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Abstract 

Models of decision-making focusing on two-alternative choices have classically described 

motor-response execution as a non-decisional stage that serially follows the termination of 

decision processes. Recent evidence, however, points towards a more continuous transition 

between decision and motor processes. We investigated this transition in two lexical decisions 

and one object decision task. By recording the electromyographic (EMG) signal associated to the 

muscle responsible of the manual responses (i.e., button press), we partitioned single-trial 

reaction times into premotor (the time elapsing from stimulus onset until the onset of the EMG 

burst) and motor times (the time elapsing from the onset of the EMG burst and the button-press), 

with the latter measuring response execution. Responses were slower for pseudowords and 

pseudo-objects compared to words and real objects. Importantly, these effects were reliable even 

at the level of motor time measures. Differently, despite the reliable effect at the level of reaction 

times and premotor times, there was no difference in motor times between high- and low-

frequency words. Although these results, in line with recent evidence, challenge a purely non-

cognitive characterization of motor-response execution, they further suggest that motor times 

may selectively capture specific decisional components, which we identify with late-occurring 

verification and/or control mechanisms.  

 

Keywords: decision-making; lexical decision; motor response execution; electromyography; 

lexicality 
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Statement of Significance 

This study highlights specific decisional components that are still active during action. Even in 

the context of simple, fast, and discrete manual responses, it appears that part of the decision is 

still ongoing when we begin to move. Importantly, these motor decisional components seem to 

reflect specific cognitive processes, possibly related to response monitoring and/or late 

verification processes that perform an additional check on difficult items for which we have no 

pre-existing representations stored in long-term memory. 
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1. Introduction 

Most of our everyday activities stem from cognitive evaluations of the environment yielding 

decisions about how to act. The constant interaction between cognition and action is possibly 

what makes human behavior so flexible and adaptable. Yet, in characterizing the relationship 

between cognition and overt behavior, psychological models often maintain a temporal and 

functional priority of cognition over action. This cognition-action thresholding (Calderon et al., 

2018) seems particularly clear within models of decision-making focusing on 2-alternative 

choice tasks, in which decisions are based on the sampling of evidence from the stimulus 

towards a specific response alternative, until reaching an action-triggering boundary. 

Although the several instances of evidence-accumulation models (e.g., Brown & 

Heathcote, 2005; 2008; Donkin, Brown et al., 2009, 2011; Ratcliff et al., 2004; 2016; Smith & 

Vickers, 1988; Usher & McClelland, 2001; Van Zandt et al., 2000) differ significantly in terms of 

their structure, parameters, and accumulation functions, they share the assumption that motor-

response execution is not part of the decisional process, but a separate, discrete stage that serially 

follows the termination of upstream decisional computations.  

 A number of empirical findings, however, have questioned this perspective. The analysis 

of continuous hand movements within choice reaching tasks (e.g., Song & Nakayama, 2009; 

Spivey & Dale, 2006) shows that the direction of reaching trajectories reflects the dynamic 

evolution of perceptual (e.g., Resulaj et al., 2009), attentional (e.g., Welsh & Elliot, 2004; 2005), 

linguistic (e.g., Farmer et al., 2007; Spivey et al., 2005), and decision processes (e.g., McKinstry 

et al., 2008; see also, e.g., Calderon et al., 2015; Chapman et al., 2010), suggesting that motor 

responses may be modulated in real-time by the progressive unfolding of cognitive states.   



DECISIONAL COMPONENTS OF MOTOR RESPONSES 6 

 

  Simpler and discrete responses such as the typical button presses may instead hide the 

cascaded flow of information from cognitive onto motor stages (e.g., Calderon et al., 2018; see 

also Weindel et al., 2021). Previous studies, in fact, offered rather inconsistent results (for a 

review, see e.g., Servant et al, 2021; see also Duthil et al., 2019; Smith & Lilburn, 2020). 

However, more recent works point to a continuous stream of information that progressively maps 

stimulus evaluation onto the response channels even in the context of 2-alternative choice task 

featuring discrete responses (button-presses). In this context, researchers have exploited the 

electromyographic (EMG) signal to partition the reaction time (RT) into a premotor time (PMT), 

capturing the time from stimulus onset until the onset of the EMG activity, and a motor time 

(MT), reflecting the time from the onset of the EMG burst until the button-press (Botwinick & 

Thompson, 1966). The latter provides a measure of response execution, thus enabling the 

assessment of cognitive/decisional variables at the motor stage. Importantly, as noted by other 

authors (e.g., Servant et al., 2015; 2021; Weindel et al., 2021), the excellent signal-to-noise ratio 

of the EMG signal allows to extract these measures at the level of single trials, thus providing 

precise chronometric indexes that are not blurred by the averaging procedures required by other 

physiological signals.  

This recent evidence, gathered in the field of perceptual decision-making, suggests that 

factors related to the rate of sensory evidence accumulation (e.g., the levels of contrast within 

Gabor patches or the levels of motion coherence in random dot motion task) consistently 

influence not just PMT, but also MT (Servant et al. 2021; Weindel et al., 2021), thus 

contradicting the functional characterization of motor-response execution in terms of a non-

decision stage. On the contrary, decisions may actually still be unfolding during response 
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execution, with the latter being affected by the same (Servant et al. 2021) or by some (e.g., 

Weindel et al., 2021) of the variables that shapes PMTs. 

The Present Study 

 Moving from the recent advancements reviewed above, we further investigated the 

assumption of the functional segregation between decisional and motor processes within tasks 

requiring a sampling of evidence from long-term memory. Specifically, we relied on lexical and 

object decision paradigms, two cases of 2-alternative choice tasks in which participants have to 

classify each letter string/line configuration as a function of their lexical/object status (word vs 

nonword/object vs. nonobject). While during perceptual decision-making sensory-perceptual 

information may be directly mapped onto motor actions through dedicated sensorimotor 

pathways (e.g., Gordon et al., 2021; Cisek, 2007; Pezzullo & Cisek, 2016; Siegel et al., 2011), 

during conceptual decision-making the link between perception and action is mediated by the 

activation of a representation stored in memory and by high-level processes underpinning the 

recognition and identification of complex and – at least for lexical decisions – symbolic stimuli. 

In this context, we assessed EMG traces associated with button presses, to ascertain whether 

differences in response latencies are captured solely by the premotor part of the RTs, or, 

differently, whether the difference is present at the level of MTs as well. 

Abrams and Balota (1991) already showed lexicality and word-frequency effects on 

kinematic parameters of responses provided by moving a handle leftward or rightward (see also 

Barca & Pezzulo, 2012; Bangert et al., 2012; Moreno et al., 2011). As noted above, this sort of 

responses, by allowing longer and more continuous movements, also offers additional degrees of 

freedom for cross-talks and strategic adjustments between decisional and action processes, as 

advocated within proposals featuring an adaptive flow of information between cognition and 
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action as a function of task- and response-related constraints (Calderon et al., 2018). We thus 

deem important not to assume an equivalence between these more complex, continuous 

responses and the more traditional experimental configuration featuring discrete button-presses, 

particularly when considering that the latter is still the response modality used in most of the 

cognitive and neuroscientific work on decision making.  

 In Experiment 1, we used the lexical decision task to investigate the cognition-action 

thresholding, an assumption shared by both models of evidence accumulation and visual word 

recognition. In the evidence accumulation framework both word and nonword decisions are 

based on the sequential sampling of the same sources of evidence, and variations in the rate of 

evidence accumulation can account for differences among different types of stimuli (e.g., Ratcliff 

et al., 2004; for further discussion, Yap et al., 2015). Instead, in models of word recognition word 

vs nonword decisions are linked to the amount of global and local activation within the 

orthographic lexicon (e.g., Coltheart et al., 2001; Grainger & Jacobs, 1996), while nonword 

responses are delivered when a temporal deadline has elapsed and the threshold of lexical 

activation signaling a word response has not been reached. Importantly, by assuming thresholded 

decisional process, both frameworks predict that differences in RTs between words and 

nonwords should only be visible in the premotor components of response latencies. In the first 

experiment, we sought to assess this assumption, which, to anticipate the results, was clearly 

falsified by lexicality effects on MTs. 

