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Abstract 

Heparin has been used successfully as a clinical antithrombotic for almost one century. Its isolation from 

animal sources (mostly porcine intestinal mucosa) involves multistep purification processes starting from the 

slaughterhouse (as mucosa) to the pharmaceutical plant (as the API). This complex supply chain increases 

the risk of contamination and adulteration, mainly with non-porcine ruminant material. The structural 

similarity of heparins from different origins, the natural variability of the heparin within samples from each 

source as well as the structural changes induced by manufacturing processes, require increasingly 

sophisticated methods capable of detecting low levels of contamination. The application of suitable 

multivariate classification approaches on API 1H-NMR spectra serve as rapid and reliable tools for product 

authentication and the detection of contaminants. Soft Independent Modelling of Class Analogies (SIMCA), 

Discriminant Analysis (DA), Partial Least Square Discriminant Analysis (PLS-DA) and local classification 

methods (kNN, BNN and N3) were tested on about one hundred certified heparin samples produced by 14 

different manufacturers revealing that Partial Least Squares Discriminant Analysis (PLS-DA) provided the best 

discrimination of contaminated batches, with a balanced accuracy of 97%.  
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1. Introduction 

Heparin is an anticoagulant drug of animal origin listed on the World Health Organization’s (WHO) list of 

essential medicines (https://www.who.int/publications/i/item/WHO-MHP-HPS-EML-2021.02). Heparin 

exerts its action through interactions with several proteins of the blood clotting cascade, mainly antithrombin 

(AT), thereby increasing their inhibitory effects [1]. Pharmaceutical heparin, a complex mixture of related 

polysaccharides, is obtained primarily from porcine and, less frequently, bovine intestinal mucosa by 

multistep purification processes, which include scraping of the mucosa from the intestine, the extraction of 

glycosaminoglycans (GAGs) from the mucosa (to generate crude heparin) and subsequent purification to 

provide the active pharmaceutical ingredient (API) [2]. Since the supply chain for heparin is complex and 

global, monitoring the entire process (from slaughterhouse to API) is often unfeasible and the risk of 

contamination or adulteration is consequently high. Whereas the purification of crude heparin to sodium 

heparin API is always conducted under GMP conditions, not all manufacturers can provide full traceability 

back to the individual animals. Many companies purchase crude heparin from third parties, who have 

themselves collected mucosa at numerous small slaughterhouses. These multiple sites, and the attendant 

lack of traceability of the material obtained from them, only serve to increase the risk of accidental or 

intentional contamination further.  

Although the implementation of orthogonal analytical methods, introduced in pharmacopoeias as a 

result of heparin adulteration with an unnatural substance in 2007 and 2008, has also reduced the risk of 

adulteration or contamination with known materials, the possibility of more sophisticated adulteration 

cannot be excluded [3, 4]. The adulteration events of 2007-2008 were related to shortages of porcine 

material arising from blue-ear pig disease, endemic in Asia in 2007. Currently, we are witnessing a similar 

situation with African swine fever afflicting Chinese pigs, the origin of more than half of global heparin [5]. 

Despite the loss of about 25% of the pig population, this has not affected manufacturing or the distribution 

of heparin in western countries, at least for the time being, but it will likely result in a shortage of the porcine 

material which is used for the preparation of heparin. In the Guidance Documents of June 2013 [6], FDA 

alerted industries to the potential risk of heparin contamination with non-porcine ruminant material. The 

guidance states that “the control of the animal origin of heparin is important to ensure the safety of drugs 

and devices that contain heparin and to protect public health” and suggests the application of physico-

chemical, immunological, or polymerase chain reaction (PCR)-based methods for the detection of ruminant 

material in crude heparin. Regarding PCR analysis, concerns were raised about the possibility of 

contamination of the porcine crude material with purified ruminant material or, with crude ruminant 
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material that had been subjected to oxidation processes, which could modify the structure of residual 

DNA/RNA fragments and hence evade detection by PCR.  

Recent studies proposed a range of physicochemical methods that can be used to detect 

contaminants in heparin [7-9]. However, it is much more difficult to detect contamination with non-porcine 

ruminant material. Heparin APIs from distinct organ/animal sources differ from porcine derived mucosa 

principally in their degree of sulfation and acetylation and, to some extent, their distinct chain sequences in 

which sulfated and less sulfated domains are located. For instance, porcine mucosal heparin (PMH) contains 

more 6-O sulfated residues than bovine mucosal heparin (BMH), but fewer than ovine mucosal heparin 

(OMH). In addition, the extent of N-acetylation is higher in PMH than in BMH and OMH [10-12]. Moreover, 

the amount of other minor sequences varies among the different heparin sources. For example, significant 

2-O-sulfation of glucuronic acid was found in BMH compared to other sources [10, 13].  

