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Abstract: Ground deformations in urban areas can be the result of a combination of multiple factors
and pose several hazards to infrastructures and human lives. In order to monitor these phenomena,
Interferometric Synthetic Aperture Radar (InSAR) techniques are applied. The obtained signals record
the overlapping of the phenomena, and their separation is a relevant issue. In this framework, we
explored a new multi-method approach based on the combination of Principal Component Analysis
(PCA), Independent Component Analysis (ICA) and Hierarchal Clustering (HC) on the standardized
results to distinguish the main trends and seasonal signals embedded in the time series of ground
displacements, to understand spatial-temporal patterns, to correlate ground deformation phenomena
with geological and anthropogenic factors, and to recognize the specific footprints of different ground
deformation phenomena. This method allows us to classify the ground deformations at the site scale
in the metropolitan area of Naples, which is affected by uplift cycles, subsidence, cavity instabilities
and sinkholes. At the local scale, the results allow a kinematic classification using the extracted
components and considering the effect of the radius of influence generated by each cavity, as it is
performed from a theoretical point of view when the draw angle is considered. According to the
results, among the classified cavities, 2% were assigned to subsidence and 11% to uplift kinematics,
while the remaining were found to be stable. Furthermore, our results show that the centering of the
Spatial-PCA (S-PCA) is representative of the region’s main trend, whereas Temporal-PCA (T-PCA)
gives information about the displacement rates identified by each component.

Keywords: InSAR; Ground deformation; Subsidence; PCA; ICA; Hierarchical Clustering; Kinematic
cavity classification

1. Introduction

Ground deformations in urban areas can pose several hazards to structures, infras-
tructures and human lives. For this reason, the areas affected by ground deformations
require appropriate monitoring systems, analyses, and methodologies to implement the
necessary risk mitigation strategies. In this context, the application of interferometric
synthetic aperture radars (InSAR) for measuring and monitoring ground deformations
has become a growing practice in recent years, thanks to the development of Persistent
Scatterer Interferometry (PSI) [1]. PSI makes it possible to detect and monitor the displace-
ment of anthropic or natural elements whose radar signature remains consistent over long
time periods. Hence, this technique enables us to analyze the spatiotemporal evolution of
possible deformation phenomena of the Earth’s surface, along the satellite Line-Of-Sight
(LOS), providing displacement time series over a sparse network of radar targets. With the
exception of heavily vegetated areas, forests and agricultural fields, the spatial resolution
of measurement points is much higher than what is typically available with ground-based
geodetic instruments, in particular over urban areas.

Ground deformations often result from complex superimpositions of natural and
human factors acting simultaneously at different temporal and spatial scales. For instance,
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in urban areas, several factors may have an impact on ground deformations, overload-
ing and structural adjustment, underground excavations, groundwater drainage or over-
exploitation, consolidation of fine sediments and soil rich in organic matter superimposing
to active tectonics, and volcano dynamics [2–6].

To separate these overlapping phenomena, different techniques based on the time-
series analysis have been proposed. Among them, Principal Component Analysis (PCA)
and Independent Component Analysis (ICA) have been employed [7,8]. Recent studies
applied PCA on InSAR datasets to identify land subsidence and uplift related to Phlegraean
Fields [9], uplift in urban areas induced by multiple factors [2,6], and landslides [10]. For
instance, PCA was applied by [11–13] considering meteorological variables, whereas [14]
applied T-PCA to isolate temporally variable deformation patterns embedded in multi-
decadal time series. Finally, ref. [3] applied PCA to filter data and correct artefacts intro-
duced by measurement procedures. A combination of PCA and clustering was also used to
classify regions by grouping the results [12,13].

In a similar way to PCA, ICA has been widely applied to the prediction and extraction
of signals in multivariate time series. For example, ref. [15] compared the performance of
three different ICA algorithms ([16,17]). Refs. [18–21] applied ICA to GPS coordinate time
series to separate seasonal signals, to analyze the spatial and temporal characteristics of land
subsidence and to characterize the background level of deformation and volcanic signals
in the presence of atmospheric noise. Ref. [22] tested a modified variational Bayesian ICA
method (vbICA) to recover multiple sources of ground deformation even in the presence
of missing data. Some authors, such as [23], applied ICA, PCA, and also functional curve
fitting (FCF) to InSAR time series; through PCA and ICA, they separated independent
spatial-temporal components of the deformation, illustrating different geomechanical
processes on and around the studied landslide. In particular, these authors identified the
mechanisms by means of PCA and they improved their results by ICA optimization. This
improvement was also observed in our study, in which the same regions obtained by PCA
were also identified by ICA, but the latter is more effective at separating monotonic trends
from the seasonal signals.

The metropolitan area of Naples is affected by numerous ground deformation phenom-
ena such as bradyseism, localized subsidence associated with geological, morphological
and/or anthropogenic features, collapse instabilities related to cavities excavated in soft
rocks, for the extraction of construction material, and sinkholes. When anthropogenic
cavities are located in urban areas, their stability assessment could represent a challenging
problem because they potentially induce deformations of the overlying ground surface,
affecting the structures and infrastructures. Therefore, cavities represent one of the major
hazards to building heritage. From an analytical point of view, the extent of subsidence
influence at the surface level, related to the presence of a cavity, is determined by consid-
ering the angle of draw [24]. Sinkholes are the manifestation of collapse at the ground
surface, where water drains naturally. The collapse of sinkholes could have both natural
and anthropic causes and these are difficult to predict. The occurrence of sinkholes can be
frequent where soft rocks lie close to the ground surface and weathering process creates
voids that determine the conditions favourable to collapse and widening [25].

In this work, we propose a new multi-method approach to analyze the main trends
and seasonal signals in ground displacement time series, to understand spatial-temporal
patterns, to correlate ground deformation phenomena with geological and anthropogenic
factors, and to recognize specific footprints of different ground deformation phenomena.
We combine PCA and ICA techniques both in temporal and spatial modes, and the obtained
results are analyzed and grouped using Hierarchical Clustering (HC). This approach, which
allows us to classify ground deformations at site and local scales, was applied to the
metropolitan area of Naples (Southern Italy) characterized by the overlapping of both
natural and anthropogenic phenomena. The data used in our analyses are taken from four
InSAR datasets (TRE Altamira) covering the period from 1992 to 2019.
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2. Materials and Methods

In the following section, the metropolitan area of Naples (Southern Italy) is described
considering the geological and hydrogeological contexts in order to characterize the ori-
gin of the deformation mechanisms. Subsequently, the considered dataset of cavities is
presented, and finally, the used InSAR datasets are illustrated.

2.1. Geological and Hydrogeological Settings

We applied our approach to the UNESCO World Heritage site of Naples (Figure 1),
which is part of the historic Centre of Naples, located in the South-Central sector of the wide
alluvial Campanian Plain. The Campanian Plain was formed in the Pliocene–Pleistocene
by the filling of a regional half-graben with a 2000–3000 m thick sequence of Quaternary
continental, alluvial, marine, fluvio-palustrine sediments and volcanic deposits [26]. In
fact, starting from 300 ka, the plain has been affected by intense volcanic activity that
led to the formation of the Phlegraean Fields volcanic district and Mt. Somma-Vesuvius
stratovolcano. The morphology of the surrounding area is predominated by hills, related
to the Phlegraean Fields, an active volcanic area located in the western sector of the city of
Naples, and to the formation of the following two calderas: the Campanian Ignimbrite (CI,
~39 ka old) and the Neapolitan Yellow Tuff (NYT, ~15 ka old) [26–28].

