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In ABJM theory, enriched RG flows between circular 1=6 BPS bosonic and 1=2 BPS fermionic Wilson
loops have been introduced in L. Castiglioni et al. [L. Castiglioni, S. Penati, M. Tenser, and D. Trancanelli,
Interpolating Wilson loops and enriched RG flows, J. High Energy Phys. 08 (2023) 106.]. These flows are
triggered by deformations corresponding to parametric 1=6BPS fermionic loops. In this paper, we revisit the
study of these operators, but instead of circular contours, we consider an interpolating cusped line and a
latitude and study their RG flow in perturbation theory. This allows for the definition of a bremsstrahlung
function away from fixed points. We generalize to this case the known cusp/latitude correspondence that
relates the bremsstrahlung function to a latitude Wilson loop. We find that away from the conformal fixed
points the ordinary identity is broken by the conformal anomaly in a controlled way. From a defect
perspective, the breaking of the correspondence can be traced back to the appearance of an anomalous
dimension for fermionic operators localized on the defect. As a by-product, we provide a brand new result for
the two-loop cusp anomalous dimension of the 1=6 BPS fermionic and the 1=6 BPS bosonic Wilson lines.

DOI: 10.1103/PhysRevD.109.126010

I. INTRODUCTION AND RESULTS

Wilson loop (WL) operators can be seen as dynamical
one-dimensional defects embedded in higher dimensional
quantum field theories [1–11]. In superconformal settings,
besides the conformal generators acting along their contour,
they may also preserve a fraction of supersymmetries of the
bulk theory. This happens if the usual gauge holonomy is
replaced by the holonomy of a generalized connection that
includes also couplings to matter fields. Notable examples
are the BPSWLs inN ¼ 4 SYM theory in four dimensions
(see, for example, [12–16]) and in ABJ(M) theory in three
dimensions (see, for example, [17–22] and [23] for a rather
recent review). The contours on which these BPS WLs are
supported might be an infinite line or a circle or even a
more general curve, as, for example, latitudes of a sphere or
cusps, which are the cases we are considering in this paper.

Near a cusp, the vacuum expectationvalue (VEV) ofWLs
acquires short distance divergences. Being φ the cusp angle,
in four dimensions the non-Abelian exponentiation theorem
[24–26] ensures that the VEV takes the universal form

hWcuspi ∼ exp

�
−ΓcuspðφÞ log

Λ
μ
þ finite

�
; ð1:1Þ

where ΓcuspðφÞ is the so-called cusp anomalous dimension,
and Λ, μ are the infrared and ultraviolet cutoffs, respec-
tively. In three dimensions, an analogue exponentiation
theorem is not known. However, for 1=2 BPS WLs,
exponentiation does seem to occur [27,28].
In the small angle limit, ΓcuspðφÞ is governed by the

bremsstrahlung function Bφ, according to

ΓcuspðφÞ ∼
φ≪1

− φ2Bφ: ð1:2Þ

Its name follows from the fact that in conformal field
theories Bφ is related to the energy radiated by a very
massive particle accelerating in a gauge background, and it
can be associated with the coefficient of the two-point
function of the displacement operator [29].
In addition to the geometrical cusp parametrized by φ, it

is also possible to introduce an internal cusp angle θ,
appearing in the operator definition through the coupling to
matter and describing the change of orientation in the
R-symmetry space. In this case, the cusp anomalous
dimension—now called generalized cusp anomalous
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dimension—will acquire a nontrivial dependence also on θ.
Taking the small φ; θ angles limit, one then defines two
(generically different) bremsstrahlung functions, as

Γcuspðφ; θÞ ∼ θ2Bθ − φ2Bφ: ð1:3Þ
Similarly to the geometrical case, Bθ can be associated with
the two-point function of an R-symmetry displacement
operator [30].
A particular feature ofABJ(M) theory is that there is a rich

spectrum of supersymmetric WLs (for a review, see [23]).
For some of the representatives, results regarding the
corresponding bremsstrahlung functions are already known.
Notable examples are the 1=2 fermionic BPS operator [19]
and the 1=6 BPS bosonic one [17], defined on the maximal
circle on the 3-sphere. In the 1=2 BPS case, Γcusp becomes
supersymmetric at θ ¼ φ, implying that Bθ ¼ Bφð≡B1=2Þ.
The two-loop computation of B1=2 was done in [27], and its
three-loop valuewas found in [28]. For the bosonic 1=6BPS
operator, the two B functions are instead related by Bθ ¼
1
2
Bφð≡B1=6Þ [31,32], as a consequence of superconformal