 In the following experiments, we sought to provide a first general functional 

characterization of the information processed during motor-response execution. We thus 

experimentally investigated the generalizability of decisional modulations of motor-responses in 

a different task, as well as across different effects. Specifically, Experiment 2 investigated an 
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object decision task, to assess the generalizability of the effect beyond lexical decisions and 

linguistic stimuli, and Experiment 3 exploited once more the lexical decision paradigm and 

investigated the effect of lexical frequency. Other than being one of the major determinants of 

lexical decision performance across languages (e.g., Yap & Balota, 2009; see also Brysbaert et 

al., 2016; Ferrand et al., 2010; Keeulers et al., 2012; Yap et al., 2010), lexical frequency 

represents a particularly interesting test. In the context of the sequential sampling models, this 

variable is typically mapped onto the rate of evidence accumulation (e.g., Donkin, Heathcote, et 

al., 2009; Gomez & Perea, 2014; Ratcliff et al., 2004; Yap et al., 2012; see also Heatchcote & 

Love, 2012; Rae et al., 2014), with residual non-decisional components of effects solely 

attributed to perceptual encoding stages (Donkin, Heathcote, et al., 2009; Gomez & Perea, 2014). 

Differently, if evidence accumulates even after response initiation and shapes the unfolding of 

the motor response (Servant et al., 2021), any robust effect stemming (at least in part) from the 

rate of evidence accumulation and traditionally detected at the level of RTs should also be 

sizeable on MTs. The possibility, however, is not trivial. Words and nonwords are considerably 

different, as only the formers have an existing representation stored within long-term memory 

systems. This decisional configuration is obviously different from perceptual decision-making 

tasks. Indeed, researchers have hypothesized the presence of additional processes in the case of 

nonword decisions (at least in the case of word-like nonwords, i.e., pseudowords) such as late-

occurring verification stages (Paap et al., 1982; see Perea et al., 2005; Yap et al., 2015; Ziegler et 

al., 2001). One possibility is that, in case of a decision based on information sampled from 

memory, these specific late-occurring stages take place, at least in part, during actual response 

execution. If this is the case, one would predict lexicality, but not frequency to affect measures of 

MT. 
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 Other than calling for specific processing stages, pseudowords and pseudo-objects may 

require enhanced monitoring and control resources. For example, pseudowords are usually more 

prone to errors and, in particular, fast, impulsive ones possibly related to lexical capture 

phenomena (Scaltritti et al., 2021; see also Fernández-López et al., 2021) that might call for 

additional monitoring and/or control processes (e.g., Ridderinkhoff, 2002; van den Wildenberg et 

al., 2010). Also, pseudowords are more prone to partial errors (Scaltritti et al., 2021) – which 

consist in a covert activation of the muscle associated with the incorrect choice, before the 

correct response is delivered, a phenomenon clearly pointing to online monitoring and correction 

mechanisms operating at the level of motor-responses (e.g., Burle et al., 2002). Importantly, 

chronometric measures of MTs have been consistently associated with an online executive 

process related to error detection and correction (Allain et al., 2003; see also, Rochet et al., 2014; 

Smigasiewicz et al., 2020; Weindel et al., 2021). Also, recent proposals suggest that the 

propagation of evidence accumulation beyond response onset actually represents a second-order 

decision variable that is specifically tied to performance monitoring (Desender, Ridderinkhof, et 

al., 2021). We thus explored whether those manipulations highlighting effects on the MT 

components also triggered parallel modulations of the indexes of response accuracy associated 

with monitoring processes. 

 To summarize, the following experiments had two main aims. The first was to 

empirically assess a core assumption of decision-making and visual word recognition models, 

according to which motor responses serially follows the termination of decisional processes. 

Both types of models predict that decisional effects should not percolate onto measures of motor-

response duration. To anticipate, this prediction was falsified by our data. As a second aim, we 

thus sought to provide a functional characterization of the decisional components affecting the 
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motor stage, focusing in particular on late-occurring verification and/or control mechanisms. 

This was achieved by comparing different experimental manipulations (lexicality and object 

status vs words lexical frequency) and converging insights provided by measures of response 

accuracy (partial as well as fast impulsive errors).  

2. Experiment 1 

2.1 Method 

2.1.1 Transparency and Openness 

We report how we determined our sample size, all data exclusions, all manipulations, and all 

measures in the study. Data and materials for all the experiments are available at 

https://osf.io/6hqk5/. Scripts and codes for the analyses are available from the first author. For all 

the experiments, their design and analyses were not pre-registered. All the software, packages, 

and toolboxes used to administer the experimental procedures, and for data collection, processing 

and analyses are reported in the corresponding sections within the reminder of the Method 

section. Data were collected in 2020 – 2021.  

2.1.2 Participants 

Sample size for all the experiments was decided on the basis of recent recommendations in the 

field (Brysbaert, 2019). We used previous data featuring similar tasks and measures (Scaltritti et 

al., 2020) and the R package simR (version 1.0.6; Green & MacLeaod, 2016; Green et al., 2016) 

to run 200 simulations based on random samples (observed power). The results showed that, 

with an experiment featuring 28 participants and 100 items per experimental cell, we had a 70% 

chance (95% CI = 63.14% – 76.26%) to detect a significant lexicality effect (alpha = .05) on 

chronometric measures of motor-response execution. As the experimental plan included new 

experimental paradigms (Experiment 2), as well as potentially null effects (Experiment 3), we 
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decided to increase sample size (48), as well as the number of observations (128; 64 items 

repeated twice). 

  Forty-eight Italian native speakers took part in the experiment (33 females; Mage = 22.98; 

SDage = 3.58). Data from 4 participants were replaced because of issues during acquisition of the 

EMG signal (e.g., faulty electrodes, incorrect placement of the electrodes, detachment of the 

electrodes during the experiment). Data from 3 participants were discarded during the analysis 

due to an excessive number of EMG epochs rejected (see section EMG Recording and 

Processing). 

 All participants had normal or corrected-to-normal vision and reported no history of 

neurological problems or learning disabilities (these criteria were true across all the reported 

experiments). Using the Edinburgh Handedness Inventory (Oldfield, 1971) 43 participants could 

be classified as right-handed (M = 80.60, SD = 15.43), whereas 5 were mixed right-handed (M = 

39.02, SD = 10.27).  

 Participation was compensated with €15. All the procedures received approval from the 

ethical committee of the University of Trento (protocol number 2020-028), and participants 

signed an informed consent document before the experiment (these conditions apply also to 

Experiment 2 and 3).  

2.1.3 Stimuli 

Sixty-four words were selected from the PhonItalia database version 1.10 (Goslin et al., 2013), 

and 64 pseudowords were created with the help of the Wuggy software (Keeulers & Brysbaert, 

2010). Words and pseudowords were comparable across a series of psycholinguistic variables 

(see Table 1). Both words and pseudowords were partitioned into 2 subsets for counterbalancing 
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purposes (illustrated below), and items were comparable both within and across subsets in terms 

of the same variables reported in Table 1.  

 

-- Table 1 -- 

 

2.1.4 Apparatus and procedures 

Participants first completed a questionnaire collecting demographic and health-related 

information. Then, after installation of the electrodes for the recording of EMG, the experiment 

began. The experimental procedure and the acquisition of behavioral data were controlled via the 

E-Prime 2 software (Version 2.0.10.356, Psychology Software Tools) running on a laptop. 

