
Automated Detection of Software Performance
Antipatterns in Java-Based Applications
Catia Trubiani , Riccardo Pinciroli , Andrea Biaggi , and Francesca Arcelli Fontana

Abstract—The detection of performance issues in Java-based applications is not trivial since many factors concur to poor

performance, and software engineers are not sufficiently supported for this task. The goal of this manuscript is the automated detection

of performance problems in running systems to guarantee that no quality-based hinders prevent their successful usage. Starting from

software performance antipatterns, i.e., bad practices (e.g., extensive interaction between software methods) expressing both the

problem and the solution with the purpose of identifying shortcomings and promptly fixing them, we develop a framework that

automatically detects seven software antipatterns capturing a variety of performance issues in Java-based applications. Our approach

is applied to real-world case studies from different domains, and it captures four real-life performance issues of Hadoop and Cassandra

that were not predicted by state-of-the-art approaches. As empirical evidence, we calculate the accuracy of the proposed detection

rules, we show that code commits inducing and fixing real-life performance issues present interesting variations in the number of

detected antipattern instances, and solving one of the detected antipatterns improves the system performance up to 50%.

Index Terms—Dynamic analysis, java-based applications, software performance antipatterns

Ç

1 INTRODUCTION

THE performance evaluation of Java-based applications is
challenging due to many variabilities, such as software

failures and workload fluctuation in requests [1], [2], [3],
that may occur when the system is running and inevitably
contribute to affect the overall service quality [4], [5], [6].
Understanding if an application can always meet the
desired performance (e.g., the system response time must
be shorter than 5 seconds or resource utilization must be
lower than 80%) is of key relevance since it impacts the per-
ception of end-users and their satisfaction while interacting
with the system [7], [8].

In the literature, several approaches have been proposed
for modeling, analyzing, and optimizing the performance of
software applications [9], [10]. Two main directions have
been pursued: (i) model-based performance analysis, i.e.,
performance models are built out of Java applications [11],
[12] and used for predictions; (ii) application performance
monitoring, i.e., tools that collect trace data for inspec-
tion [13], [14]. Motivated by the recent trend of integrating
development (Dev) and operations (Ops) teams, processes,

and tools [15], [16], [17], it is necessary that software engineers
are aware of the performance evolution of their applications.
If performance issues are detected, then engineers must also
be able to promptly fix such issues. To this end, several
approaches emerged, e.g., automated performance tests [18]
to guarantee the prompt identification and fixing of perfor-
mance degradation, or performance load testing [19] to evalu-
ate software refactorings that most likely lead to performance
improvement. However, most of the approaches in the litera-
ture, e.g., [2], [20], [21], [22], act statically on the implementa-
tion code. A recent study [23] pointed out that static code
analysis may fail in capturing complex root causes of real-life
performance issues, e.g., the interactions between procedures
that occur when executing the source code only. Hence, in
this paper we aim to exploit dynamic information, which is
fundamental for the detection of some performance issues, at
the cost of deploying a testing environment for profiling
applications and introducing runtime efforts.

We focus our attention on identifying performance issues
in Java-based applications, i.e., the target systems under anal-
ysis are already in production and subject to multiple varia-
tions, such as changes in the execution environment. As a
motivating example, let us consider a real-life case study [24]
where a performance overhead of 17% is experienced for the
continuous integration of a software release. The diagnosis of
performance problems is indeed non-trivial, a study in [25]
indicates the Apache project, i.e., relevant to our research
since Java is used, with the longest average diagnosis time
(194 days). Our goal is to improve the system performance
by identifying the bad practices of software components and
fixing them before the system becomes unusable. Let us con-
sider as an example of bad practice a software component
that monopolizes the processing (namely the Blob [26]). This
implies a single and complex controller component that
orchestrates the computation by extensively interacting with
other components. As a consequence, the system response

� Catia Trubiani and Riccardo Pinciroli are with Gran Sasso Science Insti-
tute, 67100 L’Aquila, Italy. E-mail: {catia.trubiani, riccardo.pinciroli}
@gssi.it.

� Andrea Biaggi and Francesca Arcelli Fontana are with the University of
Milano-Bicocca, 20126 Milano, Italy. E-mail: a.biaggi1@campus.unimib.
it, francesca.arcelli@unimib.it.

Manuscript received 6 May 2022; revised 14 December 2022; accepted 23
December 2022. Date of publication 10 January 2023; date of current version
18 April 2023.
This work was supported by MUR PRIN project under Grant SEDUCE
2017TWRCNB.
(Corresponding author: Catia Trubiani.)
Recommended for acceptance by N. Meng.
This article has supplementary downloadable material available at https://doi.
org/10.1109/TSE.2023.3234321, provided by the authors.
Digital Object Identifier no. 10.1109/TSE.2023.3234321

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023 2873

© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-7675-6942
https://orcid.org/0000-0002-7675-6942
https://orcid.org/0000-0002-7675-6942
https://orcid.org/0000-0002-7675-6942
https://orcid.org/0000-0002-7675-6942
https://orcid.org/0000-0003-3375-7256
https://orcid.org/0000-0003-3375-7256
https://orcid.org/0000-0003-3375-7256
https://orcid.org/0000-0003-3375-7256
https://orcid.org/0000-0003-3375-7256
https://orcid.org/0000-0002-1229-5219
https://orcid.org/0000-0002-1229-5219
https://orcid.org/0000-0002-1229-5219
https://orcid.org/0000-0002-1229-5219
https://orcid.org/0000-0002-1229-5219
https://orcid.org/0000-0002-1195-530X
https://orcid.org/0000-0002-1195-530X
https://orcid.org/0000-0002-1195-530X
https://orcid.org/0000-0002-1195-530X
https://orcid.org/0000-0002-1195-530X
mailto:catia.trubiani@gssi.it
mailto:riccardo.pinciroli@gssi.it
mailto:a.biaggi1@campus.unimib.it
mailto:a.biaggi1@campus.unimib.it
mailto:francesca.arcelli@unimib.it
https://doi.org/10.1109/TSE.2023.3234321
https://doi.org/10.1109/TSE.2023.3234321

time can suffer by such a behaviour. To fix this problem, it
would be beneficial to involve other software components
and delegate them part of the overall computation. This
way, the system response time can improve since it bene-
fits from some processing running in parallel. To achieve
this objective of identifying bad practices, we use software
performance antipatterns [26], [27] since they include the
description of both (i) the problems leading to perfor-
mance flaws, and (ii) the best practices aimed to get perfor-
mance improvements.

In the context of Java-based applications, we focus on
the following seven software performance antipatterns:
1) Circuitous Treasure Hunt (CTH), 2) Extensive Process-
ing (EP), 3) Wrong Cache Strategy (WCS), 4) Blob, 5)
Tower of Babel (ToB), 6) Empty Semi Trucks (EST), and
7) Excessive Dynamic Allocation (EDA). Further details
on these antipatterns and the motivation on the selection
of these antipatterns are provided in Section 3.3. We
develop a framework to automatically detect these seven
performance antipatterns and we evaluate it on a varie-
gate set of real-world applications. The conducted exper-
imentation advocates the following main findings: (i) our
framework is efficient, the detection of antipatterns is
performed, on average, in less than a minute; (ii) our
framework is accurate, the F1 score is larger than 85% in
the considered cases; (iii) our framework advances state-
of-the-art methodologies, it detects complex performance
problems not recognized by other tools; (iv) antipattern-
based refactoring can lead to system performance
improvement up to 50%. The main contributions of our
work are as follows:

� the specification of seven software performance anti-
patterns that are customized to verify a set of proper-
ties for Java-based applications;

� the development of JPAD, Java Performance Antipat-
tern Detector, a framework that automatically detects
the seven software performance antipatterns;

� the evaluation of JPAD efficiency and accuracy on
five real-world applications with different complex-
ity and representative of multiple domains;

� the comparisonof JPADwith state-of-the-art approaches
on the detection of real-life performance issues in nine
code commits of two further systems;

� empirical evidence on the benefit of solving perfor-
mance antipatterns.

In summary, our approach advocates the usage of software
performance antipatterns as valuable support to automati-
cally detect performance issues of Java-based applications.
The benefit is that software engineers are promptly informed
of software components showing specific bad practices and
candidate of being refactored.

The rest of themanuscript is organized as follows. Section 2
reviews the related work. Section 3 describes our approach,
and we discuss the key properties of software performance
antipatterns, thus to motivate the choice of implementing
some of them. Details on detection algorithms for the seven
implemented software performance antipatterns are provided
in Appendix A, available online, the rationale for not imple-
menting some of them is explained in Appendix B, available
in the online supplemental material. Research questions,

analyzed software systems, and the experimental evaluation
are presented in Section 4. Threats to validity are argued in
Section 5. A discussion on limitations of the approach is
reported in Section 6. Concluding remarks and possible direc-
tions for future research are outlined in Section 7. Replication
data are publicly available [28].

2 RELATED WORK

Our work mainly relates to three streams of research, i.e.,
architectural antipatterns, code smells, and Java-specific
performance issues that are briefly reviewed in the follow-
ing. This manuscript moves a step forward in the attempt of
establishing synergies between architectural antipatterns
and code smells for the performance evaluation of Java
applications.

Architectural Antipatterns. In the broader context of
(anti)patterns and quality attributes (e.g., reliability, secu-
rity), there are several works that aim to match their con-
nections, e.g., [29], [30], [31], [32]. When focusing on
performance-related concerns there is much less work.
Software performance antipatterns are studied first by
Smith [26], [27] who provides the preliminary definitions
based on her experience. The specification is expressed in
natural language and is technology-independent, mean-
ing that antipatterns can be customized in many different
contexts. Other researchers redefine these natural lagnu-
age definitions using first-order logical predicates later
applied to architectural design models [33] and recently
adapted to further architectural formalism such as proba-
bilistic model checking [34]. A first attempt of adopting
architectural antipatterns in running systems is provided
in [35], where problem root causes are isolated and a
graph of dependencies is built to match problems with
the specification of antipatterns.

Static and Dynamic Approaches for Code Smells. In the litera-
ture, extensive work is devoted to investigate code
smells [36], [37], [38], and several investigations are per-
formed, e.g., the analysis of (i) inter-smell interactions to
understand their effects [39] and (ii) sequences of different
kinds of bad smells to improve detection and solution [40].
Static analysis techniques are adopted to locate bugs in soft-
ware, e.g., performance bugs that waste processing time
due to superfluous loop iterations are detected in [21], and
tools like FindBugs [41] can find potential root causes for
performance antipatterns. Object-Relational Mapping (i.e.,
non-trivial database access) is exploited in [20] where static
analysis can detect a huge number of performance antipat-
tern instances. Li et al. [22] keep using static analysis, but
focus on problematic duplicate logging code smells to
emphasize that logging code is highly associated with both
the structure and the functionality of the surrounding code.
An approach to identify code changes that may potentially
be responsible for performance regressions is proposed
in [42], but it does not analyze root causes behind such
regressions. An exploratory study on performance regres-
sions is presented in [43] where six code level root-causes
are identified, but they mainly refer to inner changes, e.g.,
function calls or parameter values. An attempt of using
static and dynamic metrics is proposed in [44] where evolu-
tionary algorithms are adopted to detect performance

2874 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

regressions, however causes are not treated. Static and
dynamic data is exploited also in [45] where a selection of
benchmarks limits runtime overhead at the cost of missing
the prediction of some performance issues. Preventing per-
formance issues before the commit of code changes is pur-
sued in [23] where random forest classifiers are trained on
large datasets of performance regressions.

