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Abstract
Computer simulations are widely used for surrogative reasoning in scientific research.
They also play a crucial role in engineering, more specifically in the design of new
robotic systems, yet the nature of this role has been little discussed so far in the
philosophy of technology literature. The main claim made in this article is that the
notion of surrogative reasoning is central to understanding how computer simulations
can serve the purpose of designing new robots. More specifically, it is argued that
computer simulations can support two forms of surrogative reasoning,which are called
model-oriented and prediction-oriented, whose inferential structure is reconstructed
to some extent. And it is argued that, when computer simulations are used to design
new robots, they are distinctively used in the model-oriented way. By unravelling the
structure of the computer simulation-supported methods adopted in robotic design,
this article may contribute to a finer-grained understanding of the epistemic processes
involved in technological research.

Keywords Computer simulations · Simulation-supported surrogative reasoning ·
Engineering design · Robotics · Robotic models

1 Introduction

It has long been recognized that engineering involves stages of construction and under-
standing. To refine an existing artefact, one must understand how it works and theorise
on what should be changed to improve its functionality. To design and build a brand-
new artefact, one must predict how it would behave if it was designed in a certain
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way or another. The importance of understanding and prediction in engineering is
acknowledged and extensively discussed by van Eck (2016). Yaghmaie (2021, p. 456)
points out that “engineers before everything else are going to predict the properties of
a to-be-built artifact, to explain its future mechanism and to understand its prospec-
tive behaviour”. Notably, as pointed out by Boon and Knuuttila (2009), models of
the (existing or to-be-built) system are generally used to support or achieve these
epistemic purposes. This consideration gives rise to several philosophical problems
that are akin, or connected, to philosophical problems addressed in the philosophy of
model-based science. One is the so-called constitutive problem of engineeringmodels:
“in virtue of what does an engineering model model its target system?” (Yaghmaie,
2021, p. 455). It is not obvious that the relationship holding between models and target
systems in scientific research is the very same relationship holding between models
and target systems in engineering. More specifically, one may question whether the
representation relation characterising model-based science differs from the “design
relation” holding between models and their targets in engineering, which is a problem
discussed by Poznic (2016). Another philosophical problem arising in connection to
the use ofmodels in engineering is the so-called “problem of the non-existing artifact”.
Models of systems that are yet to be built are targetless. How can people utter and
communicate truths about things that are not there to make their propositions true?
This problem has been discussed by Galle (1999).

This article offers an analysis of the structure of some model-based epistemic
processes underlying the design of particular kinds of objects, viz., robotic sys-
tems. It specifically deals with the case in which computer simulations are used
qua concrete models1 as tools to assist in designing new robots. The main claim
made here is that one of their possible roles is to support a particular form of sur-
rogative reasoning (on the robot that is to be built) that is called “model-oriented,
simulation-supported surrogative reasoning”, and labelled MO SsSR.2 This claim
will be supported by analysing the notions of computer simulation, surrogative
reasoning and model-oriented simulation-supported surrogative reasoning, and by
showing—also by reference to an example—that some simulation-supported design
processes in robotics take a model-oriented structure.

This work is meant to contribute to the philosophical debate on simulations in two
distinct ways. First, it should complement the existing literature on the structure of
engineering design processes. van Eck (2016) points out that engineering theoretical
models—that, in his framework, decompose the system to be built into an organised
set of functional components—are primarily used in design as a means to formu-
late counterfactual predictions of the form, i.e., “what would happen if things were
different”, e.g., what would happen if one functional component was replaced by a
different one. Here it is pointed out that computer simulations, qua physical systems

1 The distinction between concrete and non-concrete models has often been made in the philosophical
literature, for example, byFrigg andNguyen (2017),whilstWeisberg (2013) distinguishes between concrete,
computational, and mathematical models. Here, concrete models are taken to be those models which admit
a physical description.
2 It is not claimed here that this is the only possible role for computer simulations in the design of new
robots.
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implementing those theoretical models, may be used to formulate predictions, pos-
sibly counterfactual in van Eck’s sense, on the system to be built (here these will be
called conditional predictions).

Therefore, this article discusses one way in which the epistemic role of engineering
theoretical models envisaged by van Eck can be practically fulfilled. At the same time,
by offering a reconstruction of the structure of computer simulations, this paper is
meant to pave the way for reflection on the factors that can threaten the validity of
those predictions. Second, this research aims to enrich the philosophical literature on
computer simulations, by showing that they may play an important epistemic role
in engineering processes too (whereas the philosophical literature has been mostly
focused on the epistemic role of computer simulations in “pure” sciences) (Datteri
and Schiaffonati 2019).

More specifically, Sect. 2.1will be devoted to an analysis of the notion of a computer
simulation. Drawing from the contemporary philosophical literature on the topic, the
relationship between concrete simulation systems, simulation models, and theoretical
models of the modelled systems will be outlined. Section 2.2 will offer a character-
isation of the notion of surrogative reasoning, which shows that there are two forms
called prediction-oriented and model-oriented surrogative reasoning that can be dis-
tinguished. Section 3 will bring these considerations to bear on the design of new
robots. In Sect. 3.1 the structure of design processes in robotics will be sketched out,
drawing from the literature on the philosophy of technology. In Sect. 3.2 it will be
shown that some parts of these processes may involve computer simulations that are
used qua concrete models to support MO SsSR on the robot that is to be built. This
claim will be exemplified with reference to a study on the control of the whole-body
dynamic behaviour of human-like robots.

2 Theoretical background

2.1 Simulation

The term“simulation” takes on severalmeanings in science and philosophy.According
to Humphreys (1990), simulations are methods for exploring the properties of math-
ematical models where analytic methods are unavailable. Ord-Smith and Stephenson
(1975) define simulations as techniques that involve observing a model to understand
a physical system. Hartmann (1996) takes simulation to denote the result of solv-
ing the equation of a dynamic model using a computer. The term may be used to
denote an algorithm (as in Winsberg, 2009), an activity, a process, or a concrete sys-
tem (e.g., “this computer is a simulation of the Lotka-Volterra equations”). This list
is not exhaustive: other usages can be found in the literature (see Imbert, 2017 for a
comprehensive overview). To avoid terminological misunderstandings, here the terms
“simulation system” and “simulation” are used with different meanings. “Simulation
system” is used to denote the physical system that carries out the simulation. In com-
puter simulations, the simulation system is a digital computer considered as a physical
system. Depending on the context, “simulation” is instead used here to denote the act
of simulating, the process carried out by a simulation system, or, in the broad sense
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introduced by Frigg and Reiss (2009), the entire process of building a simulation
system and using it to achieve some scientifically interesting goal.

