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A B S T R A C T 

The search for gravitational waves using Pulsar Timing Arrays (PTAs) is a computationally expensive complex analysis that 
involves source-specific noise studies. As more pulsars are added to the arrays, this stage of PTA analysis will become increasingly 

challenging. Therefore, optimizing the number of included pulsars is crucial to reduce the computational burden of data analysis. 
Here, we present a suite of methods to rank pulsars for use within the scope of PTA analysis. First, we use the maximization 

of the signal-to-noise ratio as a proxy to select pulsars. With this method, we target the detection of stochastic and continuous 
gra vitational wa v e signals. Ne xt, we present a ranking that minimizes the coupling between spatial correlation signatures, namely 

monopolar , dipolar , and Hellings & Downs correlations. Finally, we also explore how to combine these two methods. We test 
these approaches against mock data using frequentist and Bayesian hypothesis testing. For equal-noise pulsars, we find that 
an optimal selection leads to an increase in the log-Bayes f actor tw o times steeper than a random selection for the hypothesis 
test of a gravitational wave background versus a common uncorrelated red noise process. For the same test but for a realistic 
European PT A (EPT A) data set, a subset of 25 pulsars selected out of 40 can provide a log-likelihood ratio that is 89 % of the 
total, implying that an optimally selected subset of pulsars can yield results comparable to those obtained from the whole array. 
We expect these selection methods to play a crucial role in future PTA data combinations. 

Key w ords: gravitational w aves – methods: data analysis – pulsars: general. 
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 I N T RO D U C T I O N  

ulsar Timing Array (PTA) experiments search for nanohertz-
requency gra vitational wa ves (GWs) through induced shifts in radio-
ulse arri v al times from Galactic millisecond pulsars (Sazhin 1978 ;
etweiler 1979 ). The timing precision and regularity of the pulse

imes of arri v al (TOAs) from these pulsars make them exquisite
aboratories for studying a variety of astrophysical and fundamental
hysics phenomena (e.g. Verbiest et al. 2009 ). This includes GWs,
hich impart changes to the proseparation of Earth and the pulsar,

ausing pulses to arrive earlier or later than expected. These timing
eviations are a function of the GW source characteristics, as well
s the geometry of the GW source relative to the Earth-pulsar line-
f-sight. Upon fitting a deterministic timing ephemeris (describing
eading order behaviour such as the rotational period, spindown
ate, etc.) to a pulsar’s TOAs, the remaining timing residuals can
e analysed to search for the presence of GW signals amidst noise
ontributions. In a single pulsar’s timing residuals, GW signals can
asily be conflated with intrinsic pulsar noise effects (e.g. Shannon &
 E-mail: lorenzo.speri@aei.mpg.de 

e  

p  

(  

Pub
ordes 2010 , and references therein) or even poorly understood
rtefacts of the ionized interstellar medium that radio pulses must
raverse (e.g. Cordes & Shannon 2010 , and references therein). But
y constructing an array of pulsars, the fact that the GW-induced
iming deviations are correlated between pulsars can be leveraged to
istinguish it from uncorrelated astrophysical and instrumental noise
rocesses (Foster & Backer 1990 ). 
Several large collaborations have been monitoring ensembles of
illisecond pulsars o v er long timing baselines in a bid to detect both
 stochastic GW background (GWB) and indi vidually resolv able GW
ources. These include the European Pulsar Timing Array (EPTA;
ramer & Champion 2013 ), the North American Nanohertz Ob-

ervatory for Gravitational waves (NANOGrav; McLaughlin 2013 ),
nd the Parkes Pulsar Timing Array (PPTA; Manchester et al. 2013 ).
ogether with the more recently established Indian PT A (InPT A;
oshi et al. 2018 ), these collaborations constitute the International
ulsar Timing Array (IPTA; Verbiest et al. 2016 ; Perera et al. 2019 ),
hich aims to synthesize the aforementioned regional efforts to

chieve more significant and rapid disco v eries. Other recent timing
fforts include the Chinese PT A (CPT A; Lee 2016 ), the MeerTIME
rogramme (Bailes et al. 2018 ) conducted at the MeerKAT telescope
Camilo et al. 2018 ), CHIME/Pulsar (Ng 2018 ), GMRT (Swarup
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990 ), and FAST (Jiang et al. 2019 ). Recent results from NANOGrav
Arzoumanian et al. 2020 ), the PPTA (Goncharov et al. 2021 ),
he EPTA (Chen et al. 2021 ), and the IPTA (Antoniadis et al.
022 ) all show strong evidence in fa v our of a common-spectrum
rocess versus independent red-noise processes with Bayes factors 
f order ∼10 3 − 10 4 . These stochastic processes have similar spectral 
haracteristics with estimated amplitudes around A ∼ 2 − 3 × 10 −15 , 
nd are all in broad agreement with expectations for a GWB 

enerated by an astrophysical population of supermassive black-hole 
inaries (SMBHBs, e.g. Middleton et al. 2021 ). Ho we ver, there is
ot yet significant evidence for the distinctive pattern of interpulsar 
orrelations, known as the Hellings & Downs (HD) curve. In fact 
uch evidence needs more time to emerge than the presence of a
ommon process (Pol et al. 2021 ; Romano et al. 2021 ). 

Building evidence for GW-induced interpulsar correlations re- 
uires many well-timed pulsars in order to forge ef fecti ve pairings
cross different angular separations in order to trace out the HD 

attern (Hellings & Downs 1983 ). This pattern is mostly quadrupolar 
n angular separation, with two zero crossings between 0 ◦ and 180 ◦.
et there are several issues associated with building an effective 
ulsar array for GW detection. (i) First, we are constrained by the
alactic distribution of millisecond pulsars, so there is little reason 

o consider array geometries that contradict this. (ii) Furthermore, if 
ne were to only try to disco v er new pulsars that would maximize
he significance of HD correlations, then the best strategy would 
e to surv e y close to the most sensitive pulsars. However, this
ould not trace the full pattern of this correlation curve, thereby 

everely inhibiting our ability to discriminate it from systematic 
oise processes that can also induce interpulsar correlations (Tiburzi 
t al. 2016 ). The latter include solar-system ephemeris errors that 
reate dipolar correlations (Champion et al. 2010 ; Caballero et al. 
018 ; Guo et al. 2019 ; Roebber 2019 ; Vallisneri et al. 2020 ), and
ong time-scale systematics in time standards that create monopolar 
orrelations (Hobbs et al. 2012 , 2020 ). (iii) Finally, the next-
eneration of radio facilities such as DSA-2000 (Hallinan, Ravi & 

eam 2021 ), the Square Kilometre Array (SKA; Dewdney et al. 
009 ; Janssen et al. 2015 ), and the next-generation Very Large Array
ngVLA; Murphy et al. 2018 ) will lead to a torrent of new pulsars
nd observations. Future PTA data analysts will need metrics to 
udge which pulsars will most ef fecti vely characterize the GWB 

nd resolve multiple individual SMBHBs out of this confusion 
ackground. 
Therefore, exploring how to optimize the observing and analysis 

trate gies of PTA e xperiments is crucial. In previous works, compu-
ational techniques to optimize the observational schedule (Lee et al. 
012 ; Lam 2018 ), and arri v al-time precision as a function of radio
requency and bandwidth (Lam et al. 2018 ) have been investigated. 
n Roebber ( 2019 ), the author proposed a technique to optimize the
isentangling between different spatial correlations and, therefore, 
o separate the signal due to GWs from that produced by clock
r ephemeris errors. This paper also argued that such a method 
ould be used to decide which pulsars should be included in PTAs.
eyond standard quality checks related to a pulsar’s long-term timing 

tability, PTA searches aim to include as many pulsars as possible.
o we ver, a standard timing baseline cut of ∼3 yr is usually made

n order to reduce the data volume while at the same time ensuring
hat all pulsars inform GW frequencies � 10 nHz where a GW
ackground signal should be strongest. 
In this work, we introduce for the first time a robust methodology

or pulsar selection optimization in order to detect and characterize 
oth the stochastic background and single continuous gravitational 
ave (CGW) sources. We develop ranking (or selection) methods to 
nderstand which pulsars contribute most to GW searches, where we 
arget three key analyses: (i) detection of a GWB versus a Common
ncorrelated Red Noise (CURN) process, (ii) detection of a GWB 

ersus Monopolar and Dipolar correlated signals, (iii) detection of 
GW sources. These methods use statistical tools introduced in 
revious studies, making our methods easily implemented within 
stablished pipelines. Each method takes as input the intrinsic timing 
nd noise properties of the whole pulsar array – which could be
otentially provided by previous data releases – and outputs a ranked 
ist of pulsars for a specified GW search. 

This paper is organized as follo ws. We re vie w the standard PTA
tatistical tools such as likelihood and frequentist and Bayesian 
ypothesis testing in Sections 2.1 and 2.2 . These tools are used to test
he performance of the ranking methods introduced in Sections 2.3 
nd 2.4 . In particular, the ranking method based on signal-to-noise
atio (SNR) maximization is presented in 2.3.1 , and the one aimed
t disentangling different spatial correlations in 2.3.2 . In Section 2.4 ,
e develop a selection method that targets the search for continuous
ra vitational wa ve signals. The results are presented in Section 3
here the selection methods are tested using simulated data sets 
ith increasing level of noise complexity. We conclude with our 

xpectations for future investigations in Section 4 . 

