand, provided a detailed and

thorough overview of the multi-omics general situation. Examples of effective multi-omics

integration tools are mixOmics [3] in R and INTEGRATE [4] in Python. Sebastian Canzler

and coauthors [5] proposed some perspective recommendations and challenges related to toxi-

cology, while Mingon Kang and colleagues [6] proposed a roadmap for omics integration

using deep learning.

In the PLOS Computational Biology education collection, no study provided recommenda-

tions for bioinformatics data integration so far. A study by Ramon Diaz-Uriarte and colleagues

[7] proposed ten quick tips for biomarker discovery and its validation that, although interest-

ing, does not regard multi-omics data integration directly. We fill this gap by presenting our

current quick tips for multi-omics data integration as summarized in Fig 1.

Several studies follow the same pipeline described here while dealing with multi-omics

data. A striking example is the research study by Eleonora Cappelli and colleagues [8] whose

aim is to combine DNA methylation and RNA sequencing data that the authors used to train

and test a supervised classification model for identifying disease-specific biomarker genes. In

particular, they focused their analysis on three different types of cancer: breast invasive

Fig 1. Schematization of the proposed tips as a flow chart that shows all the steps we suggest to follow in order to facilitate the integration and analysis of

multi-omics data. Every tip, from the first up to the seventh, are marked with a black star, meaning that we suggest documenting everything and using ad hoc

software libraries and query languages as suggested in Tip 9 and Tip 10.

https://doi.org/10.1371/journal.pcbi.1011224.g001
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carcinoma (BRCA), thyroid carcinoma (THCA), and kidney renal papillary cell carcinoma

(KIRP). The authors retrieved the data of these cancer types from the TCGA2BED [9] data-

base, which provides all the publicly available data of the TCGA program standardized into

the free-BED format. The authors integrated DNA methylation data with the beta values of the

methylated CpG island among with RNA sequencing data with the expression of genes, by

joining data based on common genomic coordinates. That is, if the RNA sequencing data con-

tains the expression of specific genomic regions that refer to the genes, the specific single-

nucleotide positions in the genomic regions of the genes can be methylated. The authors even-

tually analysed these data with different tree- and rule-based supervised classification algo-

rithms (for example, C4.5 [10], Random Forests [11], RIPPER [12], and CAMUR [13])

producing over 15,000 classification models (in the form of gene sets) able to discriminate case

and control samples with an accuracy of 95% on average. Most importantly, the authors docu-

mented every step of their analysis and made their software code openly available along with

their results.

Tip 1: Design the integrated data resource from the perspective of the

users, not from the perspective of the data curators

Integrating multi-omics data is a hard job, and several aspects should be taken into account.

While you work on the integration of different data, coming from different data sources, per-

haps having different formats and different origins, you might be tempted to see the whole

project only from the point of view of the data curators: you and your colleagues working on

it. But if you only consider the perspective of the data curators, the bioinformatics resource,

when ready, would be eventually optimized only for data curators, and not for analysts and

users who would take advantage of it. This would bring several drawbacks, making your bioin-

formatics data resource difficult to use for analysts and researchers, perhaps making it unno-

ticed or forgotten by the scientific community.

Instead, we suggest always keeping in mind the perspective and the point of view of the

users and the analysis who would ultimately exploit the integrated bioinformatics data

resource. Of course, we know that it is easier to write it than to do it, but this aspect can be the

single most important aspect of a multi-omics data integration project, which can mean the

difference between failure and success.

We therefore recommend designing some real use case scenarios in which users can exploit

the bioinformatics data resource to solve a real scientific problem. Pretend you are the analyst

who needs to solve a particular biomedical problem and would like to use your bioinformatics

resource. What would you need? What is missing? What is difficult to do? What could be

improved? Answering these questions precisely and thoroughly would help you make a better,

improved multi-omics integrated resource.