The Phlegraean Fields experience bradyseismic phenomena [29] with considerable
slow vertical ground movements, causing recurring episodes of uplift and subsidence in the
order of meters or tens of meters, and accompanied by increases in shallow seismicity [30,31].
Refs. [32–35] investigated the history of the recent Phlegraean Fields unrest caldera and
overviews of the ground deformation patterns. Regarding the slow-rate ground defor-
mation processes that occurred over the period from 1992 to 2010, characterizing the
Campanian region, Ref. [36] carried out their quantitative analysis and classification.

Within the municipalities of Naples, the Vomero-Arenella (VA) district, which is a
pyroclastic hill, experienced subsidence phenomena attributed to its geological structure,
as suggested by [37]. In particular, two main areas of subsidence affect the VA district,
one bounded by the CI caldera faults, with the other located at the margin of the NYT
caldera [37,38]. These faults are still active and sensitive to the dynamics of the Phlegraean
Fields volcano, as suggested by an attenuation of subsidence within the VA area during the
uplift of the central sector of the Phlegraean Fields [39]. Considering the hydrogeological
setting, the groundwater circulation is mainly due to both fractures in tuff and pores within
incoherent pyroclastic and alluvial deposits. For this reason, the hydrogeological setting of
the area is both vertically and laterally complex and the water table is generally found at
variable depths below the ground level.

The NYT formation, located at various depths from the ground level, dominates
the geological setting of the area and it constitutes its base formation. NYT formation
consists most of pyroclastic-flow and minor deposits that can occur both as lithified or
not-lithified diagenetic facies. The not-lithified diagenetic facies are called pozzolana. The
latter is a 10 m thick silty sand deposit, which underlies a thinner and younger formation
of lapilli and pumices and preserves its primary depositional character [26]. NYT and
pozzolana are characterized by fair mechanical parameters and low specific weights. The
top of this pyroclastic sequence is constituted of volcanic fly ashes, remoulded soils, and
artificial ground.
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Figure 1. Location of the UNESCO World Heritage site of Naples (black line), which covers 31.3 
km2. The distribution of cavities and sinkholes [26,40–44] and the location of the considered cGPS 
stations [30,32,45,46] are also shown. The main considered zones of the Naples metropolitan area 
are indicated in yellow, as well as the location of the Scudillo water reservoir. The stratigraphy from 
two well logs (S01 and S02) located close to the water reservoir (adapted from [37]) is shown on the 
right. 

2.2. Neapolitan Cavity System Description 
The anthropogenic cavities system in the city of Naples (Figure 1) is significantly af-

fected by sudden collapses that generate damage to infrastructure, buildings, and cultural 
heritage [40]. This system has been mainly excavated through the NYT and loose pyro-
clastic soils in the last 2000 years and it is mainly composed of tunnels and chambers of 
various sizes and geometries depending on their different purposes. Those cavities have 
been frequently used as dumping sites for waste materials or, in other cases, as reservoirs 
for sewage systems. It is worth noting that a large number of them are still unknown. 

Sinkholes are mainly located in the central part of the area and close to the historical 
centre where steep slopes’ morphology, ancient buildings and high structures’ density 
occur. Refs. [26,40–44] collected and analyzed data on sinkholes in this area and identified 
rainfall, sewerage, and drainage system leaks as the main triggering factors, specifying 
that their influences are not uniform within the different districts of the Naples area. One 
of the most important cavities is the Scudillo water reservoir (SC,) whose area is charac-
terized by subsidence and a negative deformation rate increasing over time, with maxi-
mum values of approximately −8.23 mm/year, recorded by the TerraSAR-X dataset in 
the 2015 ൊ 2019 period (TRE Altamira). The SC area is a sparsely built-up zone charac-
terized by a morphological bulge delimited by lateral incisions. The local stratigraphy [37] 
shows 4 m of reworked pyroclastic deposits and pumices levels covering cohesive NYT 
deposits between 6 and 8 m thick (Figure 1 on the right). The SC is a large artificial net-
work of cavities, built within the NYT, approximately 40 m below the ground level and 
measuring about 350 × 150 × 10 m with a surface area of 5.25 × 10ସ m2. These cavities 

Figure 1. Location of the UNESCO World Heritage site of Naples (black line), which covers 31.3 km2.
The distribution of cavities and sinkholes [26,40–44] and the location of the considered cGPS sta-
tions [30,32,45,46] are also shown. The main considered zones of the Naples metropolitan area are
indicated in yellow, as well as the location of the Scudillo water reservoir. The stratigraphy from two
well logs (S01 and S02) located close to the water reservoir (adapted from [37]) is shown on the right.

2.2. Neapolitan Cavity System Description

The anthropogenic cavities system in the city of Naples (Figure 1) is significantly
affected by sudden collapses that generate damage to infrastructure, buildings, and cultural
heritage [40]. This system has been mainly excavated through the NYT and loose pyroclastic
soils in the last 2000 years and it is mainly composed of tunnels and chambers of various
sizes and geometries depending on their different purposes. Those cavities have been
frequently used as dumping sites for waste materials or, in other cases, as reservoirs for
sewage systems. It is worth noting that a large number of them are still unknown.

Sinkholes are mainly located in the central part of the area and close to the historical
centre where steep slopes’ morphology, ancient buildings and high structures’ density
occur. Refs. [26,40–44] collected and analyzed data on sinkholes in this area and identified
rainfall, sewerage, and drainage system leaks as the main triggering factors, specifying that
their influences are not uniform within the different districts of the Naples area. One of the
most important cavities is the Scudillo water reservoir (SC,) whose area is characterized
by subsidence and a negative deformation rate increasing over time, with maximum
values of approximately −8.23 mm/year, recorded by the TerraSAR-X dataset in the
2015 ÷ 2019 period (TRE Altamira). The SC area is a sparsely built-up zone characterized
by a morphological bulge delimited by lateral incisions. The local stratigraphy [37] shows
4 m of reworked pyroclastic deposits and pumices levels covering cohesive NYT deposits
between 6 and 8 m thick (Figure 1 on the right). The SC is a large artificial network of
cavities, built within the NYT, approximately 40 m below the ground level and measuring
about 350 × 150 × 10 m with a surface area of 5.25 × 104 m2. These cavities are currently
used as a drinking water reservoir, with an estimated capacity of 145,000 m3. According
to [37], the tunnels surrounding the main reservoir show that the NYT is affected by
fractures. They exclude that the subsidence of the SC is triggered by hydrological causes
since the groundwater table is located below the cavity (between 14 and 18 m a.s.l.), as
well as by faulting activity or by soil softening. They suggest that subsidence could be
related to the artificial cavity and to the general gravitational instability induced by the
morphological bulge.
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2.3. InSAR Datasets

The purpose of this section consists of describing the characteristics of the datasets
used in the following analysis to highlight their technical features.