Participants sat in front of the computer screen at a distance of about 60 cm, holding a joypad in 

their hands with their thumbs resting on the upper triggers. The joypad could be held either on 

the table, or resting on the participants legs, as a function of individual preferences and signal 

quality (the configuration selected by the participant was typically associated with an increased 

comfort and a reduction in tonic EMG noise). They were instructed to classify letter strings as 

words or pseudowords using their thumbs to perform button presses. Speed and accuracy were 

equally emphasized. 

The experiment was divided in four blocks, and the stimulus (word vs pseudoword)-

response (right vs left hand) mapping was reversed in each following block, to ensure within 

each participant an equal number of left- and right-hand responses for each category of stimuli. 

The order of administration of the two stimulus-response hand mappings across blocks was 

counterbalanced across participants. Each subset of item was assigned either to the first or the 

second block (the assignment was counterbalanced across participants). Within participants, the 
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last two blocks were exact repetitions of the first two. Repetition was introduced to increase the 

number of observations, while keeping a constant number of trials across experiments and given 

the limitation in the number of items available for Experiment 2.1 Before each block, participants 

performed eight practice trials to familiarize with the response mapping. Self-terminated breaks 

were prompted halfway within each block. The whole experimental session (including 

installation of the electrodes and final debriefing) lasted about 90 min. 

 Stimuli were presented in 25-point Courier New font, in white against a black 

background. Trials started with a fixation cross (+) and its duration was chosen randomly among 

5 alternatives (400, 450, 500, 550, 600 ms). Then the stimulus appeared and remained on the 

screen until participant response or for a maximum of 1500 ms.  A blank screen lasting 800 ms 

was finally presented and served as an inter-trial interval.  

2.1.5 EMG Recording and Processing 

EMG activity was acquired though an eego sports system (ANT Neuro), with a sampling rate of 

1000 Hz and using 2 pairs of bipolar electrodes placed about 1.5 cm apart on the thenar 

eminences of both hands. An additional ground electrode was placed on the pisiform bone of the 

right hand. The skin was prepared in advance using first isopropyl alcohol and then a mildly 

abrasive skin preparation gel (Nuprep, Weaver and Company). EMG signal acquisition was 

monitored online, and participants were asked to relax when tonic noise was detected. 

 Off-line signal processing was performed using EEGLAB (version 14_1_2b; Delorme & 

Makeig, 2004) functions, as well as custom-made routines. A 5Hz high-pass filter (order 2 

Butterworth) and a 50Hz notch filter were applied offline to the EMG traces. The signal was then 

segmented into epochs beginning 500 ms before stimulus onset and lasting until 2100 ms 

afterwards. Within each epoch, the onset of the EMG activity was detected using an algorithm 
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devised following Liu and Liu (2016; see also Weindel et al., 2021). Specifically, the cumulative 

sum of the absolute values of the EMG trace is first computed and then subtracted from the 

straight line that joins the first and the last data-points (which would correspond to the 

cumulative sum of a uniform distribution; see also Liu & Liu, 2016; Weindel et al., 2021). The 

EMG onset was marked in correspondence to the sample in which the difference reached its 

minimum value. Notably, the original algorithm by Liu and Liu (2016) was explicitly devised to 

overcome issues related to spontaneous spike activity within clinical populations, and thus 

provides a robust solution for EMG onset detection despite potential background noise. 

 To support artifact rejection, we applied a second algorithm, inspired by Servant and 

colleagues (2021). For each epoch, we computed windows of EMG activity by identifying 

samples in which activity exceeded the threshold of 3.5 SDs from the average value in the pre-

stimulus baseline period (-500 to 0 ms). Consecutive windows separated by intervals shorter than 

25 ms were merged. From the resulting windows of activity, we discarded those with a duration 

below 50 ms (arguably reflecting noise or random fluctuations, rather than purposeful EMG 

activity) as well as windows beginning after the epoch’s RT. Epochs displaying more than 1 

window of activity were marked. We then visually inspected all the epochs and retained only 

those in which the EMG onset was marked in correspondence to the last window of activity 

before response onset. This was done to discard onsets detected in correspondence to noise 

bursts, drifts or a separate subthreshold EMG burst occurring before response onset (possibly 

related to hesitations). We also excluded all the epochs in which the onset detection algorithm 

failed, due to excessive noise or drift in the signal. On average, 8.76% of the epochs were 

rejected. Datasets (N = 3) in which more than 25% of the epochs were rejected were excluded 

from the analyses. 
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 The two algorithms were finally applied also to the signal corresponding to the hand not 

involved in the final button-press (e.g., the right-hand channel when a left-hand button press was 

delivered), in order to detect partial errors and partial correct responses (i.e., trials with an 

incorrect response, but with a prior subthreshold activation of the correct response hand). Epochs 

featuring one or more windows of activity were marked. Using visual inspection, epochs were 

then classified as containing true partial errors or partial-correct responses when a visually 

detectable subthreshold EMG activation was present, and the timing of its onset was accurately 

detected. On average, partial errors occurred on 6.54% of the trials. Partial correct responses 

were very few (0.5%) and thus not investigated. Epochs containing partial errors or partial-

correct responses were dropped from chronometric and accuracy analyses. 

 All the processing steps reported in this section were consistently applied to the other 

reported experiments as well. 

2.1.6 Measures 

 2.1.6.1 Chronometric Measures. Using the EMG traces, we partitioned each single RT 

into PMT – reflecting the time elapsing from stimulus onset until the onset of the EMG burst – 

and MT – capturing the time between the onset of the EMG burst and the actual button press. 

The analysis of these chronometric indexes focused on pure-correct responses (i.e., correct 

response with not covert-activation of the incorrect response hand). 

  2.1.6.2 Accuracy. These analyses focused on pure-correct and pure-error responses (i.e., 

correct responses and errors with no covert activation of the incorrect or correct response hand, 

respectively). We also considered conditional-accuracy functions (CAF), reflecting variations in 

accuracy as a function of response speed. Trials without responses (i.e., time-outs) were excluded 

from this analysis. Within each participant and within each stimulus category (e.g., words vs 
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pseudowords), trials were sorted into five quantiles as a function of their RT, with the first 

quantile capturing the fastest 20% of the responses, the second quantile the next 20%, and so on 

until the fifth quantile, reflecting the slowest 20% of the responses. The variable Quantile was 

then treated as a fixed effect in the analyses. 

 2.1.6.3 Partial errors. These analyses focused on correct responses and assessed 

potential variations in the likelihood of partial errors across conditions.  

2.1.7 Statistical analyses 

Chronometric measures were analyzed using linear mixed-effects models. Analyses on response 

accuracy and partial errors were analyzed via generalized mixed-effects models due to the 

binomial nature of the dependent variables. All analyses were conducted using the lme4 library 

(version 1.1.27.1; Bates et al., 2015) and the afex package (version 28.1; Singman et al., 2021) in 

R (version 4.2.1; R Core Team, 2021). Figures were made using the ggplot2 package (version 

3.3.6; Wickham, 2016). 

 Fixed effects were assessed by comparing alternative models in which the effect under 

examination was either present or absent. Fixed terms were retained when likelihood ratio tests 

revealed that their exclusion would have determined a significant decrease in goodness-of-fit. In 

case interactions resulted significant, all the lower-order terms were retained. In this first stage, 

the random effect structure was limited to by-participants and by-items random intercepts. Once 

we identified the significant fixed effects, we then tried to fit the structure of maximal 

complexity (Barr et al., 2013), including random slopes for all the fixed terms (as well as their 

correlations with the intercepts). When models failed to converge (due to over-parameterization; 

e.g., Bates et al., 2018; Matuschek et al., 2017), we progressively simplified the random-effect 

structure by first removing correlations among random terms (i.e., fitting zero-correlation 
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models), then by removing random slopes (or intercepts) associated with the smallest amount of 

variance (often corresponding to 0).  