As more extensively discussed in the next section (2.2), simulation systems are
typically used as surrogates to learn something about other systems. It is assumed that,
when a simulation system is used for this purpose, it can be regarded as a concrete
model of the system under investigation, which is called the “target system” here in
coherence with the philosophical literature on models.3 The analysis offered in this
paper rests on the assumption that the target systemmay not exist when the simulation
is carried out: one may simulate the behaviour that a non-existing object would have
under certain conditions (this is a possible use of simulations in robotics design, as
clarified below). This gives rise to the difficult problem of understanding what kind
of relationship holds between simulation systems and target systems that do not exist.
This problem has been extensively studied in the philosophical literature4 and will not
be addressed here, as it is beyond the scope of the article: it will be simply assumed that
simulation systems can be models of non-existing systems and that the relationship
between the two can be characterised in some way.

To understand the specific epistemic role played by computer simulations in the
design of new robots it would be helpful to reconstruct the relationship between sim-
ulation systems, qua models, and their targets. Here, borrowing from the relevant
literature,5 it will be assumed that any given simulation system realises a simulation
model that implements a discretized version of a theoretical model of a target system
plus several integration modules. In some cases, the simulation model also comprises
modules simulating the environment in which the target system is (expected to be)
located. This section elaborates on the details of this structure, which is depicted in
Fig. 1.

The simulation system,qua physical computer, realises the simulationmodel,which
is a computer program, typically modular and complex.6 The simulation model imple-
ments a discretized version of a theoretical model of the target system. In some

3 Justifying this assumption would require one to evaluate the relationship between computer simulations
and their target systems against some philosophical account of what makes an object a (concrete) model
of another object (a detailed survey can be found in Frigg & Nguyen, 2017). This goal will not be pursued
here. In this respect, this article aligns with some of the most influential philosophical accounts of computer
simulations (including Weisberg, 2013; Winsberg, 2003), which regard computer simulations as models.
4 Consider, for example, Frigg and Nguyen’s (2017) discussion of the problem of targetless models, which
they introduce as follows: “Models of ether, phlogiston, four-sex populations, and so on, are all deemed
scientific models, but ether, phlogiston, and four-sex populations don’t exist. Such models lack (actual)
target systems, and one hopes that an account of epistemic representation would allow us to understand
how these models work” (p. 54). One particular version of the problem of the targetless models is the
problem of the absent artefact (Galle, 1999), which calls for an understanding of how engineering models
can be used to support truths about non-existent entities. So-called fictional accounts of scientific models
are particularly suited to accommodate the possibility of targetless models (Frigg, 2010). Massimi (2019)
shows how targetless models successfully deliver varieties of modal knowledge in science.
5 This reconstruction is not meant to add anything novel to the literature on computer simulations and
simulation models. In the form presented here, it is largely consonant with (Durán, 2020). However, it is
not claimed here that this is the only framework functional to the purposes of this paper.
6 The nature of the realisation relationship that may hold between the simulation model and the simulation
system—more generally, the problem of determining under what conditions a physical system can be said
to realise a given program—is beyond the scope of this article (see Rescorla, 2014 for a proposal).
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Fig. 1 The relationships between target system, theoretical model, simulation model, simulation system

cases—including those covered by the discussion made in Sect. 3—the theoretical
model takes the form of a functional (or mechanistic) model,7 decomposing the tar-
get system into an organized set of functional modules T1, …, Tn. Therefore, the
distinction between a simulation model and a theoretical model needs to be clarified
further. The simulation model is the program “running” on the simulation system,
whilst the theoretical model is the model of the target system that the researcher uses
when theorising on it. Even though, in principle, the theoretical model may coincide
with the simulation model, in some cases it will not. Robotics is a case in point. Sim-
ulation models of robotic systems typically do not coincide with theoretical models
of those systems, especially because (1) robots are not fully algorithmic systems, and
(2) simulation models of robots typically include components that are unrelated to the
simulated robot.

7 Functional models are taken here to be theoretical models that decompose the target system into a set of
functional modules, i.e., parts of the target system identified by the function they play in the framework of
the system. For example, a functional model of a robotic system may mention a “distance sensor” module
whose function is to acquire information on the distance between the robot and the closest object. For some
purposes, it may be important to characterise functional modules also in terms of input-output regularities.
It is also assumed here that functional models may describe mechanisms—in other words, that mechanisms
can be described functionally, as organised sets of functionally identified parts. This working definition
suffices for the present purposes, and a no more specific account of functional modelling will be provided
here.
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As far as point (1) is concerned, recall that the simulation model is a program.
Thus, if the simulation model is regarded as a theoretical model of the target system,
then the researcher uses a program as a theoretical model to theorise about the target
system. In some areas of scientific research, chiefly including cognitive science, it
has been claimed that programs can be directly regarded as theories (versions of this
idea have been put forth by Cummins, 1977, 1983; Johnson-Laird, 1983). However,
computer simulations are carried out also in areas that do not adopt this epistemolog-
ical approach. If the simulation model is a program, and the theoretical model is not
couched in that format, then the simulation model will be conceptually distinguish-
able from the theoretical model. Neuroscience and physics—fields in which computer
simulations are frequently used—are cases in point. In engineering, as more exten-
sively discussed in Sect. 3, the target system’s theoretical model typically consists of a
functional model, which is prima facie different from a program. One may object that
a functional model can be conceived as a modular program, the function of each mod-
ule being fulfilled by a part of the program. However, leaving aside considerations of
abstraction and generality (functional models typically do not specify the details of the
program running “inside the boxes”), there is a good reason to believe that theoretical
(functional) models of robotic systems, to be useful for epistemic (predictive, explana-
tory) and constructive purposes, cannot be couched in terms of programs. Robots are
composed of sensors, effectors, and a control system. Typically, sensors and effectors
are modelled in non-algorithmic terms. For example, direct current motors are gen-
erally modelled in terms of a relationship between electrical energy and mechanical
energy, where the “input” and “output” parameters range over the set of real numbers.
Some sensors (e.g., photoresistors) are modelled in terms of relationships between
properties of the environment and electrical properties of the component itself, both
ranging over the set of real numbers. Their input–output behaviour can be simulated
using a program, but one thing is that program, and another thing is the functional
representation that is used as a blueprint to build the robotic system (e.g., to choose the
“right” physical sensor on the market) or as a theoretical basis to formulate predictions
or explanations.

The control system needs a separate consideration. Most robots are controlled by a
digital computer onwhich a program is running. Thus, this particular component of the
target system—namely, the control system—is a program “in itself”. More precisely,
formost epistemic and constructive purposes, the theoreticalmodel of a robotic system
will consist in a combination of a non-algorithmic functional model (the sensors, the
effectors) and a functional model that is specified algorithmically (the control system).
The control module is a zone of (partial8) overlapping between the theoretical model
and the simulation model.