Ward identities of the bulk theory. The B1=6 function has
been determined up to four loops [31,33].
In both cases, an exact formula has been proposed in [21]

and later proved in [34,35], which relates the bremsstrah-
lung function to the derivative of a latitude WL on the
3-sphere with respect to the latitude angle, in analogy with
what happens forN ¼ 4SYMin four dimensions [29]. Since
the BPS latitude WL is, in principle, amenable to exact
evaluationvia amatrix integral [36,37], this identity opens the
possibility of computing the bremsstrahlung function exactly.
On the other hand, in the 1=2 BPS case, the exact evaluation
of Γcusp, and consequently of B1=2, can be formulated as a
boundary thermodynamic Bethe ansatz that leads to a Y
system of integrable equations [38]. A comparison between
the localization-based evaluation ofB1=2 and the oneobtained
by solving the Y system would allow for an explicit
determination of the ubiquitous hðλÞ function of ABJ(M),
whose explicit expression has been conjectured in [39].
Given the remarkable role played by the bremsstrahlung

function in understanding the relation between supercon-
formal invariance and integrability in ABJ(M) theory, it is
important to generalize our investigation to other classes of
WL representatives.
Realizations of Wilson loop operators interpolating

between 1=2 and 1=6 BPS representatives were introduced

in [23] and can be obtained following the “hyperloop
prescription” [40]. As a result, a new class of parametric
WLs can be defined, which are still supported along the
maximal circle on the 3-sphere but depend on complex
constant parameters ᾱ and α continuously interpolating
between 1=6 BPS bosonic (ᾱα ¼ 0) and 1=2 BPS (ᾱα ¼ 1)
WLs, where all other points in the parameter space
correspond to 1=6 BPS fermionic operators. These oper-
ators undergo a nontrivial renormalization [41,42] that
can be assessed via a suitable generalization of the one-
dimensional auxiliary method [43–48] originally intro-
duced in the context of QCD. Renormalization group flows
connecting these representatives, referred to as enriched
RG flows, are such that 1=6 BPS bosonic as well as 1=2
BPS operators sit at fixed points. From a defect perspective,
1=6 BPS bosonic and 1=2 BPS WLs support superconfor-
mal one-dimensional theories, while 1=6 BPS fermionic
ones give rise to defects that are still supersymmetric but no
longer scale and conformally invariant.
We now proceed with a summary of our results. A

schematic map of the relation among the computations in
this paper can be found in Fig. 1.

A. The interpolating generalized cusp

Here, we put together the original construction of the
generalized cusped Wilson line [27] (see also [49] for the
original construction in N ¼ 4 super Yang-Mills theory)
and the hyperloop tools [40] to construct cusp deformations
of parametric WLs. The result is an interpolating gener-
alized cusp connecting 1=2 and 1=6 cusp representatives,
which exhibits a nontrivial dependence on the ᾱ; α param-
eters in addition to the angular functional dependence. We
investigate this operator at quantum level using the one-
dimensional auxiliary method [41]. In this setup, the
corresponding interpolating cusp anomalous dimension
Γcuspðφ; θ; ᾱ; αÞ can be inferred from the renormalization
function of the composite one-dimensional operator local-
ized at the cusp. The remarkable result is that away from the
two fixed points short distance divergences no longer
exponentiate, and we cannot rely on Eq. (1.1) to determine
Γcuspðφ; θ; ᾱ; αÞ. Alternatively, we apply the standard def-
inition of the anomalous dimension as the derivative of the
renormalization function with respect to the renormaliza-
tion scale. At two loops in the ABJM coupling constant
N=k, where N is the rank of the two gauge groups and k is
the Chern-Simons level,1 we find

Γcuspðφ; θ; ᾱ; αÞ ¼
N
k
ᾱα

�
1 −

cos θ
2

cos φ
2

�
þ N2

k2

�
½ð1 − ᾱ2α2Þð2 cosφ − cos θÞ − ðᾱα − 1Þ2� φ

2 sinφ
þ ᾱαðᾱα − 1Þ

þ 2ᾱ2α2
�
cos θ

2

cos φ
2

− 1

�
log sec

φ

2
þ ᾱαðᾱα − 1Þ

�
cos θ

2

cos φ
2

− 1

�
log

�
cJ
cz

μ2L2

��
þO

�
N3

k3

�
: ð1:4Þ

1We work in the large N limit, with N
k ≪ 1.
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The result is generically scheme dependent, similarly
to what has been observed in four-dimensional theories
[50–52]. Scheme dependence is enclosed in the last term of
the formula above into the constant cJ, which is associated
to the renormalization of a composite operator localized at
the cusp, and the constant cz, which originates from the
renormalization of the one-dimensional auxiliary field.
Moreover, the logarithm also contains the renormalization
scale μ and an IR cutoff L introduced in the procedure. We
discuss this term in detail.
For ᾱα ¼ 1, expression (1.4) appropriately reproduces

the result of [27]. For ᾱ; α ¼ 0, it gives the cusp anomalous
dimension of the cusped 1=6 BPS bosonic operator,

Γ1=6
cusp ¼ N2

k2
φ

sinφ

�
cosφ − cos2

θ

2

�
þO

�
N3

k3

�
; ð1:5Þ

which, to our knowledge, has never been written explicitly.
For generic values of ᾱ; α expression (1.4) provides a brand
new result for the cusp anomalous dimension of 1=6 BPS
fermionic WLs.