More recently, an experience report on locating the root
causes of performance regressions is presented in [46]
where web-access logs are exploited to tune the expected
workload. However, this report targets only web-based sys-
tems, and machine learning techniques may lack to capture
the relationship between problematic runtime activities and
their impact on system performance. Summarizing, the
main difference between static and dynamic approaches is
that the former can detect some performance issues during
the development process and cost fewer efforts, whereas
the latter can benefit from runtime information probably
capturing a larger set of issues (as confirmed in [23]), with
the drawback of introducing monitoring efforts.

Java-Specific Performance Issues. Our work mainly relates to
Java-specific performance antipattern definitions, and there
are several approaches that identify different bad practices in
Java platforms and APIs [47], [48], [49], [50]. The difficulty of
evaluating the performance of Java applications is acknowl-
edged also in the testing domain; Java open source projects
are usually subject to a limited number of performance tests
that are rarely updated and typically maintained by a small
group of developers [51]. In [52] a rule-based approach is pro-
posed to detect performance antipatterns from runtime traces
while targeting Java EE antipatterns. In [53] load testing and
profiling data are exploited to detect bad practices in Java
applications. This approach leverages performance experts
to identify problematic snapshot(s), and the antipattern
detection is performed (similarly to approaches dealing with
performance regressions [23], [45]) comparing snapshots
with the recognized problematic one(s).

To the best of our knowledge, there are few attempts in
the direction of bridging performance and code-related
issues with performance antipatterns. Our approach relies
on dynamic analysis and adopts software performance anti-
patterns to identify bad practices arising when the system is
in execution. The main difference w.r.t. work more closely
related to ours [35], [53] is that we consider a plethora of
seven software performance antipatterns applied to a broad
set of real-world case studies. Experimental results are
promising to foster further research.

3 OUR APPROACH

This section introduces the approach proposed to detect soft-
ware performance antipatterns in Java applications. The design
of the approach is driven by the following key insight. Each
performance antipattern describes a bad design practice that
can be (partially) observed and checked by a combination of a
particular set of systemkey properties including design charac-
teristics (e.g., large number of calls) and performance metrics
(e.g., long execution time). Our detection approach relies on
monitoring these system key properties. A system component
is recognized to be an antipattern when its design characteris-
tics and/or performancemetrics deviatemost from the average

values, as calculated considering all other components belong-
ing to the same system.

Fig. 1 depicts theworkflowof our approach to automatically
detect software performance antipatterns in Java applications.
First, a load test suite is defined for each system, and it is used
to simulate the interaction of users with the system under anal-
ysis. Then, the system under analysis is launched and the pro-
filer is attached. We are aware that runtime performance
monitoring of Java applications is expensive and the profiling
process can generate overhead, however this is also assessed as
a necessary task to collect the performance characteristics of
interest [54]. After attaching the profiler, test suites are exe-
cuted. During their execution, we periodically capture snap-
shots that contain the readings related to CPU, threads, and
memory, later exported in CSV or XML files, according to the
represented data. These files are provided as input to JPAD,
i.e., the tool we developed for the automatic detection of soft-
ware performance antipatterns.

In the sequel of the section, we detail the operational
tasks of the proposed framework, i.e., how the load testing
is performed, the technology used, and the criteria adopted
for defining the test suite. Then, we present the application
profiler used to monitor the systems under analysis during
the execution of the load tests. We also describe the seven
software performance antipatterns that we implement into
JPAD to enable their automatic detection. Starting from the
natural language definition of antipatterns, the detection
rules are expressed in terms of the data acquired through
the profiler. JPAD takes as input the readings from the pro-
filer and makes use of such data to automatically perform
the detection of software performance antipatterns.

JPAD is a JavaFX application that allows the user to load
the profiling data exported from YourKit (i.e., the input
files) and contains an embedded console where the results
are reported. The tool works with thresholds and offsets
that establish when performance issues arise. A threshold
value t represents a boundary on a specific performance
metric value v, and JPAD verifies if v > t. An offset value o
is instead a percentage addendum that allows to deviate
from systems’ properties extracted as average values, i.e., a
property on a specific system component (p) is compared
with the average across all components (P), and JPAD veri-
fies if p > P þ P � o%. Note that both thresholds and offsets
are used to evaluate a specific test input. The goal is to
detect those system characteristics that deviate, under the
same input assumptions, with a certain margin from

Fig. 1. High-level workflow of our approach.

TRUBIANI ETAL.: AUTOMATED DETECTION OF SOFTWARE PERFORMANCE ANTIPATTERNS IN JAVA-BASEDAPPLICATIONS 2875

requirements and/or average values. For instance, 10% can
be set as a threshold for the CPU usage, and JPAD considers
suspicious all CPU resources showing larger values. As a
further example, let us consider 5% as the offset on method
number of calls. JPAD calculates the average value (consid-
ering the total number of calls across all the system meth-
ods) and augments such average by 5%. This way, JPAD
detects as suspicious all the methods whose number of calls
deviates by 5% from the average within a specific test input.
Note that these threshold and offset settings can be modi-
fied by users in case further knowledge is available and
other values are considered more appropriate. Sensitivity
analysis on threshold values is discussed in Appendix C,
available in the online supplemental material.1

3.1 Load Testing

To define the required tests for each system under analysis,
we explore the target application to understand key func-
tionalities in execution. We are aware that designing load
tests represents a threat to the internal validity of the
approach. Indeed, we may miss some functional test cases,
and there might be functionalities that are not monitored.
Hence, there is a risk of not detecting some antipatterns and
consequently not capturing performance issues. This threat
is smoothed by delegating the design of load tests to soft-
ware engineers that can decide which system functionalities
require performance testing. To support software engineers
in this task, as a rule of thumb, we foresee the selection of
the software component(s) showing the highest CPU utili-
zation as candidate to load testing. To support this guide-
line, in our experimentation (see Section 4) we show that
such a selection leads to detect real-life performance issues.

3.2 Application Profiling

To profile the applications under analysis during their execu-
tion,weuse theYourKit Java Profiler [55]. This decision ismoti-
vated by several reasons. First, YourKit is widely used for the
performance evaluation of real-world applications both in
industry [56] and in academia [53], [57]. Second, precise
instructions about reducing or avoiding performance overhead
(generated from the profiler) are provided [58]. Third, YourKit
is a powerful application profiler, it monitors several aspects of
the profiled system, and provides a view for multiple system
features. Besides, the output of YourKit (i.e., the readings, see
Fig. 1) can be easily exported in different data formats. For the
purpose of this work, we monitor usage statistics: CPU usage,
memory usage, CPU hotspots, call tree, blocked threads, and
garbage collected objects. CPU and memory usage measure
the percentage of used resources during the execution of the
application. CPU hotspots are those methods that spend the
longest time on the CPU. Call tree is divided in two different
views: (i) a merged call tree that shows a top-down call tree of
all application threads merged together into a single tree, and
(ii) a call tree by thread that shows an individual top-down call
tree for each application thread. From these files we can extract
further information, e.g., callers and callees of each method.
Blocked threads represent threads that fail to immediately
enter the synchronized method/block. Garbage collected

objects allow estimating the load of the garbage collector. All
these statistics are fed to JPAD that uses them to detect software
performance antipatterns.

3.3 Antipattern Detection

The detection of software performance antipatterns relies on
our interpretation of the natural language specification of soft-
ware performance antipatterns [26]. Specifically, after extracting
key properties, we implement the antipattern detection rule if a
matchwith profiling data exists. Our effort ismainly devoted to
match high-level guidelines and make them concrete for the
inspection of Java applications. In this context, the difficulty
relies on combining different sources of information (e.g., a class
calling a high number of methods, high CPU usage), since the
intrinsic nature of software antipatterns is to look for various
performance problems that may arise when applications are
running. Since the specification of antipatterns cannot be
completely precise [26], the conditions and key properties we
check as ourdetection rules approximate the antipatterns. These
conditions are neither sufficient nor necessary, we empirically
validate their relevance on spotting performance issues.

Table 1 reports a subset of seven software performance
antipatterns proposed in [26], and we motivate in the fol-
lowing the choice of implementing them. The reason why
some antipatterns cannot be automatically detected is
argued in Appendix B, available in the online supplemental
material. The first column reports the name of the perfor-
mance antipatterns, and the second column describes the
problem expressed in natural language. The third column
lists the extracted key properties (along with the implemented
helper functions) and provides a match with profiling data.
The fourth column lists thresholds and offsets that are
included in the detection algorithms. Helper functions are
briefly described in Table 2, thresholds/offsets are pre-
sented in Table 3 along with the heuristics adopted in case
users do not define their own preferences on perceived per-
formance issues. Offsets are all set to 5% since we are inter-
ested to capture small deviations from average values.
Thresholds are set to 10%, we refer to [59] where the CPU
load in the idle phase is estimated to be 7% on average, and
we are interested to exclude outliers and fluctuations that
might be due to system’s internal routines.

The detection algorithms and implementation details of
these antipatterns are given in Appendix A, available in the
online supplemental material, along with the match
between textual descriptions and detection rules. In the fol-
lowing, we briefly discuss our interpretation of antipatterns,
and their key properties.

Circuitous Treasure Hunt (CTH) occurs when a Java appli-
cation must perform a large number of (database) queries to
manage a request. This problem can be generalized consid-
ering a method that performs a chain of queries where the
result of one query is used to build the next one, instead of
writing‘ a single, and more complex request. As key proper-
ties, we check the average number of calls performed by
each thread (call-tree-by-thread view of YourKit), along with
the average processor utilization (chart-cpu-usage view of
YourKit) indicating if the system performance suffers.

Extensive Processing (EP) occurs when a long running job
monopolizes the processor and creates a queue of processes1. [Online]. Available: https://doi.org/10.5281/zenodo.5878953

2876 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

https://doi.org/10.5281/zenodo.5878953

that cannot be executed until the computation of such job is
completed. As key properties, we monitor the average num-
ber of blocked threads (monitor-usage view of YourKit), and

the execution time of Java methods (call-tree-all-threads view
of YourKit), selecting only those methods that are showing
a large number of the identified blocked threads.

TABLE 1
Software Performance Antipatterns - Key Properties Extracted From Natural Language Specification [26]

TABLE 2
Software Performance Antipatterns - Helper Functions

Name Description

getMethodCountMap It calculates the minimum, maximum, or average (depending on the option input parameter)
number of calls in a method

getAvgMethodCount It calculates the average number of calls in a specific hotspot method, to be compared with the
average of all hotspots

getAvgTime It calculates the average execution time of all hotspots, to be compared with the executime time
of a specific hotspot method

getAvg[Cpu,Mem]Usage It calculates the average utilization values showed by all system hardware (CPU or memory)
resources

count[Blocked]Threads It counts the number of (blocked) threads, to be compared with active threads to understand
delays in the execution of methods

get[Tot,Avg,Hs]ExecTime It retrieves the (total, average, or related to a specific hotspot method) execution time, to be
compared with other methods

get[Callers,Callees]Map It retrieves all methods that are callers or calles, and it is used to quantify the number of calls
performed/received by a method

getAvg It takes as input parameter a map of methods (e.g., through getMethodCallsMap, see next helper
function) and calculates the average

getMethodCallsMap It retrieves all methods that are invoked by other methods, to be compared with average values
for spotting most invoked methods

countCalls It takes as input a callee method and it calculates the average number of times that hotspots
invoke their callees

getCvTime It takes as input a calleemethod and it retrieves the coefficient of variation of the callee’s service time

get[Hs]GcObjs It retrieves the average number of garbage collected objects in the (hotspot) methods, thus to
spot if there are many unused objects

TRUBIANI ETAL.: AUTOMATED DETECTION OF SOFTWARE PERFORMANCE ANTIPATTERNS IN JAVA-BASEDAPPLICATIONS 2877

Wrong Cache Strategy (WCS) occurs when too many
objects (or objects hardly ever used) are cached. This leads
to generate performance overhead resulting in high mem-
ory usage. As key properties, we check the average memory
usage of methods (method-list-allocation view of YourKit),
and we are interested to verify whether the memory is more
used than the processor (method-list-cpu view of YourKit).