 M E T H O D S  

.1 Pulsar timing array likelihood 

n this section, we introduce the marginalized PTA likelihood which 
s ultimately the fundamental tool for the statistical analysis of 
TA data (van Haasteren et al. 2009 ). We predominantly follow the
Gaussian process’ treatment described in details in van Haasteren & 

allisneri ( 2014 ), Arzoumanian et al. ( 2016 ). The TOAs for each
ulsar can be represented by a vector t of length N TOA . t can be
ritten as a sum of a deterministic and a stochastic component:

t = t det + t sto . 
The deterministic part comprises the so-called timing model which 

epends on a set of timing parameters β. The timing model describes
he intrinsic spin evolution of a source, propagation effects as well as
ime delays associated with the relative motion of a source and the
arth and kinematic and light propagation effects in the binary system 

see e.g. Lorimer & Kramer 2012 ). The initial estimate of the m
iming model parameters β0 is obtained using the minimization of the 
um of the squares of the residuals δ t = t − t det ( β). This least-square
inear fit to the timing model, which is performed using the TEMPO2
oftw are (Edw ards, Hobbs & Manchester 2006 ; Hobbs, Edwards &
anchester 2006 ), is equi v alent to likelihood maximization when

ssuming Gaussian white noise errors. In reality the stochastic noise 
omponent is dominated by coloured noises. Assuming that the initial 
stimate of the timing parameters β0 obtained from TEMPO2 does 
ot differ significantly from the final estimate βf obtained from a full
nalysis that includes more sophisticated stochastic noise modelling, 
he timing model can be approximated to impact the timing residuals
inearly via the term M ε, where ε = βf − β0 and M is an N TOA ×
 design matrix (van Haasteren et al. 2009 ). 
The correlated components of the stochastic piece t sto are modelled 

n terms of a Fourier decomposition (Lentati et al. 2013 ). In practice,
he analysis focuses on the noise with dominant power at lower
requencies, so that only a finite number of Fourier components N f 

re used. In this case the signal can be written in a matrix form of
he type F a , where the vector a of length 2 N freqs contains the Fourier
oefficients, whereas the N TOA × 2 N freqs matrix F is constructed with
lternating columns of sines and cosines e v aluated at the TOAs of
MNRAS 518, 1802–1817 (2023) 
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ach pulsar. The base sampling frequency is given by the inverse of
he observation time-span of the entire pulsar timing array, 1/ T . 

The influence of white-noise on the timing residuals is described
y the N TOA × N TOA white noise covariance matrix N . Finally, the
oise-mitigated timing residuals r , which is our best approximation
o the white noise n for each pulsar can be written in a compact form
s a function of the input residuals δ t : 

r = δ t − T b T = 

[
M F 

]
b = 

[
εa 

]
, (1) 

and the likelihood is given by: 

( δ t | b ) = 

exp 
{− 1 

2 r 
T N 

−1 r 
}

√ 

2 π det { N } . (2) 

he prior covariance and corresponding Gaussian prior on the
oefficients � b are written as: 

 = 

[∞ 00 φ
]

p( b | φ) = 

exp 
{− 1 

2 b 
T B 

−1 b 
}

√ 

2 π det { B } , (3) 

o that the timing model piece of b is a uniform unconstrained prior on
he timing model parameters ε, and the spectrum of all low-frequency
rocesses enters in the variance φ as: 

( ai) , ( bj ) = � ab S i δij + P ai δab δij , (4) 

here the intrinsic low-frequency (‘spin-noise’) spectrum of pulsar
 at the i -th sampling frequency is represented by P ai , and the GWB
pectrum, which is common to all pulsars, is given by S i . Both of
hese processes can be modelled with a power-law functional form: 

 ai = 

A 

2 
a 

12 π2 T 

(
f i 

yr −1 

)−γa 

yr 2 . (5) 

he reduction in correlated power due to the spatial separation of
he pulsars is described by the o v erlap reduction function (ORF) � ab 

etween pulsars a and b . For an isotropic and stochastic GWB, the
RF is described by the HD curve (Hellings & Downs 1983 ), which
epends only on the angular pulsar separation. If we group all the
ed noise and GWB spectral hyperparameters into the vector η we
an obtain the likelihood of the full PTA array (van Haasteren &
allisneri 2014 ), marginalized o v er b : 

 ( η) = p( { δ t }| η) = 

∫ N ∏ 

a= 1 

p( δ t a | b a ) × p( { b }| η) d N b , 

ln L = −1 

2 

[
δ t T C 

−1 δ t + Tr ln 2 πC 

]
, (6) 

here C = N + TBT 

T , and N is the total number of pulsars. A
eterministic signal s ( θ) can be incorporated in the modelling by
erforming the following replacement δ t → δ t − s ( θ ). More details
n likelihood construction and handling correlated noise processes
n pulsar timing analysis can be found in e.g. van Haasteren & Levin
 2013 ), Arzoumanian et al. ( 2015 , 2016 ), Taylor ( 2021 ). 

Having constructed the PTA marginalized likelihood, we can
stimate the parameters η. In frequentist inference, the true model
arameters are considered to be fixed ηTrue , and are estimated
y maximizing the likelihood to obtain the maximum-likelihood
stimator (MLE), ηMLE . In Bayesian inference, model parameters
re no longer regarded as fixed, but are themselves random variables.
he probability distribution of the parameter values before the data
cquisition (the prior distribution p( η)) is updated to a probability
istribution after the data incorporation (the posterior distribution
( η| δ t )) through the likelihood of the observed data L ( δ t | η). With

everal intrinsic noise parameters per pulsar, in addition to several
lobal parameters describing the GW signal, the posterior distri-
ution can be as high as O(100)-dimensional. Thus, it is typically
NRAS 518, 1802–1817 (2023) 
xplored and sampled numerically using Markov chain Monte Carlo
MCMC) techniques. 

.2 Hypothesis testing 

he essential step of the PTA analysis is testing whether the observed
ata are consistent with our expectations, e.g. the presence of a
W signal or its absence. Therefore, we use hypothesis testing to

nvestigate if the data provides suf ficient e vidence for one hypothesis
 1 with respect to another one H 2 . The tools developed in this

ection will be used in Section 3 as a proxy to test our selection
ethods. 
If we adopt a frequentist approach, we can maximize the likelihood

nder each hypothesis to find the MLE for the parameters, i.e.
MLE 1 = max η ln L ( η| H 1 ) and analogously for H 2 . Then, the log-

ikelihood ratio defined as: 

ln � = ln L ( ηMLE 1 | H 1 ) − ln L ( ηMLE 2 | H 2 ) (7) 

an be used to test whether our data supports hypothesis H 1 with
espect to H 2 . Roughly speaking, a large value of ln � indicates a
tronger support for H 1 with respect to H 2 . Therefore, we can use
n � to assess if an optimally selected subset of pulsars supports our
xpectations as much as the full data set. 

To statistically quantify the significance of a measured log-
ikelihood value, it is necessary to create multiple realizations of
he data under the reference hypothesis H 2 . For each realization, we

ust then e v aluate the log-likelihood ratio to obtain a distribution of
n � under the reference hypothesis. This distribution can be used to
alculate the p -value of the measured log-likelihood. This approach
s only viable if our ranking methods are tested on mock data set
ealizations. 

In reality, we cannot generate multiple realizations of the data
ecause we do not have access to the true parameters and data
eneration process. We have access only to the most likely values
f such parameters from previous data releases. Therefore, we
an use those for the data generation of the reference hypothesis.
y e v aluating the p -v alue for the real data set, we estimate the

ignificance of such an experiment and check the consistency of
ur assumptions on the data generation process. Similar tests are
 xtensiv ely used in PTA analysis (see sky scrambles, phase shifts,
nd optimal statistic analysis, e.g. Chamberlin et al. 2015 ; Cornish &
ampson 2016 ; Taylor et al. 2017 ). We e v aluate this procedure as a
onsistency check for hypothesis testing of a realistic PTA analysis
n Section 3.2 . 

In Bayesian statistics, the Bayes Factor (BF) 

F = 

∫ 
d ηL ( δ t | η, H 1 ) p( η, H 1 ) ∫ 
d ηL ( δ t | η, H 2 ) p( η, H 2 ) 

(8) 

s used to assess which model is fa v oured by the observations,
ssuming that the two models are equally probable a priori. A ‘rule of
humb’ for interpreting Bayes’ factors is presented in Kass & Raftery
 1995 ), where BF > 20 is considered strong evidence for H 1 . 1 

If the posterior volumes of the two hypotheses are approximately
he same, then the log-likelihood ratio at the MLE is approximately
qual to the log-Bayes factor, i.e. ln BF ≈ ln � (Romano & Cornish
017 ; Pol et al. 2021 ). 
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In practice, BFs are widely used to perform robust statistical 
nalysis, including hypothesis testing, when processing real PTA 

ata sets. In this work, full Bayesian inference is only used for
omputationally feasible analysis of simplified data sets. For the 
ealistic mock data sets which require more sophisticated noise 
odelling, we utilize the log-likelihood ratio test as it requires fewer 

omputational resources. 

.3 Ranking pulsars for stochastic signal searches 

ne of the primary goals of the current PTA experiments is to
etect the stochastic GWB from a population of SMBHBs. An 
sotropic GWB manifests itself as a long time-scale, low-frequency 
or red) common signal across the pulsars in a PTA. This common
ignal is characterized by the common spectrum and the interpulsar 
patial correlations. The distinctive signature of the gravitational 
ature lies in this correlation which depends only on the pulsar’s
ngular separation and has an expectation value given by the HD 

urve (Hellings & Downs 1983 ). Current experiments found strong 
vidence for the presence of a common red noise signal. While 
uch a signal could potentially represent the expected GWB from 

MBHBs, there is not yet strong evidence for either HD or other
lternative angular correlations. 

Moti v ated by these latest results, in Section 2.3.1 we design a
ethod to identify the optimal subset of pulsars for increasing 

he confidence in the detection of an HD correlation, whereas in 
ection 2.3.2 we use the decoupling formalism to find the best 
ubset of pulsars for distinguishing this correlation from alternative 
ypotheses. Recent work has cautioned that GWB upper limits can 
e biased and even lie below the true value when small ( � 20)
ombinations of pulsars are analysed (Johnson et al. 2022 ). Our work
ere is likely immune from such unwanted effects for several reasons: 
i) the field of PTAs has mo v ed be yond the re gime of setting upper
imits, to now estimating the statistical parameters of a common 
rocess and performing model selection on spatial correlations; and 
ii) our metrics here are based on the detectability and discrimination 
f stochastic processes, rather than upper limits. 

