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ABSTRACT

Massive black hole binaries (MBHBs) are binary systems formed by black holes with mass exceeding millions of solar masses,
expected to form and evolve in the nuclei of galaxies. The extreme compact nature of such objects determines a loud and efficient
emission of Gravitational Waves (GWs), which can be detected by the Pulsar Timing Array (PTA) experiment in the form of a
Gravitational Wave Background (GWB), i.e. a superposition of GW signals coming from different sources. The modelling of the
GWB requires some assumptions on the binary population and the exploration of the whole involved parameter space is prohibitive as
it is computationally expensive. We here train a Neural Network (NN) model on a semi-analytical modelling of the GWB generated
by an eccentric population of MBHBs that interact with the stellar environment. We then use the NN to predict the characteristics of
the GW signal in regions of the parameter space that we did not sample analytically. The developed framework allows us to quickly
predict the level, shape and variance of the GWB signals produced in different universe realisations.

Key words. black hole physics – gravitational waves – galaxies: kinematic and dynamics – methods: numerical – methods: statistical

1. Introduction

Discovering Massive Black Hole Binaries (MBHBs) is key for
our complete understanding of the Universe, in particular how
galaxies form and evolve through cosmic time. Their existence
is strongly favored and predicted by all the theoretical models of
galaxy mergers (e.g. Begelman et al. 1980), however, MBHBs
still remain elusive with only a number of candidates that are yet
to be confirmed. A very promising and timely way to gain insight
into this elusive MBHB population is through the detection of a
Gravitational Wave Background (GWB) signal at low (i.e. 10−9−

10−7 Hz) frequencies using millisecond pulsars as macroscopic
clocks.

Since pulsars are very precise clocks, tiny deviations from
the expected time of arrival of radio pulses on Earth can re-
veal the passage of GWs (Verbiest et al. 2016). Pulsar Timing
Array (PTA) experiments are sensitive to low frequency GWs
emitted by MBHBs with masses above 108M⊙ and whose in-
coherent superposition is expected to form a stochastic GWB
(Lentati et al. 2015). Very recently, all the PTA collaborations
across the globe (i.e. European PTA, Indian PTA, Parkes PTA,
North America Nanohertz Observatory for GWs (NANOGrav)
and Chinese PTA) have found evidence of a stochastic process
with common amplitude and spectral slope across many mon-
itored pulsars with statistical significance between 2σ and 4σ,
depending on the number of pulsars and on the employed analy-
sis technique (Antoniadis et al. 2023b,e,c,d,a; Smarra et al. 2023;
Agazie et al. 2023b,c,a,d; Afzal et al. 2023; Reardon et al. 2023;
Xu et al. 2023). This discovery clearly opens a completely new
⋆ matteo.bonetti@unimib.it
⋆⋆ brunogiovanni.galuzzi@ibfm.cnr.it

window on the Universe, allowing us to deepen our knowledge
of different phenomena and probe new astrophysical and cosmo-
logical sources. Several theoretical interpretations of this GW
signal hint have been proposed after the discovery (Antoniadis
et al. 2023a; Afzal et al. 2023), although the possibly most plau-
sible is a MBHB population origin (Antoniadis et al. 2023a;
Agazie et al. 2023e). Ideally, the signal produced by a popula-
tion of inspiralling MBHBs would manifest as a stochastic Gaus-
sian process characterized by a power-law Fourier spectrum of
delays-advances to pulse arrival times, with the characteristic in-
ter pulsar correlations identified by Hellings & Downs (1983).
However, the overall signal might be dominated by a handful of
massive, nearby sources that can result in loud enough signals to
be individually resolved as Continous GWs (CGW, Sesana et al.
2009; Babak & Sesana 2012; Kelley et al. 2018). Furthermore,
the signal might deviate from the isotropy, Gaussianity and sta-
tionarity that characterize signals from primordial origin in the
Universe (Ravi et al. 2012).

The GWB encodes precious information about the elusive
MBHB population. In particular, the signal amplitude and spec-
tral shape are deeply connected to the galaxy merger rate and the
dynamical properties of the emitting MBHBs (Kocsis & Sesana
2011; Sesana 2013; Ravi et al. 2014). While current models
try to describe the GWB in terms of normalisation and spec-
tral shape, the actual MBHB population, being formed by dis-
crete objects, also imprints an intrinsic variance in the GWB. To
model the GWB together with its variance, Monte-Carlo reali-
sations of the entire population (millions of MBHB) are needed
(Sesana et al. 2008; Amaro-Seoane et al. 2010; Chen et al. 2017).
Unfortunately, this makes any wide parameter space exploration
computationally prohibitive, allowing limited sampling of GW
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spectra at discrete points in the multi-dimensional binary popu-
lation parameter space, while leaving a large fraction of the pa-
rameter space unexplored. It is then crucial to find a way to “in-
terpolate” the GWB spectra across the multi-dimensional space,
ultimately extending the investigation through the whole param-
eter space. An early attempt in this direction was done by Taylor
et al. (2017), employing a Gaussian Process (GP) emulator to
“interpolate” over the parameter space represented by two main
parameters, initial binary eccentricity e0 and stellar density at
influence radius ρ. Agazie et al. (2023e) extended the work of
Taylor et al. (2017), introducing more parameters in the model,
but always using a GP-based regression tool. They however ne-
glect the effect of the MBHB eccentricity and focus only on the
effects of the environment.