InSAR is a highly effective remote sensing technique used to monitor changes in the
Earth’s surface. This technique involves the acquisition of radar images from a satellite
or an airborne system over the same area, but at different time frames. By measuring
the phase shift of the signal between two images, InSAR can detect even the slightest
movements of elements located on the Earth’s surface. This displacement is measured
along the direction of the radar sensor-target line, also known as the Line-Of-Sight (LOS)
of the satellite. The result of this process is a series of images that effectively represent
the monitored portion of the Earth’s surface, enabling researchers and scientists to ana-
lyze and interpret changes in topography, infrastructure, and natural phenomena with
unprecedented precision and accuracy.

To quantitatively determine the value of ground displacement from the acquired In-
SAR images, one of the most widely used techniques reported in the literature is Permanent
Scatterer SAR Interferometry (PSInSAR) proposed by [1], which was the first of a number
of algorithms commonly referred to as PSI techniques. All these processing algorithms use
multi-image datasets to identify stable reflectors called Permanent or Persistent Scatterers
(PS). PS are radar targets located on the Earth’s surface that reflect stable signals back to the
satellite sensor and exhibit stable amplitude and coherent phases over long temporal series
of images. They are typically elements of buildings, metallic structures and infrastructures,
as well as boulders and rocky outcrops.

While PSI algorithms aim at identifying pointwise coherent targets, other techniques
have been developed to increase the density of measuring points over non-urban areas,
exploiting the so-called distributed scatterers (DS), which are clusters of image pixels
exhibiting very similar radar returns (e.g., Small BAseline Subset, SBAS, [47]). More recently,
new algorithms have been developed by extracting information from both PS and DS.
SqueeSAR® proposed by [48] enables us both to increase target density in non-urban areas,
and to more effectively filter out atmospheric disturbances and noise. The most influential
factors affecting the quality of the measurements, and therefore of the results obtained, are
the spatial density of the measurement points, the quality of radar targets, the atmospheric
conditions at the acquisition time, the distance between the measurement points and the
reference points (REF) and the number and temporal distribution of acquisition. Regarding
the precision obtained by the PSInSAR™ technique, in terms of differential displacement
measurements, the reported value is ±5 m and considering the mean velocity, the value
is ±1 mm/year [1]. For measurements obtained using the SqueeSAR™ technique [48],
precision is defined by considering a dataset of at least 30 scenes covering a two-year period,
for a measurement point located less than 1 km from the REF. Precision is expressed in terms
of standard deviation, which refers to the average displacement rate relative to the REF. The
typical accuracy obtained from SqueeSAR™ analysis is lower than 1 mm/year for average
annual velocity, while the single measurement is generally within ±5 mm/year [49].

To investigate the spatiotemporal evolution over 27 years of ground deformations in
the metropolitan area of Naples, four datasets acquired from different SAR satellites (ERS1-
2, ENVISAT, COSMO-SkyMed, and TerraSAR-X) were analyzed. InSAR measurements
were obtained from C-band and X-band radar sensors in descending geometry and were
processed using PSInSAR and SqueeSAR® techniques by TRE Altamira. Data acquired
by ERS1-2, ENVISAT and COSMO-SkyMed satellites were processed using a PSInSAR
approach, whereas TerraSAR-X data were the result of a SqueeSAR® analysis. The ERS1-2,
ENVISAT and COSMO-SkyMed datasets cover the UNESCO World Heritage site of Naples
(31.3 km2) whereas the TerraSAR-X dataset extends over a 325.8 km2 area (Figure S1).
Table 1 summarizes the main features of the InSAR datasets. The InSAR data analyzed,
with regard to the COSMO-SkyMed and TerraSAR-X datasets, are the results of SAR image
datasets formed by stacks of StripMap (SM) images. The SM is the basic SAR imaging mode.
The ground swath is illuminated with a continuous sequence of pulses while the antenna
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beam is fixed in elevation and azimuth. This produces an image strip with continuous
quality (in the direction of flight). SM data with double polarization, such as those from
which the analyzed data are derived, have a slightly lower spatial resolution and a smaller
swath than the single polarization data. In SM mode, a spatial resolution of up to 3 m can
be achieved. Twin polarization SM data recorded in HH (single polarization channel) have
a standard scene size of 30 × 50 km (width × length). Specifically, in this work, the area
of the UNESCO World Heritage site of Naples was analyzed, which spans a surface of
31.3 km2 in total (Figure 1).

Table 1. Main features of the InSAR datasets used for the analyses.

Satellite Sensor’s
Band Orbit

Inc. Look
Angle (◦)

θ

Acquisition
Span

Area
(Km2)

No.
PS-DSs

Mean
PS-DSs

Density *

Spatial
Resolution

(m) *

Revisit Time
(Days)

ERS1-2 C Desc. 23 Jun 1992
Dec 2000 31.3 8122 262 20 × 5 35

ENVISAT C Desc. 23 Jun 2003
Jun 2010 31.3 15,380 496 20 × 5 35

COSMO-
SkyMed X Desc. 44 Feb 2012

Dec 2013 31.3 252,977 8160 3 × 3 8

TerraSAR-X X Desc. 21.6 Jan 2016
Apr 2019 325.8 2,566,269 7876.8 3 × 3 11

* The PS-DSs density stands for the number of PS-DSs divided by the area in km2, whereas the spatial resolution
is the azimuthal range.

As previously mentioned, InSAR displacements are measured along the satellite LOS.
Since the aim of this study is to describe and classify vertical displacement mechanisms,
the measured velocities and displacements of each InSAR dataset were projected along
the vertical direction. In this work, we only considered the vertical component of the
displacement as a consequence of the available dataset. Since only the descending dataset
was available, it was not possible to calculate the east–west component of the displace-
ment. However, we mainly focused on uplift, subsidence and sinkholes phenomena, for
which the main component of the displacement is the vertical one. To achieve this, the
velocities and displacements along the LOS were divided by the cosine of the local inci-
dence angle θ (i.e., the angle between the LOS and the vertical direction—see values in
Table 1). In particular, local scale analyses focused on small cavities and sinkholes, where
the horizontal component of displacement is not the main component, even if useful for
further investigations. An exception to this is the Phlegraean Fields area, where bradyseism
phenomena cause both large vertical and horizontal displacements, and both components
must necessarily be considered. A possible shortcoming of not considering the horizontal
component consists of neglecting other processes (e.g., landsliding) that are not considered
in this work. However, the proposed methodology can be applied both to vertical and
east-west displacement time series.

All displacement time series, projected along the vertical direction, were then linearly
interpolated to resample them with regular acquisition in time. Linear interpolation is used
to handle missing values that may occur in the time series and consequently to fill the data
gaps beforehand. However, as a few dates are generally missing, this interpolation does not
alter the results of the proposed analysis. Apart from the possible artifacts and noise, the
obtained time series are affected by uncertainties related to possible atmospheric leakage,
regional trends, and possible anomalous displacements occurring on specific dates. To
overcome these artefacts, we employed the detrending approach proposed by [50], which
consists of (i) selecting the most coherent measurement points (coherence greater than 0.9)
with an average LOS velocity in the range ±0.05 mm/year; (ii) computing the average time
series of the selected PS-DS and (iii) subtracting it from all the projected time series.