B. The interpolating bremsstrahlung functions

Mimicking the definitions (1.3), we can now define φ
and θ interpolating bremsstrahlung functions by expanding
(1.4) in the small angles limit, thus obtaining (up to order
N2=k2)

BθðᾱαÞ ¼ 1

8

N
k
ᾱα −

1

4

N2

k2
ðᾱ2α2 − 1Þ

−
1

16

N
k
βᾱα log

�
cJ
cz

μ2L2

�
;

BφðᾱαÞ ¼ 1

8

N
k
ᾱα −

1

2

N2

k2
ðᾱ2α2 − 1Þ

−
1

16

N
k
βᾱα log

�
cJ
cz

μ2L2e−
4
3

�
: ð1:6Þ

For generic values of the parameters, they are the
bremsstrahlung functions of the 1=6 BPS fermionic WLs.
They correctly interpolate between the two-loop values of
the 1=6 BPS bosonic and 1=2 BPS bremsstrahlung func-
tions. Away from the two fixed points, the corresponding
known identities Bφ ¼ 2Bθ (for ᾱα ¼ 0) and Bφ ¼ Bθ (for
ᾱα ¼ 1) are broken by additive terms proportional to βᾱα, the
parameter β function which drives the RG flow. The
particular parametric dependence of the one- and two-loop
results clarifies the mechanism which makes B1=6 an even
function of the N=k coupling, while B1=2 is odd. Along the
RG trajectories, they do not possess any specific parity.

C. The interpolating cusp/latitude correspondence

An interesting question is whether the interpolating
bremsstrahlung functions (1.6) are related to some

FIG. 1. The main quantity defined in this paper, the interpolating bremsstrahlung function, has different avatars and can be computed
in different ways. Top left: from the interpolating cusp studied in Sec. III, it can be obtained by taking derivatives of Γcusp with respect to
the cusp angle φ. For φ ≠ 0, this operator does not preserve any supersymmetry; however we indicate what would be the
supersymmetries preserved by the fixed points in the zero cusp limit, depending on the value of ᾱα. Top right: the interpolating latitude,
that flows between a 1=12 BPS operator for ᾱα ¼ 0 and a 1=6 BPS one for ᾱα ¼ 1, is studied in Sec. IV and gives the interpolating
bremsstrahlung by taking a derivative with respect to the latitude angle. These computations are related by a cusp/latitude
correspondence studied at the end of Sec. VI. Bottom: in that section, we also report the computation of the interpolating
bremsstrahlung from a defect CFT point of view, i.e., from the integrated two-point function on the Wilson loop of the term linear in θ of
the superconnection Lð1Þ.
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parametric latitude WLs, as it occurs at the two super-
conformal fixed points. In principle, we do not expect that,
since the identities relating cusped and latitude WLs [see
(5.3) below] heavily rely on superconformal invariance,
which is broken by the parameter renormalization.
Nevertheless, it is interesting to understand the breaking
mechanism.
The best candidate entering a parametric deformation of

the cusp/latitude correspondence is the ᾱ; α parametric
latitude constructed in [41] and revisited in Sec. IV. It
interpolates between two fixed points that correspond to the
latitude deformations of the 1=6 BPS bosonic (ᾱ; α ¼ 0)

and 1=2 BPS (ᾱα ¼ 1) operators defined on the maximal
circle. A perturbative evaluation of its VEV reveals that
away from the two fixed points the result is divergent at two
loops. However, renormalization of the parameters appro-
priately removes UV divergences. These divergences van-
ish at the two fixed points, in agreement with previous
results [21]. They also vanish at zero latitude angle,
consistently with the finiteness of the two-loop result found
in the case of the parametric WL defined on the maximal
circle [41]. For a parametric WL defined on a latitude
contour featured by radius R and angle θ0 (cos θ0 ≡ ν), our
finding at two loops and at renormalization scale μ is

hWνi ¼ 1 −
N
k
πᾱαν cot

πν

2
−
N2

k2
π

6
ð3ν2ðᾱ2α2 − 1Þ − 2Þ

þ N
k
βᾱα

�
π2νþ π

2

�
log

�
4πeγEν2

cz
μ2R2

�
þH−1þν

2
− 3Hν−1

2

�
ν cot

πν

2

�
þO

�
N3

k3

�
: ð1:7Þ

Here, βᾱα is the one-loop conformal anomaly associated to
the running parameter ᾱα. The constant cz signals scheme
dependence, which generically appears already at leading
order.
The comparison between the bremsstrahlung functions

inferred from the cusped WL and the derivative of loghWνi
with respect to the latitude parameter ν leads eventually to
(up to two loops),

BθðᾱαÞ ¼ 1

4π2
∂ loghWνi

∂ν

����
ν¼1

þ βᾱα
1

16

N
k
log

�
4πeγE−2

cJ
μ2R2

�
: ð1:8Þ

A similar result occurs also for BφðᾱαÞ, as it differs from
BθðᾱαÞ by βᾱα terms. At the fixed points, we recover the
well known cusp/latitude correspondence recalled in (5.3).
For generic αᾱ, instead, such a correspondence is
broken by contributions proportional to the β function.
Nonconformality also introduces scheme dependence.