ENCODE [14] is a great example of a popular, documented, and useful multi-omics data

integration project designed from the perspective of the users. Moreover, we also suggest

applying existing integrative methods to the data to get the full user experience.

Tip 2: Preprocess your data: Standardise and harmonise it

Standardising raw data helps to ensure that data from different omics technologies are com-

patible since they all have their own specific characteristics (for example, different measure-

ment units, etc.). This process can involve a variety of different steps, such as normalizing data

to account for differences in sample size or concentration, converting data to a common scale

or unit of measurement, removing technical biases or artifacts, and filtering data to remove

outliers or low-quality data points.
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For small- and medium-scale studies, storing the raw data is important to ensure the full

reproducibility of the results [15]. Giving access to the raw instrumentation data mitigates the

issue that processing steps may vary, and allows researchers to make preprocessing assump-

tions that are appropriate for the selected downstream analysis.

When collecting multi-omics data, it is important to consider a sample size that can provide

enough statistical power, and generate replicates, documentation, and project metadata,

together with proper data management practices. In addition, the data need to be collected in

a way that removes any possible sampling bias [16]. For preprocessed data, it is good practice

to include full descriptions of the samples, equipment, and software used.

Data formats of multi-omics can vary widely, even within the same study. Therefore, for

compatibility with machine learning or statistical analysis methods, further processing is often

needed to unify the format, for example, n-by-k samples-by-feature matrix. This often needs

also standard steps like normalization and batch effect correction [17,18].

Standardization and harmonization of data and metadata are key steps in multi-omics data

integration because they help to ensure that data can be accurately and consistently interpreted

and analyzed.

Standardization refers to the process of ensuring that data are collected, processed, and

stored in a consistent manner, using agreed-upon standards and protocols. Lots of tools for

standardising omics data have been developed over the last decade [9,19–21] in order to make

the data comparable across different studies and platforms, in addition to make it easier to

integrate and analyze data from multiple sources.

On the other hand, harmonization refers to the process of aligning data from different

sources so that they can be integrated and analyzed together. This typically involves mapping

data from different sources onto a common scale or reference and may involve the use of

domain-specific ontologies or other standardized data formats [22–25]. Nikolai Russkikh and

coauthors [26], for example, employed a style transfer method based on conditional variational

autoencoders for RNA-seq data harmonization.

Moreover, it is important to describe precisely the preprocessing and normalisation tech-

niques used in the project documentation and in the article associated with the project. This

information would usually be inserted in the supplementary material of a scientific paper. If

you have the authorization to release the data, we recommend releasing both the raw data and

the preprocessed data in public repositories (Tip 8). Some users, in fact, might be interested in

analyzing the raw data, depending on the aim of their projects.

Tip 3: Value your data with metadata

Metadata are simply data that describe the main data. When a photographer takes a photo

with a modern camera, for example, the camera not only saves the photo itself, but also records

additional details such as lenses used, time and date at which the picture was taken, focal

length, image resolution, and color profiles [27]. All these data are the metadata of that photo.

These metadata are not the photo, but rather describe the photo, and they can facilitate image

processing, image search, and image retrieval [27]. Of course, the photo is still the main pro-

tagonist of photography, but the role of the photo’s metadata is pivotal: They are the first pieces

of the documentation of that photo and will be used by the photographer in several ways. If the

metadata were absent, it would be complicated and almost impossible for the photographer to

use it. Therefore, metadata are as important as data, not only in photography but in any field.

Also in bioinformatics data integration, of course, metadata have an extremely important role.

We therefore recommend paying particular attention to the curation of the metadata [28].

Any relevant information regarding a data element should be recorded in the metadata.
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Examples of bioinformatics metadata can be found in multiple datasets. The GSE45255

dataset, for example, contains microarray gene expression of samples of patients with breast

tumors [29,30] and is available on Gene Expression Omnibus (GEO). In bash, this dataset can

be found through the software package geoCancerPrognosticDatasetsRetriever [31] and in R it

can be downloaded through geneExpressionFromGEO [32].