There is another reason for distinguishing between the two. As pointed out before,
the simulation model is a program that must run on a digital computer. This implies

8 The overlapmay only be partial. It can be that the theoreticalmodel of the control system is a fully specified
program. In this case, there may be a full overlap (if the very same program “runs” in the simulation system
too). Or it could be that the theoretical model of the control system is an algorithm specified at a higher level
of abstraction or containing gaps—for example, the designer might be content, given their current purposes,
with a sketchy and abstract description of the control system. In this case, the corresponding module of the
simulation model will not coincide with that description.
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that the simulation model will have to include modules that are needed for it to run
correctly, even though they are unrelated to the theoretical model. These include what
Durán (2020) calls integration modules, which integrate external databases, protocols,
libraries and the like with the rest of the program, and ensure synchronisation, efficient
data exchange, and internal compatibility. Moreover, in simulations of robots, the
simulation model typically includes modules that simulate the environment in which
the simulated robot operates. The fact that the simulation model includes a variety of
modules that are neither related to, nor constrained by, the theoretical model of the
target system is another reason for believing that the two kinds of models must be kept
conceptually distinct from one another.

The considerations made so far presuppose neither that, in the building of a sim-
ulation system, one always formulates the theoretical model temporally before the
implementation of the simulation model, nor that one always must make the theoret-
ical model explicit. One may write the program first and then derive the theoretical
model of the target system.Or onemay simply be content withwriting the program and
observing its outcomes. So, what is the point of distinguishing the simulation model
from the theoretical model, and claiming that the former implements a discretization
of the latter? The role of the theoretical model clearly emerges when the simulation
system is used in the framework of an engineering (robotic) construction process. In
engineering, as more thoroughly discussed below, the simulation system is used to test
a design of the system to be built. Based on the simulation outputs, one may be led to
accept or reject a particular design—i.e., to conclude that the design under scrutiny can
be sent to production, or that it fails and should be rejected as it stands. For the reasons
illustrated above, the simulation model does not display the “right” features for being
a design of the robotic system. The simulation model is a program, while some robotic
components are non-algorithmic in the sense clarified above. Moreover, it contains
parts that are totally unrelated to the system to be built. Therefore, it is the theoret-
ical model that plays a crucial role in the design and construction process. Though
the designer may well start from a simulation model, without dealing first with the
complexities of formulating a theoretical model of the robot to be built, when it comes
time to build the system, they will have to “translate” the simulation model back into
a theoretical model which has fewer (and partially different) modules, some of which
will be non-algorithmic. The text of a computer program simulating a mechanical
arm is not particularly helpful as a blueprint to decide what mechanical and electrical
properties a real-life robotic arm must have to fulfil the intended role.

2.2 Two kinds of simulation-based surrogative reasoning

“Surrogative reasoning” is a term introduced by Swoyer (1991) and largely used in the
literature about scientific modelling. Surrogative reasoning, in Swoyer’s terms, con-
sists in “reason[ing] directly about a representation in order to draw conclusions about
the things that it represents” (p. 449). Surrogative reasoning, defined in these terms,
is one of the most widespread uses of models qua representations of other systems.
Indeed, Frigg and Nguyen (2017) claim that every acceptable theory of scientific rep-
resentationmust account for howmodels can be used as surrogates for reasoning about
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their target systems. In Sect. 2.1, a schematic analysis of the structure of computer
simulations was offered, according to which any given simulation system realises a
simulation model implementing a discretized version of a theoretical model of a target
system. The purpose of this section is to suggest that simulation systems can be used to
support two particular forms of surrogative reasoning called here “prediction-oriented”
and “model-oriented”. Surrogative reasoning performed via computer simulations, or
simulation-supported surrogative reasoning, will be referred to as SsSR for short. Note
that it is not claimed here that these two forms of surrogative reasoning can be sup-
ported by computer simulations only: indeed, there are good reasons for believing
that they can be carried out using other kinds of models too, and in other branches
of scientific research. The goal of this article is to reflect on how simulation systems
can be used within the process of designing new robots, and not to identify forms of
surrogative reasoning that are specifically enabled by computer simulations. The dis-
tinction between prediction-oriented and model-oriented SsSR is made here in order
to single out the particular form of surrogative reasoning that computer simulations
support in the design of new robots—viz., as later explained, the model-oriented one.

Some remarks on SsSR will be helpful to elaborate on this point. First, SsSR is
conceived here as an activity carried out by a human agent. It will therefore be said that,
in SsSR, an agent uses a simulation system to perform surrogative reasoning about a
target system.That activity crucially involves analysing the behaviour of the simulation
system in particular circumstances. Second, SsSR is taken here to be an activity that
involves drawing conclusions about the target system based on the behaviour of the
simulation system—in other words, an activity that leads the agent to accept or reject
(more generally, to test) a hypothesis about the target system.9 Putting these things
together, SsSR is conceived here as an activity in which an agent tests (i.e., accepts or
rejects) a hypothesis about the target system based on the behaviour of the simulation
system.

SsSR may lead the agent to accept or reject various kinds of hypotheses about
the target system. In some cases, SsSR is performed to learn something about the
behaviour that the target system would display when some conditions C occur. A neu-
roscientific example is discussed in (Datteri, 2020): Reimann and colleagues (2013)
use a large-scale simulation system to learn how particular brain signals, called local
field potentials, would vary under particular input and boundary circumstances. The
hypothesis that the agent accepts or rejects, in this case, may be reconstructed using
the following template: “in conditions C, the behaviour of the target system would be
such and such”, where “such and such” stands for a behavioural description. Mete-
orological simulations used to predict tomorrow’s weather are another case in point:
when the agent accepts the hypothesis that tomorrow it will rain, based on the output
of the simulation system, they accept a hypothesis stating that in some temporal cir-
cumstances (i.e., tomorrow) the atmospheric system will display a certain behaviour.

9 “Accepting” and “rejecting” a hypothesis consist in including that hypothesis in, or excluding it from, the
set of hypotheses that are believed to be true by the model user. The term “hypothesis” is intentionally used
here in a very general sense: a hypothesis about the target system is any statement concerning the target
system. The hypotheses considered in this paper may take the form of behavioural predictions (about the
target system) or of descriptions of mechanisms (governing the behaviour of the target system).
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The term “prediction” is often used in the philosophical literature to denote state-
ments concerning the behaviour that a system would display in some circumstances,
not necessarily occurring in the future: for this reason, this kind of SsSR will be called
“prediction-oriented” (PO) from now on (and it will be said that, in this case, the agent
is making a PO use of the simulation system). To sum up, the working definition of
PO SsSR that will be used from now on is as follows.

PO SsSR: an activity in which an agent tests a hypothesis of the form “in condi-
tions C, the behaviour of the target systemwould be such and such” based on the
behaviour of a simulation system that realises a simulation model implementing
a discretized version of a theoretical model of the target system.