Blob occurs in two different scenarios that contribute to dis-
tinguish two different types of antipattern instances in Java
applications, i.e., Blob-Controller and Blob-DataContainer. The
former is observed when a class centralizes many responsibili-
ties, delegating minor roles to other classes. Classes affected by
this problem usually are complex controllers which depend on
simpler classes (with little to no computation). The latter case is
observed when a class includes most of the application data
and other functions need to access that class to retrieve/update
the data. As key properties, wemonitor the average number of
calls performed and received by the methods (call-tree-all-
threads view of YourKit) to determine if these methods can be
classified as potential controllers or data containers, respec-
tively. Besides, we also check if such large number of calls
impacts on the average usage of processor and memory (chart-
cpu-usage and chart-heap-memory-usage views of YourKit).

Tower of Babel (ToB) occurswhen somedata is translated into
an exchange format, such as XML, by the sending process. This
data is later parsed and translated into an internal format by
the receiving process. This means that the system may spend
most of its time processing the text when the translation and
parsing of data formats are excessive. As key properties, we
check all the methods showing a large execution time (call-tree-
all-threads view of YourKit), and then we inspect the names of
such methods (cpu-hotspots view of YourKit). We check if there
is a match with some specific keywords (i.e., “converse”,
“parse”, and “translate”), thus to associate the performance
overhead to the processing of exchange format data.

Empty Semi Trucks (EST) occurs when an excessive num-
ber of requests is required to perform a task. As key proper-
ties, similarly to the Blob-controller, we consider the
number of calls performed by the methods (call-tree-all-
threads view of YourKit), and we verify if the execution time
of such calls shows a small coefficient of variation, i.e., the

execution time follows a deterministic distribution (call-tree-
all-threads view of YourKit). This way, we aim to capture the
peculiarity of this antipattern when inefficiently using the
bandwidth and/or interfaces.

Excessive Dynamic Allocation (EDA) occurs when an appli-
cation unnecessarily creates and destroys objects. As key
properties, we monitor the objects collected by the Java gar-
bage collector (method-list-garbage view of YourKit), and we
want to recognize those situations leading to a performance
overhead, i.e., the average memory utilization (chart-heap-
memory-usage view of YourKit) is high.

It is worth remarking that our detection algorithms may
be orthogonal, i.e., they may return the simultaneous occur-
rence of multiple antipatterns since they share the verifica-
tion of some performance indices, e.g., the CPU utilization.
This is not a drawback of the approach since it may happen
that a performance issue may be caused by the simulta-
neous presence of multiple bad practices [60].

4 EXPERIMENTATION

This section is organized as follows. We first present the
research questions (Section 4.1), followed by the description
of the analyzed real-world applications (Section 4.2). We
describe the experiment design (Section 4.3), and we discuss
the obtained experimental results (Section 4.4).

4.1 Research Questions

The purpose of our experimental evaluation is threefold: (i)
it shows that JPAD is efficient and accurate when applied to
real medium/large-sized systems; (ii) it compares JPAD
with state-of-the-art approaches on the detection of real-life
performance issues; (iii) it provides empirical evidence on
the usefulness of detecting antipatterns. In particular, we
aim to answer three research questions:
RQ1 Efficiency and accuracy of the antipatterns’ detection

rules: Are the proposed detection rules efficient and

accurate? Does JPAD efficiently detect antipattern

instances in real-world case studies? Motivation. We

want to provide developers with an efficient and

accurate framework that points out performance

TABLE 3
Software Performance Antipatterns - Thresholds and Offsets

Name Description Heuristic

countOffset Addendum for methods’ number of calls Set to 5%, it augments the average value for the number of
methods’ calls

cpuTh Upper bound for CPU utilization Set to 10%, lower values are considered part of the system’s
internal routines

execTimeOffset Addendum for methods’ execution time Set to 5%, it augments the average value for the execution
time of methods

memUsageOffset Addendum for memory utilization Set to 5%, it augments the average value for the memory
resources utilization

msgOffset Addendum for number of exchanged
messages

Set to 5%, it augments the average value for the methods’
exchanged messages

memTh Upper bound for memory utilization Set to 10%, lower values are considered part of the system’s
internal routines

gcObjectsOffset Addendum for number of garbage collected
objects

Set to 5%, it augments the average value for the number of
garbage collected objects

2878 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

issues, if any. By evaluating the efficiency of JPAD,
we can understand whether developers are moti-
vated to apply our approach in practice.

RQ2 Comparison with state-of-the-art approaches: Are the
proposed detection rules comparable to other techni-
ques in the literature? Does JPAD capture complex
performance problems that are not recognized by
available tools? Motivation. We want to compare our
framework with state-of-the-art approaches that deal
with the detection of performance issues. By compar-
ing JPAD to other tools, we can study whether devel-
opers aremotivated to use our framework.

RQ3 Implication of applying antipattern-based refactorings:
What happens when an antipattern is solved? How
does the number of detected antipattern instances
for the refactored system change? What is the effect
on the overall system performance? Motivation. The
goal of our approach is to spot performance prob-
lems, so that developers are aware of possible short-
comings in some portions of the code. In this
research question, we aim to answer at which extent
our approach benefits developers interested to know
if code fixings improve the system performance.

To answer the first two research questions, we analyze real-
world Java applications under different loads, i.e., varying the
number of clients and the execution time. For each combination
of (i) number of clients and (ii) duration (inminutes), the appli-
cation is profiled, data is collected, and JPAD is used to detect
the software performance antipatterns. Moreover, to further
stress the benefit of the proposed framework and to answer the
third research question, we provide empirical evidence of its
impact by solving one instance of detected antipatterns (for one
of the analyzed systems), and showing variations in the num-
ber of detected instances and the systemperformance.

4.2 Analyzed Systems

We select five Java applications that are highly concerned
with their performance and have been studied in prior
research [46], [61], [62]. These applications show a different
complexity (in terms of number of classes) and belong to
different domains, see Table 4 for their main characteristics.
The rationale for selecting these five subject systems is that
they provide evidence of all the seven performance antipat-
terns, as later described in the experimental results (see Sec-
tion 4.4). Specifically, systems from [46] do not include ToB
and EST antipattern instances. We select one system
from [61] to provide evidence on the ToB antipattern. To
strengthen the analysis of the EST antipattern, we borrow
the subject system used in [62]. Hereinafter, a brief descrip-
tion of the analyzed systems is provided.

� CloudStore [63] is a free software synchronizing files
between multiple devices. Its primary focus is on
preventing data loss and unauthorized access.

� TeaStore [64] emulates a basic web store for automat-
ically generated tea and tea supplies. It has been
published in [65], and later largely used as a micro-
service reference system and test application.

� WebGoat [66] is a deliberately insecure web applica-
tion maintained by OWASP and designed to teach
web application security lessons.

� TrainTicket [67] is the largest benchmark for micro-
service architectures in the literature. It provides
train ticket booking functionalities and is used for
fault analysis and error prediction [62], [68].

� OpenMRS [69] is a freemedical record system for health
care providers. It is a modular open-source web appli-
cation used by over 40 countries to improve health care
delivery in resource-constrained environments.

Moreover, to compare JPAD with state-of-the-art
approaches [23], [45], [53], we consider four real-life perfor-
mance issues (see details in Table 5) of two other systems:

� Hadoop [70] is a framework which performs data
processing in a reliable, efficient, high fault tolerance,
low cost, and scalable manner.

� Cassandra [71] is a distributed NoSQL database
management system; fault-tolerance on commodity
hardware makes it suitable for mission-critical data.

Table 5 reports the code commits (inducing and fixing the
four real-life performance issues) that we analyze, according
to the study on performance regressions presented in [23].
The motivation of selecting these specific four performance
issues is the following. Hadoop commits are evaluated in [23]
by means of multiple performance metrics (i.e., response
time, CPU and memory utilization, I/O operations) and we
focus on those issues that have been highlighted as particu-
larly complex, since such issues are not predicted by any of
the considered metrics. About Cassandra, there is only one
issue that is not predicted by PerfJIT in [23], and this is why
we concentrate our effort on investigating that specific issue.
Summarizing, our investigation includes those specific four
issues (triggering the analysis of nine code commits) since
they aremore relevant to conduct a comparison.

4.3 Experimental Setup

In the following, we discuss the design choices taken to run
experiments and avoid biases in results.

System Workload Specification. To avoid biases when pro-
filing applications, we test several workloads acting in the

TABLE 4
Analyzed Systems

Name Version Domain # of Classes

CloudStore 2 E-commerce 68
TeaStore 1.4.1 Microservices 138
WebGoat 8.0.0.M26 E-learning 301
TrainTicket 1.0 Microservices 584
OpenMRS 2.9.0 Medical Record System 1093

TABLE 5
Analyzed Issues Extracted From Chen et al. [23]

Name Issue ID Issue fixing Issue inducing

commit commit

Hadoop YARN-4307 308d63f e914220
7af5d6b

YARN-7102 ff8378e 528b809
HDFS-12754 738d1a2 decf8a6

Cassandra CASSANDRA-13794 f93e6e3 88d2ac4

TRUBIANI ETAL.: AUTOMATED DETECTION OF SOFTWARE PERFORMANCE ANTIPATTERNS IN JAVA-BASEDAPPLICATIONS 2879

considered systems for a different duration. The choice on
the number of clients and the duration of load testing is not
trivial, however our assumption is that this is decided by
software developers that are aware of load conditions and
system’s dynamics. Subject systems in Table 4 run for 3, 6,
and 12 minutes with 25, 50, 75, and 100 clients. A larger var-
iation in the number of clients is considered for the issues
listed in Table 5 and related to Hadoop and Cassandra;
these systems are tested with 1, 10, 100, 500, and 1k clients
running for 3, 6, and 12 minutes. Each combination of num-
ber of clients (C) and duration of the testing (D) represents
an input we use in our detection. Such a combination leads
to a system configuration that is labeled in the following as
C �D, for instance the system configuration “1000-6”
means to consider 1000 clients with 6-minute duration of
testing. Overall, 300 different system configurations are ana-
lyzed to explore a variegate set of systems’ characteristics.

Load Test Definition. To avoid biases in the load testing, we
explore benchmarks stressingdifferent aspects (e.g., input/out-
put operations, end-users services) of considered applications.
For instance, wemake use of available benchmarks forHadoop
and Cassandra (i.e., TestDFSIO [72] and Cassandra Stress [73])
stressing write and read operations. Locust [74] (i.e., a Python-
based load testing tool) is adopted for systems reported in
Table 4 since ready-to-use benchmarks are not available. We
stress end-users services identified as crucial for the applica-
tion, e.g., in TrainTicket we generate requests for monitoring
the security service invokedwhen usersmake a reservation. As
anticipated in Section 3.1, to support software engineers in the
selection of system functionalities to be monitored, as a rule of
thumb, we consider the CPU utilization of system software
components. This analysis provides support to the component
choosing stage of the approach that decides which component
(s) to test, and they are given as input to our detection. As an
example, let us consider Fig. 2 that shows the CPU utilization
(observed when executing I/O operations) of all Hadoop com-
ponents. Results show that two components have a nonnegligi-
ble utilization, see Figs. 2a and 2bwith CPU utilization varying
up to 40%: (i) theNodeManagerwhich is in charge ofmonitoring
the resource usage of a node and reporting such information to
the ResourceManager and (ii) the DataNode that stores data.
Hence, these two components are selected to be profiled.
Figs. 2c, 2d, and 2e instead indicate that there are underutilized
components:ResourceManager andNameNode showaCPUutili-
zation lower than 8%, whereas the CPU used by SecondaryNa-
meNode is even less than 2%. This denotes that it is not relevant
to profile such components.