.3.1 Spatially correlated signal-to-noise ratio maximization 

s previously mentioned, the target signal is described by a correlated 
ed noise process S ( f ) with spatial correlations � ab . An optimal
ubset of pulsars can be constructed based on an optimal statistic that
aximizes the detection probability at a fixed false alarm probability 

or this specific case. As a proxy for this, it is convenient to consider
tatistics that maximize the signal-to-noise ratio (SNR), which is the 
atio of the expected value of a statistic in the presence of a signal,

1 , to its standard deviation. The standard deviation can either be 
omputed in the absence of a signal, σ 0 , or in the presence of a
ignal, σ 1 . In Rosado, Sesana & Gair ( 2015 ), the authors introduce
wo statistics: the A-statistic constructed by maximizing μ1 / σ 0 and 
he B-statistic constructed by maximizing μ1 / σ 1 . This procedure 
eads to the respective SNR definitions: 

NR 

2 
A = 2 

∑ 

a>b 

∫ � 2 
ab 

S 2 ( f ) T ab 

P a ( f ) P b ( f ) 
d f , (9) 

NR 

2 
B = 2 

∑ 

a>b 

∫ � 2 
ab 

S 2 ( f ) T ab 

[ P a ( f ) + S( f )][ P b ( f ) + S( f )] + S 2 ( f ) � 2 
ab 

d f . (10) 

e use these quantities as a proxy to identify the best subset of
ulsars from the full array. SNR A and SNR B are obtained under the
xpectation value of the true hypothesis and do not depend on the
iming residuals but only on the general properties of the pulsars’ red
nd white noises. In equations ( 9 )–( 10 ), the sum is o v er the pulsar
air a , b , with a > b and T ab is the o v erlapping time of observation
f the a , b arrays. The term P a ( f ) represents the sum of the intrinsic
oise processes of pulsar a such as red noise, white noise, etc.: 

 a ( f ) = P rn + P wn + ... 

= 

A 

2 
a 

12 π2 

(
f 

yr −1 

)−γa 

yr 3 + 2 σ 2 
t + ... (11) 

here σ is the root-mean-square (RMS) error and 
 t is the cadence
f the TOAs. We also assume that the correlated noise process S ( f )
an be described by a power-law functional form. 

As pointed out in Rosado et al. ( 2015 ), the SNR B is more robust in
he strong-signal regime. In fact, as we can see from equations ( 9 )–
 10 ), one of the useful differences with respect to the other statistic is
hat SNR B does not diverge for S � P a . The SNR B is very similar to
he so-called optimal statistic SNR presented in Siemens et al. ( 2013 ),
hamberlin et al. ( 2015 ), ho we ver the last term in the denominator
f SNR B is missing in those studies. 
One downside of using the SNR B of equation ( 10 ) is that it assumes

he amplitude and slope of S ( f ) to be known. Since we have constraints
n such parameters from the current PTA experiments, we can 
ssume these to be known and use them to calculate the SNR. We will
ater show that the selection procedure using this SNR is not strongly
ffected by the variations of these quantities when estimated o v er
oise realizations. The SNR A definition has the advantage that the 
mplitude factors out and therefore its maximization is not affected 
y the choice of A GWB . 
In theory, we would need to compare the SNRs with all possible

ombinations of subsets of pulsars from the whole array. Since this is
omputationally intractable in practice, we start from a few fiducial 
ulsars and add pulsars one by one until we reach the desired
evel of SNR. We will see in Section 3.2 that this ‘one-by-one’
mplementation of SNR-maximization performs very well, reaching 
 high proportion of the full data set BF with only a small selection
f pulsars. The small impro v ement that might be achieved from an
 xhaustiv e search of all possible pulsar subsets is unlikely to be worth
he considerable increase in computational cost. 

If we set the spatial correlation � ab to be the HD correlation,
e can use these SNRs to rank pulsars and increase the detection
robability of a GWB. Therefore, the SNR-maximization selection 
ethod introduced here aims at providing the best pulsars for the

ypothesis test of an HD correlation (hypothesis H 1 ) versus a CURN
hypothesis H 2 ). 

.3.2 Maximization of the decoupling between spatial correlations 

n unambiguous detection of a GWB relies on the characterization 
f the angular correlation between pulsars. In order to claim a
etection, PTA e xperiments must pro vide strong evidence that 
n HD correlation is clearly identified in the data. Ho we ver, the
etection of a GWB is complicated by the presence of other types of
orrelated signals. Specifically, errors in clocks used to calibrate 
iming residuals, and poorly determined solar system ephemeris 
nduce large-scale correlations between pulsars and can mimic the 
ffects of a GWB. The irregularities in terrestrial time standards 
roduce signals with monopolar spatial correlation (Hobbs et al. 
012 , 2020 ), while emphemeris errors can result in dipolar signals
Champion et al. 2010 ; Tiburzi et al. 2016 ). In order to provide
n optimal separation of the quadrupole GWB signal from those 
roduced by clock or ephemeris errors, Roebber ( 2019 ) proposed a
MNRAS 518, 1802–1817 (2023) 
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2 This means that the vast majority of pulsars in an array are in the weak 
signal regime (Siemens et al. 2013 ) and only a few sources actually contain 
the detectable signal. In this case, the latter are expected to contribute a 
significant fraction of the whole array sensitivity, while the addition of the 
former sources is largely irrele v ant. 
3 The name was inspired by the mythological creature composed of different 
animal parts. Homer describes it as follows in the Iliad: ‘she was of divine 
stock, not of men, in the fore part a lion, in the hinder a serpent, and in 
the midst a goat, breathing forth in terrible wise the might of blazing fire.’ 
Homer & Lattimore ( 2005 ). 
4 We included in the supplementary materials two animated figures that show 

how the SNR-maximization method sequentially adds pulsars, see animate h 
ist HDvsNoise loc 3d.gif and animate hist HDvsNoise.gif. 
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ethod to minimize the leakage between spatially correlated noises.
e briefly re vie w this formalism here. 
The degree to which power from one spatial harmonic can leak

nto another one can be quantified by the coupling matrix (Peebles
973 ; Gorski et al. 1994 ; Wandelt, Hivon & G ́orski 2001 ; Hivon et al.
002 ; Mortlock, Challinor & Hobson 2002 ; Efstathiou 2004 ): 

 ( l m ) , ( l m ) ′ = 

∫ 

Y lm 

( �) W ( �) Y ( lm ) ′ ( �)d � , (12) 

here Y lm is the spherical harmonic of degree l and order m , W ( �)
s the window function, and the integral is performed o v er all sk y
irections, �. The Coupling Matrix formalism can be directly applied
o the pulsar selection problem. Within the PTA framework, a GWB
as maximum power at l = 2, while clock noise and ephemeris noise
ppear at l = 0 and l = 1, respectively. Therefore, the coupling
atrix elements with l from 0 to 2 are of interest for the problem

f mode disentangling. While forming an orthonormal basis in the
ase of continuous co v erage ( W ( �) = 1 everywhere on the sky),
he coupling matrix loses its orthogonality when the sampling of the
ky becomes discrete, resulting in non-zero off-diagonal elements in
 ( l m ) , ( l m ) ′ . 
In the context of PTA analysis, the window function is given by the

ronecker-delta modulated by the individual weights w of pulsars
laced at sky positions ˆ p a : 

 ( �) = 

∑ 

a 

w 

a δ( � − ˆ p a ) . (13) 

n the case of all-equal pulsars, the choice of the weighting function
s straightforward: w 

a = 1 for all pulsars. Ho we ver, the problem
ecomes less trivial when each pulsar has different properties (in
erms of RMS residuals, observation time, intrinsic red noise, etc.).
oebber ( 2019 ) suggests to use the inverse of the RMS of a source,
 /σ 2 

a , as weights, to account for the relative sensitivity of different
ulsars in an array. In order to additionally account for the coloured
oise in an array, we will use SNR A ∼ 1 /σ 2 

a as weights in the
oupling matrix formula, where SNR A is defined using the self-
erm ( a = b ) of equation ( 9 ). Although this is a natural choice, it is
orth noting that the optimal choice of the weighting function for

he coupling matrix construction does not have a unique solution and
n some cases requires a heuristic approach (Efstathiou 2004 ). As
hown in Appendix A , for the two realistic mock data sets described
n Section 3 , an SNR 

4 
A weighting on average performs better than

he other types of weighting function considered. Ho we ver, in order
o provide a definitive solution to the problem of weight selection,
 xtensiv e testing on more diversified samples of mock data sets is
equired, which we leave for future work. 

The level at which one mode leaks to another is estimated via the
atio of minimum and maximum eigenvalues λmin / λmax of K ( l m ) , ( l m ) ′ ,
hich is 1 when the coupling matrix is diagonal and drops to 0 when

he coupling matrix is ill-defined. Since we are mainly interested in
ecoupling the spherical harmonics with different l , we can average
quation ( 12 ) o v er m . Thus, the final expression for the coupling
atrix is Efstathiou ( 2004 ): 

 l ,l ′ = 

1 

(2 l + 1)(2 l ′ + 1) 

∑ 

m,m 

′ 
K ( l ,m )( l ′ ,m 

′ ) . (14) 

e construct the pulsar ranking list by selecting those that lead
o the largest eigenvalue ratio δλ = λmin / λmax of the M l ,l ′ matrix.
he Coupling Matrix selection method introduced here aims at
roviding the best pulsars for the hypothesis test of an HD correlation
hypothesis H 1 ) versus the presence of all three signals in the
ata, namely common uncorrelated, monopolar and dipolar spatially
NRAS 518, 1802–1817 (2023) 
orrelated red noise processes (hypothesis H 2 ). As pointed out
n Roebber ( 2019 ), the minimum number of pulsars required to
isentangle up to l max is 

∑ l max 
l= 0 (2 l + 1) = ( l max + 1) 2 , which is 9

or l = 2. After averaging over m , the coupling matrix M l ,l ′ is well-
efined when the number of pulsars is ≥3, meaning that at least three
ulsars are required to resolve the spatial modes up to the quadrupole.
herefore, when the Coupling Matrix formalism is applied to realistic
ata sets, in order to a v oid ambiguity, the first three pulsars in the
anking are fixed to those with the highest self-SNR. 