We here propose a new framework where we use a trained
Neural Network (NN) to evaluate the GWB in the whole param-
eter space, beyond the region we use for the training of the NN.
The advantage of using a NN resides in its deterministic nature
and its lower computational cost. NN are also highly flexible
and can represent very complex functions with deep architec-
tures. We model the MBHB population, taking into account an
agnostic parametrisation of the mass function shape and normal-
isation, the presence of non-negligible eccentricity of the bina-
ries, as well as considering the influence of the stellar hardening
on the MBHB evolution. We train our NN using numerous real-
izations of the GWB signals in different kinds of “universes” in
order to efficiently assess their variance.

The paper is organised as follows. In Sec. 2 we summarise
the theoretical framework that we use to model MBHB popula-
tion, highlighting the novelties in our approach. In Sec. 3, we de-
tail the specifics of the NN algorithm used. In Sec. 4, we present
the results of our approach, while in Sec. 5 we discuss the impli-
cations of our algorithm, envisage the forthcoming development
and usage and finally draw our conclusions.

2. Theoretical model

Assuming that the binaries in the Universe are circular and
evolve only due to gravitational wave emission, we can write
the GWB characteristic amplitude as a function of the number
density of mergers (Phinney 2001)

h2
c( f ) =

4G
π f 2c2

∫ ∞

0
dz

∫ ∞

0
dM

d2n
dzdM

1
(1 + z)

dEGW(M)
d ln fr

(1)

whereM is the chirp mass, the 1/(1+ z) term takes into account
the redshift of gravitons, d2n/dzdM is the comoving number
density of GW events, usually inferred through numerical simu-
lations or semi-analytical models and EGW is the energy gener-
ated by an event. The rest frame frequency is fr = (1+z) f , where
f is the observed frequency, and fr = 2 forb, where forb is the rest
frame orbital frequency.

The comoving number density per unit redshift and chirp
mass can be written as

d2n
dzdM

=
d3N

dzdMd ln fr

dz
dVc

d ln fr
dtr

dtr
dz

(2)

where the first term on the r.h.s. indicates the comoving num-
ber of binaries emitting in a given logarithmic frequency inter-
val with chirp mass and redshift in the range [M,M + dM] and
[z, z+dz] respectively, dVc is the comoving volume shell between
z and z + dz and tr is the time measured in the source rest frame.

From cosmology (Hogg 1999) we can write (see also Chen
et al. 2017)

dz
dVc

dtr
dz
=

1
(1 + z)4πcd2

M

(3)

where dM is the proper-motion distance. For circular binaries, the
gravitational radiation is emitted at twice the orbital frequency,
and the sky- and polarization-averaged strain amplitude is given
by (Thorne 1987)

h =
8π2/3

101/2

M5/3

dM(z)
f 2/3
r . (4)

The temporal evolution of the emission frequency is expressed
as

dtr
d fr
=

5c5π−8/3

96G5/3 M
−5/3 f −11/3

r , (5)

while the radiated energy per logarithmic frequency interval is
given by (Thorne 1987)

dEGW(M)
d ln fr

=
π2/3G2/3

3
M5/3 f 2/3

r =
dtr

d ln fr
π2d2

M(z) f 2
r h2 . (6)

Substituting Eqs. (2) and (6) in Eq. (1) we obtain

h2
c( f ) =

∫ ∞

0
dz

∫ ∞

0
dM

d3N
dzdMd ln fr

h2( fr)

which essentially states that the observed characteristic-squared
amplitude of the GWB is given by the integral over all the
sources emitting in the frequency bin d ln fr multiplied by the
squared strain of each source (Sesana et al. 2008). The above ex-
pression can be written with a normalization that depends on the
details of the MBHB population as(Jenet et al. 2006)

hc( f ) = h1yr

(
f

yr−1

)−2/3

, (7)

where h1yr depends on the assumed model.