Figure 2 illustrates the mean vertical deformation rate maps obtained from the time
series after the detrending approach. In agreement with the mean vertical deformation rate
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maps, Figure 2a illustrates the following three main subsidence zones detected by ERS1-2,
between 1992 and 2000: Vomero-Arenella (VA), Scudillo (SC), and Posillipo (PO) districts.
Figure 2b,c display the mean vertical deformation rate maps over the period monitored
by Envisat and COSMO-SkyMed, from 2003 to 2010 and from 2012 to 2013, respectively.
The maximum mean vertical deformation rates are observed in the southern area, within
the PO district, from 2003 to 2013, indicating that the area was affected by uplift, and thus
modifying the subsidence pattern resulting from the ERS1-2 dataset. Considering only
the UNESCO site, Figure 2d illustrates the mean vertical deformation rate related to the
TerraSAR-X dataset between 2016 and 2019. Figure 2d shows that the main subsidence
zones during the monitored period were located in the VA and SC districts as confirmed
by previous studies [37]. Finally, Figure S1 (Supplementary Materials) illustrates the mean
vertical deformation rate maps of 10,000 PS-DSs randomly selected from the TerraSAR-X
dataset with the greatest uplift in the south-western area, within the Phlegraean Fields,
exceeding 5 mm/year. The highest subsidence occurred in the central area of the UNESCO
site, within the VA district, with a rate exceeding −5 mm/year. According to the mean
vertical deformation rate map, it is observed that the PO area, after the period monitored by
ERS1-2 (1992–2000), during which the area was affected by subsidence, shows a continuous
upward trend, gradually expanding northward. Figure 3 shows two times series of LOS
displacement from the TerraSAR-X dataset at the SC and PO zones.
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Figure 3. Temporal evolution of the LOS displacement obtained from TerraSAR–X for (a) one PS-DS
at the Scudillo zone and (b) one PS-DS at the Posillipo zone.

To validate the InSAR data used in this work, the satellite-based ground measurements
were compared with the displacements recorded by cGPS stations related to the Neapolitan
Volcanoes cGPS (NeVoCGPS) network, operated by the Istituto Nazionale di Geofisica
e Vulcanologia-Osservatorio Vesuviano (INGV–OV). For this purpose, we used cGPS
measurements acquired on a weekly basis between January 2012 and March 2020. We
considered the cGPS MAFE, ISMO and BAGN stations operating in the Phlegraean Fields
area [18,45,46], as shown in Figure 1. To validate the InSAR data, we considered the vertical
component time series of the three cGPS stations and compared them with the COSMO-
SkyMed and TerraSAR-X time series, projected in the vertical direction as explained in this
section. The comparisons between InSAR data and cGPS show a reasonable match between
the two datasets (3 mm error bands for the cGPS measurements are given in Figure S2).

2.4. Methodology

The workflow of the methodology employed in this study is shown in Figure 4 and
involved the following four main steps: (i) time series pre-processing; (ii) S-mode and
T-mode PCA; (iii) S-mode and T-mode ICA; (iv) clustering analysis applied to the PCA and
ICA scores. A self-built code in MATLAB (R2021a, The MathWorks, Inc., Natick, MA, USA)
was implemented to perform all the analyses.
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2.4.1. PCA Decomposition

The time series of ground displacement are the results of the superimposition of many
signals generated by different phenomena, acting simultaneously at different scales. Several
approaches have been proposed in the literature to separate and analyze these signals.
The purpose of this section is to illustrate the methodology used to achieve the above-
mentioned goals. The Principal Component Analysis (PCA, [51–53]) is probably the most
widely used multivariate statistical technique [2,54,55]. This methodology assumes that the
recorded time series is a linear combination of the original signals associated with different
phenomena and attempts to reduce a dataset containing a large number of variables to a
dataset containing fewer new variables [56]. The separation is performed by projecting
the original signals into a reduced hyperspace spanned by orthogonal vectors that are the
eigenvectors of the covariance matrix of the original null-mean signals. The corresponding
projections are the principal components only if the corresponding eigenvalues of the
covariance matrix of the null–mean signals are positive. This is because the eigenvalue
of a principal component is its variance and for each principal component, the explained
variance, ExVar, is computed using the following expression:

ExVar(yi) =
λi

∑nc
j=1 λj

(1)

where λi is the eigenvalue of the i-th principal component yi and nc is the number of
principal components extracted from the analysis.

In this way, PCA transforms a collection of original intercorrelated variables to a new
limited set of uncorrelated variables sorted according to their explained variance. Not all
the principal components are considered, as the first components often explain most of the
variance. Therefore, PCA is a data reduction method, in which most of the information
of a dataset can be reproduced by a reduced number of components [11]. The correlation
between any one of the original variables and a component is called loading (eigenvectors)
and the values associated with each sample are called principal component scores, which
are the new coordinates of the observations in the principal component hyperspace.

PCA can be applied to the dataset in the following two ways: the T-mode and S-mode.
In the T-mode, which is the most commonly used [2,3,57,58], the PCA is applied to a data
matrix X defined by n by p, where the n rows of X correspond to each observation and the
p columns to variables. In this study, the variables correspond to acquisition times and
observations correspond to each PS-DS; therefore, the resulting covariance matrix is p by
p. In the S-mode, the PCA is applied to the transposed n by p data matrix X, so that the p
rows of X correspond to variables and the n columns to observations. In the S-mode, the
variables correspond to acquisition times and observations correspond to each PS-DS. In
other words, in the T-mode, the variables are temporal instants, whereas in the S-mode,
the variables are temporal profiles (time series). Due to the different configurations of the
data matrix, T-mode PCA finds consistent patterns in space, whereas S-mode PCA detects
spatially significant patterns. This is related to the orientation of the input time series
matrix, as by centering across the columns of the matrix, and thus averaging the individual
time series, each PS-DS has the same weight no matter its geographical location. This
capability is due to the fact that, unlike the S-mode, in the T-mode matrix configuration, the
centering is performed on a date-by-date basis, averaging the individual time instants. By
default, the PCA function implemented in MATLAB centers the data and uses the singular
value decomposition (SVD) algorithm.