.3.3 Chimera method: combining SNR- and 
ecoupling-maximization algorithms 

he Coupling Matrix selection method is aimed at disentangling
ifferent types of correlations, while the total SNR-maximization is
isregarded. Therefore, the Coupling Matrix can only be used as
 complementary scheme for array optimization, especially, for an
rray of pulsars in mixed SNR regime. 2 Here we propose a new
election method that combines the merits of both the Coupling

atrix and SNR-maximization: hereafter the ‘Chimera’ 3 method.
he basic idea is to add a new pulsar to a subset, so that the HD-SNR

s maximized along with the decoupling power. One of the possible
orms that satisfies the latter requirement is the multiplication of the
ele v ant scores of both methods, i.e. SNR and eigenvalue ratio: 

C Chimera = SNR 

2 
B δλ. (15) 

ote that the ranking of pulsars within the Chimera approach is
urely heuristic and the score that we offer in equation ( 15 ) is one
f many possible choices. As in the case of the Coupling Matrix,
he first three pulsars are selected according to the highest self-SNR,
hile the following ones are picked so that the score in equation ( 15 )

s maximized. 
For reference, in Fig. 1 we sho w ho w the three different selection
ethods for GWB searches pick equal-noise pulsars on the sky. The

ull array is composed of 200 pulsars uniformly distributed o v er the
ky and the number of selected pulsars is 25. The first pulsar was
andomly selected and the following ones were picked according to
he different selection methods. The SNR depends on � 

2 
ab and so

he SNR-maximization method tends to add pulsars where the HD
orrelation is largest, i.e. with θab = 0 ◦ and 180 ◦. The region between
0.6 and 0.6 will be eventually filled as the number of selected

ulsars increases. 4 The Coupling Matrix and Chimera methods also
icked pulsars at θab = 0 ◦ and 180 ◦, but the distribution of angular
eparations is broader and co v ers more values of θab . We find that of
he first 25 pulsars selected by the Chimera method, none of them
re placed around cos θab ≈ −0.7 and cos θab ≈ 0.7. This might be
ue to some interaction between SNR-maximization and Coupling

file:animate_hist_HDvsNoise_loc_3d.gif
file:animate_hist_HDvsNoise.gif
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Figure 1. Distribution of angular separations of 25 pulsars selected with 
three selection methods, namely SNR B -maximization, Coupling Matrix, and 
Chimera. These methods have been applied to a data set consisting of 
200 pulsars with uniform sky distribution and equal noise properties. For 
reference, we also show a random selection of 25 pulsars. 
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5 Furthermore, detectable CGW signals must be louder than the GWB. Since 
the GWB is stronger at lower frequencies, CGW signals are more likely to 
be found at high frequencies. 
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atrix selection. Note that the pattern in Fig. 1 could change if we
ere starting with two or more pulsars with different sky locations. 

.4 Continuous gravitational wave SNR-maximization 

ontinuous gravitational waves are deterministic signals and their 
nalysis has been treated separately from the stochastic GWB. CGWs 
re included in the model as a periodic delay applied to the timing
esiduals δ t while the effect of the GWB is included in the covariance
atrix C of the likelihood. This fundamental difference between the 

wo signals and their mathematical description calls for a different 
anking method. 

Here, we want to rank pulsars according to their response to a
GW signal. One way to proceed is to inject a large number of f ak e
GW signals with randomized parameters except for fixed frequency 
nd amplitude (Babak et al. 2015 ). Then, for each pulsar, the CGW
ignal-to-noise ratio is computed for each injection and averaged 
umerically . In this way , we ha ve the a verage response of each
ndividual pulsar in the array at a given frequency of the CGW
ignal. This averaging can also be done analytically, as shown in the
ollowing paragraph. Note that we refer to the signal-to-noise ratio 
f CGWs using the acronym SNR. Ho we ver, we use the symbol ρ to
istinguish the SNR of CGWs from the previously defined SNRs. 
In the likelihood of equation ( 6 ), the inclusion of a deterministic

ignal is performed by changing the timing residuals as δ t → δ t −
 ( θ ), where s ( θ ) is the signal template we aim to measure. In that
ase, the likelihood can be rewritten as: 

ln L = −1 

2 
[ ( δ t | δ t ) + ( s | s ) − 2( δ t | s ) + Tr ln 2 πC ] , (16) 

here we have introduced the noise weighted inner product ( x | y ) =
x T C 

−1 y . 
We can now calculate this expression for the hypothesis of the 

resence of a CGW ( H 1 ) versus its absence ( H 2 ). The expectation
alue of the log-likelihood ratio becomes: 

 ln � 〉 H 1 = 

〈
ln 

(
p( δ t | s ) 
p( δ t | 0) 

)〉
H 1 

= 〈 ( δ t | s ) − 1 

2 
( s | s ) 〉 H 1 

= 

1 

2 
( s | s ) , (17) 

here ρOpt = 

√ 

( s | s ) is the optimal SNR for the CGW source. 
Since the source parameters are not known a priori, we average ρ2 

Opt 

 v er gra vitational wa ve polarization ψ , initial phase φ0 , inclination
, and sky location ( θ , φ). To do so, we analytically compute the
nte gral o v er the defined bounds of the CGW parameters: 

2 = 

∫ π
0 

dψ 

π

∫ 2 π
0 

dφ0 
2 π

∫ −1 
1 

d cos ι
2 

∫ −1 
1 

d cos θ
2 

∫ 2 π
0 

dφ

2 π ( s | s ) . (18) 

sing the formula for a CGW signal from a circular SMBHB,
( t, �), as presented in Babak & Sesana ( 2012 ), the Earth-term SNR 

2 

v eraged o v er CGW parameters takes this simple form: 

2 ( h, f ) = 

4 

15 

(
h 

2 πf 

)2 

×[ ( cos 2 πf t | cos 2 πf t ) + ( sin 2 πf t | sin 2 πf t ) ] , (19) 

ith 

 = 

2 M 

5 / 3 ( πf ) 2 / 3 

d L 
, (20) 

here f and h are the gravitational wave frequency and amplitude,
 is the chirp mass, and d L is the luminosity distance. For pulsar

 , we e v aluate ρ2 
a at the TOAs t a . We consider an Earth-term only

NR for simplicity as the inclusion of the pulsar term is unlikely to
ake a significant difference to the ranking. In the absence of a chirp,

he contribution of the pulsar term to the SNR 

2 is equal to that of
he Earth term, therefore leaving the relative contribution of different 
ulsars unchanged. When the system is chirping this is no longer true
s different pulsar terms contribute at different frequencies. However, 
t is slightly misleading to include these in the ranking on an equal
ooting with the Earth terms, since matching the pulsar terms in
he data is much harder and requires good knowledge of the pulsar
istance. In addition, the resulting ranking would be dependent on 
he nature of the source in the data, as this determines the frequencies
f each of the pulsar terms, which would not be known until after the
nalysis using the reduced set of pulsars had been completed. The
orrelated noises (e.g. intrinsic and dispersion measure noises) are 
aken into account in the covariance matrix C of the noise-weighted
nner product of the cosine and sine terms. 

Common (correlated) processes were not included in our noise 
odel, so the covariance matrix is block diagonal. In this way,

he likelihood can be factorized and SNR 

2 s can be computed
ndependently for each pulsar. Common uncorrelated processes can 
e included without affecting the block diagonal form of the matrix,
nd this could be used as a proxy for the presence of a GWB
ackground or other processes. In practice, we should incorporate 
hese common processes in the noise model, but this adds another
ev el of comple xity that is irrele v ant for the goal of the selection
rocedure. 5 The ultimate goal is identification of the best pulsars for
GW detection, and therefore, only the intrinsic properties of the 
ulsars were considered. 
We estimate the relative contribution of one pulsar to the total SNR

f the array using the normalized SNR 

2 : 

¯2 
a ( f ) = 

ρ2 
a ( h, f ) ∑ 

b ρ
2 
b ( h, f ) 

. (21) 

ote that the amplitude h cancels out in this expression and the CGW
requency f remains the only parameter. Therefore we can fix h to
ny value without affecting the ranking. 

We construct the cumulative sum of the normalized SNR 

2 s of
he pulsars ranked from best to worst. We fix a threshold value for
he SNR 

2 cumulative sum above which pulsar contributions to the 
MNRAS 518, 1802–1817 (2023) 
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M

Figure 2. Cumulative ρ̄2 plot for the pulsars in the IPTA DR2 at CGW 

frequency of 5 nHz. The pulsars above the red dashed line contribute less 
than 5% of the total SNR 

2 . This means only 12 pulsars out of 65 contribute 
on average to 95 % of the total SNR 

2 of the array at 5 nHz. Note that, while 
only the best 22 pulsars are shown in the figure, the normalized total SNR 

has been e v aluated using all 65 pulsars in the array. 
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Figure 3. Normalized ρ̄2 
a of the five best pulsars of the IPTA DR2, at different 

CGW frequencies. The glitches at the right of the plots are due to the one 
year and half-year peaks. 
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otal SNR 

2 are not considered significant. This value was chosen
o be 0.95. The process is illustrated in Fig. 2 and in the animated
igure ( cgw ranking.gif included in the supplementary materials) for
ulsars from the IPTA second data release (DR2; Perera et al. 2019 ).
Due to the strong dependence of ρ̄2 

a ( f ) on f , the resultant CGW
ulsar ranking is also frequency dependent. This can be clearly seen
rom Fig. 3 . In our analysis, we use 100 log-spaced frequency bins
etween 10 −9 and 10 −7 Hz. Ranking lists were obtained separately
or each frequency bin. In order to construct the final ranking
atalogue of best pulsars at a given frequency range, the lists at
ach frequency are merged together. This procedure ensures that we
ill gain at least, no matter the CGW frequency, 95 % of the total
NR 

2 of the array. 

 RESU LTS  

e create mock PTA data sets with increasing complexity in the
oise models and test the performance of the selection methods. The
TA data sets are simulated using LIBSTEMPO 

6 and analysed using
NTERPRISE (Ellis et al. 2020 ) giving the marginalized likelihood.
ayes factors are computed using DYNESTY (Speagle 2020 ). 