In other cases, SsSR is performed to test a hypothesis about the mechanism pro-
ducing the behaviour of the target system. The hypothesis that the user accepts or
rejects, in this case, has the form “the behaviour of the target system in conditions
C can be produced by mechanism M”, where M is the description of a mechanism.
As discussed by Datteri (2020), a large-scale brain simulation was used by Hay and
colleagues (2011) to test hypotheses on the mechanism producing the electrical pro-
file of some pyramidal neurons. Meteorological simulations are occasionally used to
test hypotheses on the atmospheric mechanisms that generated (or could generate) a
typhoon under some circumstances.When a simulation system is used to test hypothe-
ses of this kind, the SsSR will be called “model-oriented” (MO), and it will be said
that the user is making a MO use of the simulation system. The term “mechanism
description” is taken here to be akin to the notion of “theoretical model”, as defined
in Sect. 2.1: it is assumed that mechanisms can be described as functional models
decomposing the target system into an organized set of functional modules (see also
footnote 7). To sum up, the working definition of MO SsSR that will be used from
now on is as follows.

MO SsSR: an activity in which an agent tests a hypothesis of the form “the
behaviour of the target system in conditions C can be produced by mechanism
M”, where M is the description of a mechanism, based on the behaviour of a
simulation system that realises a simulation model implementing a discretized
version of M.

PO andMOSsSR, conceived as activities, differ from one another in the form of the
hypothesis that the user tests using the simulation system. To use a simulation system
to test a hypothesis about the behaviour that the target system would display under
certain circumstances is one thing, to use it to test a hypothesis about the mechanism
that could produce that behaviour is another thing. The two forms of SsSR may also
differ from one another in the structure of the reasoning process carried out by the
user, and in the nature of the auxiliary assumptions that are needed to draw the two
kinds of theoretical conclusions.

The reasoning process carried out inMOSsSR is typically comparative. In standard
cases ofMOSsSR, the agent compares the behaviour of the simulation systemwith the
behaviour of the target system under specific circumstances. If the twomatch with one
another (i.e., if the simulation system reproduces the behaviour of the target system)
at some level of approximation, the user may be induced to accept the hypothesis that
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M—a discretized version of which is implemented in the simulation model realised by
the simulation system—could produce the behaviour under investigation. Otherwise,
the agentmay be induced to exclude it from the space of the possiblemechanisms. This
is the reasoning behind instantiations of the so-called “synthetic method” exemplified
by the study by Hay and colleagues (2011) and extensively applied in Artificial Intel-
ligence (see, for example, Simon&Newell, 1962): in order to test whether a particular
mechanism is responsible for some behaviour, one implements that mechanism in a
machine and assesses whether the machine is able to reproduce that behaviour.

The considerations made in the previous section enable one to acknowledge the
argumentative efforts needed for the agent to justify their acceptance of that hypothe-
sis and the factors that may threaten the validity of this inference. One has to assume
that the mechanism description has been correctly “translated” into the simulation
model, under some philosophical account of “correct translation”, also considering
the fact this translation may have involved adjustments and simplifications to ensure
computational tractability. One must also assume that all the other parts of the simu-
lation model that are unrelated to the mechanism description (notably, the integration
modules) did not introduce behavioural perturbations, or find a proper way to neu-
tralise their effects. It is also necessary to assume that the environment was accurately
simulated. Moreover, many different mechanism descriptions could produce the same
behaviour in simulation. MO SsSR may enable one to conclude that M can produce
the behaviour under investigation, but additional assumptions are needed to draw the
further conclusion that M describes the mechanism that actually governs the target
system.

Such a comparative strategy is typically not performed in PO SsSR. In this kind
of study, one typically analyses the behaviour of the simulation system and interprets
it as the behaviour that the target system would generate under similar circumstances
(using an interpretive framework that includes a mapping from the behaviour of the
simulation system to the behaviour of the target system, possibly based on the ana-
lytical interpretation discussed by Contessa, 2007). As in MO SsSR, justifying one’s
acceptance of a PO hypothesis may require the acceptance of auxiliary assumptions
that are far from self-evident. Often, the predictive validity of the simulation system is
justified by arguing that it realises an accurate implementation of a “good” theoretical
model of the target system. This requires one to argue, at least, that the simulation
model accurately implements (whatever “accurately” maymean) a discretized version
of a “good” theoretical model of the target system (whatever “good” means).10

One may doubt that MO and PO SsSR really differ from one another. In PO SsSR,
the simulation system is used to predict the behaviour that the target system would
generate under particular circumstances. But the MO SsSR may be seen as involving
a prediction too. Indeed, the behaviour of the simulation system can be regarded as the
behaviour that the target system would generate under particular conditions if it was
governed by the hypothesized mechanism (under the auxiliary assumptions described
above). The reasoning behind MO SsSR requires that the user accept this kind of
prediction about the target system. The agent ascertains that the simulation system

10 Note that PO and MO SsSR are described here as two kinds of reasoning activities that the user may
perform several times in the context of any given study. The same simulation system can be used for PO
and MO purposes at different times. See (Datteri, 2020) for a discussion.
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can reproduce the behaviour of the target system, and from this consideration, they
conclude that the hypothesized mechanism can produce it. To reach this conclusion,
the agent must accept the “internal” hypothesis that the behaviour of the simulation
system predicts the behaviour that the target system would display if it was governed
by the hypothesized mechanism—and, since this prediction ended up being true, they
conclude that the target system can be governed by that mechanism. To sum up, in a
sense, both PO and MO SsSR involve predicting the behaviour of the target system.

On a closer look, however, the form of the two kinds of prediction is different in
a sense that reflects the fundamental difference between PO and MO SsSR. While,
in the PO case, one ends up accepting a hypothesis of the form “in conditions C, the
behaviour of the target system would be such and such”, in MO SsSR one accepts a
hypothesis stating that “in conditions C, the behaviour of the target system would be
such and such if the target system was governed by the hypothesized mechanism”. To
predict that tomorrow it will rain is one thing, to predict that tomorrow it would rain if
a certain atmospheric theoretical model was true is another thing. To predict how some
neural cells would behave under the effects of some drugs is one thing, to predict how
some neural cells would behave under the effects of some drugs if a certain theoretical
model of those cells was true is another thing. To emphasise this difference, which
is crucial to the ensuing discussion, the term “conditional prediction” will be used
to denote the kind of predictions made in MO SsSR, while the term “unconditional
prediction” will be used to denote the predictions made in PO SsSR. The notion of
conditional prediction plays a central role in the ensuing methodological analysis
of simulation-based surrogative reasoning in robotics: in the next section, it will be
argued that simulation systems are used for surrogative reasoning in the design of
robotic systems and that, more specifically, they are used to formulate conditional
predictions about the system to be built in the framework of a MO form of SsSR.11