D. Defect interpretation

(Super)conformal WLs describe one-dimensional
defects and integrated correlation functions of certain local
operators localized on them are obtained by taking multiple
derivatives of the WLs with respect to a parameter, say a
latitude or a cusp angle.2 For 1=2 BPS [34] and 1=6 BPS
bosonic [32] representatives, such defect correlators can be
used to study the bremsstrahlung function. Here, we extend
this approach to representatives that do not sit at fixed

points, thus deriving Bθ perturbatively from yet a third
point of view. We find remarkable agreement with the
expression (1.6) obtained from the cusp anomalous
dimension.
More generally, we study defect correlation functions of

ABJM operators entering the definition of the defect. We
show that the fermionic operators, named χ below, acquire
an anomalous dimension,

γχ ¼
N
k
ðᾱα − 1Þ þO

�
N2

k2

�
: ð1:9Þ

Furthermore, we reconsider the interpolating cusp/lat-
itude correspondence to better understand in this setup the
mechanism that modifies it away from the fixed points of
the RG flow. We find that the deviation from the usual
identity valid at the superconformal points can be imputed
to the emergence of the anomalous dimension γχ for the
fermions localized on the defect. In fact, perturbative
investigation up to two loops leads to

BθðᾱαÞ ¼
�
1 − γχ log

�
e2

4L2

R2

��
1

4π2
∂

∂ν
loghWνi

���
ν¼1

:

ð1:10Þ

As we discuss later, this result coincides with identity (1.8)
when we choose the particular scheme cJ ¼ 16πeγE .
As a final remark, we stress that our perturbative

computations are performed at framing zero.3 It would
be important to repeat them at framing 1, which is what one
obtains from supersymmetric localization, following, for

2Recently, a formula for the bremsstrahlung function based on
multiple derivatives with respect to masses that can be turned on
in the bulk theory has been proposed in [53].

3This is what is usually done in the ABJM literature, see, for
example, [54–56].
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example, what has been done in [36,57,58] for the 1=6 BPS
bosonic Wilson loop and in [59] for mesonic Wilson loops.
The main problem in our case would be the evaluation of
the fermionic Feynman diagrams at framing 1, which is
technically challenging.
The rest of the paper is organized as follows. We devote

Sec. II to a review of the one-dimensional auxiliary theory
method and Secs. III and IV to the cusp and latitude
operators, respectively. We collect the results in Sec. V,
where we study the associated interpolating bremsstrahlung
functions and the cusp/latitude correspondence. In Sec. VI,
we further explore the latitude WL to study correlation
functions of operators defined on the one-dimensional
defect. Conventions and Feynman rules are collected in
the Appendix. For the sake of simplicity we focus on the
UðNÞ × UðNÞABJM theory. The generalization to the case
of different group ranks is straightforward.

II. REVIEW OF THE ONE-DIMENSIONAL
AUXILIARY THEORY METHOD

In general, BPS Wilson loops in ABJM theory have the
following structure:

W ¼ 1

2N
TrPðe−i

R
LdsÞ; L ¼

�
A f̄

f Â

�
;

�A≡ Aμẋμ − ig2jẋjMJ
ICIC̄J

Â≡ Âμẋμ − ig2jẋjMJ
IC̄JCI

; ð2:1Þ

where f and f̄ are fermionic elements andM is referred to as
scalar coupling matrix. Both may carry an α; ᾱ parametric
dependence. For each representative, their explicit form is
provided later, in the corresponding section. Here, N is the
rank of the two gauge groups of the ABJM quiver, and we
have defined g2 ≡ 2π=k, where k is the Chern-Simons level
(for conventions, on ABJM see the Appendix).
In this section, we review the one-dimensional auxiliary

field method developed in [43–48] to compute Wilson loop
VEV in Yang-Mills theories and generalized in [41] to BPS
WLs in ABJM theory.
The one-dimensional auxiliary theory is defined by the

effective action

Seff ¼ SABJM þ
Z

τ1

τ0

dτTrðΨ̄ð∂τ þ iLÞΨÞ; ð2:2Þ

where L is the superconnection present in the definition of
the Wilson loop under investigation and the τ integral is
taken along the Wilson contour. The one-dimensional
Grassmann-odd superfield Ψ,

Ψ ¼
�
z φ

φ̃ z̃

�
; Ψ̄ ¼

�
z̄ ¯̃φ

φ̄ ¯̃z

�
; ð2:3Þ

has components ðz; z̃Þ and ðφ; φ̃Þ that are spinors and
scalars, respectively, in the fundamental representation of
UðNÞ. The Wilson loop VEV is given by

hWðτ0; τ1Þi ¼ TrhΨ0ðτ1ÞΨ̄0ðτ0Þi: ð2:4Þ

The one-dimensional action can be explicitly written as

Seff ¼ SABJM þ
Z

τ1

τ0

dτ½φ̄Dτφþ ¯̃φD̂τφ̃þ z̄Dτzþ ¯̃zD̂τz̃

þ ið ¯̃zfφþ φ̄ f̄ z̃þ ¯̃φfzþ z̄ f̄ φ̃Þ�; ð2:5Þ

where Dτ ≡ ∂τ þ iA and D̂τ ≡ ∂τ þ iÂ include the gen-
eralized connections defined above. They give rise to the
usual minimal coupling between the one-dimensional fields
and the bulk gauge vectors, plus quartic interactions with
bulk scalar bilinears through the scalar coupling matrixMI

J
appearing in L.
Each one-dimensional field ϕ ¼ fφ; φ̃; z; z̃g has a cor-

responding renormalization function ϕ ¼ Z−1=2
ϕ ϕ0, where

ϕ0 stands for the bare quantity. Being the action (2.5)
invariant under the formal exchanges z ↔ φ and z̃ ↔ φ̃,
and the exchange of untilde and tilde fields, we have
Zz ¼ Zφ ¼ Zz̃ ¼ Zφ̃. In general, bothMJ

