
1482 IEEE COMMUNICATIONS LETTERS, VOL. 25, NO. 5, MAY 2021

A Hybrid SDN Switch Based on Standard P4 Code

Joaquin Alvarez-Horcajo , Isaías Martínez-Yelmo , Diego Lopez-Pajares , Juan A. Carral , and Marco Savi

Abstract— This letter presents an enhanced hybrid Software-
Defined Networking (SDN) layer-2 switch whose behavior is
specified by the Programming Protocol-independent Packet
Processors (P4) language. Its SDN capabilities are enabled by
using P4Runtime as control plane protocol to specify the for-
warding rules used by its programmable data plane. Additionally,
the device is also able to exploit P4 registers for an autonomous
self-definition of its forwarding capabilities, with the goal of
avoiding an overload of the SDN control plane. Its performance
is better than other P4 proposals based on non-standard externs
and similar to other platform-dependent implementations.

Index Terms— P4, ARP-path protocol, P4 registers, forwarding
tables, autonomous path selection.

I. INTRODUCTION

S INCE the SDN architecture emerged [1], network pro-
grammability is in continuous evolution. The SDN para-

digm started by defining how to program an independent con-
trol plane, used to communicate with the data plane by using
the OpenFlow protocol. However, nowadays the focus has
broaden to also make the data plane programmable. This fact
has led to the definition of the P4 language [2], which enables
a highly-programmable processing and manipulation of data
plane packet headers by following some rules as installed
by the SDN control plane through P4-Runtime, which is the
natural replacement for OpenFlow in P4-enabled devices.

To ensure interoperability, these advancements have been
often coupled with the design of hybrid SDN solutions [3].
A hybrid SDN switch is a device that is capable of both
working as demanded by the SDN control plane and taking
autonomous decisions without requiring any interaction with it
(like legacy devices). This is very useful if the control plane is
only interested in managing premium services (due to priority
level agreements or security reasons), but does not care/have
resources to manage them all. Work in [4] shows that hybrid
SDN switches, capable of autonomously applying self-learning
forwarding rules if control plane rules do not match, alleviate

Manuscript received October 7, 2020; revised November 9, 2020; accepted
December 23, 2020. Date of publication January 6, 2021; date of cur-
rent version May 6, 2021. This work was funded by grants from Comu-
nidad de Madrid: projects TAPIR-CM (S2018/TCS-4496) and IRIS-CM
(CM/JIN/2019-039), from Junta de Comunidades de Castilla la Mancha:
project IRIS-JCCM (SBPLY/19/180501/000324), and from University of
Alcalá: “Programa de Formación del Profesorado Universitario-FPU” and
project CCG2018_EXP-076. The associate editor coordinating the review of
this letter and approving it for publication was T. Han. (Corresponding author:
Isaías Martínez-Yelmo.)

Joaquin Alvarez-Horcajo, Isaías Martínez-Yelmo, and Juan A. Carral are
with the Departamento de Automática, University of Alcalá, 28801 Alcalá de
Henares, Spain (e-mail: isaias.martinezy@uah.es).

Diego Lopez-Pajares was with the Departamento de Automática, University
of Alcalá, 28801 Alcalá de Henares, Spain. He is now with the Depart-
ment of Telematics Systems Engineering, Polytechnic University of Madrid,
28040 Madrid, Spain.

Marco Savi was with the Fondazione Bruno Kessler, 38123 Trento, Italy.
He is now with the Department of Informatics, Systems and Communication,
University of Milano-Bicocca, 20126 Milan, Italy.

Digital Object Identifier 10.1109/LCOMM.2021.3049570

the load at the control plane (since exchanged packets and
processing needs are reduced).

Recently, a hybrid SDN switch solution leveraging the P4
language has been proposed [5]. Unfortunately, such work uses
non-standard extensions of P4 that cripple the portability of
the code and prevent its wide adoption and deployment when
heterogeneous P4 targets have to execute the P4 program.
To overcome this limitation, this letter focuses on the use of
P4 registers, which are standard data structures present in P4
specifications, to define and implement hybrid SDN switches.
Such data structures are used to store state information, with
the aforementioned goal of enabling autonomous forwarding
in the data plane without the intervention of a control plane.
Unlike previous works [5], our proposal uses standard P4-
supported data structures, having the advantage of being fully
portable and executable by any P4 target, and achieving the
same level of offloading of the control plane tasks as other
hybrid SDN devices [4]. Moreover, it makes the deployment
in networks with heterogeneous P4 devices easier.