2.1. Binary population

We choose a simple and agnostic model for the comoving num-
ber density per unit redshift z and binary mass M (Middleton
et al. 2016)

d2n
dzdM

= A
(

M
107M⊙

)−α
e
−

(
M

M0

)β
(1 + z)γe−z/z0 . (8)

We assume the parameters A, α,M0, γ, β, z0 (i.e. the Universe
parameters)1 that characterize the number density of the GW
sources to vary in a given range, see Tab. 1. From Eq. (2) we
calculate the number of binaries in each frequency bin as

d3N
dzdM1dqd forb

=
d2n

dzdM
(1 + z)4πcd2

M
dtr

d forb
(9)

where

dtr
d forb

=

(
d forb

dtr

∣∣∣∣∣
GW
+

d forb

dtr

∣∣∣∣∣
⋆

)−1

(10)

1 In the following we fix γ = 1 and z0 = 2. This choice is motivated by
the fact that those quantities weakly affect the mass function and fixing
their value allow us to reduce the number of parameters that the NN
model needs to account for.
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Quantity Range Units
A 10−5 – 10−1 Mpc−3 Gyr−1

α 0 – 1.5 -
β 0.5 – 2 -

M0 107 – 109 M⊙
ρ 1 – 105 M⊙ pc−3

e0 0 – 0.99 -
Table 1. Parameters that characterise a chosen Universe.

takes into account the frequency evolution due to GW emission
(effective at smaller scales) and stellar hardening (dominating
the large scale evolution).

In particular, the contribution due to GW emission for a pop-
ulation of eccentric binaries is given by

d forb

dtr

∣∣∣∣∣
GW
=

96 G5/3(2π)8/3

5c5

qM5/3
1

(1 + q)1/3 f 11/3
orb F(e) (11)

where

F(e) =
1 + 73/24e2 + 37/96e4

(1 − e2)7/2 . (12)

The frequency evolution due to the presence of the stellar hard-
ening is given by

d forb

dtr

∣∣∣∣∣
⋆
=

3G4/3M1/3

(2π)2/3

Hρ
vdisp

f 1/3
orb (13)

where M is the binary mass, H = 15 is a dimensionless constant
parametrising the efficiency of energy extraction by stars scatter-
ing on a MBHB, ρ is the stellar density and vdisp is the velocity
dispersion, both quantities calculated at the influence radius of
the binary (Sesana & Khan 2015).

Equating Eq. (11) and Eq. (13), we define the decoupling
frequency that marks the transition between the GW and stellar
hardening driven regimes:

fdec =

64G1/3(2π)10/3

5c5

vdisp

ρH
M2

1q
M2/3 F(e0)

−3/10

(14)

where M1 is the mass of the primary, q = M2/M1 is the mass
ratio and e0 is the eccentricity of the binary during the stellar
hardening phase that we assume to remain constant until the bi-
nary reaches the GW driven regime. Above the decoupling fre-
quency, the binary circularizes due to GW emission. The orbital
frequency and the eccentricity are bound by the following equa-
tion

forb

forb,0
=

1 − e2
0

1 − e2

(
e
e0

)12/19 1 + 121
304 e2

1 + 121
304 e2

0

870/2299
−3/2

. (15)

2.2. Discrete GWB signal construction

We have so far assumed that the binary population is described
by a continuous differential distribution. However in reality the
background is a superposition of discrete contributions from bi-
naries drawn from that continuous distribution. This means that
the actual signal fluctuates depending on the specific draw re-
alized in nature, and is this intrinsic variance that we want to
properly capture with our approach. To this end, for each value

Quantity Range Units Number of bins
z 0 – 10 - 30

log10 m1 7 – 10.5 M⊙ 35
log10 q -2 – 0 - 30

forb 10−11 – 6 × 10−8 Hz 570
e 0 – 1 - 20

Table 2. Grid for binary population sampling.

of the universe parameters (A, α,M, β, ρ, e0), we perform 100 re-
alizations of the binary population, sampling the distribution in
Eq. (9) in a Monte Carlo fashion.

We characterise the binary population as a function of red-
shift, primary mass, mass-ratio, orbital frequency and eccentric-
ity. Specifically, we translate Eq. (9) into a numerical distribu-
tion function of (z,M1, q, forb, e) with finite size bins, as detailed
in Tab. 2. We then sample the discrete number of sources draw-
ing an integer number from a Poisson distribution with mean
equal to the non-inter number of binaries in that bin predicted by
Eq. (9).

In each multidimensional bin, we draw a random number be-
tween the lower and upper limit of (M1, q, z, forb, e) in order to
assign the properties to a binary source. We repeat this proce-
dure N times per bin, where N is the discrete number of binaries
in that bin. In the bins that have N > 50, we only sample 50 bi-
naries and we then multiply the resulting background by N/50.

For each population realisation, the GWB can be computed
by summing the GW strain produced by each binary in our pop-
ulation. Circular binaries emit a GW signal at 2 forb while eccen-
tric ones also emit at multiple harmonics fn = n forb, where n is
the harmonic number. The GW strain of each harmonic is given
by (see e.g. Amaro-Seoane et al. 2010)

hn( fn) = 2

√
32
5

G5/3

c4

M5/3

ndM

(
2π

fn
n

)2/3 √
g(n, e) (16)

where the dimensionless function g(n, e) determines the fraction
of the GW power that is emitted in each harmonic and reads

g(n, e) =
n4

32

[(
Jn−2(ne) − 2eJn−1(ne) +

2
n

Jn(ne)

+ 2eJn+1(ne) − Jn+2(ne)
)2

+ (1 − e2)
(
Jn−2(ne) − 2Jn(ne) + Jn+2(ne)

)2

+
4

3n2 J2
n(ne)

]
, (17)

with Jn representing the n-th order Bessel function of the first
kind.