This public dataset contains not only the gene expression data of the patients’ samples, but

also relevant information about each patient, recorded in metadata [30]: lymph node status,

estrogen receptors status, progesterone receptor status, human epidermal growth factor recep-

tor 2 (HER2) status, histological grade, size in millimetres, adjuvant treatment, chemotherapy,

recurrence or death from breast cancer, distant metastasis or death from breast cancer, and

death from breast cancer. Of course, these metadata help researchers perform better scientific

analyses on these datasets, allowing them to make additional discoveries regarding this dataset

and therefore regarding breast cancer.

Moreover, ready-to-use data might contain outliers or unexpected data instances [33], and

in those cases, the availability of metadata can be necessary to understand what actually hap-

pened in the generation of those data elements. Several approaches can be used to include

metadata in bioinformatics data [34]; an interesting technique is to use data of different types

from the principle dataset. For example, in metabolomics [35], Oliver Fiehn and colleagues

[36] added mass spectrometry metadata to the physiological, clinical, and genomic data. Some

bioinformatics teams developed structured metadata management tools, such as BioSamples

[37] and medna-metadata [38].

Regarding metadata curation and its importance, it is relevant to mention the initiatives of

Susanna-Assunta Sansone, a researcher who has advocated for the standardization and the

structured curation of metadata for several decades through multiple resources: FAIRsharing

[39], Collaborative Open Plant Omics (COPO) [40], Investigation/Study/Assay (ISA) Meta-

data Framework [41], and machine-actionable metadata models [42], just to mention a few.

Tip 4: Take into account the genomic coordinates of the data, and not only

the biological concepts

The integration of omics data is the process of combining data from different omics technolo-

gies (such as genomics, transcriptomics, proteomics, and metabolomics) to gain a more com-

prehensive understanding of a biological system. It is a powerful approach that can provide

insights into the molecular mechanisms underlying complex diseases, identify potential thera-

peutic targets, and improve our understanding of fundamental biological processes.

We therefore recommend not to focus only on the anatomical sites of your samples or the

disease that affects the host and always take into account the genomic regions of your data

[43–46]. We refer to anatomical sites, tissues, organs, and diseases as biological concepts in

this study. Considering the genomic regions helps in the identification of specific mechanisms

underlying the regulation of gene expression and protein function, which can be crucial for

understanding the molecular basis of diseases and identifying potential therapeutic targets.

Always use genome annotation tools that allow mapping your data onto specific genomic

regions [43,47–49]. However, it is important to be careful when selecting genome annotation

tools, as the choice of reference genome can have a significant impact on the results of your

analyses. Different versions of the reference genome can have different sets of annotated fea-

tures, such as genes, regulatory elements, and structural variations, and these differences can

affect the interpretation of your data. For example, if you use a newer version of the reference

genome that includes additional annotated features, you may identify different sets of genes or

regulatory elements as being differentially expressed or altered in your samples. Therefore, it is
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important to carefully consider the version of the reference genome that you use when select-

ing genome annotation tools. In general, it is recommended to use the most up-to-date version

of the reference genome that is available, as this will provide the most complete and accurate

set of annotated features. However, it is also important to ensure that the version of the refer-

ence genome is appropriate for your data.

Tip 5: Control for molecular signal redundancy via variable selection

The process of integrating data from different omic sources, commonly referred to as data

fusion, has two major advantages: It preserves the original features of the data, and its flexibil-

ity allows for the mixing of data from multiple sources. However, omics signal redundancy

needs to be carefully taken into account [3]. For instance, transcriptomics and proteomics are

often (weakly) correlated [50], and methods that do not take into account (and filter appropri-

ately) cross-omics information may perform the integration based on redundant signal. Nor-

mally, the redundancy depends on the organism being considered, and therefore the level of

correction needs to be considered at an organism-specific level.