 For the CAFs analyses, we focused on assessing the interaction between the variable 

Quantile and the factor distinguishing between stimulus types (Lexicality in Experiment 1 and 3, 

Object Type in Experiment 2, and Word Frequency in Experiment 3). If the interaction resulted 

significant, we further considered non-linear relationships using second order orthogonal 

polynomials to fit the Quantile variables. These non-linear terms were retained only when they 

increased goodness-of-fit. To obtain model convergence, for these analyses the random effect 

structure was limited to by-participants and by-items random intercepts. 

 For all models, information regarding the fixed effects is reported in-text. Details about 

random effects for all the final models are listed in Supplemental Materials 1 (Tables S1 through 

S4). Information for all the parameters of CAF models is listed in the Supplemental Materials 2 

(Table S5 and Table S6). All the procedures outlined in this section were consistently applied to 

all the experiments.  

2.2 Results 

2.2.1 Chronometric Measures 

Trials with errors (4.26 % of the total), partial errors (6.54%), or an inaccurate detection of the 

EMG onset (6.68%) were excluded from the analyses. Results are summarized in Figure 1A.  

 The Lexicality effect was significant for measures of RTs, χ2(1) = 71.83, p < .001, PMTs, 

χ2(1) = 66.03, p < .001, and, crucially, MTs, χ2(1) = 26.40, p < .001. In the final models, we were 

able to retain the random effect structure of maximal complexity for all the 3 measures (Table 

S1). Parameters of the fixed effects are listed in Table 3. Words were faster than pseudowords 

across all the three measures.  
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2.2.2 Accuracy  

There was a significant effect of Lexicality, χ2(1) = 7.89, p < .001. The final model (in which we 

had to drop the correlation between by-participants random intercepts and random slope for the 

Lexicality effect; Table S1) revealed that responses were more accurate for words compared to 

pseudowords, b = 0.55, SE = 0.24, z = 2.26 (Figure 1B). 

 Analyses of conditional accuracy functions revealed a significant Lexicality by Quantile 

interaction, χ2(1) 34.26, p < .001. Fitting the Quantile variable with a quadratic orthogonal 

polynomial increased goodness of fit, χ2(2) = 93.44, p < .001. As visible in Figure 1B (see also 

Table S5), pseudowords were specifically more prone to fast errors (i.e., errors within the first 

quantile of the RTs distribution), compared to words.  

2.2.3 Partial errors 

There was a significant effect of Lexicality, χ2(2) = 4.17, p = .04. The final model, retaining the 

random effect structure of maximal complexity (Table S1), highlighted that partial errors were 

less likely to occur for words compared to pseudowords, b = -0.29, SE = 0.14, z = -2.09 (Figure 

1C).  

 

-- Figure 1 -- 

 

2.3 Discussion 

Experiment 1 revealed that the lexicality effect (slower responses for pseudowords compared to 

words) reliably affects both the pre-motor and, crucially, the motor component of RTs. This 

result is at odds with the notion that decision is terminated upon motor-response initiation. Had 

this been the case, there would be no reason to expect a lexicality effect on MTs.  
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The lexicality effect on MTs might reflect a continuation of the evidence accumulation 

processes during response execution (e.g., Servant et al., 2021). An alternative hypothesis is that 

it would stem from different processes and sources of information. For example, late-occurring 

verification stages, which have been hypothesized for pseudoword stimuli (e.g., Perea et al., 

2005), may still be ongoing after response initiation, thus prolonging MTs duration. Indeed, as 

for pseudowords there are no representations in long-term memory, decisions may take some 

extra time to verify that the string really fails to match any lexical entry. Part of this additional 

search may occur during response execution. 

 Measures of response accuracy revealed other insights. Pseudoword responses were more 

likely to yield partial errors as well as fast errors (i.e., errors occurring in the first quantile of the 

CAF). Both indexes can be linked with a tendency to misidentify pseudowords as words. 

Potentially, the system may react to this issue by increasing monitoring processes over these 

more uncertain responses, thus yielding longer MTs (e.g., Allain et al., 2004; Burle et al., 2002).  

 In the following experiment, we assessed whether these phenomena are exclusively 

related to lexical decision or can be reproduced with non-linguistic stimuli.  

3. Experiment 2 

3.1 Method 

3.1.1 Participants 

Forty-eight Italian native speakers participated to the experiment (41 females; Mage = 21.79; 

SDage = 2.91). Data from 1 participant were replaced as only a few epochs of the practice session 

were recorded. Data from 3 participants were discarded during the EMG processing procedure, 

due to the high number of EMG epochs rejected (> 25%). Using the Edinburgh Handedness 
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Questionnaire, 42 participants were classified as right-handed (M = 84.54, SD = 14.45), 5 as 

mixed-right handers (M = 38.74, SD = 1.36) and 1 as left-handed (handedness score = -60).  

3.1.2 Stimuli 

Sixty-four images of manmade objects were selected from the Bank of Standardized Stimuli 

(BOSS; Brodeur et al., 2010; 2014). The selected pictures had moderately high values of name 

agreement (.71, SD = .20; mean H-value = 1.37, SD = 0.96), and depicted highly familiar objects 

(mean familiarity: 4.13, SD = .30; scale 1 to 5). The sixty-four images of pseudo-objects 

consisted in the items of the Novel Object and Unusual Name (NOUN) database (Horst & Hout, 

2016). All images were converted to black-and-white images2 and scaled to a 400 x 400 pixels 

size. The size of the files in kB, taken as a rough proxy for visual complexity (Székely & Bates, 

2000) was comparable across objects and pseudo-objects (Mobj = 69.13, SDobj = 16.93; Mpseudo = 

70.56; SDpseudo = 12.97; t [63] = -0.54, p = .59). Images for objects and pseudo-objects were 

partitioned into 2 subsets, for counterbalancing purposes. The 2 subsets were comparable for all 

the variables mentioned above. 

3.1.3 Apparatus and procedures 

The same as in Experiment 1. The only differences were that a) images were presented instead of 

letter strings, and b) all the stimuli appeared on a white background. 

3.2 Results 

3.2.1 Chronometric Measures 

Errors (8.47 % of the total number of trials), partial errors (12.53%), or trials with an inaccurate 

detection of the EMG onset (4.79%) were excluded from the analyses. Partial correct responses 

were few (1.49%) and not further analyzed. Results are summarized in Figure 2A.  
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 There were significant effects of Object Type (pseudo-objects vs objects) on RTs, χ2(1) = 

31.27, p < .001, PMTs, χ2(1) = 22.51, p < .001, and also for MTs, χ2(1) = 48.83, p < .001. The 

final models for all the 3 measures retained the random effect structure of maximal complexity 

(Table S2). Parameters of the fixed effects are listed in Table 3.   

3.2.2 Accuracy  

The effect of Object Type was not significant, χ2(1) = 3.47, p = .06. Conditional accuracy 

functions analyses revealed no Object Type by Quantile interaction, χ2(1) = 1.24, p = .26 (Figure 

2B).  

3.2.3 Partial errors 

There was no significant effect of Object Type, χ2(1) = 0.18, p = .67 (Figure 2C). 

 

-- Figure 2 -- 

 

3.3 Discussion 

Experiment 2 revealed a reliable effect of object-type on MTs, which were longer for 

pseudo-objects compared to real ones. This finding testifies to the generalizability of decisional 

effects on MTs, beyond the context of lexical decision. However, compared to Experiment 1, 

measures of response accuracy – which were exploited to functionally characterize the processes 

occurring during motor-response execution – showed some intriguing differences. In particular, 

we found no evidence that partial errors were more likely to occur for pseudo-objects compared 

to objects, in contrast with what we found for pseudowords compared to words. Additionally, the 

analysis of CAFs failed to reveal a clear object-type by quantile interaction. Although fast errors 

seem qualitatively more likely to occur for pseudo-objects, the lack of a significant interaction 

warrants against strong conclusions in this sense. Taken together, these results suggest that 
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prolonged MTs may reflect a continuation of evidence-accumulation and/or late-occurring 

verification processes triggered by stimuli with no pre-existing representation in long-term 

memory (i.e., pseudo-objects). 