.1 Testing the selection methods for GWB searches 

n this section, we investigate the performance of the three ranking
ethods that target GWB searches (Section 2.3 ). We consider a

implified framework, in which the pulsar noise is white noise only,
nd there is an injected GWB with amplitude A GWB = 3 × 10 −15 

nd slope γ = 13/3, consistent with findings from the EPTA analysis
Chen et al. 2021 ). We pick pulsars one by one using the SNR B 

aximization, the Coupling Matrix method (with weights w ∼
NR A ), and the Chimera method, and we investigate the performance
f these procedures by calculating the log-Bayes factor ( ln BF natural
ogarithm) of the following hypothesis tests: 
NRAS 518, 1802–1817 (2023) 

 https:// github.com/vallis/ libstempo 
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M  

s  
(i) HD versus CURN: Hellings & Downs correlation versus a
ommon uncorrelated red noise process; 

(ii) HD versus CURN + MN + DN: Hellings & Downs correlation
ersus a combination of common uncorrelate red process, monopolar
oise (MN), and dipolar noise (DN). 

Since a detectable GWB signal is injected, we expect the log-
ayes factor to always increase in the limit of a high number of
ulsars N . Of particular importance, ho we ver, are the dynamics of
rowth of the log-Bayes factor with respect to a random selection. A
urther comparison of these selection methods against a lowest RMS
election procedure is presented in Appendix B . 

Note that the white noise parameters are kept fixed, and only
he amplitudes and slopes of the common red noise processes
re varied. In the next sections, we present the evolution of the
og-Bayes factor obtained with the N pulsars selected with the
forementioned methods. We anticipate that the performance of the
election methods strongly depends on the specifics of the data set
onsidered. Therefore, we tested our ranking methods with three
ifferent simulated data sets. 

.1.1 Galaxy-distributed data set 

e created an array of 200 pulsars with equal RMS of 100 ns with
alaxy distribution on the sk y. The sk y coordinates were drawn

andomly from the av ailable v alues of kno wn pulsars in the PSRCAT
atalogue (Hobbs et al. 2004 ). The total time-span of the data set is
0 yr with a sampling rate of 28 d. A data set consisting of all equal
ulsars with a dense sky coverage serves to demonstrate how each
election method performs under idealized conditions. In Fig. 4 we
how the log-Bayes factor computed using the pulsars selected by
he different ranking methods when applied to the Galaxy-distributed
ata set for the hypothesis tests: HD versus CURN, and HD versus
URN + MN + DN. The very first pulsar in the array was selected at

andom 20 times, so that the log-Bayes factor shown in Fig. 4 is an
v erage o v er these realizations. This procedure was done in order to
nsure that our results are independent of the initial pulsar choice.
or reference, we also show the log-Bayes factor obtained with a
andom selection of pulsars. 

The left-hand panel of Fig. 4 demonstrates that the Coupling
atrix method (dashed yellow line) performs similarly to the random

election (dotted blue line) for the HD versus CURN hypothesis

art/stac3237_f2.eps
file:cgw_ranking.gif
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Figure 4. Log-Bayes factor as a function of the number of chosen pulsars by each of the selection methods (shown in different colours) for the Galaxy-distributed 
data set and for different hypothesis tests: HD versus CURN (left-hand panel), and HD versus CURN + MN + DN (right-hand panel). The 200 simulated pulsars 
have the same noise properties and Galaxy-distributed sky locations. The first pulsar is selected at random 20 times and the shown log-Bayes factors are the 
av erage o v er these 20 realizations. F or 25 selected pulsars the mean and standard de viation v alues are: SNR B : 20 ± 6, Coupling Matrix: 15 ± 7, Chimera: 
16 ± 5, Random: 10 ± 4 (HD versus CURN hypothesis test (left-hand panel)); SNR B : 6 ± 2, Coupling Matrix: 14 ± 7, Chimera: 16 ± 5, Random: 11 ± 4 
(HD versus CURN + MN + DN hypothesis test (right-hand panel)). The log-Bayes factors of the whole array for one realization are 198 and 194 for HD versus 
CURN (left-hand panel), and HD versus CURN + MN + DN (right-hand panel), respectively. 
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est, with slightly better performance after ∼15 pulsars are included 
n the array. Both the SNR-maximization (solid green line) and 
himera method (purple dash-dotted line) outperform the other 

wo types of selection. For the SNR-maximization method the log- 
ayes factor increases with the number of pulsars in the array like
0.8 N , which results in almost double log-Bayes factor for N = 25

han the one obtained using random selection. These results are 
xpected, since the SNR-maximization is designed to maximize 
he confidence of detecting the HD correlation versus a CURN 

rocess. 
The hypothesis test HD versus CURN + MN + DN is proposed

o demonstrate the benefits of the Coupling Matrix, as the method 
s designed to disentangle the HD correlation from other types of
ommon correlated noises. The right-hand panel of Fig. 4 confirms 
hese expectations. We see that, in this context, the Coupling Matrix
nd Chimera methods provide a log-Bayes factor for N = 25 
ulsars which is 1.4 and 1.6 times larger than a random selection,
espectively. The scaling of the log-Bayes factor for the Chimera 
election is ∼0.8 N , while the SNR selection scales only as ∼0.2 N .
he SNR-maximization is severely suboptimal for this test, as it tends

o pick pulsars at locations where the HD o v erlap reduction function
s the largest, i.e. at 180 ◦ and 0 ◦, making it harder to discern HD from
ther types of correlation. A random selection of pulsars provides a 
ore distributed sky coverage which improves the situation in this 

egard. 
The slightly impro v ed performance of the Chimera method in 

omparison to the Coupling Matrix formalism is due to the fact that
t accounts for both the optimal sky coverage and total gain in SNR.
hese results confirms that both of these components are essential 

or PTA optimization and cannot be ignored. One can conclude that 
he inclusion of the SNR-maximization in the Chimera method is of
pecial rele v ance in the case of non-equal pulsar arrays. The latter
oint is even more evident in one of the following subsection, where
e consider a simplified EPTA data set. 
p

.1.2 Mock MeerTime data set 

e now consider a PTA data set which resembles the properties
f the recently published 5-yr MeerTime Large Surv e y (Spiewak
t al. 2022 ). This surv e y is e xpected to significantly increase the
ensitivity of current PTAs in the very near future. Using this as
oti v ation, we created a mock MeerTime data set consisting of

89 pulsars with sky positions taken from the survey. Observations 
ere performed every 28 d on a baseline of 10 yr. The white noise
MS is set to the median TOA uncertainties delivered by MeerTime,

n which each observation epoch of each source consisted of 256
 of integration time with the MeerKat radio telescope. The data
et provides an insight on how the pulsar selection performs with
 large data set composed of non-equal pulsars with realistic sky
ositions. 
We generate 20 noise realizations of this data set and show the

veraged log-Bayes factor in Fig. 5 . The first pulsar in the ranking is
xed to the one with the smallest RMS. 
The left-hand panel of Fig. 5 shows the ranking for the HD versus

URN test, and it confirms that the Chimera method and the SNR-
aximization are optimal in this case. Even though the pulsars 

elected with the Coupling Matrix method provide a log-Bayes factor 
maller than the other methods, it still gives an evidence which is
pproximately three times larger in comparison to random selection 
or N = 25. 

The evolution of the log-Bayes factor for the hypothesis test HD
ersus CURN + MN + DN is shown in the right-hand panel of Fig. 5 .
he Coupling Matrix and Chimera selections increase the log-Bayes 

actor up to log 10 BF ≈12. Differently from the ‘Galaxy-distributed’ 
ata set, the SNR-maximization performs slightly better than the 
andom selection, although still worse than the Coupling Matrix and 
himera methods. Up to the first 18 pulsars, the Chimera method
rovides a stronger support for HD versus CURN + MN + DN than
he Coupling Matrix, reaching similar levels for larger number of 
ulsars. 
MNRAS 518, 1802–1817 (2023) 
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Figure 5. Log-Bayes factor as a function of the number of chosen pulsars by each of the selection methods (shown in different colours) for the mock MeerTime 
data set and for different hypothesis tests: HD versus CURN (left-hand panel), and HD versus CURN + MN + DN (right-hand panel). The shown log-Bayes 
factors represent the average over 20 different noise realizations. For 25 selected pulsars the mean and standard deviation values are: SNR B : 15 ± 10, Coupling 
Matrix: 13 ± 8, Chimera: 16 ± 10, Random: 3 ± 2 (HD versus CURN hypothesis test (left-hand panel)); SNR B : 7 ± 3, Coupling Matrix: 12 ± 6, Chimera: 
11 ± 6, Random: 4 ± 2 (HD versus CURN + MN + DN hypothesis test (right-hand panel)). The log-Bayes factors of the whole array are 57 ± 21 and 47 ± 16 
for HD versus CURN (left-hand panel), and HD versus CURN + MN + DN (right-hand panel), respectively. 
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.1.3 EPTA-simplified data set 

e construct an EPTA-simplified data set, which consists of 40
ulsars with RMS and sky location of the latest EPTA data set
Desvignes et al. 2016 ; Chen et al. 2021 ). The total time-span is
xed to 10 yr with observations being performed every 28 d. In
rder to reduce required computational resources, only white noise
 as tak en into account, ignoring the red intrinsic and interstellar
edium noise contributions. Despite the significant simplification,

his data set serves to imitate a realistic PTA setup with a modest
umber of pulsars and representative pulsar sensitivities, which has
een principally used for GW searches to date. We have simulated
0 statistically equi v alent noise realizations. The averaged log-Bayes
actor are shown in Fig. 6 . As in the case of the mock MeerTime data
et, the first initial pulsar is chosen to be the one with the smallest
MS. 
It can be seen from both panels of Fig. 6 , that the restricted data set

f 25 pulsars chosen by the Chimera or SNR-maximization methods
n average reaches higher log-Bayes factors than those selected
andomly or using the Coupling Matrix formalism. Moreo v er, Fig. 6
hows that by using only 25 of pulsars picked by one of the two former
ethods, we account for ≈ 90% of the sensitivity of the whole array.
he Coupling Matrix approach, on the other hand, falls behind, even

or the HD versus CURN + MN + DN hypothesis test. These results
learly demonstrate that pulsar quality is as important as optimal
ky location, when disentangling different types of correlations. The
oupling Matrix is not aimed at maximizing the SNR, therefore it
annot be used as a selection method on its own, as some of the highly
ensitive sources could be discarded. The best results are obtained
hen the optimal sky location and gain in SNR are finely balanced.
herefore, ‘good’ pulsars must be picked at proper sky locations,
hich is the main idea behind the Chimera method. In other words,
either lo w-sensiti vity sources selected at proper angular distances,
or high-SNR sources with poorly chosen coordinates, e.g. clustered
t a specific location on the sk y, can pro vide an adequate impro v ement
n performance. The former case is the Coupling Matrix selection
or the EPTA-simplified data set (yellow dashed line in the left-hand
anel of Fig. 6 ), while the latter corresponds to SNR-maximization
NRAS 518, 1802–1817 (2023) 

i

or the MeerTime data set (solid green line in the right-hand panel
f Fig. 5 ). 
We want to remark that the Chimera implementation we offer in

his paper is not the ultimate solution. Alternative ways to address
his issue are proposed in Appendix A . Furthermore, as demonstrated
n Appendix B , simpler ranking criteria might perform better than the
himera method for some data sets. More thorough investigations
re left for future works. 