2.4.2. ICA Decomposition

The second technique applied in this study is the Independent Component Analysis
(ICA), based on the mathematical assumption that the original signals are correlated to the
source signals, and that this mixture is described by means of the following equation:

R(t) = MS(t) + N(t) (2)
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where R(t) is the matrix that collects the original signals (time series) arranged by rows. In
the above equation, M is the mixing matrix representing the superimposition method of the
source signals and indicating how the individual source signals are combined to obtain the
original signals, and S(t) is the matrix representing the source signals of each phenomenon
occurring during the data recording. The last term in the equation, N(t), is the matrix
expressing the noise embedded during the recording phase, not resulting from a specific
phenomenon, and demonstrating Gaussian distribution. In the ICA, noise is assumed to
be a statistical variable that follows a Gaussian pattern and the method to separate the
original signals is based on maximizing the non-Gaussianity of the signal sources. Behind
this technique, there is the principle that if the signals of the sources are physically different,
then they are statistically independent. For this reason, the ICA technique attempts to
decompose the set of original signals into a set of statistically independent components.
Therefore, the probability density functions of the recorded data are the product of the
probability density functions of the source signals because they are non-Gaussian. The
decomposition is performed by extracting source signals that have a probability distribu-
tion as distant from the Gaussian distribution as possible. The algorithm underlying ICA
finds source signals that maximize non-Gaussianity using the following two possible ways:
maximizing negentropy or kurtosis. In contrast to PCA that maximizes the signal according
to the variance, which requires the high importance of the signal, this approach is able to
detect and also extract low-intensity signals because these are statistically independent. In
this work, the fast fixed-point algorithm for ICA (FastICA, [59]) was applied. The FastICA
algorithm involves the following five steps: (i) centering the data by subtracting the mean
from the mixed-signal matrix to obtain zero mean variables; (ii) calculating the eigen-
values and eigenvectors using the PCA algorithm; (iii) calculating the whitening matrix;
(iv) whitening the data; (v) computing the directions of the independent components from
the whitening.

2.4.3. Hierarchical Clustering

Hierarchical Clustering (HC) analysis [60] consists of a progressive clustering of a set
of n elements starting from a number of sets equal to n, containing only one element, and
a progressive union of them based on the minimization of a defined objective function.
This approach has been used in the literature to analyze meteorological data [12,61] and
can be applied to any variable and any objective function. In this work, we applied HC to
the scores of the principal and independent components obtained from the PCA and ICA
and used the total inertia of all clusters as the objective function. To prevent components
with a higher order of magnitude from hiding components with low magnitude, the
score components considered in the cluster analyses were initially standardized by the
scaling method, i.e., subtracting the mean value from the scores and dividing them by
their standard deviation. This is important because dissimilarity between observations is
calculated as the statistical distance between them and since distances are unit-sensitive,
cluster solutions may change when the data are scaled. It is important to note that the
clustering is based on the values of the scores and not on the spatial distribution of the
coordinates of the PS-DSs, although the representation of the clusters is then spatially
visualized. To evaluate the optimal number of data clusters to be created, the Silhouette
approach was applied and the dendrogram was considered.

3. Results

Site scale analyses were performed at the UNESCO World Heritage site scale (31.3 km2),
to identify the main temporal and spatial patterns of ground deformation, whereas local
scale analyses were performed at the cavity scale to classify the ground deformation related
to the presence of cavities.

For the site scale analyses, the InSAR time series of each dataset were analyzed by PCA
and ICA multivariate statistical analyses in both spatial (S-) and temporal (T-) modes. The
entire ERS1-2 and Envisat time series datasets were analyzed, while the COSMO–SkyMed
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and TerraSAR-X datasets were spatially randomly sub-sampled into 10,000 and 20,000 time
series (PS-DSs), to reduce the computational burden. Down sampling was conducted by
selecting uniformly distributed random PS-DSs from the original dataset using the rand
function in MATLAB.

For the local scale analyses, we performed T-ICA and clustering analysis on the TerraSAR-
X dataset, considering the PS-DSs belonging to all buffers surrounding each cavity.

3.1. S- and T-PCA and ICA Results for TerraSAR-X Dataset at Site Scale

From PCA, in both the S-mode and T-mode, we extracted ten components, based on
the eigenvector explained variance, from which it was decided how many components of
these to retain for S-mode and T-mode ICA. This was performed based on the eigenvalues
(variance), the trend of the temporal functions (eigenvectors, to avoid noise), and the spatial
distribution of the retained components (scores, useful for clustering). In this section, the
results obtained only from the TerraSAR-X dataset are reported. The results refer to the
20,000 time series (PS-DSs) covering only the UNESCO site. We initially present the S-mode
results, as they can identify the components that cover a large number of PS-DS of the
study area. S-mode PCA was applied to the dataset and the first four components were
considered accounting for 49.28%, 3.95%, 3.43%, and 2.23% of the total variance (Figure 5a).
Based on the inspection of the temporal functions of the extracted components (Figure 5b),
PC1 is characterized by a decreasing trend and PC2 and PC3 by seasonal behavior, PC3 has
peaks in the summer and PC2 is in the opposite phase to PC3, and PC4 does not show a
clear temporal trend.
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Figure 5. (a,d) Explained variances for each PC from the S- and T-mode, respectively. Temporal
functions of components extracted from (b) S-PCA (c) S-ICA, (e) T-PCA, and (f) T-ICA, on 20,000 ran-
domly selected PS–DSs from TerraSAR-X within the UNESCO site. The smoothed lines were obtained
from the results using the lowess method with 0.1 span.

Following the proposed algorithm (Figure 4), S-mode ICA was performed by retaining
the first four PCs, and among the four obtained ICs, we considered IC2 and IC4 as they
present a clear temporal trend. Based on their temporal functions (Figure 5b,c), IC4 de-
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scribes a decreasing trend, while IC2 demonstrates regular seasonal behavior. Considering
the spatial distribution of the extracted components, PC1 and IC4 correspond to the long-
term subsidence and are correlated with the mean vertical deformation rate with positive
scores (Figure S3).

These components highlight the VA and SC water reservoir areas that are affected by
subsidence during the period monitored by TerraSAR-X, and with negative values highlight
the Southern area of PO, which is affected by uplift. PC2, PC3 and IC2 components represent
the seasonal signals characterizing the VA and SC districts affected by annual deformations
in phase with PC3 and IC2 and at the same time highlighting the coastal zone in the central
part of the UNESCO site where seasonal deformation in the opposite phase to IC2 signal
is observed.

After investigating the trends that characterize most of the study area, T-mode PCA
was applied, as the first components to be retrieved are those that best describe the displace-
ment rates. Based on the T-mode PCA results, we considered the first four PCs accounting
for 81%, 4.63%, 1%, and 0.76% of the total variance (Figure 5d). The eigenvector tempo-
ral functions (Figure 5e) of the components define in PC1 an increasing trend, in PC2 a
decreasing trend and seasonal behavior (peaks in summer), in PC3, seasonal behavior in
phase with PC2, whereas PC4 has a non-regular trend, with two peaks, in August 2016
and January 2019. As for the S-mode analyses, T-mode ICA was applied to the dataset
considering the first four PCs and based on the temporal functions of the mixing matrix
(Figure 5f). IC1, IC2 and IC3 define decreasing trends, while IC4 demonstrates increasing
seasonal behavior with peaks in winters. Based on the scores map (Figures S4 and S5), PC1
and PC2, as well as IC2 and IC3, display the same pattern of scores distributions, which is
correlated with the mean vertical displacement, defining the following two main zones of
subsidence emphasized by positive values of ICs: the SC water reservoir and VA district;
and with negative values, the area of PO. IC1 is strictly related to the ground deformation
occurring in the southern area of PO with negative values as for PC4. In fact, the fourth
PC with positive scores is only related to the deformation occurring in the most Southern
area of PO. According to the seasonal components, PC3 and IC4 are related to the seasonal
ground deformation and to the decreasing trend occurring in the VA and SC, where the
deformations are in phase with the extracted PC3. PC3 and IC4 are also related to the
central coastline sector where the deformations are in opposite phases to the extracted
signal, and to the PO district where signals are in phase with IC4.