I and f; f̄ depend
on the ABJM coupling as well as on α; ᾱ parameters. Since
g2 ≡ 2π=k does not renormalize, for the renormalization of
the fermionic interactions, we define

ᾱ0Z
1=2
z̃ Z1=2

φ ¼ ᾱ0Z
1=2
z Z1=2

φ̃ ¼ Zᾱᾱ;

α0Z
1=2
z̃ Z1=2

φ ¼ α0Z
1=2
z Z1=2

φ̃ ¼ Zαα; ð2:6Þ

while for the scalar vertices, we set

ZφðMI
JÞ0 ¼ ZφCMI

J; Zφ̃ðMI
JÞ0 ¼ Zφ̃CMI

J;

ZzðMI
JÞ0 ¼ ZzCMI

J; Zz̃ðMI
JÞ0 ¼ Zz̃CMI

J; ð2:7Þ

where ðMI
JÞ0 is the scalar coupling matrix expressed in

terms of the bare parameters.
We then use the standard BPHZ renormalization pro-

cedure and write all renormalization functions as Z¼1þδ,
where δ are the corresponding counterterms. We extract the
Feynman rules from the one-dimensional Lagrangian
written as the sum of the renormalized Lagrangian plus
the counterterm part,

L1D ¼ Lren
1D þ Lct

1D: ð2:8Þ

The tree-level propagators of the one-dimensional
fields are
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ð2:9Þ

Following the same prescription adopted in [41], we work
in the large N limit and study the UV behavior of the one-
dimensional theory in the τ2 → τ1 limit by taming short
distance divergences arising from the evaluation of
Feynman integrals by the use of dimensional regularization
in D ¼ 3 − 2ϵ.

A. Renormalization of the one-dimensional
field function

In this section, we report the highlights of the two-loop
computation of the z field renormalization function.
The one-loop result is given by a single diagram that was

already computed in [41]. Here, we generalize it to include
a renormalization scheme parameter cz, such that

ð2:10Þ

In [41,42] we chose implicitly cz ¼ 1, which corresponds
to MS scheme. Alternatively, one could use a MS scheme, a
convenient choice being cz ¼ 4πeγE . However, we prefer to
stick to a more general scheme to better understand how
scheme dependence percolates into the results.

At two loops, we have to consider the following one-particle irreducible diagrams:

ð2:11Þ

plus the one-loop counterterms,

ð2:12Þ

Imposing the counterterms to cancel the divergences (up to scheme dependent finite terms), we find

Zz ≡ 1þ δz ¼ 1 − ᾱα
g2N
4π

ðczÞϵ
ϵ

− ᾱα
g4N2

16π2
ðczÞ2ϵ
ϵ

�ðᾱα − 2Þ
2ϵ

þ ðᾱα − 1Þ
�
: ð2:13Þ

The same result holds for all the other one-dimensional fields and coincides with the renormalization function ZΨ of the Ψ
supermatrix in (2.3).
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B. Renormalization of the parameters

At one loop, bare and renormalized parameters are
related as [41]

α0 ¼
�
1þ g2

N
4π

ðᾱα − 1Þ ðczÞ
ϵ

ϵ

�
α;

ᾱ0 ¼
�
1þ g2

N
4π

ðᾱα − 1Þ ðczÞ
ϵ

ϵ

�
ᾱ; ð2:14Þ

where we have included the scheme factor cz. Reading the
definition of the renormalization function Zα in (2.6) and
substituting the result for Zz in (2.13) up to one loop, we
obtain

Zᾱ ¼ Zα ≡ 1þ δα ¼ 1 − g2
N
4π

ðczÞϵ
ϵ

: ð2:15Þ

From the renormalization of the ᾱα parameter,

ᾱα ¼ Z−2
α Z2

z ᾱ0α0; ð2:16Þ

one can easily obtain the following β function:

βᾱα ¼ ᾱαðᾱα − 1Þ g
2N
π

ðczÞϵ;
βg2 ¼ −2ϵg2; ð2:17Þ

where, for later convenience, we have included also the
trivial βg2 of the ABJM coupling. We stress that these
expressions are valid for any (open or closed) contour,
since renormalization, being performed locally, cannot be
affected by the shape of the path.
The appearance of nonvanishing β functions induces

nontrivial RG flows, which connect two fixed points, the
ᾱα ¼ 0 one corresponding to the cusped version of the 1=6
BPS bosonic line and ᾱα ¼ 1 describing the cusped version
of the 1=2 BPS line.
Solving Eq. (2.17) for the running ᾱα coupling, we

obtain

ᾱαðμÞ ¼ 1

1þ ðμ=ΛÞg2Nπ
; ð2:18Þ

where Λ is a boundary integration scale.

III. THE INTERPOLATING
GENERALIZED CUSP

We now introduce a parametric cusped line operator. Its
construction relies on the generalization of the original
setting [27], where we incorporate a parametric dependence
through the “hyperloop prescription” [23,40].
To this end, we first review the general construction of

parametric 1=6 BPS fermionic operators given in [23,40].