.2 Optimizing the search for a GWB in a realistic EPTA data 
et 

o speed-up the assembly of the new data set and to impro v e
omputational efficiency of the analysis, the EPTA collaboration
ecided to select a subsample of pulsars timed by its radio facilities.
n this context, it is of paramount importance to wisely pick the
ulsars to be included. Therefore, we create another simulated array
o address this problem. We consider a data set similar to the one of
ection 3.1.3 , i.e. 40 pulsars with RMS, time-span, and sky locations
f the EPTA data set, but more realistic in the sense that we include
he intrinsic red-noise properties of the preliminary EPTA data set 7 

Lentati et al. 2015 ; Chen et al. 2021 ). 
For simplicity, we focus on ranking the best pulsars to distinguish

n HD correlation (hypothesis H 1 ) from a CURN process (hypothesis
 2 ) and we study how this can be affected by possible noise

ealizations. As shown in the previous sections, SNR-maximization
nd the Chimera method should be a good selection proxy for this
ypothesis test. Since the SNR-maximization method is constructed
o target this hypothesis and it has been shown to perform as well as
he Chimera method, we will only use this method for this study. The
rst six pulsars are fixed to those which constitute the preliminary
ombination of Chen et al. ( 2021 ): J1909-3744, J1713 + 0747, J1744-
134, J0613-0200, J1600-3053, J1012 + 5307. 
nterval between observations to be 14 d. 

art/stac3237_f5.eps


Quality over quantity 1811 

Figure 6. Log-Bayes factor as a function of the number of chosen pulsars by each of the selection methods (shown in different colours) for the EPTA-simplified 
data set and for different hypothesis tests: HD versus CURN (left-hand panel), and HD versus CURN + MN + DN (right-hand panel). The shown log-Bayes 
factors represent the av erage o v er 20 different noise realizations. For 25 selected pulsars the mean and standard deviation values are: SNR B : 2.2 ± 1.9, Coupling 
Matrix: 0.5 ± 1.1, Chimera: 2.1 ± 1.9, Random: 1.0 ± 1.2 (HD versus CURN hypothesis test (left-hand panel)); SNR B : 2.9 ± 1.8, Coupling Matrix: 1.5 ± 1.0, 
Chimera: 2.7 ± 1.9, Random: 1.6 ± 1.4 (HD versus CURN + MN + DN hypothesis test (right-hand panel)). The red-dashed line shows the log-Bayes factor of 
the full data set ( N = 40): 2.5 ± 2.3 for HD versus CURN and 3.1 ± 2.2 for HD versus CURN + MN + DN. 

Figure 7. Normalized SNR evolution as a function of the number of selected 
pulsars N with the SNR maximization method of statistic B and A. The SNR 

is normalized to the total SNR of the data set and the initial pulsar subset is 
composed of the six initial pulsars of the EPTA analysis (Chen et al. 2021 ). 
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First, we estimate the number of sources that need to be added
o the preliminary combination in order to achieve a reasonable 
etection confidence. For this, we apply the SNR-maximization 
election using the injected GWB parameters, and iteratively add 
he pulsars which increase the SNR the most. Results are shown in
ig. 7 . SNR A tends to saturate more quickly than SNR B . This is
ecause the latter is suppressed by the term S ( f ) in the denominator
f equation ( 10 ). We find that with N = 25 pulsars we reach 94%
f the total SNR B . Therefore, adding 19 SNR-maximization selected 
ulsars to the starting six sources increases the SNR from 30% to
4% of the total SNR of the array. 
Next, we want investigate whether the selection procedure is 

trongly affected by the choice of GWB parameters. To this end, 
e simulate the EPTA mock data set 1000 times with the same

njection parameters, and find the Maximum Likelihood Estimator 
sing only the first six pulsars (preliminary data set) and assuming
n HD correlation only. The intrinsic red and white noise parameters 
ere fixed to the true values. The results are shown in Fig. 8 . Different
oise realizations lead the MLE values (blue dots) to be shifted from
he true parameters (orange dot). It can be clearly seen that the
istribution of MLEs lies along the line o v er which the six initial
ulsars are located (red triangles), and its median (dashed black 
ines) is consistent with the injected true parameters. For reference, 
e show the adopted intrinsic red noise parameters of the other
ulsars in the simulated data sets as red crosses. 
We now use each of the MLEs of Fig. 8 as a new set of GWB

arameters and run the SNR ranking procedure. The histogram of 
he best 25 selected pulsars is shown in Fig. 9 . Since the GWB
arameters are different at every realization, the subset of selected 
ulsars slightly changes. As expected, the histogram for the SNR B 

election has larger tails since different GWB parameters affect both 
he denominator and numerator of the equation ( 10 ). Instead, the
NR A is affected only by the variation in the GWB slope γ . Both
NR A and SNR B selections exclude 15 pulsars in each realization. 
MNRAS 518, 1802–1817 (2023) 
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Figure 9. Histogram of the 25 pulsars selected with the SNR B (blue) and 
SNR A (orange) maximization o v er 1000 noise realizations. 

Figure 10. Distribution of log-likelihood ratios obtained with the full data set 
N = 40 (solid blue) and with 25 pulsars selected with SNR B (dashed orange) 
and SNR A -maximization (dash-dotted purple) for 1000 noise realizations. 
For each noise realization we also randomly select 25 pulsars and calculate 
the log-likelihood ratio of this distrib ution. The distrib ution of these log- 
likelihoods is also shown as a green dotted histogram. The medians of the 
distributions are shown as vertical lines and are 5.88 for N = 40, 5.17 for 
SNR B N = 25, 5.14 for SNR A N = 25, and 2.73 for Random N = 25. The 
log-likelihood ratios have been all e v aluated at the maximum likelihood value. 
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respectively. The log-likelihood ratios have all been e v aluated at the true 
injected parameters. 
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his selection reduces the total number of TOAs to analyse from
8 584 to 12 191 (in median). Therefore, the SNR ranking procedure
xcludes 6393 / 18584 ≈ 35% of the TOAs of the full data set by
xcluding 15 out of 40 pulsars. As shown in Fig. 9 , both methods
ick the same 20 pulsars in majority of the cases. In practice, we
ould find the best pulsars by performing the selection process with
he GWB and intrinsic red noise parameters taken from posterior
hains of the previous data release. However, such an analysis is
eyond the scope of this work. 
We now demonstrate that the SNR-maximization selection method

erforms better than a random selection, and it provides evidence
omparable to the full data set. For each of the 1000 noise re-
lizations, we select 25 pulsars in three ways: using the SNR-
aximization methods (SNR B and SNR A ) as done in Fig. 9 , and

andomly. We compute the log-likelihood ratios obtained with the
hree different pulsar subsets and with the full data set and we show
he results in Fig. 10 . These distributions are e v aluated at maximum-
ikelihood estimates of the parameters (amplitudes and slopes of the
WB). Based on the median values of the distributions, one finds that

he optimally selected data sets provide a factor of 1.84–1.90 stronger
vidence with respect to the random selection. Furthermore, we find
hat the log-likelihood ratio for the 25 optimally selected data set
NRAS 518, 1802–1817 (2023) 
s in median ∼0.89 times the one obtained from the full array. The
istributions of log-likelihood ratios e v aluated at the true parameters
o not significantly differ from those shown in Fig. 10 . Therefore,
he search o v er the GWB parameters with the MLE is not affecting
he distribution of log-likelihood ratios. 

These results demonstrate that the SNR-maximization selection
ethod is a good proxy for choosing pulsars and it is robust against

oise realizations. Furthermore, we have demonstrated that the log-
ikelihood ratio obtained with a subset of 25 pulsars is comparable
o the one from the full array. 

Now, we establish the significance achieved by the optimally
elected pulsars. To this purpose, we simulate two sets of realistic
PTA data sets: with an injected CURN process; and with an injected
D correlated process. The two injected common processes are

haracterized by the same amplitudes and slopes. We show in Fig. 11
he log-likelihood ratios obtained using the full data set ( N = 40)
nd the 25 SNR B selected pulsars for the HD and CURN injection
ubsets. The median of the log-likelihood ratios of the best 25 pulsars
or the HD injection (orange dashed-line histogram) corresponds to
 p -value of ≈2 × 10 −3 with respect to the CURN log-likelihood
atio distribution (black dashed-line histogram). The log-likelihood
atio distributions for the full array ( N = 40) are shown in Fig. 11 as
olid-line histograms for the CURN (grey) and HD injection (blue),
espectively. Since the median of the latter distribution (HD) is abo v e
ll the log-likelihood ratios obtained with the CURN injection with
 = 40 pulsars, we estimate the respective p -value as smaller than
ne o v er the number of noise realizations/samples, i.e. � 10 −3 .
e caution the reader that the aforementioned p -values are only

pproximate. In fact, to resolve the tails of the CURN log-likelihood
istribution, we would need to run our analysis for a larger number
f noise realizations. Nevertheless, these results demonstrate that
he selection of pulsars does not significantly affect the statistical
ignificance of the hypothesis test. 