To compound the issue further, each heparin type has its own “inherent variability”, which depends 

on the variation in biosynthesis and on structural changes induced by the manufacturing processes. This 

intrinsic heterogeneity, although still allowing differentiation and identification of each heparin specie, 

strongly affects the possibility of detecting non-porcine ruminant material in porcine heparin with adequate 

accuracy [14]. 

Following the “heparin crisis” of 2007-2008, many efforts have been made to characterize heparin 

[3]. Nuclear magnetic resonance (NMR) spectroscopy emerged as the leading technique in the 

characterization of GAGs, as it does not require prior separation of the constituent components and provides 

a broad range of information ranging from a chemical fingerprint (both 1D and 2D-NMR) to structural 

constraints (quantitative HSQC analysis) [15]]. In addition, the highly reproducible spectra allow analysis of a 

large number of samples, thereby creating spectral libraries encompassing the natural variability of the 

product. The limitation of the manual analysis of these large spectral databases is the ability to differentiate 

samples of interest when comparing complex 1D or 2D spectra. The application of chemometric techniques 

allows reduction of the complexity of these large data sets and enables definition of features which better 

define the differences between samples. Various taught chemometric methods addressing the analysis of 

spectroscopic data have been successfully explored for the detection of contaminants in heparin APIs, 

including partial least squares (PLS), class modelling analysis, discriminant analysis, multivariate regression 

and classification [16-22].  However, in many of these studies the number of samples used to build the library 

was insufficient to capture the natural variability of heparin and no detailed results were reported regarding 

the detection of contaminants, such as specificity and sensitivity. Monakhova et al. [21] proposed models 

based on linear approaches to detect contamination of non-porcine ruminant material, but with a limited 

number of samples used for model validations. The same authors in another study, analyzed more than 900 

heparin batches, but these data were not used for characterization through explorative analysis with PCA nor 

or supervised classification purposes [22]. In the present study, several multivariate classification 

approaches, such as Soft Independent Modelling of Class Analogies (SIMCA), Discriminant Analysis (PCA-DA), 
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Partial Least Square Discriminant Analysis (PLS-DA) and local classification methods (kNN, BNN and N3), have 

been systematically tested to detect the presence of samples contaminated by heparin of other animal origin, 

including ovine heparin and bovine heparin in samples of certified porcine heparin.  Classification models 

were trained and subsequently tested for their predictive capabilities through appropriate validation 

protocols. A significant number of samples produced by different manufacturers was used to ensure a better 

representation of the natural biological variability of heparins and thus test the statistical approaches in a 

more realistic scenario. 

 

 

2. Material and methods 

2.1 Reagents and material 

Deuterium oxide 99.9% and 3-(trimethylsilyl)propionic-2,2,3,3-d4 acid sodium salt (TSP) were purchased from 

CortecNet and Sigma-Aldrich, respectively. The NMR spectra of the Active Pharmaceutical Ingredient samples 

had been recorded to build an NMR spectral library of heparin samples, including different sources, different 

producers and spanned several years of production [from 2011 To 2019]. A total of 76 Porcine Mucosal 

Heparin (PMH) samples from 19 producers, 56 Bovine Mucosal Heparin (BMH) samples from 4 producers and 

17 Ovine Mucosal Heparin (OMH) samples from a single producer were analyzed by 1D-NMR spectroscopy.  

In order to train classification models capable of detecting porcine heparin samples contaminated 

with a low level of contaminant, numerical mixes of 1H NMR spectra were created at 8% BMH and OMH 

content, according to the following equation:  

 

Numerical Mix signals =  PMH signals ∙ 0.92 + BMH (or OMH) signals ∙ 0.08 

 

The dataset was composed of 76 1H NMR spectra of pure PMH samples, 69 1H-NMR spectra 

comprising the numerical mix of PMH and 8% BMH, and 69 1H NMR spectra comprising the numerical mix of 

PMH with 8% OMH. Thirty-eight certified Porcine Heparin samples, 7 Bovine heparin samples extracted from 

mucosa (BMH) and mixes of porcine heparin contaminated with heparin of the other species at different 

contamination levels (63 PMH samples containing 5%, <4%, 8%, 10-15% and >16% OMH and 19 PMH samples 

containing 8%, <4% and >16% BMH) constituted the set of test samples and were therefore used for 

validation purposes. 