The letter is organised as follows. First, we examine the
related work in Section II. Secondly, we describe our design
and implementation and its evaluation in Sections III and IV.
Finally, the conclusions of the work are in Section V.

II. RELATED WORK

The SDN [1] paradigm proposes moving the network intel-
ligence from the network devices to a logically centralised
control plane that controls and orchestrates the underlying
network. However, the SDN architecture requires a high
control message overhead [6] and scalability issues could arise
[7], [8]. Possible solutions range from running in parallel mul-
tiple synchronised controller instances as in [9], to implement
controller offloading techniques such as delegating or reverting
back certain control plane tasks to the data plane [3]. The
latter can be accomplished by using hybrid SDN devices with
autonomous forwarding capabilities that can be enabled or
disabled by the control plane [4] and allows new cooperative
mechanisms between the control and data plane if all hybrid
SDN devices possess the same autonomous capabilities. This
is a cumbersome requirement and limitation unless it comes
coupled with data plane programmability features. Indeed,
there is an important effort around the P4 language [2], so that
it can be adopted as a standard language to program data
plane functionalities. Although it was originally designed to
support full-SDN architectures, it can also be used to define
hybrid P4 SDN devices, as done in [5]. However, such work
requires the usage of non-standard P4 externs, which are
platform-dependent data structures and functions that ask for
ad-hoc implementations depending on the P4 target in use
(e.g. Behavioral-Model version 2 (BMv2) devices [10] or
SUME NetFGPAs [11]). The use of non-standard P4 externs
is not uncommon [12] and comes from the impossibility of
modifying the P4 forwarding tables while processing packets

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-8522-9933
https://orcid.org/0000-0002-8959-4321
https://orcid.org/0000-0002-5545-9463
https://orcid.org/0000-0002-8193-0597
https://orcid.org/0000-0001-9648-8669

ALVAREZ-HORCAJO et al.: HYBRID SDN SWITCH BASED ON STANDARD P4 CODE 1483

Fig. 1. Layer-2 forwarding (high-level design).

in the P4 pipeline, replacing the need of relying on the
SDN controller for the injection of new rules. Unfortunately,
being non-standard extensions of the language, a widespread
adoption of extern-based solutions is hindered.

This letter shows how hybrid SDN devices implemented in
fully-portable P4 code can be designed, by using P4 standard
registers as temporary-indexed data structures [13], [14] to
store the forwarding information obtained by the P4 data
plane while processing packets, without the intervention of the
control plane. Hence, the use of P4 standard registers is the
key for enabling P4 code portability, since it makes possible
to overcome the main limitation of non-standard P4 externs.

III. PORTABLE P4 DESIGN OF A HYBRID SDN SWITCH

In this section we present our proposed solution. The P4
registers are used to store the data structures needed for
the autonomous forwarding of data plane packets (i.e. an
autonomous forwarding table); these structures would be later
populated by the distributed forwarding protocol. Without any
loss of generality, we choose to implement ARP-Path Protocol
(ARP-Path) [15], [5], as autonomous forwarding protocol, for
comparison purposes. Moreover, the centralised SDN capabil-
ities remain intact since the control plane can still operate the
devices by using P4-Runtime [16], to configure SDN rules on
regular P4 match-action tables. These rules take precedence
over data-plane ones by architectural design.

A. Architectural Design

As mentioned above, the proposed architectural design gives
higher priority to control plane rules. This is shown in Fig. 1,
which describes how incoming packets are handled. Upon a
packet arrival, first, the device looks for any valid P4-Runtime
rule. If a rule exists, which means that a P4 match-action table
hit occurs, and the egress port is valid, the forwarding strategy
applies the action associated with the rule to the ingress packet.
Only if no valid egress port is available, the strategy looks
at a P4 register array to find an egress port to forward the
packet. In the case that a rule exists and the egress port is valid,
the device forwards the packet to the egress port indicated in
the matched P4 register. If neither the P4 match-action table
nor the P4 register array contain a valid rule to apply, a miss
action is required: unless an optional recovery mechanism
exists, the miss action should drop the packet.

The key element for packet handling is how to define and
manage the data structures to support the matching entries and
their actions in P4 registers. But, before that, it is necessary to
define how to populate them with data-plane derived forward-
ing information by using ARP-Path, so a minimal background
on ARP-Path protocol is provided in the following section.

Fig. 2. P4 register arrays.