One solution is reducing the number of variables in an omic-specific or cross-modal way,

which generates a more usable representation. With the advent of machine learning tools,

supervised techniques can perform such filtering if appropriate clinical/output labels are avail-

able, for example, with a feature importance analysis. In general, selecting features decreases

the level of noise and can be used as a method to balance the number of features across the

omics. Furthermore, this also reduces the risk of overfitting. In the presence of a large dataset,

it is also worth considering whether the redundancy can be addressed a priori, for instance,

using a clinical stratification approach [51].

Variable selection can also be performed with unsupervised techniques, in a single-modal

or multi-modal fashion, with tools like MOFA [52], JIVE [53], and sparse PLS [54]. Acharjee

and colleagues [55], for example, took advantage of retention time-dependent clustering to

remove the signal redundancy from the metabolite data involved in the omics integration.

Similarly, Cao and Gao [56] recently proposed an integration method to mitigate the redun-

dancy in single-cell data by explicitly modelling the regulatory interactions taking place across

the omics layers.

Tip 6: Try different integration approaches

When integrating multi-omics data via machine learning models, it is important to note that

the technique to be adopted depends on the dataset and the task at hand and cannot usually be

decided a priori [57]. A simple concatenation of features across the omics (early integration) is

a viable approach but is likely to generate enormous matrices, outliers, highly correlated vari-

ables, noise, and other difficulties.

Intermediate integration is a viable alternative, in which the idea is to jointly integrate the

features across the omics without prior omic-specific processing. The advantage of this

approach is the possibility to process the features based on their redundancy or complementar-

ity both within each omic and across the different omics [58]. Intermediate integration is

based on the assumption that all the omics can be mapped onto a shared latent space. There-

fore, disparities among the omics may bring challenges and lead to an imbalanced learning

process. Furthermore, it often depends on unsupervised matrix factorization, which has diffi-

culty incorporating substantial amounts of preexisting biological knowledge.

Late integration is another option, often based on ensemble machine learning methods.

Specifically, a model is first trained for each omic to perform the prediction independently,

and then the predictions achieved from each omic are combined via averaging or voting. Late
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integration may be appropriate when the predictive performance is unbalanced across the

omics, for instance, if one omic is significantly more predictive than others, but the integration

with the other omics still improves the overall performance. However, it does not directly inte-

grate the data and may overlook cross-omics relationships [59]. Finally, hierarchical

approaches or mixed integration strategies are also potential alternatives [60].

Tip 7: Prepare your data for multi-omics data integration with machine

learning

Several supervised and unsupervised machine learning techniques have been successfully

employed for multi-omic data analysis and integration [61]. Supervised learning trains a

model by using preassigned labels for each sample, for instance, the subtype of a given cancer

(classification problem) or the overall survival probability of a patient (regression problem).

The model is trained using the data at hand, but in a way that does not overfit the same data, as

the goal is then to use the trained model for achieving accurate predictions when new or

“unseen” samples are considered. Conversely, unsupervised learning can be applied when

labels are not available and can be used to reduce the dimensionality of the dataset or detect

patterns or clusters within the samples. However, in complex phenotypes like cancer, where

the interaction between events spanning multiple omics layers is likely to be the main cause of

progression, traditional data-driven multi-omics methods based on machine learning are only

able to uncover associations among genes, proteins, or other omics components, without

offering a mechanistic interpretation [62].

In this regard, it is possible to use systems biology techniques for omics data integration

and to provide further mechanistic knowledge to be incorporated into machine learning

approaches. While recognising the role of individual components within a biological system,

systems biology follows the notion that “the whole is greater than the sum of its parts.” Specifi-

cally, it aims at investigating a biological system as a whole and with an integrated approach,

namely by considering the interactions between different components as a way to enrich and

explain the behaviour of each component [63].