We showed that the SNR-maximization selection method is a
ood proxy for ranking pulsars and it allows us to reach detection
onfidence comparable to the full array. Ho we ver, it is important
o remark that these results are obviously dependent on the specific
ulsars’ sky localizations and noise properties and on the tested
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Figure 12. Distribution of the normalized SNR 

2 co v erage for 1000 different 
sets of CGW parameters. The distributions are obtained with the list of 
pulsars chosen according to the CGW selection method, in this case 22 for 
both the real IPTA data set and the realistic EPTA data set. For comparison, 
we also show the distribution of the normalized SNR 

2 obtained with a random 

selection. 

Table 1. List of the first 22 pulsars selected with the CGW ranking method 
and the 25 pulsars selected with the Chimera method and SNR B -maximization 
in the realistic EPTA data set. Bold font indicate the 17 pulsars that are selected 
by all three methods. 

CGW ranking Chimera method SNR B maximization 

J0030 + 0451 J0030 + 0451 J0030 + 0451 
J0613 −0200 J0034 −0534 J0613 −0200 
J0751 + 1807 J0613 −0200 J0621 + 1002 
J1012 + 5307 J0621 + 1002 J0751 + 1807 
J1022 + 1001 J0751 + 1807 J1022 + 1001 
J1024 −0719 J1012 + 5307 J1024 −0719 
J1600 −3053 J1024 −0719 J1600 −3053 
J1640 + 2224 J1455 −3330 J1640 + 2224 
J1713 + 0747 J1600 −3053 J1713 + 0747 
J1730 −2304 J1640 + 2224 J1730 −2304 
J1744 −1134 J1713 + 0747 J1744 −1134 
J1751 −2857 J1730 −2304 J1751 −2857 
J1804 −2717 J1744 −1134 J1801 −1417 
J1853 + 1303 J1751 −2857 J1804 −2717 
J1857 + 0943 J1801 −1417 J1843 −1113 
J1909 −3744 J1804 −2717 J1853 + 1303 
J1910 + 1256 J1843 −1113 J1857 + 0943 
J1911 + 1347 J1857 + 0943 J1909 −3744 
J1918 −0642 J1909 −3744 J1910 + 1256 
J2010 −1323 J1910 + 1256 J1911 + 1347 
J2124 −3358 J1911 −1114 J1911 −1114 
J2145 −0750 J1918 −0642 J1918 −0642 

J2010 −1323 J2010 −1323 
J2124 −3358 J2124 −3358 
J2322 + 2057 J2322 + 2057 
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ypothesis (here HD versus CURN). We expect this ranking method 
o be well suited also for other PTA data sets where the pulsars have
ery different noise properties. 

We remark that similar results can be obtained also with a lowest
MS selection. Ho we ver, such a method becomes suboptimal once 

he observation cadence is not the same across all pulsars. For a more
etailed investigation see Appendix B2 . 

.3 Optimizing IPTA and EPTA analysis of CGW signals 

e now test the performance of the CGW ranking method using
oise-parameter v alues pre viously extracted from indi vidual pulsar 
oise analyses of the latest IPTA data release (Perera et al. 2019 ) and
he realistic EPTA data set created in the previous Section 3.2 . 

Because the ranking method is based on an exact noise-averaged 
ormula, it is unnecessary to simulate noise realizations to test its
erformance. Ho we ver, we still want to prove that the selected pulsars
eco v er most of the total SNR in the presence of a true (i.e. non-
veraged) signal. We test this by comparing the fraction of total 
NR 

2 obtained using the CGW ranked pulsars to that obtained from
 random pulsar selection. For an array of N pulsars, the fraction of
otal SNR 

2 , given a list of M < N pulsars, is defined as: 

2 
M 

= 

M ∑ 

a= 1 

ρ̄2 
a , with 0 < ρ2 

M 

< 1 , (22) 

here ρ̄2 
a is the normalized SNR 

2 defined in equation ( 21 ). 
After extracting the list of best pulsars, we test the selection 

rocedure as follows: 

(i) We draw the CGW signal parameters θ from a uniform 

istribution with bounds defined as in the integral of equation ( 18 ),
nd with frequency between 1 and 100 nHz. As pointed out in
ection 2.4 , the strain amplitude has no influence on the ranking
nd therefore we fix it to h = 10 −14 . 

(ii) We compute the non-averaged optimal SNR ρOpt = 

√ 

( s | s ) 
or each pulsar for a CGW signal s( t, θ ) and we use this quantity to
alculate the normalized ρ̄2 

a defined in equation ( 21 ). 
(iii) We compute ρ2 

M−CGW 

for the list of best selected pulsars and 
2 
M−rand for a random subset of pulsars of random size M . 
(iv) We repeat the previous steps one thousand times. 

This gives us 1000 values of ρ2 
M−CGW 

and ρ2 
M−rand that we plot 

s histograms in Fig. 12 . For the IPTA data set, the distribution
f fractional ρ2 

M−CGW 

for the selected pulsars is narrowly peaked 
round a mean value 0.97. The random selection ρ2 

M−rand gives an 
lmost uniform distribution with 0.50 mean value. The distribution 
s not uniform because ρ2 

a is not uniform and a few ρ2 
a values are

uch bigger while many others are very small. Similar results are 
btained for the realistic EPTA data set. We find that the number
f pulsars which gives 95 % of the SNR 

2 is 22 for both data sets,
nd these pulsars represents, respectively, 61 % of the total number 
f TOAs ( = 18 584) for the realistic EPTA data set, and 76 % of the
otal number of TOAs ( = 210 148) for the IPTA data set. 

Now we briefly discuss the comparison between the CGW and 
WB selection methods. Focusing on the realistic EPTA data set, 
e find an o v erlap between the identified best pulsars with the CGW
ethod and GWB method as shown in Table 1 . This time we run

he Chimera and SNR B -maximization ranking without fixing the six 
nitial pulsars of the EPTA. We find that 17 pulsars are common to
ll three selection methods (highlighted in bold). 

In summary, when true CGW signals are injected in the data, the
GW ranking method selects the pulsars which provides most of 
he SNR of the array, whereas a random selection is inefficient. This
ethod extracts the few best pulsars to optimize the search for a
GW signal. 

 C O N C L U S I O N S  A N D  F U T U R E  O U T L O O K  

TA data analysis requires both significant human and computational 
esources. As the computational burden of such analyses grows with 
MNRAS 518, 1802–1817 (2023) 
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he number of pulsars, the problem will be further exacerbated by the
isco v ery of many new pulsars by next-generation radio facilities. In
his work, we introduced the concept of pulsar selection optimization
or specific analyses. We emphasize that the ranking procedure is
ot straightforward and depends on the properties of the sought
ignal, and the optimization requirements. Therefore, we considered
ptimal selection criteria for deterministic CGW and stochastic GWB
earches separately. 

For the GWB, we presented three different ranking methods
hat target different aspects of a GWB search: SNR-maximization,
oupling Matrix, and Chimera method. The performance of our
ethods was assessed using frequentist and Bayesian hypothesis

esting on simulated data sets. 
The SNR-maximization method aims to increase the detection

onfidence in fa v our of the HD correlation with respect to a CURN
rocess. Pulsars selected with this method provide an evidence for the
D versus CURN hypothesis larger than a random selection for all

he considered data sets. For instance, using the EPTA-simplified data
et we obtained a log-Bayes factor which is double the one obtained
ith the random selection. Additionally, it was demonstrated that
ith this data set we can reach 88 % of the total sensitivity after

ncluding N = 25 pulsars out of 40. The SNR-maximization method
as further studied in Section 3.1.3 for the case of a realistic EPTA
ata set with intrinsic red noise included. We found that the first ∼20
ulsars are included regardless of the particular noise realization and
espective GWB parameter estimations. It was shown that the method
elects pulsars which provide 1.8–1.9 times larger log-likelihood
atio than a random selection. Furthermore, 25 pulsars out of the 40
elected by the SNR-maximization method accounted for 89 % of
he log-likelihood ratio of the full data set. 

Inherently, the SNR-maximization method tends to pick pulsars
hat maximize the HD ORF, which results in clustering of the sources
t angular separations of 0 ◦ and 180 ◦. This fact can be detrimental for
isentangling the HD from other spatially correlated noise processes.
he Coupling Matrix selection is aimed at resolving this issue by
aximizing the decoupling between different correlations, so that

he HD spatial mode disentangles from the monopolar and dipolar
orrelations. This method has been shown to be efficient at increasing
he evidence in the hypothesis test HD versus CURN + MN + DN in
wo out of the three data sets. The main pitfall of this method is that
t weakly depends on the relative sensitivity of selected sources. As
 consequence, some of the high-SNR sources are left behind, which
s the main reason for the loss of sensitivity to GWB. 

The Chimera method combines the two approaches to optimize
oth the sky coverage and the gain in total SNR. Even though its
ormulation is heuristic, this selection method has been a good proxy
or selecting the pulsars that increase confidence in a GWB detection
omparable to Coupling Matrix and SNR maximization. Specifically,
or the simplified-EPTA data set the method is able to reco v er 90 %
f the sensitivity of the whole array with N = 25 pulsars. In future
ork this formalism is going to be further examined. In particular, it
ould be interesting to explore if the Information matrix formalism

ntroduced recently in Ali-Ha ̈ımoud, Smith & Mingarelli ( 2021 ),
li-Ha ̈ımoud, Smith & Mingarelli ( 2020 ) could be used to develop
 more rigorous Chimera method, or a selection method targeting
nisotropic searches. 

The CGW SNR maximization is constructed to find the best pulsars
o detect a CGW from an SMBHB. In contrast to the GWB case,
GW ranking deals with purely deterministic signals and this allows
s to treat every pulsar independently, within our formalism. The
ethod is based on an averaged SNR formula, and was applied to

ontinuous wave signal searches in the IPTA and realistic EPTA
NRAS 518, 1802–1817 (2023) 
ock data sets. Because of the strong dependence of an individual
ulsar’s SNR response ρ̄a ( f ) on the CGW frequency f , ranking was
erformed separately for different frequency bins. In order to find
he best pulsars on some frequency range, we had to take the union
f the best pulsars that were identified for several frequency bins.
sing the 22 best-ranked pulsars we reco v ered more than 95 % of

he total SNR 

2 for both the IPTA and realistic EPTA data sets.
urthermore, we found that 17 of these pulsars are also selected by

he SNR-maximization and Chimera methods. 
The main tak eaw ay points of our study can be summarized as

ollows: 

(i) Although the addition of new pulsars inevitably increases
he sensitivity of a PTA towards CGW and GWB detection (see
iemens et al. 2013 ), there exists an optimal subset of pulsars
hich is responsible for a larger portion of the sensitivity of a
TA, especially if the pulsar have different noise properties. This
ehaviour is confirmed in Fig. 2 for CGWs, and Figs 6 and 10 for
 GWB. If pulsars have all equal noise properties, it is possible to
nclude pulsars such that the increase in the evidence is steeper than
 random selection. This can be seen in Fig. 4 . 