Load Test Execution. To avoid biases in the obtained
results, all experiments are run on a single node cluster

deployed on a dedicated machine (with a 2.80 GHz quad-
core CPU and 16 GBmemory) to easily monitor used resour-
ces and avoid misleading performance results due to back-
ground activities. Readings extracted from CPU, memory,
and garbage collector snapshots taken for each configuration
are fed to JPAD that automatically detects performance
antipatterns.

Antipattern Detection and Thresholds Setup. We recall that
most of thresholds are calculated through heuristics that
consider average values and offsets, see Table 3. This means
that each system configuration includes thresholds that
vary when changing number of clients and duration. In the
following, as illustrative examples, we report the thresholds
values used with the lowest (25 clients, 3 minutes) and the
largest (1k clients, 12 minutes) boundary values adopted in
the proposed experimentation. Table 6 reports the threshold
numerical values used to analyze the systems when setting
the number of clients to 25 and the duration of the run to 3
minutes. In the first row of Table 6 we can notice that
countTh threshold is calculated on average values, and it
shows a large variation among the analyzed systems (e.g.,
108 for OpenMRS, and 1198 for TrainTicket). There are other
thresholds that vary less even if they are calculated with
average values, e.g., msgTh varies between 1.40 and 1.58.
Some other thresholds are instead fixed to values that usu-
ally are extracted from system requirements, e.g., memTh is
fixed to 10% for all the systems. Table 7 reports thresholds

Fig. 2. CPU usage over 12 minutes for the five Hadoop components. The profiled Hadoop commit is decf8a6.

TABLE 6
Threshold Values Used for Analyzing Systems
With#clients ¼ 25 and duration ¼ 3Minutes

2880 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

used for all commits of Hadoop (NodeManager and Data-
Node) and Cassandra, when systems are loaded with 1k cli-
ents for 12 minutes. Note that some commits do not provide
data needed to calculate the thresholds, e.g., 738d1a2 and
ff8378e lack information for deriving callesTh related to the
Blob antipattern disabling its detection. Besides, the same
threshold may vary differently based on the considered
applications. For example, callersTh related to the Blob anti-
pattern changes significantly when considering the two
Cassandra commits (i.e., 82.35 for 88d2ac4 and 44.28 for
f93e6e3) and shows slight variations when observing each
Hadoop component separately. Instead, relevant variations
of this threshold are observed also for Hadoop when the
two components are compared, i.e., it varies in the range
9.56–11.95 for the NodeManager and in the range 2.04–2.91
for the DataNode. Threshold and offset values are given as
input to JPAD, and these values can be easily modified in
case system stakeholders express their own performance
requirements.

Summarizing, our experimental setup includes the fol-
lowing inputs: (i) system workload specification, i.e., num-
ber of clients and duration of the testing, (ii) load test
definition, i.e., which component(s) to test, and (iii) thresh-
old and offset setup, i.e., numerical values for antipatterns’
thresholds and offsets. Our experimentation investigates
the variation of these inputs and how they affect the detec-
tion accuracy and results, see more details in Tables 8, 9, 10,
11, and 12, and Appendix C, available in the online supple-
mental material.

4.4 Experimental Results

This section presents experimental results answering our
three research questions (see Section 4.1).

4.4.1 Effectiveness of the Antipatterns’ Detection Rules

To answer RQ1, Table 8 shows the software performance
antipattern instances detected by JPAD for each system,
when varying the number of clients and the monitoring
duration. The last column of Table 8 shows the detection
time (in seconds), i.e., the time required by JPAD to com-
plete the analysis. This way, we aim to analyze the

scalability of the tool when exposed to medium- and large-
sized systems.

We observe that the number of detected antipatterns may
increase with the number of clients. For example, for the
WebGoat case study, the number of detected antipatterns
with 25 clients (i.e., 3, 6, 0, 5, 4, 0, 3) is smaller than (or equal
to) the case with 100 clients (i.e., 4, 7, 2, 5, 4, 0, 4). The num-
ber of detected instances can also decrease for a larger num-
ber of clients, e.g., OpenMRS shows 2 instances of the CTH
antipattern with 25 clients and 0 with 100 clients. However,
we notice that this may lead to generate further instances of
different antipatterns types, in fact with 100 clients we get 3
Blob instances instead of 2 (observed with 25 clients). Simi-
larly, CloudStore shows 7 instances of the EP antipattern
and 8 instances of the Blob antipattern with 25 clients. With
100 clients instead we get 6 instances of the EP antipattern
and 7 instances of the Blob antipattern, at the cost of 2
instances of the EDA antipattern (not observed with 25 cli-
ents). This may be due to performance issues showing up to
(previously not critical) parts of the system, i.e., affecting
different system elements only when the number of clients
increases. As a result, a larger workload may produce more
instances of other antipattern types.

A longer experiment duration might reduce the number
of detected instances due to the performance problems flat-
tening/elevating in different parts of the system depending
on the application peculiarities. In our experiments,
OpenMRS benefits from a longer run time, whereas all other
systems (especially TeaStore) generally show a constant or
higher number of antipattern instances. The number of anti-
pattern instances detected when OpenMRS is run for 3
minutes with 25 clients (i.e., 11) decreases when the same
application is observed for 12 minutes (i.e., 3). For all other
systems, it is unlikely that the number of detected instances
decreases when the experiment duration increases. In a few
cases, the opposite trend is observed, e.g., there are 21 anti-
pattern instances when WebGoat is run with 25 clients for 3
minutes and 25 instances when the same application is run
for 12 minutes. A further example is represented by the
CloudStore system that shows 17 instances with 100 clients
for 3 minutes and 19 instances when running for 12
minutes.

TABLE 7
Threshold Values Used for Analyzing Hadoop (Two Components) and Cassandra With #Clients = 1k and Duration = 12 Minutes

TRUBIANI ETAL.: AUTOMATED DETECTION OF SOFTWARE PERFORMANCE ANTIPATTERNS IN JAVA-BASEDAPPLICATIONS 2881

From the collected results, no straightforward relation-
ship between the number of clients and the number of
detected antipatterns is observed. Similar observations are
drawn when considering the experiment duration since
such duration is not linearly related with the number of
detected antipattern instances, thus to confirm the complex-
ity in the performance analysis of Java applications.

Table 8 also reports the time required by JPAD to detect
antipatterns, and we can notice that it varies between 0.4
and 282.5 seconds (i.e., 4.7 minutes). The average detection

time observed over all systems and loads is 45.9 seconds
(i.e., less than a minute) with OpenMRS and TeaStore tak-
ing the shortest and longest average detection time (i.e.,
0.6 and 194.4 seconds corresponding to 3.2 minutes),
respectively.

Since TeaStore and WebGoat show the longest time to
complete the detection, we further inspect these systems.
For TeaStore we notice that Blob, ToB, and EST take longer
than other antipatterns to be analyzed. This is due to the
large size of the call tree (i.e., a key property analyzed to
detect these antipatterns, see Table 1) of the TeaStore sys-
tem. When Blob, ToB, and EST are excluded from the analy-
sis, JPAD takes only 1.2 seconds on average to analyze
TeaStore. For WebGoat, we observe that the detection of
EST antipattern takes longer than others, i.e., the detection
takes 3.5 seconds on average when EST is excluded. We
think this is due to the large number of methods that are
invoked (namely the callees) in this application. In fact, these
methods must be analyzed by the EST detection algorithm
to check their coefficient of variation, i.e., if the execution
time follows a deterministic distribution, thus to spot ineffi-
ciency on the usage of resources.

Inspired by [46], we build a ground truth to investigate the
accuracy (along with precision, recall, and F1 score) of our
detection rules. The ground truth is constituted of all the
hotspot methods (i.e., over approximation of the detection
outcome) since JPAD analyzes their design and perfor-
mance characteristics to detect antipatterns. We exploit the
variation in the system workload specification inputs
to decide if a hotspot method is correctly detected as source
of performance problems. We determine that a hotspot
method has performance issues if it is reported as a viola-
tion of antipatterns while analyzing different system config-
urations. If a hotspot method is detected as an antipattern
instance in at least half (i.e., 6 over a total of 12) analyzed
configurations, then such a method is considered as a posi-
tive instance of that antipattern, otherwise it is classified as
a negative instance. Let us consider as example execute-

Query() that is a hotspot method in OpenMRS. It is
detected as EP antipattern in 10 (out of 12) analyzed config-
urations, hence such method is considered as a positive
instance of EP in OpenMRS. Another hotspot method of
OpenMRS is includeFragment(String, String) but
it is detected as EP antipattern in only 2 (out of 12) analyzed
configurations. Consequently, this method is considered as
a negative instance.

The confusion matrix is built for each system configuration
as follows. True positives (TP) are the methods for which an
antipattern instance is detected by both the ground truth
and JPAD. True negatives (TN) are those hotspot methods
that are detected as specific antipattern instances by neither
the ground truth nor JPAD. False positives (FP) are defined
by calculating hotspot methods that are detected as antipat-
terns by JPAD, but are not in the ground truth. False nega-
tives (FN) are calculated by counting methods that are not
detected by JPAD but are in the ground truth. The confusion
matrix for the analyzed system configurations in all consid-
ered applications (when detecting the Blob antipattern) is
reported in Table 9. Confusion matrices derived for other
antipatterns are omitted for the sake of space, but they are
reported as part of replication data [28].

TABLE 8
Analysis of How SystemWorkload Specification Inputs

Affect the Detection. Number of Detected Antipattern Instances
and Scalability of JPADAcross the Analyzed Systems.

2882 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

Accuracy, precision, and recall are defined for the detection
of each antipattern and calculated for the analyzed system
configurations as follows: Aconf ¼ TPþTN

TPþTNþFPþFN , Pconf ¼
TP

TPþFP , and Rconf ¼ TP
TPþFN , respectively. Pconf and Rconf are

undefined when their denominators are equal to zero. Accu-
racy, precision, and recall (i.e., A, P , and R, respectively) are
also derived for the considered applications by averaging the
results calculated for each configuration (Mconf), i.e.,

M ¼
P

conf
Mconf

#conf if Mconf 6¼ undefined 8 conf

undefined otherwise

(
;

where M ¼ fA;P;Rg and #conf ¼ 12, i.e., the number of
analyzed system configurations in our experimentation. F1
score is defined as the harmonic mean of precision and recall,
i.e., F1 ¼ 2 � P�R

PþR , and it is not computed in case P or R are
undefined.

Table 10 reports accuracy (A), precision (P), recall (R), and
F1 score (F1) of the proposed detection rules. It is worth
remarking that our calculations leverage the variation in sys-
temworkload specification inputs since the ground truth (by con-
struction) is an over approximation and TP, TN, FP, and FN
values keep into account how these inputs affect the detection.
The average accuracy (across the five systems) is well above
90% for all antipatterns. The average precision is also above
90%, the lowest value (i.e., 79%) is observed in OpenMRS for
the Blob antipattern. The average recall is mostly larger than
90% except for WCS that shows a lower value (62%); the

TABLE 9
Confusion Matrix of All Considered Configurations and

Applications When Detecting the Blob antipattern

TABLE 10
JPAD Detection Performance

CTH EP WCS Blob ToB EST EDA

CloudStore A 1.00 0.98 0.98 0.98 1.00 1.00 0.97
P 1.00 0.98 – 0.99 – – –
R 1.00 0.93 – 0.94 – – –
F1 1.00 0.95 – 0.96 – – –

TeaStore A 0.99 1.00 1.00 0.99 1.00 1.00 1.00
P 1.00 1.00 – 1.00 – – 1.00
R 0.97 1.00 – 0.94 – – 1.00
F1 0.99 1.00 – 0.97 – – 1.00

WebGoat A 0.99 0.99 0.98 0.98 1.00 0.99 0.99
P 1.00 1.00 – 0.94 1.00 – 1.00
R 0.94 0.96 0.67 0.95 1.00 – 0.94
F1 0.97 0.98 – 0.94 1.00 – 0.97

TrainTicket A 1.00 0.98 0.97 1.00 1.00 1.00 1.00
P 1.00 0.97 – 1.00 – 0.96 –
R 1.00 0.95 0.58 1.00 – 1.00 –
F1 1.00 0.96 – 1.00 – 0.98 –

OpenMRS A 0.97 0.96 0.97 0.96 1.00 1.00 0.96
P – – – 0.79 – – –
R – 0.83 – 1.00 – – –
F1 – – – 0.88 – – –

Avg.