B. Background on ARP-Path Protocol

ARP-Path [15] is a layer-2 protocol for Ethernet-bridged
networks. It relies on the Address Resolution Protocol (ARP)
packet exchange to discover and set up low-latency paths.
ARP-Path works in two phases: the exploration phase, which
relies on the ARP Request packet broadcast to discover
low-latency paths to the source node (in fact the paths discov-
ered form a sink tree rooted at the source node and spanning
to every other node in the network), and the confirmation
phase, which relies on the ARP Reply packet to set up the path
between the pair of source and destination nodes (i.e. it con-
firms the tree branch from source to destination node, which
was previously discovered during the exploration phase). The
protocol works as follows: every node receiving an ARP
Request packet associates the corresponding source Media
Access Control (MAC) address with the input port where it
was received and stores this information in a timed Blocking
Table (BT). Other copies (late copies) of the same Request
are simply discarded (based on the information on the BT)
to prevent loops. Eventually, at least one copy of the Request
packet reaches every other node in the network, including the
forwarding node serving the requested end point, which replies
with the corresponding ARP Reply packet. Now, every node
receiving a Reply packet copies the corresponding entry of
the BT to another table, called Learning Table (LT), by also
including in LT a second entry that associates the source MAC
address of the Reply packet with its corresponding arrival
port, thus setting the path to both source and destination
MAC addresses in the considered node. Afterwards, it simply
forwards the Reply packet to the destination MAC address.
Moreover, LT entries are refreshed whenever a unicast frame
is forwarded, to prevent their aging. To simplify the protocol
implementation, both BT and LT tables can be merged into
a single table using shorter timeouts for blocking entries and
longer timeouts for learning entries.

C. Design of ARP-Path Using P4 Registers

This section presents the ARP-Path-based P4 implementa-
tion of the autonomous forwarding capabilities of the pro-
posed layer-2 switch. The switch’s data plane implements the
ARP-Path forwarding logic by using two different arrays of P4
registers, the port register array and the time register array,
to save the state of the protocol. Together, they play the role
of the BT and LT tables mentioned above. The port register
array saves the ingress port from ingress frames by taking
the source MAC address as register index, to later forward
ingress packets according to their destination MAC address.
The time register array saves timestamps instead, indicating
the expiration times of the port register array entries. Both
arrays jointly work as a unique table since they use the same
index (see Fig. 2) for register population.

1484 IEEE COMMUNICATIONS LETTERS, VOL. 25, NO. 5, MAY 2021

Fig. 3. ARP-Path frame processing using P4 registers.

Figure 3 shows the flowchart that summarises the proposed
design. The process starts when a frame arrives at a hybrid
SDN device with no match on an egress port after applying
the existing P4 matching rules. First, the node applies an
identity hash function on the source and destination MAC
addresses to calculate the Hash Source Media Access Control
(HSMAC) and the Hash Destination Media Access Control
(HDMAC) values. Such hash function is based on the modulo
operation, which makes it possible to set the output size of the
hash function equal to the size of the port and time registers,
so that all the register’s cells can be indexed. The HSMAC
and HDMAC values are used as search indexes within the
P4 register arrays (see Fig. 2). Then, the switch applies
the ARP-Path protocol logic based on the type of received
frames.

The left-hand side of the chart shows the processing if a
broadcast or multicast frame is received. The strategy looks
for the corresponding HSMAC on the port register array: if a
valid entry is found and it points to the frame incoming port,
the frame is simply broadcast/multicast and the corresponding
timestamp, in the time register array, is updated. Otherwise,
if the port register array entry points to a different port than
the incoming port, the frame is discarded to prevent loops.
When no valid entry for HSMAC is found on the port register,
the switch associates the HSMAC with the incoming port and
stores this information in both register arrays, then it simply
broadcasts/multicasts the frame.

The right-hand side of the chart shows the processing of
a unicast frame. First, the HSMAC is processed. In the case
that the frame is an ARP Reply and there is no valid entry
for HSMAC in the port register, the switch creates a new
entry associating the HSMAC to the corresponding arrival
port in both registers. If a valid entry already exists, it simply
updates the corresponding time register. Then, the HDMAC
is processed in a similar way as the HSMAC. If a valid
entry exists in the port register, the switch forwards the frame
through the corresponding egress port and updates the timeout.
Otherwise, the frame is discarded.