The starting point is the bosonic operator defined along the
line, which is defined as in (2.1) with connection

L0 ¼
�
A 0

0 Â

�
; ð3:1Þ

and scalar coupling matrix M ¼ diagð−1;−1; 1; 1Þ. This
operator is annihilated by two Poincaré supercharges (Qþ

12

andQ−
34) as well as two superconformal ones (Sþ12 and S

−
34).

It is therefore 1=6 BPS.
The fermionic line, preserving the same supercharges, is

obtained by taking their sum Q ¼ Qþ
12 þQ−

34 and defining
the following superconnection:

L¼L0þiQGþG2; with G¼
ffiffiffiffi
2i

p
g

�
0 ᾱC2

αC̄2 0

�
: ð3:2Þ

The resulting operator is parametrized by two complex
(but not complex conjugates) parameters ᾱ and α, and it is
explicitly written as (2.1) with coupling matrices given by

M ¼ diagð−1;−1þ 2ᾱα; 1; 1Þ; f̄ ¼ −g
ffiffiffiffi
2i

p
ᾱψ̄1þ;

f ¼ g
ffiffiffiffi
2i

p
αψþ

1 : ð3:3Þ

Details on the construction can be found in [23,40].
For generic values of ᾱ and α, the fermionic operator

preserves all supercharges preserved by the 1=6 bosonic
loop with connection (3.1) [22]. It then describes a family
of fermionic 1=6 BPS line operators. At the particular point
ᾱα ¼ 1, R symmetry is enhanced from SUð2Þ to SUð3Þ,
and we gain 8 extra preserved supercharges (4 Poincaréþ4
superconformal). Together with the original 2þ 2 super-
charges, they lead to a 1=2 BPS line operator.
We now consider the cusped contour,

xμ ¼
�
0; s cos

φ

2
; jsj sinφ

2

�
; ð3:4Þ

where φ is a cusp angle, as shown on the right side of Fig. 2,
and s is a real parameter. Edge 1 is parametrized by s < 0,
while edge 2 corresponds to s > 0.
In the original setting of [27], the name “generalized

cusp” refers to the Wilson operator obtained from (3.3)
with ᾱα ¼ 1, supported on path (3.4), also characterized by
a relative R-symmetry rotation in the MJ

I matrices in (3.1)
that encodes the couplings to the matter fields on the two
edges.4 The resulting operator depends on the cusp angle φ
and the internal R-rotation angle θ.
If we now generalize this operator to the case of generic

ᾱ; α we obtain a generalized cusp with coupling matrices
(3.3), supported on path (3.4) and featured by two different

4In the dual description, this corresponds to a fundamental
string with a “jump” in CP3 [60].
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superconnections L1 and L2 on edges 1 and 2, respectively,
which depend on ᾱ;α in addition to the φ; θ angles.
Precisely, the bosonic entries (3.1) depend on the following
scalar coupling matrices5:

ðM1ÞIJ ¼

0
BBB@

− cos θ
2

0 − sin θ
2

0

0 −1þ 2ᾱα 0 0

− sin θ
2

0 cos θ
2

0

0 0 0 1

1
CCCA;

ðM2ÞIJ ¼

0
BBB@

− cos θ
2

0 sin θ
2

0

0 −1þ 2ᾱα 0 0

sin θ
2

0 cos θ
2

0

0 0 0 1

1
CCCA; ð3:5Þ

while the fermionic entries are given by6

f̄a¼−g
ffiffi
i

p
ᾱðηaÞIψ̄ I; fa¼g

ffiffi
i

p
αψ Iðη̄aÞI; a¼1;2; ð3:6Þ

where

ðη1ÞδI ¼ ðe−iφ4; eiφ4Þδ
�
cos

θ

4
; 0; sin

θ

4
; 0

�
I
;

ðη̄1ÞIδ ¼
�

ei
φ
4

e−i
φ
4

�
δ

0
BBB@

cos θ
4

0

sin θ
4

0

1
CCCA

I

;

ðη2ÞδI ¼ ðeiφ4; e−iφ4Þδ
�
cos

θ

4
; 0;− sin

θ

4
; 0

�
I
;

ðη̄2ÞIδ ¼
�
e−i

φ
4

ei
φ
4

�
δ

0
BBB@

cos θ
4

0

− sin θ
4

0

1
CCCA

I

: ð3:7Þ

This is a new family of parametric cusped operators,
corresponding to the cusped version of 1=6 BPS fermionic
representatives, that we call “interpolating generalized

cusp”. In fact, varying ᾱ; α, it interpolates between the
cusped version of the 1=6 BPS bosonic (at ᾱ ¼ α ¼ 0) and
the cusped version of the 1=2 BPS line (at ᾱα ¼ 1). When
supported along the cusped path (3.4), supersymmetry is
generally broken, and the operators are no longer BPS.
Nevertheless, for simplicity, we refer to them with the
fraction of supersymmetry preserved by the corresponding
Wilson lines in the zero-cusp limit.