A 0.99 0.97 0.97 0.98 1.00 1.00 0.98
P 1.00 0.98 – 0.93 1.00 0.96 1.00
R 0.98 0.92 0.62 0.97 1.00 1.00 0.94
F1 0.99 0.97 – 0.95 1.00 0.98 0.97

The symbol “–” means that the metric is undefined.

TRUBIANI ETAL.: AUTOMATED DETECTION OF SOFTWARE PERFORMANCE ANTIPATTERNS IN JAVA-BASEDAPPLICATIONS 2883

lowest recall (58%) is observed in TrainTicket forWCS. The F1
score shows the lowest value (i.e., 88%) for Blob in OpenMRS
as a reflection of the previous result on precision, even if aver-
age values are larger than 90% for all antipatterns.

RQ1: efficiency and accuracy
The proposed detection rules efficiently and accurately
capture performance issues of medium- and large-sized
systems. CTH, EP, and Blob are the antipattern types
that occur in all the analyzed systems. EP shows the larg-
est number of instances across all the system configura-
tions. WCS is the antipattern type with the smallest
number of instances. JPAD efficiently detects the instan-
ces of the presented software performance antipatterns,
in fact the system configurations are analyzed, on aver-
age, in less than a minute. TeaStore shows a longer detec-
tion time, but in the worst case it is less than 5 minutes.
The F1 score, derived from precision and recall metrics,
is larger than 85% in all the considered cases, denoting
accurate detection rules.

4.4.2 Comparison With State-of-the-Art Approaches

The goal of this section is to investigate if JPAD is able
to detect a variation on the number of antipattern instan-
ces when comparing the code commits that are known
from [23] to induce and fix real-life performance issue,
respectively.

Table 11 reports the performance antipattern instances
that have been found in Hadoop across 7 different code
commits. JPAD takes 0.31 seconds on average to analyze
these configurations, and it detects EP and Blob antipatterns
only, other antipatterns are not captured.

Table 11 a focuses on the issue identified by YARN-4307
that is not predicted by state-of-the-art approaches [23],
[45]. Interestingly, we can notice that the selected software
component(s) show a different number of antipattern
instances. The column reporting the fixing of the issue (i.e.,
308d63f) always shows an equal or lower number of antipat-
tern instances in all the cases for both the considered Node-
Manager and DataNode components. For the NodeManager
we can notice that there are some configurations (e.g., 100-3

TABLE 11
Analysis of How Load Test Definition Inputs Affect the Detection. Number of EP and Blob Antipatterns Detected Using JPAD in Two
Components (i.e., NodeManager and DataNode) and Seven Commits of Hadoop. EP and Blob Instances are Reported only, JPAD
does not Detect Other Antipatterns. JPAD Takes 0.31 Seconds on Average for the Detection of Antipatterns in These Configurations.

2884 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

and 100-6) where EP instances are not detected in the com-
mit fixing the issue, at the cost of emerging Blob antipattern
instances. There are some further configurations (e.g., 500-3
and 500-6) for the NodeManager where we can notice no var-
iation for the EP, one instance is detected in all commits.
Overall, commits inducing the issue (e914220 and 7af5d6b)
show a total of 13 and 12 EP instances across all the ana-
lyzed configurations, respectively. The commit fixing the
issue manifests less antipattern instances, i.e., 4 EP and 2
Blob instances. The DataNode component instead has a dif-
ferent number of EP and Blob instances. Specifically, JPAD
detects a total of 14 EP instances summing up all configura-
tions independently of the commit. 9 and 8 Blob instances
are detected for commits inducing the issue (i.e., e914220
and 7af5d6b, respectively), and 4 Blob instances are found in
the commit solving the issue.

Table 11 b reports the results for the YARN-7102 issue.
The commit fixing the issue (i.e., ff8378e) shows a behavior
similar to the previous case, i.e., there are some configura-
tions (i.e., 10-12, 100-6, 1000-3) of NodeManager for which EP
is solved at the cost of a new Blob instance. EP instances in
the DataNode rarely change (i.e., only for 1-3 and 10-3),
whereas Blob instances are reduced in eight configurations
(e.g., 10-3 and 10-6). Similarly to the previous issue, the
DataNode component shows more variations for Blob instan-
ces than for EP instances. Summing up all the analyzed con-
figurations there are 13 EP instances and 9 Blob instances
for the code commit inducing the issue (528b809), against 11
EP instances and 1 Blob instance for the code commit fixing
the issue (ff8378e).

Table 11 c presents the results for the HDFS-12754 issue,
and also here the number of antipattern instances is equal
or lower when considering the commit fixing the issue, i.e.,
738d1a2. Differently from previous cases, if EP instances are
not detected then Blob instances do not arise in the Node-
Manager component. Overall, 11 and 4 EP instances across
all configurations are observed for decf8a6 and 738d1a2,
respectively. For the DataNode component, we get 1 Blob
instance and 11 EP instances in the commit solving the
issue, whereas in the commit inducing the issue we found
12 EP instances and 9 Blob instances. Summarizing, JPAD

detects the variation across different commits when calcu-
lating the total number of detected antipattern instances.
Overall, we can notice that detected instances significantly
decreases when comparing code commits which induce
and fix issues. Besides, software components impact on
such influence, the NodeManager shows, on average, less EP
and Blob instances when issues are fixed. Instead, for the
DataNode, only Blob instances are observed to reduce after
fixing the issue, the number of EP instances slightly varies.
This is due to the nature of the analyzed issues, in fact both
YARN-7102 and HDFS-12754 are indicated in [23] as com-
plicated performance issues (like deadlock), and EP cap-
tures that there is a large number of blocked threads (i.e., a
symptom of a deadlock) leading to long execution time (see
Table 1).

Table 12 reports the performance antipattern instances
that are found in Cassandra across two different code com-
mits. JPAD takes 1 second on average to analyze these con-
figurations, and it detects CTH, WCS, Blob, and EDA
antipatterns, other antipatterns are not reported since no
instances are detected. Between the two commits we can
notice that all detected antipatterns show some decrease in
their numbers when considering the commit fixing the
issue, i.e., f93e6e3. Blob is the antipattern showing a larger
number of instances, in fact commit 88d2ac4 shows 42
instances summing up all configurations, whereas commit
f93e6e3 includes 36 instances. About WCS, we can notice
that there is one configuration only (i.e., 1000-3) showing a
decrease of antipattern instances, no major variation is
observed for this specific antipattern. Both CTH and EDA
show a considerable variation; looking at the total number
of detected instances across all analyzed configurations of
88d2ac4 and f93e6e3 commits, we get 29 and 21 (17 and 11)
CTH (EDA) instances, respectively. Hence, JPAD effec-
tively detects a remarkable difference across the analyzed
code commits (inducing and fixing real-life performance
issues).

To answer RQ2, Table 13 summarizes results of compar-
ing JPAD with state-of-the-art approaches. The last four col-
umns of this table indicate if the specified tool can detect
the considered performance issue. The column named PAD-
prof refers to the framework presented in [53] which we test
providing problematic snapshots (i.e., commits inducing
the issue) and comparison snapshots (i.e., commits fixing
the issue). All the analyzed snapshots show that no antipat-
terns are detected. Results for PerfJIT [23] and Perphecy [45]
are instead extracted from [23] when investigating the
detection of real-life performance issues.

TABLE 12
Number of Detected Antipatterns Using JPAD in Two Commits
of Cassandra. Commit 88d2ac4 Introduces the CASSANDRA-
13794 Issue, Commit f93e6e3 Solves it [23]. JPAD Takes 1 Sec-
ond on Average for the Detection of Antipatterns in These Con-

figurations.

TABLE 13
Detection Capability of JPAD and State-of-the-Art Tools w.r.t.

Hadoop and Cassandra Real-Life Performance Issues. Selected
Issues, Systems Commits, and Detection Results of PerfJITand

Perphecy are Extracted from [23].

TRUBIANI ETAL.: AUTOMATED DETECTION OF SOFTWARE PERFORMANCE ANTIPATTERNS IN JAVA-BASEDAPPLICATIONS 2885

RQ2: comparison with state-of-the-art
JPAD overcomes state-of-the-art approaches [23], [45], [53]
in the detection of some real-life performance issues. The
proposed detection rules effectively capture complex per-
formance problems that are not recognized by available
tools. This consolidates the adoption of our framework as
an alternative approach to support software engineers in
understanding performance issues in Java applications.

4.4.3 Implication of Applying Antipattern-Based

Refactorings

To answerRQ3, we refactor OpenMRS (i.e., the largest appli-
cation among those considered in Table 4) to understand if
the detection information provided by JPAD can support
software engineers in solving performance issues. The selec-
tion of OpenMRS as target system for investigating the refac-
toring is also motivated by a recent paper [46] that analyzes
the same system to locate performance regression root
causes. Specifically, we focus on the OwaFilter method
that JPAD detects as a Blob-Controller instance. Such a
method is responsible for filtering the requests directed to
protected endpoints, i.e., access is granted for authenticated
requests only. Due to the modular nature of the application,
requests come from different modules and the filter must
check the URL of all incoming requests before granting
access to authenticated users and forward their requests.

Listing 1 reports a code excerpt of the OwaFilter. We
can notice that there are several requests to be managed, for
example:

� getRequestURL() (see line 9),
� getServletPath() (see line 12),
� getAdmnistrationService() (see line 14)

to mention a few. There is indeed a match with the textual
description of the antipattern (see Table 1) indicating that
the Blob-controller occurs in case of a single class perform-
ing all the work of an application.

As specified in the literature [26], when solving a Blob-
Controller antipattern, the refactoring consists of moving
computation from the affected instance to a different one.

We delegate the verification of URLs to a centralized
authentication system that forwards requests to the correct
endpoint after the authentication process is completed. This
way, the OwaFilter method must only check that users
are authenticated. After refactoring OpenMRS, we evaluate
its performance under all loads and compare the obtained
results with those observed from the original OpenMRS ver-
sion. To quantify performance improvements, we consider
these metrics of interest: (i) the number of detected software
performance antipatterns, (ii) the CPU utilization, and (iii)
the system response time. It is worth remarking that our
focus is on showing empirical evidence on the benefit of
solving antipatterns, i.e., possible performance improve-
ments that can be derived by detecting and removing anti-
patterns, and this is why we do not investigate further
refactoring types or solutions.