2.2 NMR spectroscopy 

Solutions for NMR analysis were prepared dissolving 20 mg of sample in 0.6 ml of phosphate buffer solution 

in deuterium oxide at pH 7.1, the latter was prepared by dissolving 0.36 mmol of sodium 

dihydrogenphosphate hydrate NaH2PO4, 1.14 mmol of disodium hydrogenphosphate dihydrate Na2HPOd and 

0.03 mmol of deuterate EDTA (d16) in 10 ml of water containing 0.002% of 3-(Trimethylsilyl)propionic-2,2,3,3-
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d4 acid sodium salt (TSP). The pH of the solution was adjusted to 7.1 as necessary. NMR spectra were 

measured with a Bruker Advance III 600 spectrometer (Bruker, Karlsruhe, Germany) equipped with a 5 mm 

cryoprobe. Spectra were recorded with a constant presaturation power of 7 Hz at 298 K with standard pulse 

program (zgcppr) and the following acquisition parameters were used: spectral window of 16 ppm, recycle 

delay of 12 s, acquisition time of 2 s, pulse length of 90°. Spectra were processed and integrated with Bruker 

Topspin software version 4.0. After exponential multiplication (line broadening of 0.3 Hz), the spectra were 

Fourier transformed, phased, baseline corrected and calibrated on the TSP signal. The 1H-13C HSQC spectra 

were acquired and processed according to the published method [23]. Briefly, 1H-13C HSQC spectra were 

measured on a Bruker AVANCE III 600 MHz spectrometer equipped with a 5 mm TCI cryoprobe, using the 

Bruker hsqcetgpsisp2.2 pulse sequence. The spectra were recorded at 298 K using the following acquisition 

parameters: number of scans 12, dummy scans 16, relaxation delay 2.5 s, spectral width 8 ppm (F2) and 80 

ppm (F1), transmitter offset 4.7 ppm (F2) and 80 ppm (F1), 1JC−H = 150 Hz and 1024 points were recorded for 

each of 240 increments (NUS of 75 % of 320 increments). The FIDs were processed as follows: spectrum size 

4096 (F2) and 1024 (F1) (zero-filling in F2 and linear prediction in F1), squared cosine window multiplication 

in both dimensions and Fourier-transform. The diagnostic heparin building block signals were integrated 

using Topspin software version 3.5 (Bruker BioSpin, Rheinstetten, Germany) and the heparin composition 

was computed from the integral values as previously described [23]. 

2.3 Spectral preprocessing 

Spectral intensity binary files and spectra information text files were imported into R using custom scripts 

[24]. Data cutting was performed according to the chosen spectral region (GAGs signals region: 1.95–2.25, 

3.0–3.345, 3.37–3.63, 3.69–4.714, and 4.912–5.75 ppm regions, or part of the anomeric region only, 4.912-

5.75 ppm). Spectra were normalized for total area and aligned. The aligned spectra were collected in a bucket 

table matrix and each column was mean centered and scaled according to autoscaling (standard deviation) 

or Pareto scaling (square root of the standard deviation). The numerical mixes of the API 1H NMR spectra 

were created by first adding the spectra of the pure samples to the bucket table and then computing the 

numerical mix. 

 

2.4 Classification modelling and variable selection 

Principal Component Analysis (PCA) and several classification methods were used to analyze and model the 

NMR spectra [25]. PCA is a well-known unsupervised approach for exploratory data analysis, which projects 

the data in a reduced hyperspace. This is defined by orthogonal principal components (PCs), which are linear 

combinations of the original variables (NMR features in this case), with the first principal component having 

the largest variance, the second principal component having the second-largest variance, and so on. PCA also 

represents an effective data reduction method, which is used for the subsequent application of supervised 

classification approaches, such as Discriminant Analysis (DA).  
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Among traditional classifiers, DA is probably the best-known method, separating samples into classes 

by minimizing the within-class variance and maximizing the between-class variance [26]. In this study, DA 

was calculated in the space defined by the first PCs. Another popular discriminant classification approach 

tested in this study is Partial Least Square Discriminant Analysis (PLS-DA), which is a linear classification 

method that combines the properties of PLS regression with the discrimination power of a classification 

technique [27]. In PLS-DA, the relevant sources of data variability are modelled by the Latent Variables (LVs), 

which again are linear combinations of the original variables. PLS-DA provides quantitative predictions which 

can be transformed to class labels by means of thresholds [28]. Samples can be assigned to a class when their 

predictions are higher than a defined limit. When dealing with multiclass tasks, it can happen that PLSDA 

behaves as a soft classifier and thus samples remain unassigned because they have predictions higher than 

thresholds for more than one class.  

Soft Independent Modelling of Class Analogies (SIMCA) is a class modelling method, also known as 

one-class classifier [29]. Thus, given a target class, SIMCA is based on a PCA calculated with just the samples 

belonging to the target class. Then, new samples are predicted in the class according to their distance with 

respect to the class space defined by the PCA model.  

Finally, methods based on local similarity were tested; k-Nearest Neighbours (kNN) uses the concept 

of analogy for classification and thus a sample is predicted according to the classes of the k closest samples 

[30]. Similarly to kNN, BNN (Binned Nearest Neighbours) and N3 (N-Nearest Neighbours) classify samples 

using local information but, with different approaches to identify the local neighbourhood of the sample to 

be classified [31].  