The relevant frequency band for pulsar timing observations
is from ∆ f = 1/Tobs, where Tobs = 30 yrs is the assumed total
observation time, to the Nyquist frequency 1/(2∆t), where ∆t
is the time between subsequent observations (around a couple
of weeks). We assume the observed frequency to vary between
1/Tobs and 6 × 10−8 Hz, uniformly spaced by ∆ f , yielding N f =
56 values. The GWB in the frequency bin [ f j, f j+1] is therefore
given by the sum of the GW strain multiplied by the number of
cycles that each binary makes in the observation time

h2
c( f j) =

N∑
i=1

n̄∑
n=1

h2
n,i( fn,i)

fn,i
∆ f (1 + z)

Θ

(
fn,i

1 + z

)
(18)
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where the 1 + z factor converts from rest frame to observe fre-
quency, fn,i = n forb,i is the orbital frequency of the i-th binary,
while Θ

(
fn,i/(1 + z)

)
= 1 if f j ≤ fn,i/(1 + z) ≤ f j+1 and zero

otherwise. Note that the i index runs over the sample of bina-
ries, while the n index runs, for each binary, over the harmonics,
with n̄ chosen such that a sufficient number of them is included
in the computation of the signal. We take n̄ = 3nmax, where nmax
is a numerical proxy of the harmonic number at which the maxi-
mum GW power is emitted and can be accurately approximated
by (Hamers 2021) 2

nmax(e) ≈ 2

1 + 4∑
k=1

ckek

 (1 − e2)−3/2 (19)

where c1 = −1.01678, c2 = 5.57372, c3 = −4.9271, c4 =
1.68506.

Finally, we note that, since we generate 100 realizations of
the binary population, we have the same number of GWB signals
for each choice of our universe parameters.

3. Neural Network model

A large database of GWB realizations is required for each com-
bination of Universe parameters (A, α,M, β, ρ, e0) to train a Ma-
chine Learning (ML) model for regression using a NN.

We created approximately 5×105 GWB signals, correspond-
ing to Nmodel = 5120 different universes, with each universe
having 100 realizations of the binary population. The parame-
ter values were chosen using Sobol sequences within the ranges
reported in Table 1.

We then feed this database, composed of Nmodel × N f × 100
realizations, into the ML model. Fixing the Universe parameters,
we computed the mean µ and standard deviation σ for each of
the Nmodel × N f distributions. We then created an input-output
dataset, where the input consists of the Universe parameters and
the frequency, and the outputs are mean and the standard devia-
tions. We employed a Feed-Forward Network, using Keras, with
nhidden + 2 layers, where nhidden represents the total number of
hidden layers, each consisting of nneurons neurons. Each hidden
layer is connected to the subsequent one through an activation
function a(x). The input layer takes the values of the seven fea-
tures (six universe parameters + f ).

We split the dataset into a training set (80%) and a test set
(20%). The parameters were normalized to have zero mean and
unit variance using the values from the training set. The param-
eters of the NN were estimated using the Adam optimizer with
an initial learning rate lr, employing a batch size of 128 and 100
epochs. The hyperparameters (lr, a(x), nhidden, and nneurons) were
determined using a hyperparameter strategy based on Bayesian
optimization, using the Mean Absolute Error (MAE) as the loss
function. We employed an early stopping criterion to prevent po-
tential overfitting, halting the training phase when the MAE on
a validation set (20% of the training set) ceases to improve.

It is important to note that the two output parameters (i.e.
the mean and the standard deviations) have significantly differ-
ent orders of magnitude. To account for this discrepancy and en-
sure effective training, we introduced a weighted loss function.
Specifically, we assigned a weight of 10 to the second output
parameter and a weight of 1 to the first output parameter in the
loss function. This weighting scheme was chosen to ensure that
the model optimizes its predictions for both outputs, reaching a

2 For n > 1000 we group the harmonics in batches of twenty to speed
up the evaluation.

10−8

f [Hz]

10−15

10−14

h
c

e0 = 0, GW-driven

e0 = 0, hardening

e0 = 0.99, GW-driven

Fig. 1. Characteristic strain as a function of frequency for three dif-
ferent universe models (log10 A = −2, α = 0.3, β = 1, log10 M0 = 8)
featuring: circular GW-driven binaries (blue), circular but stellar+GW-
driven binaries (ρ = 104M⊙pc−3, orange), eccentric GW-driven binaries
(e0 = 0.99 @ 5 × 10−12Hz, green). Thick lines denote the theoretical
GWB, while shaded areas denote the 10th and 90th percentile of the
characteristic strain when different discrete realisation of the popula-
tion are considered. The thin line with the same color denotes one of
such realisation for each model.

balance between their accuracy. We further introduced a weight-
ing function for different frequencies in order to focus the NN
on better fitting the lower frequencies where the variance of the
GWB signal is generally smaller but most importantly less af-
fected by single source noise.