A. Cusped Wilson line via one-dimensional theory

The presence of a cusp on the Wilson line contour gives
rise to short distance singularities, and the corresponding
VEV needs to be appropriately renormalized. As a conse-
quence, the operator acquires an anomalous dimension
Γcusp, usually called cusp anomalous dimension. When
exponentiation theorems [24–26] are at work, Γcusp is given
by the coefficient of the exponentiated divergent term,

hWcuspi ¼ e−Γcuspðθ;φÞ logΛμ þ finite terms; ð3:8Þ

where Λ is an IR cutof,f and μ stands for the renormaliza-
tion scale. In dimensional regularization (d → d − 2ϵ), UV
divergences appear in the exponent as simple poles in ϵ,
with Γcusp being the corresponding residue.
Γcusp can be perturbatively determined from the renor-

malized hWcuspi, defined as

hWcuspi ¼ Z−1
openZ−1

cusphWcuspi0; ð3:9Þ

where hWcuspi0 is the bare (divergent) VEV, Zopen is the
renormalization function that ensures that in the θ;φ → 0
limit the normalized VEV of the straight Wilson line is
recovered (hWlinei ¼ 1), and Zcusp is the cusp renormaliza-
tion function which should cure the remaining UV diver-
gences. According to the standard prescription, the cusp
anomalous dimension is then given by

Γcusp ¼ μ
d
dμ

logZcusp: ð3:10Þ

In order to evaluate Γcusp for the parametric cusped
Wilson line introduced in the previous section, we first
evaluate Zcusp by generalizing the one-dimensional aux-
iliary theory reviewed in Sec. II to include cusped contours.
As we see, in the presence of a cusp, the one-dimensional
action has to be adapted to incorporate the path singularity
at the cusp.

FIG. 2. Deforming the line to a cusp with angle φ.

5In principle, one could introduce different parameters ᾱ1; α1
and ᾱ2; α2 on the two edges. However, we restrict to the same set
of parameters, as we want to recover the parametric 1=6 BPS line
operator in the φ, θ → 0 limit.

6Contraction of spinorial indices is always taken to be up-
down. For example, ηψ̄ ≡ ηδψ̄δ.
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We consider the path in Fig. 2, with the cusp located at
the origin, s ¼ 0. In order to tame IR divergences, the two
half lines are cut to finite length L, the left one being
parametrized by −L < s < 0 and the right one by
0 < s < L. In principle, the IR cutoff has to be removed
at the end of the calculation, sending L to infinity. However,
while this would be a safe operation once the perturbative
series has been resummed [61], at any finite order in
perturbation theory L-dependent terms can be present,
whenever conformal invariance is broken. We carefully
address this question in our perturbative results.
The action for the one-dimensional auxiliary theory reads

Seff ¼ SABJM þ
Z

L

−L
dsTr½Ψ̄ð∂s þ iL1Θð−sÞ þ iL2ΘðsÞÞΨ

þ λΨ̄Ψδðsþ LÞ�; ð3:11Þ
where SABJM is the action of the bulk ABJM theory [see
(A2)], and Ψ is the one-dimensional auxiliary supermatrix
defined in (2.3). For λ ¼ 1, the operator localized in
s ¼ −L makes the action invariant under charge conjuga-
tion plus inversion of the path ordering. It is a manifestation
of the presence of the IR regulator L. The inclusion of the λ
coupling takes into account possible quantum corrections
to this composite operator.
In the presence of the IR cutoff L, definition (3.10) has to

be modified as

Γcusp ¼
�
μ
d
dμ

− L
d
dL

�
logZcusp: ð3:12Þ

As we discuss later, the L derivative is necessary to remove
from Γcusp unwanted boundary effects.
According to the general prescription of [41,48], for a

smooth contour, the VEV of the bare Wilson line operator
equals the two-point function TrhΨ0ðLÞΨ̄0ð−LÞi, where
Ψ0; Ψ̄0 are the bare one-dimensional fields. It follows that if
the regular contour is split in s0 into two segments, we can
write

hΨ0ðLÞðΨ̄0Ψ0Þðs0ÞΨ̄0ð−LÞi
¼ hΨ0ðLÞΨ̄0ðs0ÞihΨðs0ÞΨ̄0ð−LÞi
¼ hΨ0ðLÞΨ̄0ð−LÞi: ð3:13Þ

Renormalizing both sides of (3.13), one can prove that the
composite operator Ψ̄0Ψ0 in s0 does not renormalize.
Instead, if a cusp is present at s0 (s0 ¼ 0 in our case), a

nontrivial renormalization of the composite operator local-
ized at the cusp arises, due to the appearance of short
distance singularities close to the cusp. Therefore, for the
renormalized VEV, we write

hWcuspi¼
1

2
TrhΨðLÞ½Ψ̄Ψ�ð0ÞΨ̄ð−LÞi

¼ 1

2
Z−1
Ψ Z−1

Ψ̄ΨTrhΨ0ðLÞðΨ̄0Ψ0Þð0ÞΨ̄0ð−LÞi; ð3:14Þ

where we have defined the renormalized parameters as

Ψ ¼ Z−1=2
Ψ Ψ0; Ψ̄ ¼ Z−1=2

Ψ Ψ̄0;

½Ψ̄Ψ� ¼ Z−1
Ψ̄ΨΨ̄0Ψ0 ¼ Z−1

Ψ̄ΨZΨΨ̄Ψ: ð3:15Þ
Matching (3.14) with the usual renormalization (3.9) of a
cuspedWilson loop leads to identifying the renormalization
functions of the one-dimensional field and the composite
operator with Zopen and Zcusp, respectively,

7

Zopen ¼ ZΨ; Zcusp ¼ ZΨ̄Ψ: ð3:16Þ
Therefore, in the one-dimensional theory formalism, the
cusp renormalization function corresponds to the renorm-
alization function of the localized composite operator
Ψ̄Ψð0Þ. In what follows, we focus on the perturbative
evaluation of ZΨ̄Ψ.
Along the calculation, we make use of the two-loop result

for ZΨ (≡Zz) given in (2.13). As previously mentioned, this
expression is scheme dependent, with scheme dependence
being encoded in an arbitrary constant cz.