Table 14 reports the antipattern instances detected for the
refactored system. Overall, compared to the original system,
the number of instancesmostly decreases, see theDiff. column
where negative numbers indicates that the number of instan-
ces is decreased after the refactoring. For example, with 75 cli-
ents and 3minutes of load tests running, JPAD detects 1 CTH,
2 EP, 1 WCS, 3 Blob, and 1 EDA instances in the OpenMRS
original system. When applying the antipattern-based refac-
toring, we remove 1 instance of CTH, EP,WCS, and EDA, and
2 Blob instances. A similar improvement (see -2 entries in
Table 14) is observed for CTH andWCSwhen there are 25 cli-
ents and the load test runs for 3 minutes. However, it is worth
noting that some configurations (i.e., 25-6, 25-12, and 100-3)
showmore antipattern instances in the refactored system. For
instance, for the configuration 25-3, the number of Blob instan-
ces increases in the refactored case.After further investigation,
we find that interestingly this is due to the introduction of a
Blob-DataContainer instance while solving the Blob-Controller
antipattern. However, this is the only case for which Blob
instances increase. Generally, the number of Blob instances is
constant and decreases with 75 or 100 clients and 3 minutes of
load tests running. The increment of antipattern instances (see
+1 entries in Table 14) is observed for EP in two configurations
and for CTH, WCS, and Blob in only one configuration. The
number of EDA instances does not increase in any of the con-
sidered configurations.

Listing 1. Code excerpt of the OwaFilter method detected by JPAD as Blob-Controller antipattern instance.

2886 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

The impact of the antipattern-based refactoring is also
observed on performance indices of interest, i.e., CPU utili-
zation and system response time of the OpenMRS Java
application, results are shown in Table 15. The two perfor-
mance indices are reported for both the original and the
refactored OpenMRS system. The Variation column shows
the observed performance change and is computed as: Vari-
ation = [(Original - Refactored) = Original] � 100. When
Variation > 0, the considered index is smaller for the refac-
tored system than for the original one, meaning that the sys-
tem performance has improved. Table 15 highlights with
bold entries all those for which Variation is larger than 10%.
The relevance of antipattern-based refactoring is shown by
the general enhancement of the OpenMRS application per-
formance (up to 50.47%, observed for the system response
time). The configuration with 25 clients and 3 minutes of
load tests running is the only exception to this observation.
In this case, the response time of the refactored system is
25% longer than the one of the original system even if the
CPU utilization is lower for the refactored system. This may
be due to performance issues that are generated in different
(and previously not critical) parts of the system. We already
observed that the 25-3 configuration introduces a Blob-Data-
Container instance, when solving the Blob-Controller antipat-
tern. This might be the reason for the longer response time.
As future work, we plan to further investigate the solution
of antipatterns and possible implications in generating new
instances.

RQ3: antipattern-based refactoring
Antipattern-based refactoring does not guarantee in
advance neither a reduction of the total number of
detected instances nor an improvement in the system
performance. However, our experimentation shows that
usually less antipattern instances are detected, and most
performance indicators of interest improve. By refactor-
ing OpenMRS, we find empirical evidence on the benefit
of solving one antipattern: 12 less antipattern instances
are detected; on average (across all the analyzed configu-
rations), the CPU utilization is 18.90% lower and the sys-
tem response time is 23.81% shorter. Maximum
improvements for CPU utilization and system response
time are 47.25% and 50.47%, respectively.

5 THREATS TO VALIDITY

Besides inheriting all the limitations related to the perfor-
mance evaluation of Java-based applications [2], our approach
exhibits the following main (construct, conclusion, internal,
and external) threats to validity [75].

Construct Threats. This type of threat is observed when
metrics deviate from the focus of the investigation. To
smooth it, we provide a quantitative evaluation of the
approach motivated by the research questions. We show
that (i) detection rules work on real-world case studies, (ii)
real-life performance issues are captured, and (iii) solving
one antipattern instance improves the system performance.

Conclusion Threats. A threat of this type is related to the
reliability of collected measures. To smooth these threats,
we run all experiments on the same machine. Moreover, the
profiling of the Java applications under analysis is delegated
to the YourKit Java Profiler, a well-assessed and widely-
used tool for this scope [76].

Internal Threats. We thoroughly test JPAD to spot errors
in its implementation. For each experiment (whose setup
can be easily changed by users), when an antipattern
instance is detected, we verify if thresholds are violated. We
recall that JPAD is publicly available [28] for inspection and
to replicate experiments of this paper.

External Threats. We are aware that findings from our
experiments may not transfer to different Java applications.
To increase the external validity, we select software systems
from different domains whose class number ranges from 68
to more than 1k. We also inspect code commits related to
four real-life performance issues that are considered rather
complex to be predicted by state-of-the-art approaches [23].
This way, we evaluate our approach against diverse applica-
tions so that our resultsmay generalize to other case studies.

6 DISCUSSION

In this section, we discuss limitations of our approach that
we consider as open issues paving the way for future
research investigations.

Soundness and Completeness. Our approach currently
detects seven software performance antipatterns experi-
mented on five Java applications belonging to different
domains, and nine specific commits of two further subject
systems used in prior research to extract performance

TABLE 14
Number of Detected Instances in OpenMRS After Applying Antipattern-Based Refactoring.

ToB and ESTare Omitted Since no Instances have been Detected.

TRUBIANI ETAL.: AUTOMATED DETECTION OF SOFTWARE PERFORMANCE ANTIPATTERNS IN JAVA-BASEDAPPLICATIONS 2887

data [77]. Even if we demonstrate that our approach is able
to recognize some performance issues that are not detected
by other approaches in the literature (see Table 13), sound-
ness and completeness are not guaranteed. To partially
address this issue, a preliminary investigation is conducted
experimenting (i) a set of four commits known to fix perfor-
mance issues (see Tables 11 and 12) and (ii) an antipattern-
based refactoring along with the consequent performance
variation on utilization and response time indices (see
Table 15). As future work we plan to strengthen this investi-
gation involving practitioners in the evaluation of JPAD.

Antipattern Specification. Detection algorithms reflect our
interpretation of the textual description of software perfor-
mance antipatterns provided in [26]. We are aware that fur-
ther interpretations can be provided by different stakeholders
(e.g., practitioners), and we leave as part of our future work
the possibility of customizing detection rules and to provide a
flexible framework that reflects multiple interpretations.
More in general, we plan to introduce a domain-specific lan-
guage for software performance antipatterns as support for
users that may define their own detection rules. This way, we
aim to strengthen the specification of antipatterns and to col-
lect the experience of different stakeholders, possibly even
discovering new antipatterns.

Profiling Overhead. The performance monitoring of Java
applications is known to generate overhead [54], a compari-
son of different profiling tools and their overhead is pre-
sented in [78], [79]. In this paper, we use YourKit since both
academia [53], [57] and industrial partners, such as Apple
and Google, employ it as support for evaluating the perfor-
mance of industrial and real-world applications. To par-
tially cope with the overhead introduced by YourKit, all our
detection algorithms include at least one threshold derived
from offsets and average values. Offsets are independent of
the absolute value of considered metrics, and they allow
specifying thresholds based on values that already include
the profiling overhead. This way, JPAD compares perfor-
mance metrics and thresholds that are both affected by the
profiling overhead. We leave as future work the investiga-
tion on the usage of other monitoring tools to compare (and
possibly smooth) the profiling overhead.

Antipattern Thresholds. As argued in [80], thresholds must
be set in software performance antipatterns to express per-
formance requirements (when available), or to establish
boundaries which represent the perception of different

system stakeholders. In fact, users can differently judge the
importance of performance requirements, e.g., the hard-
ware utilization may be associated to monetary costs and
more relevant for system administrators, whereas the exe-
cution time of a service is taken into account mainly by soft-
ware developers. Therefore, JPAD provides the possibility
to specify such thresholds, and this task is intentionally
transferred to users that can decide which numerical values
are more suitable for their purposes. We leave as future
work the possibility of exploring further strategies, possibly
synthesizing the need of different stakeholders.

Software Performance Testing. Test cases are often very
important for an effective dynamic analysis [81]. Our
approach delegates the test design to software engineers
that may focus on general requirements and miss the rele-
vant ones (from a performance-based perspective). Our
experimentation highlights the importance of designing test
suites (see Table 11), and demonstrates that such a selection
can be guided by a preliminary analysis of the CPU utiliza-
tion of software components. However, as future work we
plan to investigate if approaches in the literature dealing
with an efficient design of performance tests [82], [83] can
be integrated in JPAD.

Antipattern-Based Refactorings. This is a very complex
activity, and it is not guaranteed that the number of
detected antipatterns decreases or the system performance
improves. Our experimentation shows that solving one anti-
pattern may generate other antipattern instances; more in
general, antipattern instances can increase and the system
response time can worsen (see Tables 14 and 15). Besides,
the complexity is exacerbated by the possibly large number
of detected antipattern instances, each matching with multi-
ple code refactorings, and it is very difficult to understand
which changes should be prioritized. In our previous
work [33] we proposed a ranking methodology for the eval-
uation of architectural alternatives. We leave as part of
future work to experiment ranking strategies on code refac-
torings thus to better investigate this aspect. Large systems
may show the additional difficulty of being more sensitive
to the impact of code changes, probably due to dependen-
cies (among components) that need to be propagated when
implementing refactorings. Antipattern-based solutions
might be enriched with information about their effect (e.g.,
the involvement of dependent components) to identify
which subsystems are involved in the refactoring process

TABLE 15
Performance Variation (%) Obtained by Applying the Antipattern-Based Refactoring to OpenMRS

2888 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

and may trigger new antipatterns. To automatically fix the
detected antipatterns, it is necessary that code refactorings
undergo a verification process that guarantees their func-
tional correctness.

Guidelines for Developers. When adopting JPAD in prac-
tice, we encourage developers to consider two different
dimensions on the results they get as output. First, one
can determine that a hotspot method shows performance
issues if it is reported as a violation of some antipatterns.
Second, when considering the different system configura-
tions, the presence of the very same hotspot method
(across many system configurations) contributes to the
decision that such a method is indeed relevant for the
performance issues under analysis. Both these two cases
may indicate that such a hotspot method includes sev-
eral design flaws and it indeed contributes to poor sys-
tem performance.

7 CONCLUSION AND FUTURE WORK

In this paper we present JPAD, a tool-based approach to
automatically detect software performance antipatterns in
Java applications. The experimentation is performed on
real-world Java applications from different domains, and
JPAD captures four real-life performance issues that are not
predicted by state-of-art approaches [23], [45], [53]. Results
show the efficiency and accuracy of the proposed approach.
The antipattern detection is executed on 300 configurations
and we exploit such extensive experimentation to build a
ground truth, thus to quantify JPAD accuracy. Overall, the
accuracy is larger than 95% and the F1 score, derived from
precision and recall metrics, is larger than 85% in the con-
sidered cases, leading to assess accurate detection rules.
About efficiency, system configurations are analyzed, on
average, in less than a minute, some configurations require
more time and JPAD always takes less than 5 minutes to
complete the detection of antipatterns. Besides, the number
of detected antipattern instances substantially vary when
experimenting software code commits known to induce
and fix real-life performance issues. Antipattern-based
refactoring turns out to be beneficial, the system perfor-
mance improves up to 47% and 50% when measuring two
specific metrics of interest, i.e., CPU utilization and system
response time, respectively. JPAD points out system charac-
teristics (e.g., number of times a method is invoked) that
lead to performance issues, and its report includes quantita-
tive information. This way, we aim to support software
engineers in the task of taking decisions on which methods
require more attention than others from a performance-
based perspective.

Several research directions have been identified for future
research. First, wewant to extend the specification of antipat-
terns and make them flexible, i.e., users can add and modify
detection rules to provide their own interpretation of antipat-
terns, possibly by introducing a domain-specific language.
Second, we plan to extend the set of analyzed systems, possi-
bly including case studies from the industrial domain to fur-
ther assess both efficiency and accuracy. Third, we plan to
extend JPAD to point out possible directions for antipattern-
based refactorings, but the actual implementation of code fix-
ings is delegated to software engineers who can assure the

preservation of the business logic of applications. Moreover,
the solution process is complex due to the number of
detected antipatterns that may be large, as demonstrated in
this paper, and it is difficult to select which antipattern to
solve first. Hence, we want to investigate concurrent (or pri-
oritized) resolution of multiple antipatterns, this may lead to
inconsistencies due to conflicting solutions for which ad-hoc
methodologies need to be defined.