4. Results

We here present the results we obtained first from the MC gen-
eration of GWB dataset and then from the training of the NN on
our sample.

4.1. Dataset properties

Since our dataset is fairly large, it is useful to summarize its main
properties and comment on the main features that can be cap-
tured by varying different parameters.

The parameter A acts as a normalisation, shifting up and
down the amplitude of the GWB without affecting its shape.
Nevertheless, by essentially controlling the number of binaries
in a universe, this parameter could in principle be linked to astro-
physical relevant parameters. The effective modelling employed
in our work can indeed be recast in terms of observable quanti-
ties as done in Chen et al. (2017).

A more substantial role in shaping the GWB is instead
played by the parameters e0 and ρ. Both parameters affect the
GWB spectral shape and are specifically responsible for low
frequency turnovers. However, disentangling the effect of stel-
lar hardening from the presence of eccentric binaries is all but
straightforward as both effects cause the same similar behaviour,
i.e. a turnover in the GWB amplitude at low frequencies. The at-
tenuation of the GWB signal is due to the fact that both the pres-
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10−8

f [Hz]

10−16

10−15

10−14

10−13

h
c

α = 0.3, β = 1,M0 = 108

α = 0.3, β = 0.5,M0 = 108

α = 0.3, β = 0.5,M0 = 109

α = 1, β = 0.5,M0 = 107

Fig. 2. Same as Fig. 1, but considering how the characteristic strain of
the GWB varies by changing the parameters controlling the shape of the
BH mass function (see labels). Higher cut-off masses (M0), shallower
power law (α < 1) and shallower exponential cutoff (β < 1) produce
more prominent GWB also characterised by a larger variance.

ence of a stellar (or gaseous) component and a non-zero initial
eccentricity cause the binary to spend less time emitting GWs in
a given frequency range. In particular, the interaction of MBHBs
with their environment is important at frequencies f ≪ 1yr−1

where GW emission is still efficient (Kocsis & Sesana 2011).
Figure 1 shows the signals generated from a population of circu-
lar GW-driven binaries (blue line), circular but affected by stellar
hardening (orange line) and a population of extremely eccen-
tric GW-driven only binaries (green line). Although both stellar
hardening and eccentricity produce a low frequency turnover,
there is a clear difference between the orange and green pop-
ulation. While the signal affected by stellar hardening is sim-
ply lower than the circular GW-driven one, the GWB generated
from eccentric binaries shows both a turnover at low frequencies
and a bump which, for the specific model represented, is above
10−8 Hz (Sesana 2013; Chen et al. 2017; Kelley et al. 2017).
We note here that the turnover at low frequency is significant for
very high eccentricities only. Decreasing the eccentricity down
to e0 = 0.9 leads to a much milder effect at low frequencies. The
latter is due to fact that eccentric binaries emit the GW power at
multiple harmonics of the orbital frequency, effectively shifting
the power from lower to higher frequencies instead of simply de-
pleting the spectrum at lower frequencies by evolving faster as
for the stellar hardening. This behaviour of the eccentricity also
implies that GWB generated by eccentric MBHB might show
a certain degree of correlation among frequency bins, since the
same binary can distribute the GW power in several of them.

The most important information for the GWB interpolation
across the whole parameter space is how the variance changes
as a function of the parameters that characterize the Universe
(A, α, β, M0, ρ, e0). In Figure 1, the shaded areas denote the
intrinsic span of the signal generated by different realisations
of the MBHB population. The higher the frequency, the fewer
the sources per bin and therefore the stronger is the influence
of the granularity of the population on the GWB spectrum, ef-

fectively increasing the variance of the signal, possibly featur-
ing strong spikes due to rare but loud binaries. The various ef-
fects of MBHB population granularity are more evident from
Fig. 2 that shows four different signals generated by changing
the Universe parameters that describe the MBHB mass function
α, β, M0, which are responsible for the GWB variance.

A MBHB population characterized by a prominent high
mass tail (see green curve of Fig. 2) can drastically affect the
GWB spectrum both in terms of normalization and variance. We
can see that if the power law decay of the mass distribution is
shallower (i.e. α < 1) and correspondingly so is the exponential
cutoff at high masses ( β < 1 values), the variance between dif-
ferent realizations is larger resulting in a very high scattering in
the signal at different frequencies. The comparison between the
green and orange curve shows the effect of increasing the mass
cutoff value. An order of magnitude in the cutoff value results
in a significantly reduced variance and an order of magnitude
weaker signal. If the MBHB mass function is characterized in-
stead by a steeper exponential decay (blue line, β = 1) but at the
same cutoff value (i.e. 108M⊙), the variance is further reduced,
the normalization is lower and there is a much more prominent
turnover at lower frequencies compared to the shallower expo-
nential decay. Finally, a steeper power law decay distribution
coupled with a smaller mass cutoff value and a shallow expo-
nential decay causes the variance in the signal to drop to a mini-
mum, affecting only the GWB at high frequencies, as shown by
the red line. This is consistent with the fact that it is less likely
to have very massive MBHBs strongly influencing each GWB
signal realization. However, in this latter case, the amplitude of
the signal might be too low to be detectable in the PTA band.