When dealing with supervised classification modelling, validation is a fundamental procedure to 

ensure the absence of over-fitting and provide a reliable estimation of the ability of the model to predict new 

samples correctly. In this study, models were validated using the 127 samples included in the test set 

previously defined, in addition to using cross-validation protocols. These included leave-more-out methods 

based on 5 cancellation groups. The performance of the classification models was assessed with specific 

indices and figures of merit. Particularly, sensitivity, specificity and precision of classes were taken into 

account. These measures define the extent to which each class can be well discriminated in terms of true 

positives, true negatives and class purity, respectively [32]. Moreover, models were characterised by their 

Non-Error Rate (NER), also known as balanced accuracy, which is equal to the average of class sensitivities.  

Finally, Genetic Algorithms (GA) were used to select specific NMR spectral features which could increase the 

class discrimination, that is, to identify which spectral intervals are related predominantly to the recognition 

of contaminated heparin samples. Genetic algorithms mimic the natural selection of a population of so-called 

chromosomes (models), that reproduces and evolves [33], and starts by randomly defining the 

chromosomes; a fitness function is then associated to each chromosome (NER in this case). Then, the 

evolution begins and the best chromosomes ‘breed’ with each other, thereby enhancing the selection of the 
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relevant bits (variables). Different GA strategies exist and, in this study, the frequency of selection of variables 

(NMR features) was used as a criterion for inclusion of features in the final subset of selected variables [33].  

 

2.5 Software  

MATLAB 2017b and 2020b were used to perform the classification models for API samples through several 

toolboxes, such as the classification toolbox and the PCA toolbox for Matlab [34, 35]. R version 4.0 was used 

to import and pre-processing of spectral data. 

 

3. Results and discussion 

3.1 NMR characterization  

The proton spectra of typical PMH, OMH and BMH heparin are shown in Figure 1. While the lower level of 6-

O-sulfation of BMH affects the profile of its proton spectrum, the spectral profiles of PMH and OMH are very 

similar, if the weaker acetyl signal of OMH at 2.04 ppm is excluded.  

The monosaccharide composition of 76 PMH samples from 19 manufacturers, 56 BMH samples from 

4 manufacturers and 17 OMH samples from one manufacturer have been obtained by integration of their 

HSQC spectra, applying the method described by Mauri et al. [23]. The average composition of analyzed 

batches of each origin is shown in Table 1 and that of each analyzed batch in Table S1-S3.  The composition 

of uronic acid and glucosamine residues varies, not only among the three different heparin sources as 

previously described [10-12], but also within samples of the same origin, in relation to the different 

purification methods used (Table 1). Therefore, the sensitivity of the NMR methods in the detection of non-

porcine ruminant material results are strongly affected by the composition of both PMH and contaminants.  

For example, the main difference between PMH and BMH is the amount of 6-O-sulfation, which equates to 

74%-82% and 47%-58% for PMH and BMH, respectively. The sensitivity of the subsequent classification 

modelling will therefore be affected by the level of heterogeneity within the training samples.   

 

3.2 Pre-processing of data 

A preliminary reduction of variables was performed on all API spectra of porcine, ovine and bovine heparin 

building the Bucket Table and removing all variables related to residual solvent signals or representing just 

noise. The spectral region selected for the subsequent analysis and classification modelling comprised the 

combination of the intervals 1.95-2.20 ppm, 3.10-3.34 ppm, 3.72-4.71 ppm and 4.90-5.70 ppm. 

The spectra of all samples were aligned as a function of a reference sample, which was chosen at the 

center of the score plot of the PCA analysis calculated on all samples. Thus, the reference spectrum 
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represents the closest sample to the data average. Bucketing was applied by considering 4-points means. 

Pareto data scaling, scaling by the square root of the standard deviation of a mean-centered dataset, was 

then applied to build the bucket table, which included 4150 variables and was therefore used as the 

numerical matrix for the calculation of classification models. 

The dataset with numerical mixing was thereby composed of 214 samples distributed in 3 classes: 76 

pure porcine heparin samples (PMH), 68 samples contaminated with 8% bovine heparin (BMH-mix) and 69 

samples contaminated with 8% by ovine heparin (OMH-mix). The number of numerically mixed samples 

calculated (69 mixes for PMH contaminated by ovine heparin and 69 mixes for PMH contaminated by bovine 

heparin) was chosen in order to obtain classes that were equally distributed. 

 

3.3 Classification modelling 

PCA was initially calculated on pure heparin and numerical mixtures to explore data structure and evaluate 

the presence of data clustering. The results, however, showed that porcine heparin samples and heparin 

samples contaminated with heparin from other animal sources at 8% could not be clearly discriminated in 

the hyperspace defined by the first principal components. Only the third PC (10% of explained variance) could 

show a marginal discrimination of BMH contaminated samples (Figure 2). This result was, nevertheless, to 

be expected considering the low level of contamination and the similarity of the spectral profiles. Moreover, 

PCA is suitable for unsupervised data exploration, but it is not aimed at class discrimination. Consequently, 

supervised classification approaches were applied and compared according to their cross-validation accuracy 

of detection for samples of porcine heparin contaminated by heparin from another animal sources. In Table 

2 the summary of classification performance in cross-validation is reported. 