ACKNOWLEDGMENTS

The authors would like to thank the Editor and the anony-
mous reviewers for their constructive comments and valu-
able feedback. We are also grateful to the Computing and
Network Service for their support in our experiments on the
U-LITE cluster at INFN, LNGS, L’Aquila, Italy.

REFERENCES

[1] C. Hunt and B. John, Java Performance. Englewood Cliffs, NJ, USA:
Prentice Hall Press, 2011.

[2] A. Georges, D. Buytaert, and L. Eeckhout, “Statistically rigorous
Java performance evaluation,” ACM SIGPLAN Notices, vol. 42,
no. 10, pp. 57–76, 2007.

[3] M. Harkema, D. Quartel, B. Gijsen, and R. D. van der Mei,
“Performance monitoring of Java applications,” in Proc. Int. Work-
shop Softw. Perform., 2002, pp. 114–127.

[4] R. Rabiser, S. Guinea, M. Vierhauser, L. Baresi, and P. Gr€unbacher,
“A comparison framework for runtime monitoring approaches,”
J. Syst. Softw., vol. 125, pp. 309–321, 2017.

[5] R. Calinescu, C. Ghezzi, M. Z. Kwiatkowska, and R. Mirandola,
“Self-adaptive software needs quantitative verification at run-
time,” Commun. ACM, vol. 55, no. 9, pp. 69–77, 2012.

[6] H. Zhang and S. Kim, “Monitoring software quality evolution for
defects,” IEEE Softw., vol. 27, no. 4, pp. 58–64, Jul./Aug. 2010.

[7] R. Capilla, M. A. Babar, and O. Pastor, “Quality requirements
engineering for systems and software architecting: Methods,
approaches, and tools,” Requirements Eng., vol. 17, no. 4,
pp. 255–258, 2012.

[8] J. L. De La Vara, K. Wnuk, R. Berntsson-Svensson, J. S�anchez, and
B. Regnell, “An empirical study on the importance of quality
requirements in industry,” in Proc. Int. Conf. Softw. Eng. Knowl.
Eng., 2011, pp. 438–443.

[9] A. Aleti, B. Buhnova, L. Grunske, A. Koziolek, and I. Meedeniya,
“Software architecture optimization methods: A systematic litera-
ture review,” IEEE Trans. Softw. Eng., vol. 39, no. 5, pp. 658–683,
May 2013.

[10] H. Koziolek, “Performance evaluation of component-based
software systems: A survey,” Perform. Eval., vol. 67, no. 8,
pp. 634–658, 2010.

[11] F. Brosig, S. Kounev, and K. Krogmann, “Automated extraction of
palladio component models from running enterprise Java
applications,” in Proc. Int. Conf. Perform. Eval. Methodol. Tools,
2009, pp. 1–10.

[12] S. Voneva, M. Mazkatli, J. Grohmann, and A. Koziolek,
“Optimizing parametric dependencies for incremental perfor-
mance model extraction,” in Proc. Eur. Conf. Softw. Archit., 2020,
pp. 228–240.

[13] C. Heger, A. V. Hoorn, D. Okanovic, S. Siegl, and A. Wert,
“Expert-guided automatic diagnosis of performance problems in
enterprise applications,” in Proc. IEEE Eur. Dependable Comput.
Conf., 2016, pp. 185–188.

[14] A. Van Hoorn, J. Waller, and W. Hasselbring, “Kieker: A frame-
work for application performance monitoring and dynamic soft-
ware analysis,” in Proc. Int. Conf. Perform. Eng., 2012, pp. 247–248.

[15] L. Leite, C. Rocha, F. Kon, D. Milojicic, and P. Meirelles, “A survey
of devops concepts and challenges,” ACM Comput. Surveys,
vol. 52, no. 6, pp. 1–35, 2019.

[16] L. Bass, I. Weber, and L. Zhu, DevOps: A Software Architect’s
Perspective. Reading, MA, USA: Addison-Wesley Professional,
2015.

[17] M. H€uttermann, DevOps for Developers. New York, NY, USA:
Apress, 2012.

TRUBIANI ETAL.: AUTOMATED DETECTION OF SOFTWARE PERFORMANCE ANTIPATTERNS IN JAVA-BASEDAPPLICATIONS 2889

[18] J. Waller, N. C. Ehmke, and W. Hasselbring, “Including perfor-
mance benchmarks into continuous integration to enable
DevOps,” ACM SIGSOFT Softw. Eng. Notes, vol. 40, no. 2, pp. 1–4,
2015.

[19] H. Schulz, D. Okanovic, A. van Hoorn, and P. Tuma, “Context-tai-
lored workload model generation for continuous representative
load testing,” in Proc. Int. Conf. Perform. Eng., 2021, pp. 21–32.

[20] T. Chen, W. Shang, Z. M. Jiang, A. E. Hassan, M. N. Nasser, and
P. Flora, “Detecting performance anti-patterns for applications
developed using object-relational mapping,” in Proc. Int. Conf.
Softw. Eng., 2014, pp. 1001–1012.

[21] A. Nistor et al., “CARAMEL: Detecting and fixing performance
problems that have non-intrusive fixes,” in Proc. IEEE Int. Conf.
Softw. Eng., 2015, pp. 902–912.

[22] Z. Li, T. P. Chen, J. Yang, and W. Shang, “DLFinder: Characteriz-
ing and detecting duplicate logging code smells,” in Proc. IEEE
Int. Conf. Softw. Eng., 2019, pp. 152–163.

[23] J. Chen, W. Shang, and E. Shihab, “PerfJIT: Test-level just-in-
time prediction for performance regression introducing
commits,” IEEE Trans. on Softw. Eng., vol. 48, no. 5, pp. 1529–
1544, May 2022.

[24] M. Harman and P. O’Hearn, “From start-ups to scale-ups: Oppor-
tunities and open problems for static and dynamic program analy-
sis,” in Proc. IEEE Int. Work. Conf. Source Code Anal. Manipulation,
2018, pp. 1–23.

[25] L. Song and S. Lu, “Statistical debugging for real-world per-
formance problems,” ACM SIGPLAN Notices, vol. 49, no. 10,
pp. 561–578, 2014.

[26] C. U. Smith and L. G. Williams, “More new software performance
antipatterns: Even more ways to shoot yourself in the foot,” in
Proc. Int. Conf. Comput. Meas. Group, 2003, pp. 717–725.

[27] C. U. Smith, “Software performance antipatterns in cyber-physical
systems,” in Proc. Int. Conf. Perform. Eng., 2020, pp. 173–180.

[28] C. Trubiani, R. Pinciroli, A. Biaggi, and F. Arcelli Fontana,
“Replication package: Automated detection of software perfor-
mance antipatterns in Java-based applications,” 2022. [Online].
Available: https://doi.org/10.5281/zenodo.5878953

[29] A. Shokri, J. C. S. Santos, and M. Mirakhorli, “Arcode: Facili-
tating the use of application frameworks to implement tactics
and patterns,” in Proc. IEEE Int. Conf. Softw. Archit., 2021,
pp. 138–149.

[30] D. Feitosa, A. Ampatzoglou, P. Avgeriou, A. Chatzigeorgiou, and
E. Y. Nakagawa, “What can violations of good practices tell about
the relationship between GoF patterns and run-time quality attrib-
utes?,” Inf. Softw. Technol., vol. 105, pp. 1–16, 2019.

[31] G. Hecht, B. Jose-Scheidt, C. D. Figueiredo, N. Moha, and
F. Khomh, “An empirical study of the impact of cloud patterns on
quality of service (QoS),” in Proc. IEEE Int. Conf. Cloud Comput.
Technol. Sci., 2014, pp. 278–283.

[32] M. Galster and P. Avgeriou, “Qualitative analysis of the impact of
SOA patterns on quality attributes,” in Proc. IEEE Int. Conf. Qual.
Softw., 2012, pp. 167–170.

[33] C. Trubiani, A. Koziolek, V. Cortellessa, and R. H. Reussner,
“Guilt-based handling of software performance antipatterns in
palladio architectural models,” J. Syst. Softw., vol. 95, pp. 141–165,
2014.

[34] R. Calinescu, V. Cortellessa, I. Stefanakos, and C. Trubiani,
“Analysis and refactoring of software systems using performance
antipattern profiles,” in Proc. Int. Conf. Fundam. Approaches Softw.
Eng., 2020, pp. 357–377.

[35] A.Wert, J. Happe, and L. Happe, “Supporting swift reaction: Auto-
matically uncovering performance problems by systematic
experiments,” in Proc. IEEE Int. Conf. Softw. Eng., 2013, pp. 552–561.

[36] B. Walter, F. A. Fontana, and V. Ferme, “Code smells and their
collocations: A large-scale experiment on open-source systems,”
J. Syst. Softw., vol. 144, pp. 1–21, 2018.

[37] F. A. Fontana, M. V. M€antyl€a, M. Zanoni, and A. Marino,
“Comparing and experimenting machine learning techniques for
code smell detection,” Empirical Softw. Eng., vol. 21, no. 3,
pp. 1143–1191, 2016.

[38] F. A. Fontana, V. Ferme, A. Marino, B. Walter, and P. Martenka,
“Investigating the impact of code smells on system’s quality: An
empirical study on systems of different application domains,” in
Proc. IEEE Int. Conf. Softw. Maintenance, 2013, pp. 260–269.

[39] A. Yamashita and L. Moonen, “Exploring the impact of inter-
smell relations on software maintainability: An empirical study,”
in Proc. IEEE Int. Conf. Softw. Eng., 2013, pp. 682–691.

[40] H. Liu, Z. Ma, W. Shao, and Z. Niu, “Schedule of bad smell detec-
tion and resolution: A new way to save effort,” IEEE Trans. Softw.
Eng., vol. 38, no. 1, pp. 220–235, Jan./Feb. 2012.

[41] D. Hovemeyer andW. Pugh, “Finding more null pointer bugs, but
not too many,” in Proc. Int. Workshop Prog. Anal. Softw. Tools Eng.,
2007, pp. 9–14.

[42] Q. Luo, D. Poshyvanyk, and M. Grechanik, “Mining performance
regression inducing code changes in evolving software,” in Proc.
IEEE Work. Conf. Mining Softw. Repositories, 2016, pp. 25–36.

[43] J. Chen and W. Shang, “An exploratory study of performance
regression introducing code changes,” in Proc. IEEE Int. Conf.
Softw. Maintenance Evol., 2017, pp. 341–352.

[44] D. Alshoaibi, K. Hannigan, H. Gupta, and M. W. Mkaouer, “Price:
Detection of performance regression introducing code changes
using static and dynamic metrics,” in Proc. Int. Symp. Search Based
Softw. Eng., 2019, pp. 75–88.

[45] A. B. De Oliveira, S. Fischmeister, A. Diwan, M. Hauswirth, and
P. F. Sweeney, “Perphecy: Performance regression test selection
made simple but effective,” in Proc. IEEE Int. Conf. Softw. Testing,
Verification Validation, 2017, pp. 103–113.

[46] L. Liao et al., “Locating performance regression root causes in
the field operations of web-based systems: An experience
report,” IEEE Trans. Softw. Eng., vol. 48, no. 12, pp. 4986–5006,
Dec. 2022.

[47] B. A. Tate, Bitter Java. Shelter Island, NY, USA: Manning Publica-
tions, 2002.

[48] B. Dudney, S. Asbury, J. K. Krozak, and K. Wittkopf, J2EE antipat-
terns. Hoboken, NJ, USA: Wiley, 2003.

[49] B. Tate, M. Clark, and P. Linskey, Bitter EJB. Shelter Island, NY,
USA: Manning Publications, 2003.