Among such tools, genome-scale metabolic models (GSMMs) are mathematical recon-

structions of metabolic networks that can be used as scaffolds for further omics data integra-

tion, therefore generating patient- or condition-specific models that achieve more accurate

predictions of disease phenotypes [25,64–66].

In the machine learning era, the effective integration of data-driven and knowledge-driven

approaches is increasingly being recognized as key to improving the outcome of omics integra-

tion studies, for example, biomarker prediction or phenotype characterisation [67]. For

instance, adding features derived or processed through modelling techniques can incorporate

knowledge into the model and allow omics data interpretation on a mechanistic or phenotypic

level, rather than merely on a data-driven level [68,69].

To ensure the biological interpretability of the results, it is important to focus on methodo-

logical advances that can combine multi-omics integration and knowledge extraction with

modelling techniques [70,71]. Importantly, since omics data can be quantified numerically

and in a condition-, tissue-, and patient-specific way (for example, transcriptomic profiles,

protein levels, and metabolite concentrations), using such models within machine learning

pipelines can filter out some of the redundancy inherently present in genome-scale omics

data. The long-term goal is to find the trade-off between selecting features via machine learn-

ing or data-driven approaches only (which has no biological rationale), and using biology-

informed approaches (which is likely to lead to suboptimal machine learning performance)

[72,73].
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Tip 8: Use open science best practices

When starting a new computational biology project, one often has the possibility to decide

which programming languages, software platforms, and data query languages to use. Similarly

to what we recommended for machine learning [74], pathway enrichment analysis [75], data

cleaning and feature engineering [33], and medical image analysis [76], we advocate for using

only open-source computer languages and software programs.

Open-source programming languages (such as R or Python), open-source software plat-

forms (Bioconductor [77], Bioconda [78] and Galaxy [79], Anvi’o [80]), open-source data

query languages (SQL), and open-source relational database management systems (Post-

greSQL and SQLite) can bring several advantages to your multi-omics project, compared to

proprietary software.

Open-source material, in fact, can be shared easily among colleagues and collaborators,

without worrying about licenses. Moreover, open-source technology can be updated and

upgraded easily and most of the time free of cost and can be reutilized in several other projects.

If one needs to switch labs, institutes, or jobs, one can take their software and code with them-

selves in the new environment.

For operating systems, we suggest Linux Ubuntu; for distributed systems, we recommend

Apache Spark; for office productivity software, we advocate for LibreOffice. Regarding soft-

ware code sharing, we advise sharing your code online openly on public epositories such

GitHub, GitLab, and Bitbucket, for example. You can take all the scripts that you developed

for your multi-omics integration and release them publicly on the internet. This practice

would allow the reproducibility of your work and let other users around the world find possi-

ble mistakes in your analyses, allowing you to correct them and ultimately generate better,

more solid results.

Once one has spent several months and energy working on a multi-omics integrated data

resource, of course we suggest releasing it publicly online, following the findability, accessibil-

ity, interoperability, and reusability (FAIR) principles [81]. A researcher can release their data

on free open platforms such as Kaggle [82], University of California Irvine Machine Learning

Repository [83], FigShare [84], or Zenodo [85]. One can also consider creating and releasing

their own data repository [86,87].

Releasing data online would permit other researchers in the world to analyze them and

therefore to make new scientific discoveries through secondary analyses [88,89]. The more

available the data are, the more secondary studies will be carried out, the higher impact a data-

set can have, also in terms of article citations.

Regarding the publication, once the study manuscript is ready for submission to a scientific

journal, we suggest releasing it as a preprint on bioRxiv, medRxiv, or arXiv. Moreover, if one

has the chance to choose which scientific journals to submit their articles to, we advocate for

open-access journals. Open-access articles, in fact, can be freely read and accessed by anyone

in the world, including high school students and researchers from developing countries.

Open-access journals can be found on the Scimago Journal Ranking website [90].