SIMCA did not provide reliable performance in cross-validation, providing an NER value of 60%. 

Moreover, many samples (69%) could not be classified when using this class modelling approach because 

they were placed in the class spaces of more than one class. Classifiers based on local similarity (kNN, N3 and 

BNN) did not provide satisfactory results either. Both kNN, BNN and N3, however, could better classify BMH-

mixed samples, providing consistent sensitivity, specificity and precision for this class in excess of 80%. 

However, samples of PMH and OMH-mixed classes could not be accurately predicted and therefore the 

overall classification balanced accuracy of these methods was not suitable for predictive applications, with 

NER values of 55%, 43% and 64% for kNN, BNN and N3, respectively. 

More promising results were obtained with linear discriminant classifiers. Linear Discriminant 

Analysis (LDA) calculated on the first 13 PCs provided good discrimination among the three classes, with an 

NER value of 79%. Again, BMH appeared to be the best discriminated class (sensitivity equal to 94% and 

precision equal to 98%). This result could be expected, since this class is the one which could be best 

characterized in the previous PCA analysis (Figure 2). However, the PMH and OMH-mix classes could also be 

better modelled than SIMCA and local classifiers. In fact, PCA-LDA provided sensitivity, precision and 
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specificity values above 68% for both classes. On the other hand, PLS-DA was calculated using 8 latent 

variables and gave the best classification performance, with an NER value of 92% and very high and balanced 

sensitivities. In particular, the model correctly classified all samples contaminated with bovine heparin (BMH-

mix) and also had high sensitivity for the class of samples contaminated with porcine and ovine heparin, 

which were often incorrectly classified by the other classification approaches. Owing to its good classification 

performance, the PLS-DA model was further explored by examining scores (Figure 3) and classification 

coefficients (Figure 4). The PLS-DA scores of the first and second latent variables (43% of explained variance) 

clearly indicated the successful discrimination of the BMH samples, while PMH and OMH samples could be 

discriminated by higher numbers of latent variables (not shown). Looking at the overall distribution of 

coefficients, many parts of the NMR spectra seem to be significant for class discrimination; however, for 

example, all three classes seem to have high (positive or negative) contributions to the discrimination arising 

from signals associated with high chemical shift (ppm) values (over 5.3). In this case, PLS-DA coefficients 

suggest that bovine contaminated samples (BMH-mix class) are characterized by the less sulfated sequences 

(H1 of GlcNS,6OH); the BMH coefficients associated with 5.3-5.4 ppm being negative. 

 

3.3 External validation of PLS-DA model 

When comparing the cross-validated results obtained from all the classification approaches considered 

(Table 2), PLS-DA was by far the best method for the discrimination of pure porcine heparin samples from 

samples contaminated by bovine or ovine heparin. For this reason, PLS-DA was chosen as the method to 

carry out the subsequent modelling steps. The dataset was refined by excluding three samples which 

appeared as potential outliers that had been characterised by anomalous NMR spectra in the previous 

modelling phase. Thus, a refined dataset comprising 211 samples (75 samples of pure porcine heparin, 68 

samples of porcine heparin contaminated with bovine heparin and 68 samples of porcine heparin 

contaminated with ovine heparin) was used to calibrate again a PLS-DA model with 8 latent variables.  Test 

samples were therefore projected in the model and predicted. Test samples which appeared anomalous 

according to high Hotelling T2 were discarded (Figure 5): heparin samples extracted from BLH and mixtures 

of heparin samples accounting for more than 80% bovine mucosa heparin appeared to be outliers with 

respect to the 211 training samples used to calibrate the PLS-DA model, as expected. In addition, samples 

with a contamination content of more than 20%, therefore higher than that of the training set samples used 

for the creation of the model, resulted as outliers. These samples were excluded from the test set and the 

subsequent classification assessment to avoid extrapolation, because they had significantly different NMR 

features. After this processing, 99 samples were retained in the test set, as described in Table 3. When looking 

at classification results on the test samples, PLS-DA provided satisfactory performances, with NER values of 

83% (Table 4), thus lower than that calculated in cross-validation (Table 2), but still valid. PMH appeared as 

the best discriminated class (sensitivity, 96%), while the sensitivity of the BMH-mix was lower than that 
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obtained in cross-validation. Moreover, classification accuracy could be related to the degree of 

contamination in the test samples. In fact, samples with contamination equal or greater than 5% were all 

correctly classified by the PLS-DA model (Table 4) and only a few samples with contamination equal or lower 

than 5% were erroneously predicted, such as 7 and 2 OMH-mix samples with contamination lower than 4% 

and equal to 5%, respectively, and 2 BMH-mix samples with contamination lower than 4%.  