It is also interesting to observe how the GWB variance corre-
lates among the model parameters. However, since all generated
GWB have quite different amplitudes we cannot simply compare
the different variances (at various frequencies) associated with
a specific set of universe parameters (A, α, β, M0, ρ, e0). Since
however ρ and e0 are the same for all simulations in Figure 2, we
can see, from the comparison between the blue and red lines, that
the bending occurs at higher frequencies if the signal is strongly
dominated by lighter systems (red lines). In order to get rid of
the GWB normalisation and to focus only on the spread of the
signal, at each frequency, we divide the GWB signal of each re-
alization by the mean value (computed over the 100 realisation
for a specific set of universe parameters). This allows us to com-
pare the intrinsic spreads of GWBs with different strength levels.
We then collect this information in the corner plots in the left and
right panel of Figure 3, which show with the color scale the “in-
trinsic” variance of the GWB signal in the lowest and highest
frequency bin respectively. Darker (lighter) regions correspond
to lower (higher) variance. In general, comparing the two pan-
els of Fig. 3, it is clear that the variance is higher at higher fre-
quencies (as expected). Moreover, we can also identify regions
of the sub-panels showing correlations. Specifically, as already
noted above, universes characterised by shallower power-laws
(small α), shallower exponential cutoff (small β) and high mass
cutoff (large M0) show a clear larger intrinsic variance. Another
interesting pattern is shown by the correlation of A and ρ, where
universes with small A and large ρ seem to show a quite large
variance. This is because that combination of parameters reduces
quite firmly the number of binaries per frequency bin, increasing
therefore the granularity and making that frequency bin more
susceptible to influence of rarer but more massive system, possi-
bly producing spikes in the GWB.
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Fig. 3. Corner plot showing the dependence of GWB variance (color scale) on the model parameters considering the lowest (left) and highest
(right) frequency bin. As can be inferred from the color scale (more evident in the left panel), lower values of α and β, combined with a high cutoff
mass M0 are linked to a larger scatter, in turn caused by the increased probability of having more massive binaries that can produce spikes in the
signal.

4.2. Model prediction

We now focus on the performance of the NN model. The pan-
els of Figure 4 show the overall accuracy in reproducing the test
set mean µ and standard deviation σ for each Universe. The left
panels show how the difference between the predicted value and
the true value is distributed in frequency as a function of the pre-
dicted quantity itself. The upper left panel represents the mean
µ while the lower left panel represents the standard deviation σ.
We can clearly see that the distribution of the absolute errors
is centred in zero, and that the error on the standard deviation
slightly increases for higher predicted values.

In the same panels, the color scale denotes the frequency at
which the comparison is made. It is evident that errors grow with
frequency, as expected. This is due to the fact that we assigned,
during the training phase, a higher weight to lower frequencies
in order to better model the signal in that part of the spectrum.
The reason for this choice is twofold: first, the low frequency
spectrum is the part that is currently within PTA experiments
reach and secondly, the low frequency end of the spectrum is
less noisy and therefore easier to model since it is less sensitive
to fluctuations generated by loud single sources. This informa-
tion is better displayed in the right panel of Fig. 4, where the
errors on the mean (upper right panel) and standard deviation
(lower right panel) are plotted against frequency. At each fre-
quency, the box plot shows the value of the median error lim-
ited by the 25th and 75th percentile (color box), with error bars
showing the full spread of these values. This provides important
information about the distribution of the outliers, as the box size
is significantly larger at higher frequencies, where single loud
sources dominate the GWB signal. We further note that the er-
rors tend to be smaller at lower frequencies, where we instructed
the NN to achieve the best possible performance.

In Table 3, we report some standard accuracy indicators, i.e.
the Mean Absolute Error (MAE), the Root Mean Squared Error
(RMSE), the square correlation coefficient (R2) and the Spear-

MAE RMSE R2 SC
µpred 0.0707 0.0134 0.9791 0.9899
σpred 0.0128 0.0003 0.9114 0.9684

Table 3. The Mean Absolute Error (MAE), Root Mean Squared Error
(RMSE), square correlation coefficient (R2) and Spearman correlation
(SC), computed on the test set.

man correlation (SC), all of them computed on the test set. All
the indicators show the satisfying performance of our NN model.
Specifically, the small values of MAE and RMSE imply that the
NN model predictions are in agreement with the true values of
the test set, while the values of R2 and SC very close to unity
for both the mean and standard deviation indicate that the per-
formance of the model is overall very good.