3.2. S-ICA Results for All Datasets at the Site Scale

Since S-ICA was found to be the most efficient technique to identify and extract ground
deformation patterns at the site scale, in this section, the results obtained by applying this
technique to all InSAR datasets are detailed. In general, three to six components were
extracted from the S-ICA. However, based on the results, two to four components were
considered among those extracted. Since the results regarding the S-ICA applied to the
TerraSAR-X dataset were already reported in the previous section (Figure 5c), we now
consider the remaining three datasets.

We initially illustrate ERS1-2 in which we considered IC1 because it reflects an increas-
ing linear trend and IC5, as it reflects an annual behavior (peaks in summers, Figure 6a),
while the other components do not show any significant temporal trend. IC1 is the most
significant trend and explains with negative scores the subsidence affecting the districts VA,
and SC, and with lower rates, the southern part of the PO district. IC1 reflects the mean
vertical displacement map and IC5 highlights the southern area of PO, which is affected by
subsidence and shows annual deformations in phase with the component IC5 (Figure 6b,c).



Remote Sens. 2023, 15, 3082 13 of 25Remote Sens. 2023, 15, x FOR PEER REVIEW 15 of 29 
 

 

 
Figure 6. S-ICA results: (a) temporal evolution of S-IC1 and S-IC5 for the ERS dataset; (b,c) spatial 
distributions of S-IC1 and S-IC5, respectively; (d) temporal evolution of S-IC3 and S-IC4 for the En-
visat dataset; (e,f) spatial distributions of S-IC3 and S-IC4 from Envisat, respectively. The smoothed 
lines are obtained from the results using the lowess method with 0.1 span. 

Figure 6. S-ICA results: (a) temporal evolution of S-IC1 and S-IC5 for the ERS dataset; (b,c) spatial
distributions of S-IC1 and S-IC5, respectively; (d) temporal evolution of S-IC3 and S-IC4 for the Envisat
dataset; (e,f) spatial distributions of S-IC3 and S-IC4 from Envisat, respectively. The smoothed lines
are obtained from the results using the lowess method with 0.1 span.

For the Envisat dataset, components IC3 and IC4 were considered (Figure 6d), with
the former demonstrating an increasing trend and seasonal behaviour (peaks in summers),
and the latter demonstrating a decreasing trend and seasonal behaviour in phase with IC3.
IC3 is related to the southern area of PO with positive component values; thus, it highlights
uplift and seasonal movements in phase with the extracted mixing matrix time series. IC4
reflects the long-term subsidence, which emphasizes the VA district (Figure 6e,f).

Finally, for COSMO-SkyMed, three among the extracted four components were consid-
ered. IC1 shows a seasonal trend with peaks in summers, IC3 describes an increasing trend
and IC4 is defined by a decreasing trend since August 2012 (Figure 7a). The PO district is
highlighted with positive values of IC1 and negative values of IC4, while the VA is related
to IC3 by negative values and the SC is related to IC3 by positive values. In addition, the
coastal area is identified by negative values of IC3 and positive values of IC4 (Figure 7b–d).

The displacement temporal evolution associated with each component is the result of
the multiplication of the temporal function of the mixing-matrix with the corresponding
scores of that PS-DS. Adding these displacement temporal evolutions, only in cases of the
monotonic trend (i.e., we exclude the seasonal variations), we obtained the characteristic
displacement trend of the considered PS-DS. By assessing the percentage of the maximum
value of these characteristic displacements in comparison with the maximum displacement
measured by the satellite, we obtained different values. In cases of SC, these percentages
are as follows: 51% for ERS1-2; 54% in the case of Envisat; 60% in COSMO-SkyMed, and
finally, 94% when TerraSAR-X is considered.
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3.3. Clustering Results for S-ICA on TerraSAR-X Dataset at the Site Scale

To identify homogeneous areas of site-scale ground deformation and to further in-
terpret the results obtained from PCA and ICA, we performed HC on the scores derived
from S-PCA and S-ICA. In this section, the results of the HC analyses applied to the
standardized scores of the TerraSAR-X obtained from the S-ICA are reported. HC was
performed using the scores obtained from the S-mode ICA by taking into account IC1, IC2
and IC4 (Figure 8b). The results are plotted in the projected planes IC1-IC2 (Figure 8a)
and IC1-IC4 (Figure 8c), obtaining four cluster IDs based on the Silhouette evaluation
and on the dendrogram inspection (Figure 9). In particular, in Figure 9a, the evaluation
of the optimal number of cluster data using the Silhouette method is reported, whereas
in Figure 9b, the dendrogram is shown. In Figure 8a, IC1, which describes a decreasing
trend, makes it possible to isolate cluster ID 2, characterized by mainly positive values,
from other cluster IDs, which are characterized by negative values. Therefore, the PS-DSs
that belong to cluster ID 2 are affected by subsidence, while the PS-DSs within cluster ID 4
exhibit an uplift because they are isolated by negative values of IC4. IC2, describing annual
behaviour (with peaks in summer), allows us to separate cluster ID 1, defined by positive
values, from the other clusters, so that PS-DSs belonging to cluster ID 1 display ground
deformations in phase with the extracted IC2. Finally, in Figure 8d, the spatial distribution
of the clusters is shown, in which cluster ID1 is located on the VA and in other less localized
areas, including the dock district, cluster ID 4 is located on the PO, while cluster ID 3 does
not define well-localized areas.
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3.4. T-ICA and Clustering for Cavity Classification at the Local Scale

In order to classify cavities according to the ground behavior above them, T-ICA
was performed considering only the PS-DS time series of the TerraSAR-X dataset that are
located within all the buffers built with a 10 m offset around the cavity polygons. The
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888 cavities listed in the cavity inventory [62] were considered in this classification. The
buffer offset was defined based on the draw angle (i.e., the angle that defines the area of
influence of the underground cavity projected onto the ground surface) [25]. We extracted
four T-ICA components, as shown in Figure 10. According to the temporal functions of
the independent components, we considered IC1, IC2, IC3 and IC4. Considering all the
above-mentioned ICs, HC analysis was then performed following the procedure proposed
in the previous sections, and five clusters were identified with different IDs, shown in
the planes IC1-C2 (Figure 11a) and IC3-IC4 (Figure 11b). Moving from cluster ID 1 to
cluster ID 5, PS-DSs progressively shift from being characterized by subsidence to uplift
(IC3-IC4 planes). From the IC1 to the IC2 plane, we can assert that seasonality significantly
influences cluster ID 5. The statistical and the 95% confidence ellipse parameters of each
cluster are reported in Table S1. The centroid of each cluster, corresponding to a PS-DS,
was identified and the original time series was compared with that reconstructed from the
considered four ICs, as shown in Figure S6.
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PS-DSs within each buffer cavity may belong to different clusters, which implies that
the classification of cavities based only on clusters is insufficient to classify each cavity.
For this purpose, the standard deviation of the cluster IDs for the PS-DSs within each
buffer was computed (Figure 12a). Once the standard deviation threshold value of 1 was
established, the cluster-ID mode (i.e., the most predominant cluster ID for each cavity) was
calculated for each cavity within the threshold value, and that cluster ID was assigned to
each cavity (Figure 12b). In contrast, cavities with a standard deviation greater than the
threshold value were excluded from the classification because it was not possible to classify
them due to the strong variability in the PS-DSs characterizing these cavities. Based on the
results, among the 580 classified cavities, 12 were assigned to cluster ID 1, 195 to cluster ID
2, 57 to cluster ID 3, 305 to cluster ID 4 and 11 to cluster ID 5, as shown in Figure 12b.
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4. Discussion

Ref. [11] studied the effects of centering and standardization of the T- and S-PCA input
matrix on temperature anomalies. They concluded that the first components extracted from
the spatial mode represent the trend characterizing the largest amount (i.e., most of the
analyzed area) of measurements points. In contrast, for the temporal mode, the results
showed the spatial distribution of displacement rates of the considered component. These
differences were initially noted by [57,58].