Twenty percent of test samples could not be classified by PLS-DA, because they were associated with 

predicted values lower or higher than the class threshold of more than one class or, lower than the thresholds 

of all classes. In particular, 12 samples of pure certified heparin and 8 samples with a percentage of 

contamination less than 5% corresponded to the 20 samples not classified (Table 3, Table 4). Observing the 

spectra of these samples (Figure 6), it is evident that some are characterized by lower signal intensity in the 

range 3.9 - 3.8 ppm. This region corresponds to the proton signals 5 and 6 of 6-O-desulfated glucosamine. 

This means that these heparin samples, even if not indicated as outliers are, nevertheless, characterized by 

a slightly lower degree of sulfation, compared to the other samples of the test and training sets. 

 

3.4 Variable selection  

Variable selection based on GAs was successively applied to identify the most relevant spectral windows for 

the identification of contamination. This can provide further information on the relationships between the 

spectral features and the contaminations. Moreover, selection can result in more parsimonious models, that 

is, classifiers based on fewer variables and therefore less exposed to overfitting, simpler and more easily 

interpreted. 

Genetic algorithm selection was carried out on the dataset composed of pure heparin samples from 

the three animal sources considered: 76 samples of porcine heparin, 56 samples of bovine heparin and 17 

samples of ovine heparin, which represent the same starting dataset from which numerical mixes were 

calculated for the creation of classification models.  

The GAs were calculated testing different pre-processing and alignment methods. Moreover, 

variables (NMR features) were grouped in 28 contiguous windows (intervals). Variables included in the same 

window were treated as one input in the selection process. This approach has been demonstrated to improve 

the selection outcome when dealing with highly correlated data, such as spectra, and avoids overfitting in 

the selection [33]. The number of windows was chosen by dividing the spectrum into regions in compliance 

with the number of acquisition points contained in one of the narrowest heparin peaks, specifically the N-

acetyl peak at 2.09 ppm. Thus, the full spectrum was divided into windows, each containing consecutive 

variables.  

The GA approach coupled with PLS-DA selected 10 out of the 28 windows, corresponding to 1782 

variables. Figure 7 shows the peaks corresponding to the selected NMR features, in particular some peaks in 

the anomeric region (5.2, 5.4 and 5.6 ppm) and signals in the range 3.8 - 4.2 ppm. These variables selected 



11 
 

by GA mainly corresponded to those associated with the highest (positive and negative) classification PLS-DA 

coefficients. The most important coefficients were related to the anomeric region, but also at 3.88 ppm. The 

magnitude of coefficients is relevant, due to signals originating from H5 + H6 of 6-unsulfated glucosamine, 

which is more intense for bovine heparin than ovine and porcine samples (Figure 1). 

After the selection based on pure heparin samples, numeric mixes at 8% were created and, following 

the same procedure, applied for the mixes calculated for the previous classification models to improve the 

number of samples. Thus, a dataset consisting of 211 samples (75 PMH, 68 OMH mixes and 68 BMH mixes) 

was obtained. PLSDA was therefore calculated with this set of data and, considering the 1782 selected NMR 

features, used to predict the test samples, which were previously predicted with the model calibrated on the 

full NMR spectra. Classification results achieved on the test samples after variable selection are collected in 

Table 6. The NER, sensitivity and specificity for classes remain approximately the same compared to the 

previous results (Table 3 and Table 4), but the percentage of samples not classified decreased from 20% to 

12%. The test samples not-classified or incorrectly classified were again those characterized by percentages 

of contamination lower than 8% (Table 5). 

 

3.5 Classification of samples with 5% contamination 

To assess the sensitivity of the proposed approach to lower contamination levels, the same workflow was 

applied to a dataset containing numerical mixes with 5% contamination. Starting from the dataset consisting 

of 149 pure heparin samples (76 porcine, 56 bovine and 17 ovine heparin), a new training set with numerical 

mix with 5% contamination was generated and used to train another PLS-DA classification model. This new 

trial was carried out to assess the sensitivity of the proposed approach to contamination levels lower than 

8%, which was the one previously tested. The training set comprised 75 samples of porcine heparin, 68 

samples of porcine heparin contaminated at 5% by bovine heparin and 68 samples of porcine heparin 

contaminated at 5% by ovine heparin. The 1782 NMR features previously selected were used as independent 

variables. The PLS-DA model for the numerical mixes at 5% of contamination performed less well in cross-

validation than that obtained by numerical mixes at 8%, with NER values of 80%, while 27% of samples could 

not be classified. Test samples were again projected in the model and predicted. Outlier test samples were 

again excluded according to their Hotelling T2 values and the final test set consisted of 87 samples. 