3 Simulation-based surrogative reasoning in robotics

3.1 The engineering design process

Once dubbed “fake robotics” (Amigoni & Schiaffonati, 2017), computer simulations
are now being recognized as tools to serve a variety of purposes in robotics. According
to a recent review (Choi et al., 2021), they can be useful to simulate the dynamics of
existing robotic systems and the world in which they are expected to operate. Real-
world contexts are typically unstructured and relatively chaotic, especially if they
are inhabited by humans. Nevertheless, current technologies enable one to simulate
them to a reasonable degree of accuracy, and concurrently predict the behaviour of
(simulated) existing robots in many foreseeable circumstances. These predictions may
be taken as a basis to test the functionalities of the robot, in a way that is much safer and
quicker as compared to real-world experiments (Collins et al., 2021). Notwithstanding

11 MO SsSR involves formulating conditional predictions of this sort. This does not mean that MO SsSR
reduces to formulating conditional predictions: as discussed in the text, there is more to MO SsSR than
the formulation of a conditional prediction. MO SsSR also involves a comparison between the conditional
prediction and the behaviour of the target system.
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some limitations (discussed in Choi et al., 2021), computer simulations are often
thought to be ways to accelerate the engineering design cycle and reduce its costs (Liu
& Negrut, 2021).

Simulations are also regarded as tools for designing the robots of the future (Žlajpah,
2008), more specifically, as tools for designing and building new (i.e., not existing)
robots. The considerations offered in Sect. 2 will be used from now on to argue that,
when they are involved in the design of new robots, simulations are used to carry
out model-oriented (MO) surrogative reasoning. Simulations therefore play, in the
design of a new robot, a somewhat analogous role played in simulation-supported,
model-oriented investigations on the mechanisms underlying physical, biological, and
cognitive phenomena (exemplified by the aforementioned study by Hay et al., 2011):
they lead one to test hypotheses on the mechanism that can produce the behaviour of
the robot to be built—more precisely, its desired behaviour.

The key stages of engineering design processes, as recently reconstructed in the
philosophy of technology and engineering literature (see Michelfelder & Doorn, 2021
for a comprehensive overview of the topic), can be sketched as follows. Engineering
design starts with the definition of the behaviour of the artefact to be built. This is
a complex process that has been discussed in a systematic way using the notion of
“technical artefact”. As defined by Vermaas and colleagues (2011, p. 7), “a technical
artefact [is] a physical object with a technical function and use plan designed andmade
by human beings”. Accordingly, technical artefacts can be characterised in terms of
their technical function (what is the technical artefact for?), their physical composition
(what does the technical artefact consist of?) and a use plan (how must the technical
artefact be used?). Engineering design, regarded as the making of a technical artefact,
is a process composed of different phases, in which certain function descriptions are
translated into a blueprint for an artefact or a service that can fulfil these functions
(Kroes, 2021). In the process of designing technical artefacts, two kinds of descriptions
play a role: the functional description (the technical artefact x is for y, where y is an
activity) and the structural one (the technical artefact x has this shape,mass, form, etc.).
Schematically, engineering design can be seen as a process that translates functions
into structures, so that the technical artefact realises the technical function, together
with some specific wishes usually expressed by a client. A technical function can
be interpreted as a desired physical property or capacity of the technical artefact
(Vermaas et al., 2011). For example, the technical function of a vacuum cleaner robot
is to autonomously clean a space.

The starting point of this process consists in formulating the wishes or desired
behaviours that will later be translated into design specifications.Design specifications
express the desired behaviour of the technical artefact. For example, a client (be it a
company or a person) may wish to have a vacuum cleaner robot that is fast and
cheap. The technical function (i.e., the robot vacuum cleaner’s ability to clean) is a
necessary but not sufficient component of the desired behaviour: for example, one
might also want the vacuum cleaner to be fast and cheap. The desired behaviour
of the artefact, so constructed, can be translated into different design specifications
that will later constrain the actual building of the object. For instance, the cheapness
wish can be translated into design specifications that prescribe one to use low-cost
material or minimise the number of the components. Franssen (2020) points out that
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design specifications, expressing the desired behaviour of the artefact, may include
requirements (e.g., cheapness and quickness) as well as constraints that have their
origin elsewhere, such as the properties of the materials or government regulations
and industry standards.

Usually, clients do not state their wishes in a sufficiently detailed and precise way,
so engineers intervene in this phase to refine and complete the clients’ wish list. For
example, the vacuum cleaner robot, in addition to being fast and cheap, must also
be safe, a design specification usually taken for granted and not explicitly stated by
the users. The process leading to a well-defined engineering problem involves not
only detailing the wishes, but also rephrasing them in engineering terms—often, in a
precise and quantitative way. For example, the “quickness” wish may be formulated
in terms of the time needed for the robot to map and clean a determined portion of an
environment. Moreover, iterative changes and adjustments may be needed to arrive
at a stable set of design specifications. When this goal is achieved, one has what is
usually called, in the literature on philosophy of technology, awell-defined engineering
problem.

The successive stage consists in formulating a set of designs that may enable the
artefact to meet the design specifications. Designs may be regarded as descriptions of
the functional, physical, or computational structure of the system to be built (Kroes,
2021): if the design specifications statewhat the technical artefact should do, the design
states how itwill do that. Usually, designerswill come outwith several possible designs
that need to be tested. It is at this point that computer simulations may enter the stage.

3.2 Computer simulations in the design of robotic systems

According to van de Poel and Royakkers (2011, p. 166), simulation is “the stage of the
design process in which the designer or the team checks through calculations, tests,
and simulations whether the concept designs [designs in our terms] meet the design
requirements [design specifications in our terms]”. How can the role of simulations
be characterised, and what use is made of their output? It is argued here that, in
the design of new robotic systems, computer simulations are used to support MO
surrogative reasoning. In this context, computer simulations are used to discover the
“right” design, i.e., the design that may enable the to-be-built robot to meet the design
specifications.

The concept of “design”, that is traditionally used in the philosophy of technology
and engineering literature, shares some similarities with the concept of theoretical
model (of the to-be-built robotic system) discussed in Sect. 2. In engineering, theoret-
ical models of the target system are used both to predict and explain the behaviour of
the target system (be it existing or non-existing), and to design and build the target sys-
tem (when non-existing): in this second case, they constrain the construction process.
As discussed in (van Eck, 2015), they often assume the form of functional models
describing the mechanism (supposedly) governing the artefact. Functional models are
models that decompose the target system into an organised set of functional modules,
each one identified by the function it performs within the system. In computer simula-
tions of robotic systems, the system modelled by a theoretical model is a robot. Each
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functional module T1, …, Tn of a theoretical model represents a part t1, …, tn of the
target robotic system (including the sensors, the effectors, the control system or parts
thereof). In this perspective, the design of a robot is the description of an organised
structure of functional modules T1, …, Tn representing parts t1, …, tn of the target
robotic system.Designing a robotic system amounts to formulating a theoreticalmodel
of it, and a “good” design will make the system comply with the previously formulated
design specifications. In this respect, design—considered as a process—is iterative:
one tentatively proposes a design, tests if it lives up to its expectations, and if the test
fails a revised design is produced. How can the testing be carried out in engineering
design? One option is to build a concrete prototype of the robotic system, based on
the theoretical model under scrutiny, and check if it meets the design specifications.
However, this process may be expensive and time-consuming. Another option is to
build a simulation system based on the tentative theoretical model and check if it meets
the design specifications. In that case, one may be led to accept the hypothesis that the
theoretical model is the “right” design; otherwise, one may be induced to reject this
hypothesis and, possibly, revise the theoretical model.