 In the third experiment, we attempted to further specify the functional characterization of 

the decisional components of motor-response execution. Specifically, we manipulated word-

frequency within a lexical decision experiment. If the effects on MTs stem from a continuation of 

evidence-accumulation during response execution, we would expect lexical frequency to affect 

MTs. Differently, the lack of a word-frequency effect paired with a replication of the lexicality 

effect would be more in line with a verification account, related to the specific features of 

pseudowords stimuli. 

4. Experiment 3 

4.1 Method 

4.1.1 Participants 

Forty-eight participants took part in the experiment (38 females; Mage = 21.02; SDage = 2.20). 

Data from 3 participants were replaced because of problems during the acquisition of the signal. 

Data from other 3 participants were excluded during the stage of EMG signal processing due to 

the high number of EMG epoch rejected. According to the Edinburgh Handedness Questionnaire, 

43 participants could be classified as right-handed (M = 83.25, SD = 14.35), 3 as mixed-right 

handers (M = 50, SD = 0), 1 as a mixed left-hander (handedness score = -30), and 1 as left-

handed (score: -88.9).  

4.1.2 Stimuli 

Sixty-four high-frequency and 64 low-frequency words were selected from the phonItalia 

database version 1.10 (Goslin et al., 2013). One-hundred and twenty-eight pseudowords were 
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created with the help of the Wuggy software (Keeulers & Brysbaert, 2010). High-and low-

frequency words were comparable for several psycholinguistic variables (Table 2). The same was 

true when comparing words (high- and low-frequency taken together) and pseudowords. High- 

and low-frequency words were partitioned into 2 subsets for counterbalancing purposes. The 

subsets were comparable in terms of the variables listed in Table 2. Pseudowords were similarly 

partitioned into 2 subsets, which were comparable with those created for words across the 

variables reported in Table 2. 

 

-- Table 2 -- 

 

4.1.3 Apparatus and procedures 

Apparatus and procedures were the same as in Experiment 1.  

4.2 Results 

4.2.1 Chronometric Measures 

Errors (5.29% of the total number of trials), partial errors (13.45%), or trials with an inaccurate 

detection of the EMG onset (4.16%) were excluded from the analyses. Partial correct responses 

were very few (0.67%) and thus not further considered. The results are summarized in Figure 3A 

and Figure 3D. Parameters of the final models are listed in Table 3. 

 4.2.1.1 Word Frequency. There were significant frequency effects on RTs, χ2(1) = 47.65, 

p < .001, and on PMTs, χ2(1) = 48.14, p < .001. The final models, retaining the random effects 

structure of maximal complexity (Table S3), revealed that both measures were significantly 

longer for low- compared to high-frequency words. Differently, there was no frequency effect on 

MTs, χ2(1) = 0.27, p = .60 (b = 0.71, SE = 1.45, t = 0.49). Given the theoretical relevance of this 
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null effect, we estimated the corresponding Bayes Factor (BF). Specifically, we subtracted the 

Bayesian Information Criterion (BIC) of the model featuring the fixed effect of word frequency 

from the one taken from the null model (only random intercepts), thus obtaining the delta BIC. 

The BF was then computed following the formula exp(deltaBIC/2) (Rafery, 1995; Wagenmakers, 

2007). We obtained a BF = 0.042, suggesting that the data provide strong evidence for the null 

hypothesis.  

 4.2.1.2 Lexicality. There were significant lexicality effects on RTs, χ2(1) = 141.4, p 

< .001, PMTs, χ2(1) = 120.87, p < .001, and MTs, χ2(1) = 111.47, p < .001. All the chronometric 

measures were significantly slower for pseudowords compared to words (Table 3; for the random 

effect structure, see Table S4). 

4.2.2 Accuracy 

 4.2.2.1 Word Frequency. The frequency effect was significant, χ2(1) = 39.49, p < .001. 

The final model, featuring no correlations between random slopes and intercepts (Table S3), 

showed that response accuracy was lower for low- compared to high-frequency words, b = -1.29, 

SE = 0.2, z = -6.45. Analyses of conditional accuracy functions revealed no significant 

interaction between Word frequency and Quantiles, χ2(1) = 0.07, p = .78 (Figure 3B). 

 4.2.2.2 Lexicality. There was a significant effect of lexicality, χ2(1) = 4.51, p = .03. 

However, once the random slopes were included in the final model (Table S4), the effect was no 

longer significant, b = 0.19, SE = 0.19, z = 0.98 (Figure 3E). Analyses of conditional accuracy 

functions revealed a significant interaction between Lexicality and Quantiles, χ2(1) = 81.11, p 

< .001, driven mostly by fast and impulsive errors for pseudowords (Figure 3E; see also Table 

S6).  

4.2.3 Partial errors 
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 4.2.3.1 Word Frequency. The effect of word frequency was significant, χ2(1) = 53.76, p 

< .001, with the final model indicating a higher likelihood of partial errors for low- compared to 

high-frequency words, b = 0.73, SE = 0.1, z = 7.59 (Figure 3C). 

 4.2.3.2 Lexicality. There was a significant lexicality effect, χ2(1) = 4.42, p = .03. The 

reduction in the likelihood of partial errors for words however appeared rather weak when 

including the random slopes in the final model (Table S4), b = -0.16, SE = 0.09, z = -1.67 (Figure 

3F).  

 

-- Figure 3 -- 

 

-- Table 3 -- 

 

4.3 Discussion 

The third experiment replicated the lexicality effect on MTs found in Experiment 1. 

Differently, the effect of lexical frequency remained exclusively bounded to the pre-motor 

component of RTs. One trivial possibility is that the lack of a frequency effect on MTs simply 

reflects a power issue or a scaling effect. However, BF approximation (Wagenmakers, 2007; see 

also Rafery, 1995) suggests that Experiment 3 provides strong evidence favoring the null 

hypothesis, i.e., that there is no frequency effect on MTs. Moreover, albeit smaller than the 

lexicality effect, the size of the word frequency effect on RTs and PMTs is fully comparable to 

the object type effect reported in Experiment 2 (see Table 3, as well as Figure 2A and Figure 3A). 

It thus seems that our experiment should have been able to detect a frequency effect on MTs, had 

there been one.   
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 As we will discuss in more detail below, this dissociation across different experimental 

manipulations in their ability to reach the motor stage may provide an important constraint with 

respect to the functional characterization of the decisional components that are active during 

motor-response execution. In fact, at least in the context of the decision paradigms we have 

implemented, it seems that the critical factors in determining the effects on the motor-component 

of RTs are either related to the lack of a stimulus representation in long-term memory 

(pseudowords and pseudo-objects vs words and objects) and/or to the request of additional 

control processes for these kinds of stimuli. 

5. General Discussion 

We experimentally investigated the boundaries between decision and action within conceptual 2-

alternative choice tasks featuring discrete button-press responses. Using the EMG signals, RTs 

were fractioned into a premotor and a motor component (MT, Botwinick & Thompson, 1966) to 

assess whether decision processes terminate before response initiation – as assumed by 

prominent models of binary decision-making and lexical decision – or, instead, whether they are 

still at play during motor-response execution. Our results support the latter perspective and 

reveal important constraints that may further clarify the transition from decision onto action-

related processes, at least when evidence is sampled from memory, rather than from sensory 

input.   