Finally, we represent the predicted GWB for a sample of dif-
ferent Universes in Fig. 5 and Fig. 6. We show the comparison
between the GWB constructed following the procedure outlined
in Section 2.2 (red) and the signal predicted by our NN frame-
work (blue) for six different choices of the Universe parame-
ters. The shaded areas denote the 10th and 90th percentile of the
hc distribution at each frequency, while the thin lines represent
one realisation of the signal. The NN prediction is in very good
agreement with the simulated data, both in terms of the mean,
variance and shape of the GWB for all the examples shown in
Figs. 5-6.

We, therefore, conclude that, despite the possible scarcity of
performance in a very narrow region of the parameter space, the
NN framework here designed predicts very well the shape and
strength of the diverse GWB signals.

5. Discussion and conclusions

In this work, we built a NN model to efficiently interpolate the
stochastic GWB emitted by MBHBs across the wide parameter
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Fig. 4. Left panels: absolute error, i.e. the difference between the predicted value and the true value (i.e. that of the test set), as a function of the
predicted quantity, either mean µpred (top) or standard deviation σpred (bottom). The color scale denotes the frequency bin where the error was
computed. Right panels: absolute error on mean (top) and standard deviation (bottom) as a function of frequency. The box plot highlights the
median enclosed by the 25th and 75th percentile of the error distribution at each frequency, with the error bars enclosing the full spread of values.
Mean and standard deviation are referred to log10 hc.

space that describes their population. We concentrate in particu-
lar on the low frequency part of the spectrum as this is currently
being surveyed by PTA experiments.

We generated a large dataset of GWB by considering an ag-
nostic modelisation of the underlying MBHB population. GWB
are generated from the discrete population of MBHB, signifi-
cantly improving the simple power-law description of the GWB
signal. We explore Nmodel = 5120 different universes (i.e. differ-
ent parameter configurations), computing 100 realization of the
GWB for each of them, to uniformly cover the possible devia-
tions from the power-law prediction due to the eccentricity and
hardening of the MBHB population. This approach allowed us to
trace not only the shape and strength but also the variance of the
GWB signal, ultimately influenced by the discrete nature of the
MBHB population, that can be mainly composed by strong sig-
nals coming from very massive and/or nearby binaries. We note
here that we computed the sky-polarization averaged strain, es-
sentially neglecting the effect of the inclination angle of binaries
with respect to the line of sight. Taking into account the inclina-
tion could potentially introduce more variance as face-on bina-
ries will produce a stronger signal compared to edge-on systems.
We however find this effect to be negligible for the background
represented by both the green and blue line in Figure 2.

We used the generated dataset to train a NN model to effi-
ciently explore the parameter space, therefore overcoming the

bottleneck represented by the expensive MC sampling of real-
istic MBHB populations for GWB generation. We found that
the NN model performs very well, being able to reproduce the
shape, strength and variance of the GWB signals of the test set.
We showed that the NN model performs better at lower frequen-
cies, where by design it has been instructed to achieve a better
accuracy since current data are now available in that range and
the signal is easier to model owing to the lack of strong single
source contribution.

Our trained NN model allows us to efficiently explore the pa-
rameter space of our agnostic modelisation. We plan to include
the NN model into an end-to-end Bayesian inference pipeline
that will be used to produce informed posterior distributions on
our model parameters. This will allow us to use the perform as-
trophysical inference on the signal detected by PTA collabora-
tions, possibly providing constraints on the elusive MBHB pop-
ulations. The ab initio inclusion of the GWB variance in our
modelisation is crucial for the inference of the MBHB parame-
ters. Since we have access to only one Universe (ours), a reliable
assessment of the cosmic variance of our MBHB population is
of capital importance in order to correctly interpret the nature of
the current and future PTA detections. We defer the application
of our model to PTA data to a forthcoming publication.
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Fig. 5. GWB prediction of the NN model compared to three models of the test set of the database. Shaded areas denote the 10th and 90th percentile
of the characteristic strain, while the thin lines with the same color represent one GWB realisation for each model. Left panel: universe parameters
are log10 A = −3.39, α = 0.83, β = 0.62, log10 M0 = 8.21, log10 ρ = 2.39, e0 = 0.19. Middle panel: universe parameters are log10 A = −4.19, α =
0.6, β = 0.84, log10 M0 = 7.37, log10 ρ = 3.66, e0 = 0.17. Right panel: universe parameters are log10 A = −4.13, α = 0.28, β = 1.42, log10 M0 =
8.94, log10 ρ = 0.73, e0 = 0.31.
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Fig. 6. Same as Fig. 5, but for different universe parameters. Left panel: universe parameters are log10 A = −4.75, α = 0.17, β = 1.06, log10 M0 =
8.70, log10 ρ = 4.34, e0 = 0.88. Middle panel: universe parameters are log10 A = −2.19, α = 1.31, β = 1.37, log10 M0 = 8.29, log10 ρ = 2.00, e0 =
0.75. Right panel: universe parameters are log10 A = −3.90, α = 1.13, β = 1.28, log10 M0 = 8.56, log10 ρ = 3.90, e0 = 0.8.