To better comprehend the effect due to the S-mode and T-mode matrix configuration,
we performed the analyses on 20,000 PS-DSs that were spatially randomly extracted from
the TerraSAR-X dataset taken from the northern sector of the UNESCO area to avoid uplift.
As a result, the subsidence phenomenon is detected by components with an increasing
or decreasing trend, depending on the positive or negative score signs. The temporal
function of the first component describes a decreasing annual trend (Figure 13a), and
the corresponding scores are reported in Figure 13c, where it is observed that the largest
number of scores is positive. This means that the first component extracted from the S-PCA
clearly describes the ground deformation that characterized most of the PS-DSs considered.
Figure 13b,d show the results obtained from the T-PCA. The trend of PC1 has an increasing
monotonic trend and the associated score map reveals positive and negatives values. This
does not necessarily imply a different displacement mechanism because these values must
be added to the mean displacement time series. Instead, in this case, they indicate different
subsidence rates with respect to the average of the time series according to their score signs.
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Therefore, our results confirm what was observed by [11,57] and the use of T- and S-modes
for interpreting PS-DS displacements.
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Figure 13. PCA of 20,000 PS-DSs extracted from TerraSAR-X dataset and covering the northern area
of the UNESCO site. (a) Temporal function time series of S-PC1, (b) temporal function time series of
T-PC1; (c) scores map of S-PC1 and (d) scores map of T-PC1. Black lines in (a,b) the smoothed lines
obtained from the results using the lowess method with 0.1 span.

As stated earlier, the use of S-PCA and T-PCA allows us to classify the analyzed area
into subregions based on the observed ground deformation trends. This classification was
performed by [37], although they only considered velocities obtained from the ERS and
Radarsat datasets, monitoring the period from 1992 to 2007. Comparing their findings
with ours, the identified subregions coincide, but in addition, in the present work, it was
possible to distinguish uplift and subsidence trends from seasonal trends.

As the subsurface of Naples is characterized by a widespread network of cavities
(Figure 1), the stability assessment of underground cavities is a challenge that needs to
be addressed. Indeed, these are often excavated at shallow depths relative to the ground
level, thus affecting the stability of overlying structures and infrastructures. In addition,
soft porous rocks, such as NYT, are generally very sensitive to weathering processes
generated by moisture, water infiltration, saturation and fluid circulation [63]. Therefore,
several methods have been presented in the literature to assess the stability of underground
cavities. Generally, at the preliminary stage of analysis, phenomenological and analytical
approaches are proposed to assess the stability condition. Some authors have proposed
charts summarizing the general parameters to preliminarily assess the stability of the cavity
obtained from numerical analysis [64]. The above methods are based on the equilibrium
conditions, and therefore they analyzed the limit state conditions just before the failure
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occurs. Consequently, their stability is based on the ratio between the failure condition and
the current condition, but in contrast, our approach using the deformation trend is based
on a kinematic condition. Nevertheless, the two approaches can give congruent results.
For instance, Ref. [65] performed stability analyses for the Fontanelle cavity in Naples, and
their results are in accordance with ours (Figure 12b).

Other authors, such as [66], considered velocities obtained from InSAR data to supple-
ment useful information for susceptibility and hazard analyses, possibly allowing early
prevention activities, especially when they are combined with in situ knowledge. In their
works, the velocity takes into account all the phenomena taking place within their cavities,
whereas our approach has the advantage of being able to classify the cavities separately
considering the phenomena occurring simultaneously. Indeed, our classification, based
on ICA components and clustering, has a more physical meaning since it is driven by the
predominant mechanism.

In the cavity classification based on Hierarchical Clustering described in the results
section, we considered a buffer size (see Figure 14a for the definition of the buffer size)
surrounding each cavity equal to 10 m and performed the analysis considering PS-DSs
located within the buffers. A radius of influence should be considered to estimate the areal
extent potentially affected by subsidence related to a cavity in the subsurface. Ref. [24]
proposed an analytical equation that defines the potential radius of the influence area
around each cavity, where R is the radius of the influence, H is the cavity depth, and β
is the draw angle (see Figure 14b). By definition, the draw angle is the angle at which
subsidence extends from the edge of the cavity towards the subsidence limit at the surface
(see Figure 14b). The radius of the average influence area associated with the analyzed
cavities was therefore computed by considering in the [24]’s equation an average cavity
depth of 15 m [62] and a draw angle of 35◦ based on literature values for similar material [24].
An average influence buffer size of approximately 10 m was then considered around
each cavity.

In the metropolitan area of Naples, the presence of unconsolidated pyroclastic deposits
associated with both hard and weak volcanic rocks is widespread [32,67,68], and most of
the cavities were excavated in NYT and the overlying layer is less than 20 m thick [44], as
shown in Figure S7. As it is typically observed in the area, it was assumed that the tuff is
generally found below an average 10 m thick layer of cohesionless soil called pozzolana [65].
In the kinematic classification of the cavities, we initially accounted for the average cavity
depth and the typical β, derived from literature values. Subsequently, since β is a function
of the friction angle of the material, to account for the variability of ground parameters, we
also considered the variation of the friction angle of the NYT and pozzolana and the depth
range at which the cavities are located.

Starting from the friction angle parameter ϕ, which is 29◦ for the NYT and 33◦ for the
pozzolana, we computed the values of R (see Equations (3) and (4)), considering the depth
range 5–35 m at which the cavities are excavated. According to Equations (3) and (4) we
derived the values of R considering all possible combinations of ϕ and H (see Figure 14b).
The obtained R values ranges from 2.9 m to 20.6 m. These results are agreement with that
obtained in our study in which we observed that increasing the buffer size over 20 m the
subsidence decreases and the data dispersion increases.