Since the simulation system is used to learn if the robot, when built as described in
the theoretical model, would meet the design specifications, it is reasonable to claim
that it plays an epistemic role in the design process. More specifically, in the recon-
struction of the simulation-based robotic design made here, simulation systems are
used to formulate what have been called conditional predictions about the robot to be
built, viz. predictions of the form “in conditions C, the behaviour of the robot would
be such and such if the robot was governed by that theoretical model”. In the design
of a robotic vacuum cleaner, the simulation system would enable one to generate
the behaviour that the robot would display if it were governed by the design under
scrutiny—thus enabling one to understand whether it could meet the design specifi-
cations (e.g., whether it could clean a given portion of space in the desired amount
of time). Conditional predictions, when evaluated against the design specifications,
enable one to accept or reject the hypothesis that the simulated mechanism can pro-
duce that behaviour. This process is a slightly adjusted version of what has been called
model-oriented simulation-supported surrogative reasoning (MOSsSR). As discussed
before, MO SsSR provides evidence to accept or reject the hypothesis that a particular
mechanism can produce the behaviour of the target system and can therefore play an
important role in mechanism discovery. In the context discussed here—the design of
a non-existing robot—the behaviour of the target system (i.e., the robot to be built)
is clearly unavailable. However, the designer has what have been called design speci-
fications, which, in the sense discussed before, describe the desired behaviour of the
technical artefact. The conditional predictions about the non-existing robot generated
via the simulation system are compared with its desired behaviour, and the outcome
of the comparison is taken as an empirical basis to accept or reject the hypothesis that
the theoretical model is a mechanism producing the desired behaviour of the robot.

To sum up. In scientific research, MO SsSR is a form of surrogative reasoning that
enables one to test hypotheses concerning the mechanism that produces the known
behaviour of existing systems.Akey stage in robotic design consists in testing hypothe-
ses concerning themechanism thatwill produce thedesired behaviour of anon-existing
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system. Simulation systems, when used in robotic design, constitute surrogates for rea-
soning about the behaviour of the non-existing robot. As inMO SsSR, they are used to
obtain conditional predictions about its behaviour. As in MO SsSR, these conditional
predictions are compared with the desired behaviour of the target system, in order to
assess whether a certain theoretical model could produce that behaviour. As in MO
SsSR, the simulation system plays a key role in discovering a mechanism: indeed,
the robot design process can be seen as the iterative discovery of one of the possible
“right” mechanisms, i.e., a mechanism that, when built into the robotic system, will
make it meet the design specifications (Fig. 2).

These considerations can be illustrated by referring to the study described in (Kathib
et al., 2004). The authors elaborate a theoretical framework for controlling the whole-
body dynamic behaviour of human-like robots and test it using computer simulation.
The design of humanoid robots poses important challenges: in particular, if one wants
the robot to be socially accepted and to smoothly interact with human users, its move-
ments should be fluid and human-like regardless of how many tasks the robot is
carrying out at the same time. This means that some aspects that are less important
in industrial robots must be part of the desiderata of social humanoid robots, chiefly
including smooth whole-body coordination and the ability to perform several tasks
simultaneously. For example, the robot should be able to reach particular positions

Fig. 2 In robotic design, the output of the simulation system is compared with the design specifications. The
result of the comparison may be used to test the theoretical model (or design) of the robot to be built, but
may also be affected by the structure and content of the simulation model
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in space with its hands, and at the same time control its global centre of mass in
order to maintain whole body balance. Khatib and colleagues propose a theoretical
framework that enables the robot to dynamically coordinate two tasks: a primary task
(e.g., moving the hands towards a particular point) and a secondary task (e.g., postural
control).

Discussing the details of this framework would go beyond the scope of this article.
What matters for the present purpose is that the process of designing this framework
can be reconstructed using the terminology introduced here. The wish consists in
the development of robots whose movements are as similar as possible to those of
humans. This wish, loosely expressing the desired behaviour of the robot, is translated
into design specifications, which include the ability to coordinate dynamically and
smoothly a primary and a secondary task. These design specifications are translated
into a design (or theoretical model) that consists in a set of differential equations.
Notably, this design is tested using a simulation environment developed by the authors
of the study. The virtual environment integrates mechanisms for multi-robot control,
multi-body dynamics, multi-contact multi-body resolution and haptic interaction for
robot teleoperation (the integration modules presented in Sect. 2).

Kathib and colleagues describe a few simulation experiments carried out in the
study. In one of them, the robot must maintain a fixed position with the left hand
(primary task) while oscillating the left elbow (secondary task). Two different theo-
retical models are implemented and evaluated in simulation: a so-called dynamically
consistent controller and a non-dynamically consistent controller. The two theoret-
ical models produce different outputs in simulation. In particular, the dynamically
consistent theoretical model is found to meet the design specification better than the
non-dynamically consistent one. These outputs therefore enable the designers to for-
mulate conditional predictions of the behaviour of the non-existing robot: if the robot
implemented the dynamically consistent theoretical model, it would meet the design
specification better than the non-dynamically consistent one. This evaluation—of the
simulation outputs against the design specification—in turn, enables the authors to
provisionally accept the hypothesis that the dynamically consistent theoretical model
can produce the desired behaviour of the to-be-built robot. In this study, the simulation
system is used for MO surrogative reasoning, i.e., to know how the system to be built
would behave if it were governed by particular theoretical models, and is crucially
involved in the discovery of the theoretical model that is sufficiently qualified to be
moved forward to production.