Hole Astrophysics" (B Massive, Grant Agreement: 818691). MB acknowledges
support provided by MUR under grant “PNRR - Missione 4 Istruzione e Ricerca
- Componente 2 Dalla Ricerca all’Impresa - Investimento 1.2 Finanziamento di
progetti presentati da giovani ricercatori ID:SOE_0163” and by University of
Milano-Bicocca under grant “2022-NAZ-0482/B”.

References
Afzal, A., Agazie, G., Anumarlapudi, A., et al. 2023, ApJ, 951, L11
Agazie, G., Alam, M. F., Anumarlapudi, A., et al. 2023a, ApJ, 951, L9
Agazie, G., Anumarlapudi, A., Archibald, A. M., et al. 2023b, ApJ, 951, L8
Agazie, G., Anumarlapudi, A., Archibald, A. M., et al. 2023c, ApJ, 951, L8
Agazie, G., Anumarlapudi, A., Archibald, A. M., et al. 2023d, ApJ, 951, L10
Agazie, G., Anumarlapudi, A., Archibald, A. M., et al. 2023e, ApJ, 952, L37
Amaro-Seoane, P., Sesana, A., Hoffman, L., et al. 2010, MNRAS, 402, 2308
Antoniadis, J., Arumugam, P., Arumugam, S., et al. 2023a, arXiv e-prints,

arXiv:2306.16227
Antoniadis, J., Arumugam, P., Arumugam, S., et al. 2023b, arXiv e-prints,

arXiv:2306.16214
Antoniadis, J., Arumugam, P., Arumugam, S., et al. 2023c, arXiv e-prints,

arXiv:2306.16225
Antoniadis, J., Arumugam, P., Arumugam, S., et al. 2023d, arXiv e-prints,

arXiv:2306.16226
Antoniadis, J., Babak, S., Bak Nielsen, A. S., et al. 2023e, arXiv e-prints,

arXiv:2306.16224

Babak, S. & Sesana, A. 2012, Phys. Rev. D, 85, 044034
Begelman, M. C., Blandford, R. D., & Rees, M. J. 1980, Nature, 287, 307
Chen, S., Sesana, A., & Del Pozzo, W. 2017, MNRAS, 470, 1738
Hamers, A. S. 2021, Research Notes of the American Astronomical Society, 5,

275
Hellings, R. W. & Downs, G. S. 1983, ApJ, 265, L39
Hogg, D. W. 1999, arXiv e-prints, astro
Jenet, F. A., Hobbs, G. B., van Straten, W., et al. 2006, ApJ, 653, 1571
Kelley, L. Z., Blecha, L., & Hernquist, L. 2017, MNRAS, 464, 3131
Kelley, L. Z., Blecha, L., Hernquist, L., Sesana, A., & Taylor, S. R. 2018, MN-

RAS, 477, 964
Kocsis, B. & Sesana, A. 2011, MNRAS, 411, 1467
Lentati, L., Taylor, S. R., Mingarelli, C. M. F., et al. 2015, MNRAS, 453, 2576
Middleton, H., Del Pozzo, W., Farr, W. M., Sesana, A., & Vecchio, A. 2016,

MNRAS, 455, L72
Phinney, E. S. 2001, arXiv e-prints, astro
Ravi, V., Wyithe, J. S. B., Hobbs, G., et al. 2012, ApJ, 761, 84
Ravi, V., Wyithe, J. S. B., Shannon, R. M., Hobbs, G., & Manchester, R. N. 2014,

MNRAS, 442, 56
Reardon, D. J., Zic, A., Shannon, R. M., et al. 2023, ApJ, 951, L6
Sesana, A. 2013, MNRAS, 433, L1
Sesana, A. & Khan, F. M. 2015, MNRAS, 454, L66
Sesana, A., Vecchio, A., & Colacino, C. N. 2008, MNRAS, 390, 192
Sesana, A., Vecchio, A., & Volonteri, M. 2009, MNRAS, 394, 2255
Smarra, C., Goncharov, B., Barausse, E., et al. 2023, arXiv e-prints,

arXiv:2306.16228
Taylor, S. R., Simon, J., & Sampson, L. 2017, Phys. Rev. Lett., 118, 181102
Thorne, K. S. 1987, Gravitational radiation., 330–458
Verbiest, J. P. W., Lentati, L., Hobbs, G., et al. 2016, MNRAS, 458, 1267
Xu, H., Chen, S., Guo, Y., et al. 2023, Res. Astron. Astrophys., submitted

Article number, page 8 of 8


	Introduction
	Theoretical model
	Binary population
	Discrete GWB signal construction

	Neural Network model
	Results
	Dataset properties
	Model prediction

	Discussion and conclusions