IV. EVALUATION

Following the same scheme as in [5], we evaluated
ARP-Path-based forwarding proposal based on P4 registers
(ARP-P4-Reg) and shown in Section III-C, in terms of
throughput and Flow Completion Time (FCT), which are the
traditional metrics in data center networks requiring efficient
layer-2 forwarding capabilities. We provide a performance
comparison of ARP-P4-Reg, the implementation proposed in
[5] and based on P4 externs (ARP-P4-Ext), an ad-hoc non-
P4 hybrid SDN device [4] (ARP-AdHoc) and a traditional
SDN device running a Equal-Cost Multi-Path (ECMP) routing
policy. Both P4-based solutions, i.e. ARP-P4-Reg and ARP-
P4-Ext, are evaluated using BMv2 software devices [10] with
P4 support.

A. Experimental Setup

The testbed is composed of 4 Intel(R) Core(TM) i7 servers
running Mininet [17] as emulation platform. To carry out our
evaluation, we adopt the same scenario as in [5]: a Spine-Leaf
topology [18] made of 4 spines and 4 leaves with 20 servers
per leaf switch, for a total of 80 servers. The traffic flows are
generated from a random traffic matrix where the source and
destination of each flow must be on different leaf nodes. Flow
sizes are defined from two cumulative distributions functions
(CDFs), i.e. Data Mining [19] and Web Search [20], both
obtained from real data center traces. Finally, we set the flow
Inter Arrival Time (IAT) to reach an average offered network
load of 10%, 20%, and 40% with respect to the full capacity
of links (10Mbps due to testbed constraints). Each experiment
runs for 1800s (a warmup time of 800s is considered) and is
repeated 10 times to compute 95% confidence intervals.

For ARP-P4-Reg, we set 327680 cells as size of each port
and time register array. Such size, in line with the maximum
possible as per specification of existing carrier-grade program-
mable switches, is big enough to ensure a low number of hash
collisions in the considered scenario, thus causing a negligible
probability of forwarding errors.

B. Results

Figure 4(a) shows the result comparison between the con-
sidered strategies for different types of flows in terms of
throughput, while Fig. 4(b) shows the same comparison in
terms of FCT. The results shown on the left-hand side of each
figure correspond to the Web Search, while the ones on the
right-hand side to the Data Mining distributions. We can see
that the new design, based on P4 registers, clearly outperforms
ARP-P4-Ext. The use of standard mechanisms, more tested
and optimised, are behind the experienced improvements.
Moreover, the new proposal has smaller complexity than ARP-
P4-Ext due to the use of registers as autonomous forwarding
tables; also, the P4 extern handler of BMv2 introduces a higher
delay in the treatment of the packets than the standard P4
handler. Related to the other implementations, the performance
of the new design is similar to ECMP or traditional ARP-Path
switches for elephant (big) and mouse (small) flows. However,
the performance on rabbit (middle-sized) flows decreases.
As already stated in [5], this is due to the way the BMv2
queue scheduler processes incoming frames, which does not

ALVAREZ-HORCAJO et al.: HYBRID SDN SWITCH BASED ON STANDARD P4 CODE 1485

Fig. 4. Performance comparison on Spine-Leaf (4-4-20) topology.

guarantee that incoming frames at different ports of the switch
are processed in order. This is a key issue for a correct exe-
cution of ARP-Path, which discovers paths based on latency
and thus sees its performance reduced.

V. CONCLUSION

To the best of our knowledge, this letter presented the
first use case of P4 registers to store stateful information and
achieve autonomous forwarding in P4 pipelines of hybrid SDN
devices. We used the P4 registers to implement the forwarding
tables needed by ARP-Path, a distributed autonomous for-
warding protocol, and make them coexist with the standard
P4 forwarding tables operating under the SDN control plane
command. By relying on standard P4 elements, we not only
enable the portability of the code to any P4 target, but also
improve performance with respect to previous non-standard
P4 implementations. However, the forwarding information
derived autonomously by the hybrid SDN switches is still
not readable by the centralised control plane, since the cur-
rent P4/P4-Runtime specifications do not permit it. Hence,
coexistence of both considered forwarding mechanisms is
achieved by prioritisation techniques instead of implement-
ing fully-cooperative mechanisms. To make fully-cooperative
mechanisms become a reality, either access to P4 match-action
tables from the data plane and/or control plane access to
P4 registers should be granted in future revisions of the P4
specifications.

REFERENCES

[1] F. Hu, Q. Hao, and K. Bao, “A survey on software-defined network and
OpenFlow: From concept to implementation,” IEEE Commun. Surveys
Tuts., vol. 16, no. 4, pp. 2181–2206, 4th Quart., 2014.