[50] H. Hallal, E. Alikacem, W. Tunney, S. Boroday, and A. Pet-
renko, “Antipattern-based detection of deficiencies in Java
multithreaded software,” in Proc. IEEE Int. Conf. Qual. Softw.,
2004, pp. 258–267.

[51] P. Leitner and C. Bezemer, “An exploratory study of the state of
practice of performance testing in Java-based open source proj-
ects,” in Proc. Int. Conf. Perform. Eng., 2017, pp. 373–384.

[52] T. Parsons and J. Murphy, “Detecting performance antipatterns in
component based enterprise systems,” J. Object Technol., vol. 7,
no. 3, pp. 55–90, 2008.

[53] C. Trubiani, A. Bran, A. van Hoorn, A. Avritzer, and H. Knoche,
“Exploiting load testing and profiling for performance antipattern
detection,” Inf. Softw. Technol., vol. 95, pp. 329–345, 2018.

[54] V. Hork�y, J. Kotrc, P. Libic, and P. Tuma, “Analysis of overhead in
dynamic Java performance monitoring,” in Proc. Int. Conf. Perform.
Eng., 2016, pp. 275–286.

[55] YourKit GmbH, YourKit java profiler features. Accessed: Dec. 14,
2022. [Online]. Available: https://www.yourkit.com/features/

[56] YourKit GmbH, YourKit Customers. Accessed: Dec. 14, 2022.
[Online]. Available: https://www.yourkit.com/customers/

[57] Y. Zhao, L. Xiao, X. Wang, Z. Chen, B. Chen, and Y. Liu, “Butterfly
space: An architectural approach for investigating performance
issues,” in Proc. IEEE Int. Conf. Softw. Archit., 2020, pp. 202–213.

[58] YourKit GmbH, Profiling overhead: How to reduce or avoid.
Accessed: Dec. 14, 2022. [Online]. Available: https://www.
yourkit.com/docs/java/help/overhead.jsp

[59] G. Canfora, F. Martinelli, F. Mercaldo, V. Nardone, A. Santone,
and C. A. Visaggio, “LEILA: Formal tool for identifying mobile
malicious behaviour,” IEEE Trans. Softw. Eng., vol. 45, no. 12,
pp. 1230–1252, Dec. 2019.

[60] G. Jin, L. Song, X. Shi, J. Scherpelz, and S. Lu, “Understanding and
detecting real-world performance bugs,” in Proc. ACM SIGPLAN
Conf. Program. Lang. Des. Implementation, 2012, pp. 77–88.

[61] J. Thome, L. K. Shar, D. Bianculli, and L. Briand, “An inte-
grated approach for effective injection vulnerability analysis of
web applications through security slicing and hybrid constraint
solving,” IEEE Trans. Softw. Eng., vol. 46, no. 2, pp. 163–195,
Feb. 2020.

[62] X. Zhou et al., “Fault analysis and debugging of microservice
systems: Industrial survey, benchmark system, and empirical
study,” IEEE Trans. Softw. Eng., vol. 47, no. 2, pp. 243–260,
Feb. 2021.

[63] CloudStore synchronizes your data. Accessed: Dec. 14, 2022.
[Online]. Available: https://github.com/cloudstore/cloudstore

[64] TeaStore: A micro-service reference and test application. Accessed:
Dec. 14, 2022. [Online]. Available: https://github.com/Descartes
Research/TeaStore

2890 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

https://doi.org/10.5281/zenodo.5878953
https://www.yourkit.com/features/
https://www.yourkit.com/customers/
https://www.yourkit.com/docs/java/help/overhead.jsp
https://www.yourkit.com/docs/java/help/overhead.jsp
https://github.com/cloudstore/cloudstore
https://github.com/DescartesResearch/TeaStore
https://github.com/DescartesResearch/TeaStore

[65] J. von Kistowski, S. Eismann, N. Schmitt, A. Bauer, J. Grohmann,
and S. Kounev, “TeaStore: A micro-service reference application
for benchmarking, modeling and resource management research,”
in Proc. IEEE Int. Symp. Modelling, Anal., Simul. Comput. Telecom-
mun. Syst., 2018, pp. 223–236.

[66] WebGoat 8: A deliberately insecure Web Application. Accessed:
Dec. 14, 2022. [Online]. Available: https://github.com/WebGoat/
WebGoat

[67] Train Ticket: A BenchmarkMicroservice System. Accessed: Dec. 14,
2022. [Online]. Available: https://github.com/FudanSELab/train-
ticket

[68] X. Zhou et al., “Latent error prediction and fault localization for
microservice applications by learning from system trace logs,” in
Proc. Joint Eur. Softw. Eng. Conf. Symp. Found. Softw. Eng., 2019,
pp. 683–694.

[69] OpenMRS: Medical Record System. Accessed: Dec. 14, 2022.
[Online]. Available: https://github.com/openmrs/openmrs-core

[70] The Apache Software Foundation, Apache Hadoop. Accessed:
Dec. 14, 2022. [Online]. Available: https://hadoop.apache.org/

[71] The Apache Software Foundation, Apache Cassandra: Open
source NoSQL database. Accessed: Dec. 14, 2022. [Online]. Avail-
able: https://cassandra.apache.org/_/index.html

[72] TestDFSIO. Accessed: Dec. 14, 2022. [Online]. Available: https://
github.com/apache/hadoop/blob/master/hadoop-mapreduce-
project/hadoop-mapreduce-client/hadoop-mapreduce-client-
jobclient/src/test/java/org/apache/hadoop/fs/TestDFSIO.java

[73] The Apache Software Foundation, Cassandra Stress. Accessed:
Dec. 14, 2022. [Online]. Available: https://cassandra.apache.org/
doc/4.0/cassandra/tools/cassandra_stress.html

[74] J. Heyman, C. Bystr€om, J. Hamr�en, and H. Heyman, “Locust: An
open source load testing tool,” Accessed: Dec. 14, 2022. [Online].
Available: https://locust.io/

[75] C. Wohlin, P. Runeson, M. Hst, M. C. Ohlsson, B. Regnell, and
A. Wessln, Experimentation in Software Engineering. Berlin,
Germany: Springer, 2012.

[76] T. Mytkowicz, A. Diwan, M. Hauswirth, and P. F. Sweeney,
“Evaluating the accuracy of Java profilers,” ACM SIGPLAN Noti-
ces, vol. 45, no. 6, pp. 187–197, 2010.

[77] M. D. Syer, W. Shang, Z. M. Jiang, and A. E. Hassan, “Continuous
validation of performance test workloads,” Automated Softw. Eng.,
vol. 24, no. 1, pp. 189–231, 2017.

[78] P. Su, Q. Wang, M. Chabbi, and X. Liu, “Pinpointing performance
inefficiencies in Java,” in Proc. Joint Meeting Eur. Softw. Eng. Conf.
Symp. Found. Softw. Eng., 2019, pp. 818–829.

[79] F. David, G. Thomas, J. Lawall, and G. Muller, “Continuously
measuring critical section pressure with the free-lunch profiler,”
ACM SIGPLAN Notices, vol. 49, no. 10, pp. 291–307, 2014.

[80] V. Cortellessa, A. Di Marco, and C. Trubiani, “An approach
for modeling and detecting software performance antipatterns
based on first-order logics,” Softw. Syst. Model., vol. 13, no. 1,
pp. 391–432, 2014.

[81] L. Mariani, F. Pastore, and M. Pezze, “Dynamic analysis for diag-
nosing integration faults,” IEEE Trans. Softw. Eng., vol. 37, no. 4,
pp. 486–508, Jul./Aug. 2011.

[82] S. Mostafa, X. Wang, and T. Xie, “Perfranker: Prioritization of per-
formance regression tests for collection-intensive software,” in
Proc. Int. Symp. Softw. Testing Anal., 2017, pp. 23–34.

[83] D. G. Reichelt and S. K€uhne, “Better early than never: Perfor-
mance test acceleration by regression test selection,” in Proc. Int.
Conf. Perform. Eng., 2018, pp. 127–130.

[84] A. Ali, R. Pinciroli, F. Yan, and E. Smirni, “Batch: Machine learn-
ing inference serving on serverless platforms with adaptive
batching,” in Proc. IEEE Int. Conf. High Perform. Comput., Netw.,
Storage Anal., 2020, pp. 1–15.

[85] K. Nguyen et al., “Yak: A high-performance big-data-friendly gar-
bage collector,” in Proc. USENIX Symp. Operating Syst. Des. Imple-
mentation, 2016, pp. 349–365.

Catia Trubiani is an associate professor with the
Gran Sasso Science Institute (GSSI), Italy. Previ-
ously she collaborated with the Karlsruhe Insti-
tute of Technology in Germany, and the Imperial
College of London in UK. Her research interests
include software performance modeling and anal-
ysis, software quality optimization, uncertainty
propagation, model-based testing and software
architectures. For more information, please visit
https://cs.gssi.it/catia.trubiani

Riccardo Pinciroli received the MS and PhD
degrees in computer engineering from Politecnico
di Milano, in 2014 and 2018, respectively. He is cur-
rently a postdoc fellow in computer science with the
Gran Sasso Science Institute. His research inter-
ests include stochastic modeling, performance
evaluation, energy efficiency, and uncertainty prop-
agation applied to cloud computing, data-centers,
and cyber-physical systems.

Andrea Biaggi received the master’s degree
with the Evolution and Reverse Engineering Lab
of University of Milano Bicocca, Italy, with the
supervision of Prof. Francesca Arcelli Fontana.
He had a fellowship from the same Lab and cur-
rently works as a software engineer in a company
in Milano, Italy.

Francesca Arcelli Fontana is full professor
with the University of Milano Bicocca, Italy. Her
research activity principally concerns software
engineering, in particular software evolution and
reverse engineering, architectural smell detec-
tion, program comprehension, software quality
assessment and managing technical debt. She is
the head of the Software Evolution and Reverse
Engineering Lab with the University of Milano
Bicocca.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

Open Access funding provided by ‘Gran Sasso Science Institute - GSSI’ within the CRUI CARE Agreement

TRUBIANI ETAL.: AUTOMATED DETECTION OF SOFTWARE PERFORMANCE ANTIPATTERNS IN JAVA-BASEDAPPLICATIONS 2891

https://github.com/WebGoat/WebGoat
https://github.com/WebGoat/WebGoat
https://github.com/FudanSELab/train-ticket
https://github.com/FudanSELab/train-ticket
https://github.com/openmrs/openmrs-core
https://hadoop.apache.org/
https://cassandra.apache.org/_/index.html
https://github.com/apache/hadoop/blob/master/hadoop-mapreduce-project/hadoop-mapreduce-client/hadoop-mapreduce-client-jobclient/src/test/java/org/apache/hadoop/fs/TestDFSIO.java
https://github.com/apache/hadoop/blob/master/hadoop-mapreduce-project/hadoop-mapreduce-client/hadoop-mapreduce-client-jobclient/src/test/java/org/apache/hadoop/fs/TestDFSIO.java
https://github.com/apache/hadoop/blob/master/hadoop-mapreduce-project/hadoop-mapreduce-client/hadoop-mapreduce-client-jobclient/src/test/java/org/apache/hadoop/fs/TestDFSIO.java
https://github.com/apache/hadoop/blob/master/hadoop-mapreduce-project/hadoop-mapreduce-client/hadoop-mapreduce-client-jobclient/src/test/java/org/apache/hadoop/fs/TestDFSIO.java
https://cassandra.apache.org/doc/4.0/cassandra/tools/cassandra_stress.html
https://cassandra.apache.org/doc/4.0/cassandra/tools/cassandra_stress.html
https://locust.io/
https://cs.gssi.it/catia.trubiani

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