5.1 Experimental Factors Affecting vs. Not-Affecting MTs Constrain the Functional 

Interpretation of Motor Responses’ Decisional Components 

 Experiment 1 and 3 revealed that, in lexical decision tasks, the classic lexicality effect 

can be tracked also during motor-response execution. Experiment 2 additionally revealed a 

similar effect in an object-decision task, suggesting that the phenomenon may not be due to 
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unidentified task-specificities of lexical decision. At first sight, these results seem to fit nicely 

with the recent ones in the field of perceptual decision-making, where the modulation of MTs as 

a function of the available sensory evidence has been interpreted as a signature of evidence 

accumulation continuing during motor-response execution (Servant et al., 2021). However, the 

results on word frequency (Experiment 3) challenge this interpretation, at least in the context of 

the experimental paradigms we exploited. In fact, albeit RTs were reliably slower for low- 

compared to high-frequency words, this effect remained bounded within the premotor 

component of RTs (see also Supplemental Materials 3). This does not appear to be compatible 

with the notion that the unfolding of motor response is shaped by an ongoing evidence 

accumulation process relying on the same sources of information that are used during purely 

cognitive decisional stages (Servant et al., 2021; see also Servant et al., 2015; 2016). In other 

words, as lexical frequency consistently modulates the rate of evidence accumulation across 

different models (e.g., Dufau et al., 2012; Heathcote & Love; Rae et al., 2014; Ratcliff et al., 

2004), if we assume that evidence accumulation continues after response onset (Servant, 2021), 

why no frequency effect is detected on MTs?  

 In the context of perceptual decision making, and in particular when considering effects 

of stimulus-response compatibility, different previous experiments have shown manipulations 

that selectively affect PMT, while leaving MTs unaffected, (e.g., Burle et al., 2002; Hasbroucq et 

al., 1999; Spieser et al., 2014; but see Servant et al., 2021 for a different perspective). Weindel 

and colleagues (2021) have recently reported a number of findings pointing towards the 

independence of PMTs and MTs. For example, whereas the manipulations of stimulus contrast 

and speed-accuracy tradeoff modulated the two measures in the same direction, response 

accuracy revealed opposite-going influences, with errors displaying longer PMTs and shorter 
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MTs compared to correct responses. Further, response force and response side (at least in one 

experiment) selectively affected MTs. According to the authors, these dissociations support the 

notion that PMTs and MTs reflect different latent (cognitive) processes.  

Similarly, in our experiments, the difference in propagation between frequency and 

lexicality effect across the motor stages might support the notion that specific processes 

modulate motor-response execution in lexical decision. In other words, these empirical 

observations offer some important constraints with respect to the functional characterization of 

the decisional components observed at the level of motor-response execution. Specifically, the 

mismatch between the word frequency effect on the one hand, and the lexicality and the object 

type effect on the other hand, suggests that decision processes may unfold in different ways as a 

function of the nature of the stimuli. Slower MTs were selectively found for items with no pre-

existing representation in long-term memory stores (i.e., pseudowords and pseudo-objects). 

Differently, when a stored representation was available, albeit less accessible as in the case of 

low-frequency words, the slowdown of response latencies remained confined into the PMT. This 

observation paves the way for different functional interpretations of the observed phenomena, as 

detailed below. 

5.2 Responses to Nonwords 

The differentiation between responses for items that are present vs absent in long-term 

memory resonates with a critical under-investigated question for any account of lexical decision, 

concerning what may constitute evidence for a nonword response. The issue has been directly 

tackled by Dufau and collegues (2012), who proposed a leaky competing accumulator (LCA; see 

Usher & McClelland, 2001) model featuring separate and mutually inhibiting word and nonword 

nodes. Whereas word responses are driven by lexical evidence, the input of the nonword node is 
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given by a constant value minus the lexical activity, thus envisaging evidence for nonword 

responses as a function of the time elapsing after stimulus onset (as for deadline models) 

modulated by the accumulation of lexical evidence through the competitive dynamics of leaky 

accumulators. Critically, however, this model features a thresholded transition from decision to 

responses, implemented as the typical action-triggering decisional boundary, that prevents any 

differentiation between words and nonwords at the level of motor-time.  

 Davis (2010), in the context of a more general model of orthographic processing and 

visual word recognition, implemented lexical decision as a process involving a competition 

between two different channels, one accumulating evidence for word, and one for nonword 

responses. A parameter controls lateral inhibition between channels, and the sources of input for 

the word-response channel, are global and local levels of activity at the lexical level. Again, both 

word and nonword responses are delivered once a decision threshold has been reached. The 

model thus implements the assumption that responses are made once decisions have terminated, 

which seems to be questioned by the lexicality effect detected on MTs within our Experiment 1 

and 3. 

Compared to these notable models, it is worth noticing that in processing word-like 

nonwords, for which no memory trace is available, additional stages might be uniquely recruited 

to reach a decision. A potential candidate may be a late verification stage (e.g., Perea et al., 

2005), during which the stimulus is further evaluated in comparison with (a few) lexical units 

(relatively) close to it. Consistent with this proposal, for example, pseudowords derived from 

high-frequency words, despite triggering higher levels of lexical activation, yield faster response 

latencies (e.g., Yap et al., 2015; see also Perea et al., 2005; Ziegler et al., 2001), as they are 

compared against their lexical counterparts to check for deviations from the base-stimuli. 
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Assuming that these late verification processes may still be active during response execution, 

they would particularly increase MTs for pseudowords (for additional exploratory analyses, see 

Supplemental Materials 4). It remains to be investigated whether the increased MTs merely 

reflect task-specific verification processes or are more broadly connected with mechanisms 

driving memory search termination processes (e.g., Doughery et al., 2016).  

5.2 Response Control and Monitoring 

  An alternative hypothesis we explored links the MTs to monitoring processes. Indeed, 

the duration of MTs has been associated – among other factors – to an online mechanism of 

executive control directed towards error detection and correction via the inhibition of the 

(erroneous) motor response (Allain et al., 2004). Additionally, recent proposals suggest that 

evidence-accumulation processes may proceed after a first decisional threshold is met. These 

would represent a second-order, metacognitive decision variable bounded to performance 

monitoring (Desender, Ridderinkhof, et al., 2021). Speculatively, MTs effects may be also linked 

with this continuing process of evidence accumulation beyond a first EMG-triggering boundary, 

to support an evolving monitoring process on the outcomes of first-order decisional stages 

(Desender, Donner, et al., 2021; Pleskac & Busemeyer, 2010; Resulaij et al., 2009; for review 

and perspectives, see Desender, Ridderinkhof, et al., 2021). Empirically, we focused on how 

response accuracy changes as a function of response speed (conditional accuracy functions) – 

which highlight conditions prone to fast and impulsive errors, thus calling for an allocation of 

additional control processes (e.g., Ridderinkhoff, 2002; van den Wildenberg et al., 2010) – as 

well as on partial errors – which reflect real-time corrections of motor responses (e.g., Burle et 

al., 2002). Globally, our data offer mixed evidence of a relationship between MT effects and 

monitoring-related phenomena. Concerning partial errors, a higher likelihood of these 
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phenomena for a specific class of stimuli does not seem to be necessarily associated with a 

slowdown in MTs. In Experiment 2, pseudo-objects revealed significantly longer MTs compared 

to real objects, despite the two types of items yielded statically comparable rates of partial errors. 

Further, Experiment 3 revealed an enhanced likelihood of partial error phenomena on low-

frequency words, despite the lack of any frequency effect on MTs. 