[2] P. Bosshart et al., “P4: Programming protocol-independent packet
processors,” ACM SIGCOMM Comput. Commun. Rev., vol. 44, no. 3,
pp. 87–95, 2014.

[3] K. Zheng, L. Wang, B. Yang, Y. Sun, and S. Uhlig, “LazyCtrl: A scalable
hybrid network control plane design for cloud data centers,” IEEE Trans.
Parallel Distrib. Syst., vol. 28, no. 1, pp. 115–127, Jan. 2017.

[4] J. Alvarez-Horcajo, I. Martinez-Yelmo, E. Rojas, J. A. Carral, and
D. Lopez-Pajares, “New cooperative mechanisms for software defined
networks based on hybrid switches,” Trans. Emerg. Telecommun. Tech-
nol., vol. 28, no. 8, p. e3150, Aug. 2017.

[5] I. Martinez-Yelmo et al., “ARP-P4: Deep analysis of a hybrid SDN
ARP-Path/P4Runtime switch,” Telecommun. Syst., vol. 72, pp. 555–565,
Jun. 2019.

[6] O. Awobuluyi, “Periodic control update overheads in OpenFlow-based
enterprise networks,” in Proc. IEEE 28th Int. Conf. Adv. Inf. Netw. Appl.,
May 2014, pp. 390–396.

[7] S. Bhandarkar et al., “Scalability issues in software defined network
(SDN): A survey,” Adv. Comput. Sci. Inf. Technol. (ACSIT), vol. 2, no. 1,
pp. 81–85, 2015.

[8] A. Hakiri, A. Gokhale, P. Berthou, D. C. Schmidt, and T. Gayraud,
“Software-defined networking: Challenges and research opportunities for
future Internet,” Comput. Netw., vol. 75, pp. 453–471, Dec. 2014.

[9] S. Hassas Yeganeh et al., “Kandoo: A framework for efficient and
scalable offloading of control applications,” in Proc. 1st Workshop Hot
Topics Softw. Defined Netw., 2012, pp. 19–24.

[10] Behavioral Model (BMv2). Accessed: Jan. 7, 2021. [Online]. Available:
https://github.com/p4lang/behavioral-model

[11] N. Zilberman, Y. Audzevich, G. A. Covington, and A. W. Moore,
“NetFPGA SUME: Toward 100 Gbps as research commodity,” IEEE
Micro, vol. 34, no. 5, pp. 32–41, Sep. 2014.

[12] J. S. da Silva, F.-R. Boyer, L.-O. Chiquette, and J. M. P. Langlois,
“Extern objects in P4: An ROHC header compression scheme case
study,” in Proc. 4th IEEE Conf. Netw. Softwarization Workshops (Net-
Soft), Jun. 2018, pp. 517–522.

[13] Y.-K. Lai et al., “Sketch-based entropy estimation for network traffic
analysis using programmable data plane ASICs,” in Proc. ACM/IEEE
Symp. Architectures Netw. Commun. Syst. (ANCS), Sep. 2019, pp. 1–2.

[14] D. Ding, M. Savi, and D. Siracusa, “Estimating logarithmic and expo-
nential functions to track network traffic entropy in P4,” in Proc.
IEEE/IFIP Netw. Operations Manage. Symp. (NOMS), Apr. 2020,
pp. 1–9.

[15] E. Rojas et al., “All-path bridging: Path exploration protocols for data
center and campus networks,” Comput. Netw., vol. 79, pp. 120–132,
Mar. 2015.

[16] J. Neruda, “Configuration of remote P4 device,” in Proc. EXCEL@FIT,
2018, pp. 1–4.

[17] Mininet: An Instant Virtual Network on Your Laptop (or Other PC)–
Mininet. Accessed: Jan. 7, 2021. [Online]. Available: http://mininet.org/

[18] M. Alizadeh et al., “CONGA: Distributed congestion-aware load balanc-
ing for datacenters,” ACM SIGCOMM Comput. Commun. Rev., vol. 44,
no. 4, pp. 503–514, 2014.

[19] A. Greenberg et al., “VL2: A scalable and flexible data center network,”
ACM SIGCOMM Comput. Commun. Rev., vol. 39, no. 4, pp. 51–62,
2009.

[20] M. Alizadeh et al., “Data center TCP (DCTCP),” ACM SIGCOMM
Comput. Commun. Rev., vol. 40, no. 4, pp. 63–74, Aug. 2010.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