α =
ϕ

2
+ 45◦ (3)

R = H tan(90− α) (4)
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Figure 14. Results obtained considering different buffer sizes: (a) buffer representation; (b) number
of PS-DSs as a function of the buffer size and representation of multiple buffers and draw angle, β,
based on the equation proposed by [24]; (c) temporal function of T-IC components. The smoothed
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To investigate the effects of the buffer size, we performed a local ICA (T-mode) on
the entire cavities inventory considering the PS-DSs located above the cavities and those
within a buffer size of 50 m. The 50 m buffer was divided into further buffers with a
step size of 10 m (see Figure 14a for the definition of the buffer size). The results are
shown in Figure 14 where ‘cumulative’ represents the results obtained considering all
PS-DS within the buffer considered, while ‘incremental’ represents the results obtained
considering only the PS-DSs belonging to the rings between the buffer considered and the
smallest nearby one. Figure 14b shows the number of PS-DSs belonging to each buffer, in
which a decreasing trend is observed as we merged two datasets before the analysis; in
one, we used the PS-DSs located within the buffer of size 10 m and in the other, the PS-DSs
located within the 50 m buffer. The PS-DS dataset referring to the 50 m buffer was spatially
randomly subsampled to 20,000 data points to reduce the computational burden. This
procedure was adopted, despite the size of the buffer, to extract the effects of the presence
of the cavity on the surrounding area. The evolution of the four extracted ICA components
is shown in Figure 14c as a function of time. For all components, a large number of scores
are negative and, therefore, the first and second components represent a trend related to
subsidence, whereas the third component, which has the opposite sign, represents uplift,
perhaps induced by the bradyseism phenomenon. Finally, the fourth oscillating component
refers to a seasonal increasing trend. This signal can be fitted by a sinusoidal function of
period 185± 2 days with peaks in winter and it may be caused by thermal effects.

If we observe the frequency distributions of the scores (as performed for Figure 14d),
we obtain a Gaussian distribution characterized by the mean and a standard deviation.
Thus, the effects of the buffer size can be quantified through the evolution of the mean and
standard deviation values for each buffer. In particular, Figure 14e shows the variation
in the mean value of the scores as a function of the buffer size for the different ICs. The
obtained values, except for IC3, have an increasing trend with the buffer size, although
the number of PS-DSs decreases with it. This implies that PS-DSs located outside the 10 m
buffer size have very different mean values, which can influence the cumulative mean
value despite their small number. Finally, for IC3, no great variations are observed in
both cumulative and incremental terms, as the uplift affects the whole region of Naples.
Analogous considerations can be given for the standard deviation, as reported in Figure 14f.
It is necessary to consider that the study shows a limitation related to the estimation
of vertical displacements by LOS projection along the vertical direction, as not from a
combination of ascending and descending datasets, but only using descending datasets.
Horizontal displacements broaden the area of influence of any cavity or stress/strain
variation at depth.

Furthermore, since among the first extracted components, the linear trend and sea-
sonal signal are always found, another possible approach could be to subtract these two
components from the time series before performing PCA and ICA in order to be able to
identify over time complex non-linear phenomena.

Finally, the elevations of PS-DSs were not considered in this work, which should
instead be considered in order to be able to distinguish street-level PS-DSs from those
located on the roofs of buildings, as their mix could introduce biases into the analyses.

5. Conclusions

In this paper, a unified algorithm was proposed that combines PCA, ICA and HC,
considering both temporal and spatial modes to analyze InSAR displacement data. For
this purpose, the algorithm was implemented in a self-built code and applied to the
InSAR ERS1-2, Envisat, COSMO-SkyMed and TerraSAR-X datasets for the UNESCO site
of Naples from 1992 to 2019. We confirm that both PCA and ICA allow the identification
of sub-regions characterized by subsidence, uplift and/or seasonal ground deformations,
decomposing the original time series into a set of extracted components. These components
could be further associated with specific factors or controlling variables. ICA often allows
a better separation of the different source signals. We prove that S-PCA gives among the
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first components those with trends that are common to a broader number of PS-DSs (i.e.,
cover larger areas), while T-PCA highlights patterns with different ground deformation
rates. Finally, clustering is an effective tool to group PS-DSs on the basis of these extracted
components. The results support the use of this approach to classify cavities using local
clustering. We compared the results obtained by analyzing PS-DS data from within different
buffer areas around known underground cavities. We demonstrated that by increasing
the buffer size, the effect of a cavity, in terms of subsidence, reduces. This agrees with
the results obtained through the geomechanical-based draw angle method that allows
us to define the expected extent of the affected area considering material properties and
cavity depth.

In this work, we considered the available data, which include only LOS data acquired
from satellites in descending geometry and obtained using PSI and SqueeSAR techniques.
As a consequence, we did not compute the east–west displacement component by combin-
ing descending and ascending datasets. This could be a limitation; however, we mainly
focused on local uplift, subsidence and sinkhole phenomena, where the main component
of the displacement is the vertical one. These limitations of the methodology should be
considered, and further research is needed to improve its accuracy and applicability to
different scenarios. Anyway, this approach can be applied to E-W datasets, as well as to
any other spatially distributed time series. One of the main advantages of the proposed
methodology is the simple and standard algorithm and the speed of processing, even with
large amounts of data. When combined with real–time monitoring data, the approach
could be used to isolate areas characterized by changes in the trend of the time series and
to forecast possible failure or crisis events. Future efforts will be focused on the use of this
approach on pre-treated time series by eliminating linear and seasonal components.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs15123082/s1, Figure S1: Mean LOS velocity map from the
TerraSAR-X dataset; Figure S2: (a) Comparison of CSK and cGPS MAFE measurements; (b–d)
comparisons of TerraSAR-X with cGPS MAFE, cGPS ISMO and cGPS BAGN, respectively, in which
the time intervals refer to the datasets. In every figure: grey shadow areas show the cGPS error
measurements; red lines represent the average vertical displacements of PS-DSs at a buffer of 50 m
from the cGPS stations; blue lines represent vertical displacements of the PSs closest to each cGPS
station; Figure S3: Spatial distributions of the components extracted from S-PCA and S-ICA on
20,000\ randomly selected PS-DSs from TerraSAR-X within the UNESCO site. (a) S-PC1, (b) S-PC3,
(c) S-IC2 and, (d) S-IC4; Figure S4: Spatial distributions of the components extracted from T-PCA on
20,000 randomly selected PS-DSs from TerraSAR-X within the UNESCO site. (a) T-PC1, (b) T-PC2, (c)
T-PC3 and, (d) T-PC4; Figure S5: Spatial distributions of the components extracted from the T-ICA
applied to 20,000 randomly selected PS-DSs from TerraSAR-X within the UNESCO site: (a) T-IC1, (b)
T-IC2, (c) T-IC3 and, (d) T-IC4; Figure S6: (a) IC3-IC4 plane projection of the five clusters obtained
from T-ICA applied to TerraSAR-X PS-DSs above the 10\ m buffers of the cavity’s polygons. (b)
Reconstructed time series of the five cluster centroids based on the four considered independent
components; Figure S7: Spatial distribution of cavities and sinkholes inventories together with the
NYT depth representation from the ground level. Different symbols are used for sinkholes located
within 20\m and between 20\m and 30\m from the cavities; Table S1: Table reporting the parameters
characterizing five clusters obtained from the HC on the T-ICA analysis performed on the PS-DSs
within the 20 m buffer around each cavity. The table also reports the parameters characterizing the
ellipse related to each cluster. References [26,42,69] are cited in the supplementary materials.
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