 The presence of fast-impulsive errors seems more promisingly associated with a 

slowdown of MTs, at least in the context of the lexical decision task, where pseudowords were 

consistently more prone to impulsive errors compared to real words, whereas low- and high- 

frequency words were undistinguishable with respect to this index. However, results from 

Experiment 2 blur the overall pattern: Albeit pseudo-objects are qualitatively more prone to fast 

errors (errors in the first quantile of the conditional accuracy function), the lack of a significant 

Object Type by Quantile interaction hinders any strong conclusion. Note that part of the 

inconclusiveness of our data on the relation between MT and monitoring processes might be due 

to the two indexes we adopted, which are either rather indirect (rates of fast errors) or focused on 

late monitoring components related to the correction of an ongoing behavior (partial errors). 

Other indexes, such as graded confidence ratings (Desender et al., 2018), or EEG components 

such as the error-positivity (e.g., Desender, Ridderinkhof, et al., 2021) may offer more direct 

measures of monitoring.   

5.3. No Effect of Lexical Frequency on Motor-Times 

 The lack of a word-frequency effect on MTs in lexical decision is apparently at odds with 

some data available in the literature. As noted in the introduction, Abrams and Balota (1991) 

reported clear effects of word-frequency on responses delivered through left vs rightward 

movement of a handle. In line with proposals of adaptive flow of information between cognitive 
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and motor stages (Calderon et al., 2018), we consider that these more complex and time-

consuming responses may provide more room for cross-talks between decision and action. 

Differently, the use of discrete responses such as the button-presses used here, other than 

capitalizing on the traditional experimental setting used in most of the cognitive and 

neuroscientific experiments, may reveal different insights and dissociations across experimental 

factors in their ability to modulate response execution. 

 Further, in a previous study, we also reported that word frequency modulates EEG 

indexes of effector-selective motor activity (Scaltritti et al., 2020). With respect to this issue, we 

would like to notice that motor responses are a product of a complex and possibly hierarchical 

series of processes, involving response selection, planning/programming, and execution (e.g., 

Rosenbaum et al., 2007; Summers & Anson, 2009). Our previous work highlighted word 

frequency effect at the level of the lateralization of EEG beta activity occurring immediately 

before response onset and related to the settling of abstract and high-level motor goals (e.g., de 

Jong et al., 2006; Wheaton et al., 2005). The current experiments, instead, focused on pure 

measures of motor execution. Different variables might thus propagate their effects at different 

levels of the motor hierarchy. Importantly, a re-analysis of the previous dataset (Scaltritti et al., 

2020), revealed the same pattern highlighted in the current experiments, with fully reliable 

lexicality effects on both PMT and MT measures, and a selective influence of word frequency on 

PMTs (Supplemental Materials 3). Other than corroborating the present findings, these results 

indeed point toward potential differences in the “cognitive” involvement of the motor-hierarchy 

as a function of specific experimental manipulations and related latent decisional components. 

Clearly, this line of reasoning requires additional research. 
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5.4 Models of Decision Making 

Although the current findings may inspire or even constrain formal models of decision 

making, we are agnostic with respect to the specific instantiation within the family of evidence 

accumulation models that would be better suited to capture our results. Model fits and 

interpretations, however, may critically depend on the specific model, and on the specific setting 

of its parameters (e.g., Donkin et al., 2011). A systematic comparison across models and 

parameter settings (e.g., Heathcote & Love, 2012; Rae et al., 2014), however, is beyond the 

scope of the present research.  

Instead, by empirically testing the shared assumption that motor-responses serially follow 

the termination of decisional stages, our investigation questions this core and general construct 

on which different models rely. Although similar findings have been reported in the field of 

perceptual decision making (Servant et al., 2021; Weindel et al., 2021), the assessment within 

different decisional paradigms based on the processing of semantic and lexical evidence sampled 

from memory revealed novel insights. Specifically, we began to assess different hypotheses 

concerning the functional characterization of the decisional components that are still active 

during motor-response execution. The results seem to favor the notion that these motor-

decisional components may be related with verification (e.g., Paap et al., 1982; Perea et al., 

2005) and/or control and monitoring dynamics (e.g., Allain et al., 2004; Burle et al., 2002; see 

also Weindel et al., 2021). However, any commitment on our part to one of the many and diverse 

extant modeling approaches (e.g., Calderon et al., 2018; Desender et al., 2021; Servant et al., 

2021) seems premature, as – we believe – the informational content of the motor component still 

needs to be functionally elucidated, in order to better identify the linking function mapping the 

specified psychological processes onto a formal/computational implementation.  
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For example, the overly focus on the classic drift-diffusion model (Ratcliff, 1978, Ratcliff 

et al., 2016) is complicated by the fact that a single parameter (Ter) jointly captures early 

encoding stages and motor-response execution, under the assumption that both represent non-

decisional processes. The selective contribution of the two stages to the decision process and/or 

the selective influence of different experimental manipulations on stimulus encoding vs motor-

response execution is thus difficult to disentangle (e.g., Vergara-Martinez et al., 2020). Actually, 

the assessment of the correspondence between the models’ parameters and the (presumed) 

specific cognitive process (for example, via test of selective influence) remains a different, albeit 

related, research question (as tackled, for example, in Weindel e al., 2021; see also Dulith et al., 

2019; Gomez & Perea, 2014; Heathcote & Love, 2012; Rae et al., 2014).   

Differently, when considering the possibility of post-decisional process of evidence 

accumulation, different frameworks have been proposed. Some authors (e.g., Servant et al., 

2021) suggest that motor responses are informed by a continuation of the same evolving 

decision-variable that shapes pre-motor stages. However, the differentiation between lexicality 

and word-frequency effects in their ability to affect MTs does not seem to fit with this 

perspective. Instead, even when considering models in which post-decisional evidence is 

explicitly linked to monitoring processes, it remains debated whether these rely on the same 

sources of information (i.e., evidence) as the ones used during first-order decisional processes 

(Desnder et al., 2021). We thus believe that experimental data such those highlighting the 

differences across experimental factors in their ability to affect premotor vs motor components of 

decision may provide a fertile and complementary ground to inform theories of decision-making. 
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6. Conclusions 

 In conclusion, the present experiments show that motor-response execution is not 

segregated from ongoing decisional dynamics. However, for conceptual decision-making tasks 

relying on evidence sampled from memory, the propagation of cognitive/decision processes onto 

motor responses does not seem to reflect (only) a continuous evolution of the same decision 

variable informing prior non-motor stages. In fact, not all the manipulations traditionally 

ascribed to the rate of evidence accumulation reveal sizeable effects at the level of MTs. It would 

thus seem that the decision processes unfolding during motor responses are, at least in part, 

different compared to those driving purely non-motor ones (Weindel et al., 2021). With respect to 

the specific informational content of these later processes, we can presently suggest some 

working hypotheses.  

 One possibility is that MT effects reflect, at least in part, processes related to performance 

monitoring for more demanding and confusable stimuli. Although, as mentioned above, our data 

fail to fully support this interpretation, a dismissal of the monitoring account seems premature at 

this stage. In our current reading, however, MTs effects yielded by the comparison between 

words/objects and pseudowords/pseudo-objects may reflect a byproduct of late-occurring 

verification processes selectively engaged for items featuring no previous representation in long 

term memory stores. More broadly, we believe our data may foster a re-consideration on the MT 

measures. Clearly, MTs cannot be ascribed to purely non-decision components, suggesting that 

motor-response execution itself reflects also the unfolding of evolving cognitive/decision 

processes. However, our data also suggest that MTs do not simply mirror PMT/RT measures as 

not all the effects detected at the level of PMTs and RTs are reflected at the level of MTs (see 

also Weindel et al., 2021). More specifically, this implies that, despite MTs are permeable to 
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cognitive and decisional dynamics, a) MTs might not be sensitive to all the same factors 

influencing RTs, and b) not all PMT-related effects propagate onto MTs. In turn, dissociations 

among (cognitive and decision-related) experimental manipulations in their ability to influence 

measures of motor-response execution may provide a finer-grained description of the crucial 

transition from decision onto action, which may instead remain blurred when considering overall 

RTs measures.   
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Table 1 

Psycholinguistic variables of the stimuli used in Experiment 1. 