Tip 9: Use ad hoc software libraries and query languages, do not develop

new scripts on your own

There are several reasons why you might consider using ad hoc software libraries and query

languages for integrating omics data than developing new scripts on your own:

1. Time and resources: developing your own scripts for integrating omics data can be a time-

consuming and resource-intensive process, especially if you are not familiar with the

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011224 July 6, 2023 8 / 15

https://doi.org/10.1371/journal.pcbi.1011224


specific programming languages and tools that are commonly used in the bioinformatics

domain;

2. Accuracy and reliability: ad hoc software libraries and query languages are usually devel-

oped and maintained by experts in the field and have been extensively tested and validated.

This means that you can usually be confident in the accuracy and reliability of the results

produced by these tools;

3. Community support: when you use consolidated tools, you can benefit from the support of

a larger community of users who are familiar with the tools and can provide guidance and

help if you face any issues. This can be extremely helpful especially if you are new to these

tools;

4. Compatibility with other tools: ad hoc software libraries and query languages are often

designed to be compatible with other tools and resources in the field. This can make it eas-

ier to integrate your results with other data sources or to use the tools in conjunction with

other software;

5. Easy of use: ad hoc software libraries and query languages are often designed with usability

in mind and may offer user-friendly interfaces and documentation to help you get started.

This can make it easier for you to use the tools, even if you are not an experienced

programmer.

Overall, keep in mind the aforementioned points before writing your own scripts. There

are tons of open-source libraries and tools for roughly every kind of omics data integration

and analysis distributed over public repositories like the Python Package Index [91] and Bio-

conductor [77] with Python and R packages, respectively, as well as Bioconda [78] and the Gal-

axy ToolShed [92], which extremely simplify the process of distributing and effectively using

such kind of software tools for managing, integrating, and analysing multi-omics data. These

factors can make it more efficient and effective for you to integrate omics data and can help to

ensure the quality and reliability of your results.

Tip 10: Document everything

We already mentioned the importance of metadata, data that describe the principle data.

Metadata can also be seen as a structured form of documentation.

In scientific research, well-written documentation and reporting are as important as the sci-

entific discoveries themselves [93]. Also in software development, well-written documentation

is as important as the software itself [94].

Documentation should be as detailed as possible: addressed both to developers who want to

redo the integration analysis and to users that just want to learn more about the whole bioin-

formatics process.

The same rule for scientific research and software development is true for bioinformatics

data integration: document everything. Document how you obtained the data, how you inte-

grated them and why, which data sources you selected and why, which technologies you

decided to use and why, and so on. This documentation will be invaluable for your colleagues

and collaborators, but also for your future self that will need to recover some information

about the data integration resource. The documentation will also be pivotal for writing the arti-

cle on the study.

The documentation should be written following some precise standards [95] and not only

at the end of the project, but during its development. Ongoing documentation should be

recorded in a notebook or scientific diary [96]. Good examples of documentation can be
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found on the Bioconductor website: for example, the tutorial for the usage of OMICsPCA R

software package [97].

Conclusions

Integration of multi-omics data is a key aspect of bioinformatics, since assembling data from

different sources can surely enrich the scientific description of a phenomenon. Integrated data

derived from different sources can then be used for computational analysis through machine

learning or biostatistics methods and eventually lead to better, more solid results and out-

comes. Multi-omics data integration, however, can suffer from many pitfalls and common

mistakes, which sometimes might even go unnoticed, and which might undermine or even

corrupt the final scientific results of the analysis.

To prevent these common mistakes, we present here our ten quick tips for multi-omics

data integration, which we designed for any data curator, biomedical data scientist, machine

learning analyst, computational biologist, bioinformatician, and student who wants to perform

these steps to generate an omics data resource. We believe that our simple guidelines, if fol-

lowed correctly, can improve the quality of the multi-omics data integration phase and there-

fore help generate better results, which can help us better understand the underlying biology

of the system being studied.
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