Classification results are collected in Table 6. The NER value was 86%, with 24% of samples not classified by 

PLS-DA. This model enables detection of all samples contaminated by heparin from other animal species at 

8% of contamination or higher (Table 6), while only one test OMH-mix sample with 5% contamination was 

classified incorrectly. 
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5. Conclusions 

Heparin is the anticoagulant of choice during cardio-pulmonary bypass surgery and for hemodialysis, and, 

together with its low molecular weight versions, is used globally for the treatment and prevention of 

thrombosis, requiring almost 100 tons of product per year [36]. Although NMR spectroscopy has proved to 

be the technique of choice to identify and characterize this complex polydisperse molecule, alone, it cannot 

fully guarantee the detection of all possible accidental or intentional contamination, including cross-species 

contamination. The application of chemometric techniques to analyze NMR spectral libraries of heparin 

enables definition of the characteristic features of each heparin source [16]. Over the past 10 years, 

numerous articles demonstrating the application of different chemometric classification approaches for the 

detection of a specific contaminant have been published [17-22]. However, the ability of these models to 

identify a specific contaminant in a library of fully characterized samples encompassing the real natural 

variability of the product, has never been fully analysed.  

Porcine samples used in this study were characterized by quantitative HSQC spectroscopy and 

showed that their structural variability related mainly to their different degrees of sulfation and N-

acetylation. This variability is induced largely by the different manufacturing processes used to isolate crude 

heparin from the mucosa and to purify the crude material at the active pharmaceutical ingredient level. 

Moreover, the mixtures used to build the models (numerical mixtures) were prepared from a series of BMH 

and OMH batches, which also indicated internal batch-to-batch variability. Among the classification 

approaches tested, PLS-DA emerged clearly as the most reliable, being able to classify correctly the majority 

of samples when tested in cross-validation, with more balanced accuracies achieved over the three modelled 

classes compared to the other classifiers tested. The PLS-DA coefficients could also provide insights into 

which NMR spectral regions were related most strongly to the class separation and identification. These 

results were further evaluated by means of variable selection approaches, which provided similar NMR 

features and thereby enabled the calibration of simpler, but still reliable, PLS-DA classification models. Finally, 

classification was further validated through an external set of samples with varied levels of contamination 

and, again, proved able to identify the class of heparin origin. Although the sensitivity of the model is not 

particularly high, it is, nevertheless, still sufficient to detect adulteration at levels likely to be economically 

beneficial. These results provide a robust conclusion based on an extensive dataset, confirming earlier 

findings [21] that were based on fewer samples. 

A new technique, time-of-flight secondary ion mass spectrometry, has recently been described as 

the most sensitive for identifying contamination derived from GAGs of different animal species [37]. Although 

ToF-SIMS is a promising approach, it has been used to detect PMH contaminated with oversulfated 

chondroitin sulfate and bovine lung heparin, whose structures differ significantly from that of PMH, thus, 

present a relatively easy challenge. The advantages of the inherent reproducibility of NMR, the minimal 

sample manipulation required, minimal potential operator-to-operator variability and the possibility of 
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automating the entire process for industrial applications, all make NMR a versatile technique highly suited 

for the quality control environment. 
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Table 1 Glucosamine (a) and uronic acid (b) average composition of PMH, OMH and BMH samples. Average, 

median, standard deviation, minimum and maximum values are indicated. GlcNH2: N-desulfated 

Glucosamine; GlcNAc: N-acetylated glucosamine; GlcNS,3S; N-sulfated,3-O-sulfated glucosamine; GlcNS:  N-

sulfated, glucosamine; Glc6S: 6-O-sulfated glucosamine; GlcA: glucuronic acid; GlcA2S: 2-O-sulfated 

glucuronic acid; IdoA: iduronic acid; IdoA2S: 2-O-sulfated iduronic acid; 2,3-epoxide: 2,3-anydride iduronic 

acid; GalA: galacturonic acid;  x: SO3
- or H group. 

 

 a   GLUCOSAMINE MONOSACCHARIDES   

    
GlcNH2,6x GlcNAc,6x  GlcNS,3S,6x  GlcNS,6X % Glc6S 

              

P
M

H
 

Average 1.5 12.9 4.9 81.0 77.5 

 0.45 1.24 0.53 1.55 1.82 

Cv 31.03 9.62 10.94 1.91 2.35 

Median 1.5 13.0 4.9 80.8 77.4 

Max 2.8 16.3 6.7 84.2 82.3 

Min 0.6 10.0 3.6 77.6 73.6 

              

              

O
M

H
 

Average 0.9 5.8 5.6 88.1 84.7 

 0.30 1.03 0.92 1.40 4.64 

Cv 32.20 17.73 16.57 1.59 5.48 

Median 0.9 5.7 5.6 88.3 86.4 

Max 1.3 7.7 7.3 90.0 89.6 

Min 0.5 4.3 3.7 84.8 73.6 

              