Variables  Words Pseudowords t-value 

Frequency (log)  3.27 - - 

N. of Letters  7.00 7.00 0 

N. of Syllables  2.88 2.88 0 

Orthographic N  4.16 4.41 0.27 

OLD20  2.08 2.22 0.94 

Note. N. of Letters = number of letters; N. of Syllables = number of syllables; Orthographic N = 

number of orthographic neighbors; OLD = orthographic Levenshtein distance (Yarkoni et al., 

2008). For words, all variables were extracted from the PhonItalia database (Goslin et al., 2013). 

For pseudowords, the number of orthographic neighbors and OLD were computed on the same 

database using the vwr package (Keuleers, 2013) in R. t-values result from independent sample 

two-tailed t-tests conducted to compare words and pseudowords (all ps > .34). 
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Table 2 

Psycholinguistic variables of the stimuli used in Experiment 3. 

Variables  HF LF t-value  Words Pseudo. t-value 

Frequency (log)  5.87 1.93 19.91  3.90 - - 

Freq. Subtlex (log)  9.11 4.99 19.04  7.05 - - 

Familiarity  7.26 6.31 5.37  6.78 - - 

Imageability  7.24 7.24 0.02  7.24 - - 

Concreteness  6.57 6.87 -1.07  6.72 - - 

Valence  5.57 5.22 1.11  5.40 - - 

Arousal  5.46 5.27 1.17  5.37 - - 

N. of Letters  6.89 6.95 -0.21  6.92 6.92 0.00 

N. of Syllables  2.89 2.97 -0.62  2.93 2.95 0.18 

Orthographic N  3.00 3.19 -0.29  3.09 3.09 -0.02 

OLD20  2.02 2.14 -1.15  2.08 2.14 0.78 

Bigr. Freq. Sum  674018 705947 -0.58  689983 665406 -0.64 

Bigr. Freq. Mean  111813 115835 -0.67  113824 108797 -1.19 

Note. N. of Letters = number of letters; N. of Syllables = number of syllables; Orthographic N = 

number of orthographic neighbors; OLD = orthographic Levenshtein distance (Yarkoni et al., 

2008); Bigr. Freq. Sum = summed bigram frequency; Bigr. Freq. Mean = mean bigram 

frequency. For words, all the surface variables were extracted from the PhonItalia database 

(Goslin et al., 2013), except for Frequency Subtlex (log), which was extracted from the 

SUBTLEX-IT database (Crepaldi et al., 2013). Semantic scores (familiarity, concreteness, 

imageability, valence, arousal) scores were taken from the Italian adaptation (Montefinese et al., 

2014) of the Affective Norms for English Words database (Bradley & Lang, 1999). For 

pseudowords, the number of orthographic neighbors, and OLD were computed on the PhonItalia 

database using the vwr package (Keuleers, 2013) in R. Bigram frequency variables were 

computed on the same database with a custom-made script. t-values result from independent 

sample two-tailed t-tests. 
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Table 3.  

Parameters of the fixed effects for models of chronometric measures. 

   RT  PMT  MT 

   Est. SE t  Est. SE t  Est. SE t 

Exp 1              

 Intercept  802.77 18.97 42.32  622.34 19.52 31.89  180.32 6.18 29.19 

 Lexicality (word)  -99.67 13.12 -7.59  -92.96 12.83 -7.24  -6.49 2.11 -3.08 

              

Exp 2              

 Intercept  742.34 14.23  52.17  506.11 13.59 37.25  236.21 236.21 28.36 

 Obj. Type (real object)  -59.03 13.67 -4.32  -45.74 12.59 -3.63  -13.34 2.37 -5.63 

              

Exp 3              

 Intercept  691.10 14.99 46.10  465.17 12.89 36.09  226.37 6.53 34.66 

 Frequency (low-frequency)  64.10 8.67 7.39  63.09 8.56 7.37  - - - 

              

 Intercept  822.77 17.62 46.69  583.51 15.63 37.34  239.22 7.17 33.36 

 Lexicality(word)  -99.89 9.84 -10.15  -86.98 9.13 -9.53  -12.88 2.47 -5.22 

 

Note. RT = reaction time; PMT = premotor time; MT = motor time; SE = standard error. When the fixed term failed to increase 

goodness-of-fit, it was excluded from the model and thus parameters are not reported (-). 
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Figure 1 

Results from Experiment 1 

 

Note. Section A (first row): findings on measures of reaction time (RT), premotor time (PMT) 

and motor time (MT). Section B (second row, first two columns): findings on accuracy (first 

panel) and conditional accuracy functions (second panel). For the latter, points represent 

empirical means, lines represent means predicted by the statistical model. Section C reports 

findings on partial errors. Error bars reflect 95% confidence intervals. Inset plots provide 

information about the consistency of the lexicality effect across participants. Points represents 

individual difference-scores between pseudowords and words in the corresponding measure, with 

the violin-plot providing information about the distribution. Red error-bars highlight 95% 

confidence-interval of the mean effect for the whole sample. All confidence intervals were 

adjusted for within-participants variables following Morey (2008). 
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Figure 2 

Results from Experiment 2 

 

Note. Section A (first row): findings on measures of reaction time (RT), premotor time (PMT) 

and motor time (MT). Section B (second row, first two columns): findings on accuracy (first 

panel) and conditional accuracy functions (second panel). Section C reports findings on partial 

errors. Error bars reflect 95% confidence intervals. Lines were not plotted when the effect under 

examination was not significant. Inset plots provide information about the consistency of the 

object-type effect across participants. Points represents individual difference-scores between 

pseudo-objects and real objects in the corresponding measure, with the violin-plot providing 

information about the distribution. Red error-bars highlight 95% confidence-interval of the mean 

effect for the whole sample. All confidence intervals were adjusted for within-participants 

variables following Morey (2008). 
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Figure 3 

Results from Experiment 3 

 

Note. Section A and D (first and third rows): findings on measures of reaction time (RT), 

premotor time (PMT) and motor time (MT). Section B and E (second and fourth rows, first two 
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columns): findings on accuracy (first panel) and conditional accuracy functions (second panel). 

For the latter, points represent empirical means, lines represent means predicted by the statistical 

model. Section C and E (last panels in second and fourth rows) report findings on partial errors. 

Error bars reflect 95% confidence intervals. Lines were not plotted when the effect under 

examination was not significant. Inset plots provide information about the consistency of the 

effects across participants. Points represents individual difference-scores between low- and high-

frequency words (LF and HF, respectively) or between pseudowords and words in the 

corresponding measure, with the violin-plot providing information about the distribution. Red 

error-bars highlight 95% confidence-interval of the mean effect for the whole sample. All 

confidence intervals were adjusted for within-participants variables following Morey (2008). 
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Footnotes 

1. All the chronometric analyses for the 3 experiments were conducted including also the fixed 

effect of Repetition (repeated vs novel item). Importantly, Experiment 2 was the only one to 

reveal a significant interaction between Repetition and the critical experimental manipulation 

(pseudo-object vs object) at the level of MTs, χ2 (1) = 7.44, p = .006. The effect of Object Type 

was however significant for both novel items (Estimate = 16.93, SE = 2.67, z = 6.33), and – 

albeit reduced – for repeated ones (Estimate = 8.92, SE = 3.10, z = 2.87). 

 

2. We first ran a pilot with 9 participants using colored stimuli. During the debriefing, 

participants reported that their decision relied mainly on differences in color between objects and 

non-objects. The pseudo-objects, in fact, had a rather distinctive color-palette compared to real-

object pictures. The actual experiment was thus conducted on black-and-white versions of all the 

images. 

 

   

 

 