(ii) In contrast to intuitive expectations, covering the sky uni-
ormly with pulsars is not the most optimal strategy of pulsar
election for the purpose of disentangling different spatial modes,
ven in the case that all pulsars are equally sensitive. Instead, as can
e seen from Fig. 1 , the ultimate distribution of pulsars in cos θab has
hree distinctive peaks at angular separations of 0 ◦, 90 ◦, and 180 ◦. We
xpect that this distribution will converge to a uniform distribution,
f we aim to resolve all multipoles. 

(iii) We stress that although a high SNR provides a steeper
ncrease in the log-Bayes factor when HD is compared to all other
onsidered types of common processes, it does not guarantee an
ptimal decoupling of spatial modes. This is clearly illustrated with
he Galaxy-distributed and mock MeerTime data sets. 

(iv) Good sky coverage alone does not guarantee the ef fecti ve
ecoupling of spatial modes. The optimal pulsar selection criterion
hould balance between proper sky localization and high sensitivity.
he Chimera method is an attempt to create such a criterion
hich accounts for both properties. Ho we ver, as demonstrated in
ppendix B , simpler selection methods might perform better than the
himera method for some data sets. The optimal weighting between

he position and the sensitivity of a pulsar will be the subject of future
nvestigations. 

The purpose of these ranking methods is not to discard the analysis
f some pulsars but only to e v aluate their contribution to the full PTA
nalysis. Even though these results depend on the noise properties of
he PTA data set considered, the selection of a subset of pulsars has
een shown to be a good proxy for having an informative data set and
t the same time reducing the computational burden of the analysis.
herefore, if a collaboration decides to limit pulsar sources due to

esource restrictions, these tools will be essential for understanding
ow to make such a selection. These methods will be crucial to
xtend the array of existing experiments and target specific analyses
hen the next generation of radio facilities disco v er a large number
f new pulsars. 
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M

Figure A1. Log-Bayes factor of the hypothesis test HD versus 
CURN + MN + DN as a function of the number of pulsars selected by various 
modifications of the Coupling Matrix formalism (shown in different colours). 
The corresponding result for the Chimera method (purple colour) are also 
shown for comparison. The upper panel shows the result for the simplified 
EPTA data set averaged over 45 noise realizations, and the log-Bayes factor 
of the full array is indicated with a horizontal red dashed line. The bottom 

panel demonstrates the results for the mock MeerTime data set. 
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Figure B1. Log-Bayes factor as a function of the number of chosen pulsars 
for each of the selection methods (shown in different colours) for the Mock 
MeerTime data set and for different hypothesis tests: HD versus CURN (top), 
and HD versus CURN + MN + DN (Bottom). The shown log-Bayes factors 
represent the average over 20 different noise realizations. 
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PPENDIX  A :  IM PLEMENTATION  O F  

IFFER ENT  W E I G H T S  F O R  C O U P L I N G  

AT RIX  FOR M A LISM  OPTIMIZATION  

n this paragraph, we provide further clarifications on the choice of
he weighting function w α from equation ( 13 ). As mentioned in the

ain text, the weights for the construction of the coupling matrix
hould have a direct correspondence to the relati ve sensiti vity of a
ource in an array. Here, we tested the performance of the Coupling

atrix formalism using as the weighting function SNR A raised to
he power of 2, 4, and 6. The results are demonstrated in Fig. A1 .
he optimal performance is obtained using SNR 

4 
A weights. Coupling

atrix selection with weights of lo wer po wer of SNR A tends to pick
ulsars with a triple-peak distribution on the sky (see Fig. 1 ), while
he indi vidual sensiti vity of a source is relegated to the background.
he degradation of the efficiency of SNR 

6 
A weighting for the mock

eerTime data set is due to a saturation of the coupling matrix by the
igh SNR pulsars, so that it becomes essentially insensitive to adding
urther sources of lower sensitivity, or in some cases even ill-defined.
n order to e v ade the problem of saturation, we have proposed to use
he eigenvalue-ratio δλ ( w 

a = 1) and the individual SNRs of the
ulsars combined in a Chimera-like manner: δλ

∏ N psr 
a= 1 SNR 

a 
A . The

erformance of the latter method is comparable to the one of the
oupling Matrix formalism with SNR 

4 
A weights. The efficacy of

he Coupling Matrix selection and its modifications is going to be
NRAS 518, 1802–1817 (2023) 
nvestigated more thoroughly in future work on a broader range of
ata sets. 

PPENDI X  B:  SIMPLE  A LT E R NAT I V E  

ELECTI ON  M E T H O D S  

hroughout the paper, we compared our selection methods to a
andom pulsar selection, because only a random selection can be
onsidered independent of the specifics of the data sets. Ho we ver,
uch a selection method would not be adopted in a realistic setting.
herefore, we explore how the selection methods compare to more

ealistic, still simple, ranking criteria: selecting pulsars based on their
owest RMS noise and longest time-span. 

For the case of the Galaxy-distributed data set (Section 3.1.1 )
here all the pulsars have the same RMS and time-span, it is already

lear that our ranking methods outperform a lowest RMS selection
r a longest time-span selection, which are equi v alent to the random
election. For the EPTA-simplified data set (Section 3.1.3 ) and the
ock MeerTime data set (Section 3.1.2 ) we perform only the RMS

election because all the pulsars’ time-spans are equal. 
For the Mock MeerTime data set (Fig. B1 ), the RMS selection
ethod provides Bayes factors comparable to those of the Coupling
atrix and worse than the SNR B and Chimera method, for the

ypotheis test HD versus CURN. Ho we ver, for the hypothesis test
D versus CURN + MN + DN, the RMS selection method performs
etter than all the others. 
For the EPTA-simplified data set (Section 3.1.3 ) the results are

hown in Fig. B2 . The RMS selection method provides Bayes factors

art/stac3237_fA1.eps
art/stac3237_fB1.eps
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igure B2. Log-Bayes factor as a function of the number of chosen pulsars
y each of the selection methods (shown in different colours) for the EPTA-
implified data set and for different hypothesis tests: HD versus CURN (top),
nd HD versus CURN + MN + DN (Bottom). The shown log-Bayes factors
epresent the average over 20 different noise realizations. 

omparable to the ones of the Chimera method for 25 pulsars and
lightly smaller than the SNR B method, for the hypothesis test HD 

ersus CURN. For the hypothesis test HD versus CURN + MN + DN,
he RMS selection method yields a Bayes factor comparable to 
he one of the SNR B selection. The reason why for the hypothe-
is test HD versus CURN + MN + DN in the EPTA-simplified and
ock MeerTime data sets the RMS selection performs better than 

ther selection methods is that the lowest RMS pulsars are almost 
niformly distributed on the sky, so that the most sensitive pulsars of
he array are picked in sufficiently optimal parts of the sk y. F or the
rrays in which low-RMS pulsars are clustered in a specific region 
f the sky, this will not be the case. For the hypothesis test HD versus
URN, the RMS method does not differ significantly from the SNR-
aximization, because the SNR formula already takes into account 

he RMS values and the aforementioned data sets are affected only 
y white noise. 
For the realistic EPTA data sets (Section 3.2 ), we performed 

he lowest RMS and longest time-span selections, and we show 

he results in the top panel of Fig. B3 . The lowest RMS selection
oes not seem to differ from the SNR-maximization selection and 
t yields in median approximately the same log-likelihood ratio, 
hich is ∼0.87 times the total one. The longest time-span selection 
erforms slightly worse than the SNR-maximization and lowest RMS 

elections, and it provides a log-likelihood ratio 0.71 times the one 
rom the full data set. 

To highlight the difference between the lowest RMS selection and 
he SNR-maximization selection we created a new data set which 
s identical to the realistic EPTA data set of Section 3.2 , apart from

igure B3. (Top): Distribution of log-likelihood ratios obtained as in Fig. 10
ut with the addition of the distributions of log-likelihood ratios obtained
ith the lowest RMS (RMS) and the longest time-span (Tobs) selections. 
he median values for the shown distributions are: 5.88 ( N = 40), 5.17

SNR B ), 5.14 (SNR A ), 5.13 (RMS), 4.19 (Tobs), 2.73 (Random). (Bottom):
ame analysis as abo v e but for the simulated realistic EPTA data set with
 number of TOAs as in the real EPTA data set and not every 14 d as in
he (simulated) realistic EPTA data set. The median values for the shown
istributions are: 7.71 ( N = 40), 6.80 (SNR B ), 6.69 (SNR A ), 6.11 (RMS),
.53 (Tobs), 3.66 (Random). 

he number of TOAs of each pulsar. The pulsars simulated for the
ealistic EPTA data set have the same time-span as the real EPTA
ata set, but with TOAs observed every 14 d. Now, the new data
et has the same number of TOAs as the real EPTA data set and
heir TOA cadence range between one per day up to one every 18 d.
he results of the same analysis of Section 3.2 are shown in the
ottom panel of Fig. B3 . Contrary to the previous results, the lowest
MS selection method is now suboptimal compared to the SNR- 
aximization method. The contribution to the total noise power due 

o white and red noise has changed as the TOA cadence is different.
his has an impact on the selection methods. In fact, the SNR ranking

eco v ers 88 % of the total log-likelihood, whereas the lowest RMS
election reaches only 79%. 

Even if the SNR-ranking method does not perform as well as the
MS selection in some scenarios, it is more flexible and its relatively
heap computational cost makes it worth using it instead of RMS
r longest time-span selection, when testing the HD versus CURN 

ypothesis. 
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