              

B
M

H
 

Average 0.9 7.1 1.8 90.7 51.7 

 0.33 1.41 0.41 1.64 2.30 

Cv 36.06 19.87 23.10 1.81 4.46 

Median 0.8 6.9 1.8 91.0 50.9 

Max 1.8 11.8 2.9 93.1 58.0 

Min 0.4 5.1 1.1 85.5 47.1 
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 b   URONIC ACID MONOSACCHARIDES 

    
GlcA  GlcA2S IdoA2OH IdoA2S 2,3-epoxide GalA  

                

P
M

H
 

Average 15.0 nd 8.7 76.1 nd nd 

 1.04 nd 0.87 1.65 nd nd 

Cv 6.96 nd 10.00 2.16 nd nd 

Median 14.9 nd 8.9 76.2 nd nd 

Max 17.5 0.7 10.7 79.6 1.0 3.3 

Min 12.9 0.0 6.9 72.6 0.0 0.0 

                

                

O
M

H
 

Average 8.6 nd 5.8 84.9 5.2 0.6 

 1.69 nd 0.57 3.97 6.53 0.04 

Cv 19.7 nd 10.0 4.7 126.6 6.61 

Median 7.9 nd 5.7 86.2 5.2 0.6 

Max 12.0 0.0 6.8 87.9 9.8 0.7 

Min 6.8 0.0 4.7 71.4 0.5 0.6 

                

                

B
M

H
 

Average 13.5 1.8 4.5 78.8 2.2 3.7 

 1.41 0.34 0.65 4.15 1.53 3.37 

Cv 10.46 19.16 14.54 5.26 69.75 92.29 

Median 13.2 1.8 4.4 79.5 1.4 2.2 

Max 17.9 2.7 6.2 84.2 4.8 13.1 

Min 10.3 1.1 3.4 59.6 1.1 0.8 
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Table 2.  Classification measures achieved in cross-validation by classification approaches. Pr: precision; Sn: 

sensitivity; Sp: Specificity  

Model NER% Cross-validation parameters 

  Class Sn (%) Sp (%) Pr (%) 

SIMCA 60   

PMH 50 89 45 

BMH-mix 100 95 98 

OMH-mix 30 91 38 

kNN 55 

PMH 38 70 41 

BMH-mix 81 96 90 

OMH-mix 48 66 40 

BNN 43 

PMH 18 58 19 

BMH-mix 87 100 100 

OMH-mix 23 55 20 

N3 64 

PMH 25 87 51 

BMH-mix 96 95 90 

OMH-mix 73 63 48 

PCA-LDA 79 

PMH 74 82 69 

BMH-mix 94 99 98 

OMH-mix 68 86 70 

PLS-DA 92 

PMH 86 95 90 

BMH-mix 100 100 100 

OMH-mix 89 93 85 
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Table 3. Distribution of test samples in the classes with their contamination level and prediction achieved 

by PLS-DA. 

 Class label n samples % of contamination Samples correctly predicted Samples not classified 

Certificated pure PMH PMH 38 0 25 12 

PMH contaminated with OMH OMH-mix 

12 < 4% 3 2 

9 5% 4 3 

12 8% 11 1  

17 10-15% 17 0 

2 > 16% 2 0 

PMH contaminated with BMH BMH-mix  

5 < 4% 1 2 

2 8% 2 0 

2 16% 2 0 

 

Table 4. Classification measures achieved on the test set by PLS.DA. Pr: precision; Sn: sensitivity; Sp: 

Specificity. 

 

NER 83% 

Not-classified 20% 

Class label Sn (%) 
Sp 

(%) 
Pr (%) 

PMH 96 79 69 

BMH-mix 71 100 100 

OMH-mix 80 97 97 

 

 

Table 5. Distribution of test samples in the classes with their contamination level and prediction achieved 

by PLS-DA after GA variable selection. 

 

 Class n samples % of contaminant Samples correctly predicted Samples not classified 

Certificated pure PMH PMH 34  28 5 

PMH contaminated with OMH  OMH-mix 

1 < 4% 3 3 

9 5% 5 5 

12 8 11 0 

15 10-15% 15 0 

5 > 16% 5 0 

PMH contaminated with BMH  BMH-mix 

5 < 4% 0 2 

2 8% 2 0 

2 16% 2 0 
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Table 6. Distribution of test samples in the classes with their contamination level and prediction achieved 

by PLS-DA trained on samples with 5% contamination. 

 Class label n samples % contamination Samples correctly predict Samples not classified 

Certificated pure PMH PMH 31 0 15 16 

PMH contaminated with OMH  OMH-mix 

12 < 4% 3 2 

9 5% 8 0 

12 8% 12 0 

14 10-15% 14 0 

2 > 16% 2 0 

PMH contaminated with BMH  BMH-mix  
5 < 4% 1 3 

2 8% 2 0 
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