The methodological reconstruction offered in this article has nothing to say on
what comes after a theoretical model has been chosen, notably including the actual
building of the theoretical model into a real-life system. However, the analysis of sim-
ulation models and surrogative reasoning made in the previous section enables one
to reveal part of the methodological complexities involved in simulation-supported
robotic design, which are somehow analogous to the complexities involved in the dis-
covery of mechanisms via model-oriented surrogative reasoning in scientific research.
First, the fact that a particular theoretical model is selected as a “good” model of the
system to be built does not exclude that other theoretical models might have met the
design specifications equally well. This is analogous toMO SsSR in science: this form
of surrogative reasoning enables one to conclude, at most, that a particular theoretical
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model can produce the behaviour of interest, but it does not provide conclusive reasons
to exclude that other theoretical models might be as effective. This underdetermination
problem is of some importance in scientific research (especially if the ultimate goal
is to formulate a good mechanistic explanation of the behaviour of the target system),
whilst it may be less serious in robotic design, since designers may well be content
with arriving at one mechanism that is sufficiently effective in producing the desired
behaviour. Second, whether a particular theoretical model is selected as a “good”
model of the system to be built or not crucially depends on the content of the design
specifications. Adding, removing, or changing the content of the design specifications
may change “good” theoretical models into “bad” ones and vice versa. Similarly, in
scientific research, whether a theoretical model can be regarded as a “good” model
of the mechanism producing the behaviour of the target system crucially depends on
how the latter is defined (e.g., on what factors concur with its specifications, or on its
level of detail and approximation).

Third, and more crucially, the output of the simulation system is affected not only
by the structure and content of the theoretical model, but also, as specified in Sect. 2,
by several additional factors and modelling choices which are not constrained by the
theory. The simulation model will typically implement an adjusted version of the
theoretical model, a number of integration modules which are needed for the system
to run, and a model of the environment. Therefore, if the simulation system meets (or
fails to meet) the design specifications, one is not authorized to conclusively praise
(or blame) the theoretical model: the reason for the success (or the failure) may lie in
one or more of the many theoretically unconstrained aspects of the simulation system.
Again, this issue is analogous to a known methodological problem affecting model-
oriented computer simulations in scientific research, and implied for instance by the
analysis by (Durán, 2020): a simulation system may (fail to) reproduce the behaviour
of the target system for reasons that are unconnected to the structure and content of the
theoretical model under scrutiny. This is a particularized version of the well-known
Duhem-Quine problem affecting scientific experimentation at large.

4 Concluding remarks

Philosophers of engineering and technology have recently emphasized and discussed
the fact that the design of (new) technological artefacts involves epistemic processes.
Starting from this consideration, this article takes a first step in unravelling the structure
of the epistemic processes involved in the design of new robotic systems, with a
particular focus on the use of computer simulations. It has been argued here that, in
this context, computer simulations are used to perform surrogative reasoning about the
system to be built. More specifically, they are used to obtain conditional predictions
about its behaviour—i.e., to predict the behaviour that the robot would generate if
it was governed by a particular design. These conditional predictions are evaluated
against the design specifications that are expected to be met by the final system, and
the result of this evaluation is used to accept or reject a hypothesised design.

The structure of this epistemic process resembles to some extent the structure
of model-oriented surrogative reasoning as it is frequently performed in scientific
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research.MOSsSR plays an important role in the discovery of biological mechanisms,
as discussed in (Datteri, 2020). Similarly, computer simulations can be reasonably
regarded as tools for the discovery of “good” designs of robotic systems, a point that
is not usually discussed in the current debate. This article thus forcefully affirms the
presence and importance of epistemic processes in robotics in linewith vanEck (2016).
Moreover, it takes a further step revealing the structure of these epistemic processes
in fields, such as robotics, in which this is far from evident. Computer simulations
are increasingly used in all branches of scientific research, and there are good reasons
to believe that methodologically sensible simulation studies can provide evidential
grounds to theorise about the world (Humphreys, 2004; Weisberg, 2013; Winsberg,
2003). The same reasons may be invoked to believe that they can be epistemically use-
ful to theorise the behaviour of a non-existing system and discover the mechanism that
might comply with the design specifications. What fine-grained norms of rationality
must guide methodologically sensible simulation-supported surrogative reasoning in
robotic design is a question to be addressed in future studies by carrying out more
detailed analyses of the inferential processes discussed here.

Acknowledgements This work has been supported by the following Grants: 2021-ATE-0276, 2022-NAZ-
0465, PNRR-PE-AI FAIR-NextGeneration EU program, PRIN 2020/BRIO 2020SSKZ7 MUR.

Declarations

Conflict of interest All authors declare that they have no conflicts of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use
is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/
by/4.0/.

References

Amigoni, F., & Schiaffonati, V. (2017). Models and experiments in robotics. In L. Magnani & T. Bertolotti
(Eds.), Springer handbook of model-based science (pp. 799–815). Springer.

Boon, M., & Knuuttila, T. (2009). Models as epistemic tools in engineering sciences. In Philosophy of
technology and engineering sciences (Issue March 2009, pp. 693–726). Elsevier. https://doi.org/10.
1016/B978-0-444-51667-1.50030-6

Choi, H., et al. (2021). On the use of simulation in robotics: Opportunities, challenges, and suggestions for
moving forward. PNAS, 118(1), 1–9. https://doi.org/10.1073/pnas.1907856118

Collins, J., Chand, S., Vanderkop, A., & Howard, D. (2021). A review of physics simulators for robotic
applications. IEEE Access, 9, 51416–51431.

Contessa, G. (2007). Scientific representation, interpretation, and surrogative reasoning. Philosophy of
Science, 74(1), 48–68. https://doi.org/10.1086/519478

Cummins, R. (1977). Programs in the explanation of behavior. Philosophy of Science, 44(2), 269–287.
https://doi.org/10.1086/288742

Cummins, R. (1983). The nature of psychological explanation. The MIT Press.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/B978-0-444-51667-1.50030-6
https://doi.org/10.1073/pnas.1907856118
https://doi.org/10.1086/519478
https://doi.org/10.1086/288742


Synthese            (2023) 202:5 Page 19 of 20     5 

Datteri, E. (2020). Biological accuracy in large-scale brain simulations. History and Philosophy of the Life
Sciences, 42(1), 5. https://doi.org/10.1007/s40656-020-0299-1

Datteri, E., & Schiaffonati, V. (2019). Robotic simulations, simulations of robots. Minds and Machines,
29(1), 109–125. https://doi.org/10.1007/s11023-019-09490-x

Durán, J. M. (2020). What is a simulation model?Minds and Machines, 30(3), 301–323. https://doi.org/10.
1007/s11023-020-09520-z

Franssen,M. (2020). Engineering design and the quest for optimality. In D.Michelfelder &N.Doorn (Eds.),
The Routledge handbook of the philosophy of engineering (pp. 97–110). Routledge.

Frigg, R. (2010). Models and fiction. Synthese, 172(2), 251–268. https://doi.org/10.1007/s11229-009-
9505-0

Frigg, R., & Nguyen, J. (2017). Models and representation. In L. Magnani & T. Bertolotti (Eds.),
Springer handbook of model-based science (pp. 49–102). Springer. https://doi.org/10.1007/978-3-
319-30526-4_3

Frigg, R., & Reiss, J. (2009). The philosophy of simulation: Hot new issues or same old stew? Synthese,
169(3), 593–613. https://doi.org/10.1007/s11229-008-9438-z

Galle, P. (1999). Design as intentional action: A conceptual analysis. Design Studies, 20(1), 57–81. https://
doi.org/10.1016/S0142-694X(98)00021-0

Hartmann, S. (1996). The world as a process: Simulations in the natural and social sciences. In R. Hegsel-
mann, U. Mueller, & K. G. Troitzsch (Eds.),Modelling and simulation in the social sciences from the
philosophy of science point of view, theory and decision library (pp. 77–100). Kluwer.

Hay, E., Hill, S., Schürmann, F., Markram, H., & Segev, I. (2011). Models of neocortical layer 5b pyramidal
cells capturing a wide range of dendritic and perisomatic active properties. PLoS Computational
Biology. https://doi.org/10.1371/journal.pcbi.1002107

Humphreys, P. (1990). Computer simulations. PSA: Proceedings of the Biennial Meeting of the Philosophy
of Science Association, 2, 497–506.

Imbert, C. (2017). Computer simulations and computationalmodels in science. In L.Magnani&T.Bertolotti
(Eds.), Springer handbook of model-based science (pp. 735–781). Springer. https://doi.org/10.1007/
978-3-319-30526-4_3

Khatib, O., Sentis, L., Park, J., & Warren, J. (2004). Whole-body dynamic behavior and control of
human-like robots. International Journal of Humanoid Robotics, 1(1), 29–43. https://doi.org/10.1142/
S0219843604000058

Kroes, P. (2021). Engineering design. In D. Michelfelder & N. Doorn (Eds.), The Routledge handbook of
the philosophy of engineering (pp. 289–299). Routledge.

Johnson-Laird, P. N. (1983). Mental models. Harvard University Press.
Liu, C. K., & Negrut, D. (2021). The role of physics-based simulators in robotics. Annual Review of Con-

trol, Robotics, and Autonomous Systems, 4, 3:1-3:4. https://doi.org/10.1146/annurev-control-072220-
093055

Massimi, M. (2019). Two kinds of exploratory models. Philosophy of Science, 86(5), 869–881. https://doi.
org/10.1086/705494

Michelfelder, D., & Doorn, N. (Eds.). (2021). The Routledge handbook of the philosophy of engineering.
Routledge.

Ord-Smith, R., & Stephenson, J. (1975).Computer simulation of continuous systems. Cambridge University
Press.

Humphreys, P. (2004). Extending ourselves: Computational science, empiricism, and scientific method.
Oxford University Press.

van de Poel, I. R., & Royakkers, L. M. M. (2011). Ethics, technology, and engineering: an introduction.
Wiley-Blackwell.

Poznic, M. (2016). Modeling organs with organs on chips: Scientific representation and engineering design
as modeling relations. Philosophy & Technology, 29(4), 357–371. https://doi.org/10.1007/s13347-
016-0225-3

Reimann, M., Anastassiou, C., Perin, R., Hill, S. L., Markram, H., & Koch, C. (2013). A biophysically
detailedmodel of neocortical local field potentials predicts the critical role of activemembrane currents.
Neuron, 79(2), 375–390. https://doi.org/10.1016/j.neuron.2013.05.023

Rescorla, M. (2014). A theory of computational implementation. Synthese, 191(6), 1277–1307. https://doi.
org/10.1007/s11229-013-0324-y

Simon, H. A., & Newell, A. (1962). Computer simulation of human thinking and problem solving. Mono-
graphs of the Society for Research in Child Development, 27(2), 137. https://doi.org/10.2307/1165535

123

https://doi.org/10.1007/s40656-020-0299-1
https://doi.org/10.1007/s11023-019-09490-x
https://doi.org/10.1007/s11023-020-09520-z
https://doi.org/10.1007/s11229-009-9505-0
https://doi.org/10.1007/978-3-319-30526-4_3
https://doi.org/10.1007/s11229-008-9438-z
https://doi.org/10.1016/S0142-694X(98)00021-0
https://doi.org/10.1371/journal.pcbi.1002107
https://doi.org/10.1007/978-3-319-30526-4_3
https://doi.org/10.1142/S0219843604000058
https://doi.org/10.1146/annurev-control-072220-093055
https://doi.org/10.1086/705494
https://doi.org/10.1007/s13347-016-0225-3
https://doi.org/10.1016/j.neuron.2013.05.023
https://doi.org/10.1007/s11229-013-0324-y
https://doi.org/10.2307/1165535


    5 Page 20 of 20 Synthese            (2023) 202:5 

Swoyer, C. (1991). Structural representation and surrogative reasoning. Synthese, 87(3), 449–508. https://
doi.org/10.1007/BF00499820

van Eck, D. (2015). Mechanistic explanation in engineering science. European Journal for Philosophy of
Science, 5(3), 349–375. https://doi.org/10.1007/s13194-015-0111-3

van Eck, D. (2016). The philosophy of science and engineering design. Springer.
Vermaas, P., Kroes, P., van de Poel, I., Franssen, M., & Houkes, W. (2011). A philosophy of technology:

from technical artefacts to sociotechnical systems. Morgan and Claypool Publishers. https://doi.org/
10.2200/S00321ED1V01Y201012ETS014

Weisberg, M. (2013). Simulation and similarity: Using models to understand the world. Oxford University
Press.

Winsberg, E. (2003). Simulated experiments: Methodology for a virtual world. Philosophy of Science,
70(1), 105–125. https://doi.org/10.1086/367872

Winsberg, E. (2009). Computer simulation and the philosophy of science. Philosophy Compass, 4(5),
835–845. https://doi.org/10.1111/j.1747-9991.2009.00236.x

Yaghmaie, A. (2021). Scientific modeling versus engineering modeling: Similarities and dissimilarities.
Journal for General Philosophy of Science, 52(3), 455–474. https://doi.org/10.1007/s10838-020-
09541-3

Žlajpah, L. (2008). Simulation in robotics. Mathematics and Computers in Simulation, 79(4), 879–897.
https://doi.org/10.1016/j.matcom.2008.02.017

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1007/BF00499820
https://doi.org/10.1007/s13194-015-0111-3
https://doi.org/10.2200/S00321ED1V01Y201012ETS014
https://doi.org/10.1086/367872
https://doi.org/10.1111/j.1747-9991.2009.00236.x
https://doi.org/10.1007/s10838-020-09541-3
https://doi.org/10.1016/j.matcom.2008.02.017

	Computer simulations and surrogative reasoning for the design of new robots
	Abstract
	1 Introduction
	2 Theoretical background
	2.1 Simulation
	2.2 Two kinds of simulation-based surrogative reasoning

	3 Simulation-based surrogative reasoning in robotics
	3.1 The engineering design process
	3.2 Computer simulations in the design of robotic systems

	4 Concluding remarks
	Acknowledgements
	References