B. Perturbative renormalization

To compute the renormalization function of Ψ̄Ψð0Þ, we
source the composite operator by a supermatrix J0 adding
to the bare action (3.11) the term

Z
L

−L
dsTrðJ0Ψ̄0Ψ0ÞδðsÞ: ð3:17Þ

Using ordinary BPHZ renormalization, we rewrite it asZ
L

−L
dsTrðJ½Ψ̄Ψ�ÞδðsÞ þ counterterms; ð3:18Þ

where we have defined J ¼ Z−1
J J0 and expressed every-

thing in terms of renormalized quantities. From the identity
J0Ψ̄0Ψ0 ¼ J½Ψ̄Ψ�, it follows that ZΨ̄Ψ ¼ Z−1

J . We then
trade the evaluation of ZΨ̄Ψ with the evaluation of ZJ,
which in turn can be read from the renormalization of the
vertex in (3.18).
We can simplify the calculation by focusing only on the

first entry of the J supermatrix (still called J), that is on the
Jz̄z vertex. We write

J0z̄0z0 ¼ ZJZzJz̄z≡ ZvJz̄z ¼ ð1þ δvÞJz̄z: ð3:19Þ
From the previous definitions, it follows that

Zcusp ¼ Zz̄z ¼ Zz=Zv: ð3:20Þ
In perturbation theory we determine Zz and Zv separately.
The renormalization function Zz of the elementary field,

7In the ABJM theory, we have a single Zcusp and consequently a
single cusp anomalous dimension. In the more general UðN1Þ ×
UðN2Þ ABJ case, one should define two cusp anomalous dimen-
sions, which differ simply by the exchange of N1 with N2 [27].
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up to two loops, is given in (2.13). Here, instead we
focus on the evaluation of the cusp renormalization
function Zv. Conventions for Feynman diagrams for the
one-dimensional theory are collected in Sec. II.

1. One-loop diagrams

At one loop, there is only one divergent correction to the
Jz̄z vertex, coming from a diagram with a fermion exchange
between two different edges. The evaluation of the corre-
sponding integral can be found in [27] [see their Eq. (4.12)].
Exploiting that result, while including the α; ᾱ dependence
and a suitable (but totally generic) scheme factor cJ, we find

ð3:21Þ

The one-loop counterterm,

ð3:22Þ

needed to cancel this divergence, leads eventually to the
following one-loop renormalization function,

Zv ¼ 1þ δv ¼ 1 − ᾱα
g2N
4π

cos θ
2

cos φ
2

1

ϵ
ðcJμ2L2Þϵ: ð3:23Þ

2. Two-loop diagrams

We split two-loop divergent diagrams into purely bosonic,
fermionic, and counterterm insertions. A detailed evaluation
of the corresponding integrals can be found in [27]. We
import those results by including the α; ᾱ dependence and a
cJ scheme factor associated to each loop integral, as well.
From the first class of diagrams, we have two contri-

butions that sum up to

ð3:24Þ

From diagrams with fermionic corrections, we obtain

ð3:25Þ
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In addition, there are contributions due to the insertion of
one-loop counterterms δz, δα, Eqs. (2.13) and (2.15), and δv
in (3.23). The first two counterterms, δz and δα, carry a
scheme factor cz associated to the two-loop renormalization

of the one-dimensional field z, as addressed in Sec. II A.
Thus, their contributions will depend on both cJ and cz.
Once we include the counterterm factors, the remaining
integral is exactly the one in (3.21). Therefore, we find

ð3:26Þ

ð3:27Þ

ð3:28Þ

Collecting everything and adding a two-loop counterterm to remove these divergences, we are eventually led to the
following renormalization function at two loops:

Zv ¼ 1 − ᾱα
g2N
4π

cos θ
2

cos φ
2

1

ϵ
ðcJμ2L2Þϵ þ ᾱα

g4N2

32π2ϵ2
ðcJμ2L2Þϵ cos

θ
2

cos φ
2

�
ðcJμ2L2Þϵ

�
ᾱα

cos θ
2

cos φ
2

þ 2ðᾱα − 1Þ
�
− 4ðczÞϵðᾱα − 1Þ

�

−
g4N2

32π2ϵ
ðcJμ2L2Þϵ

�
ðczÞϵ4ᾱαðᾱα − 1Þ cos

θ
2

cos φ
2

�
log ð4πeγEÞ − 2 log

�
1þ sec

φ

2

��

þ ðcJμ2L2Þϵ
�
2ðᾱ2α2 − 1Þφ cotφ − ðᾱα − 1Þ φ

sinφ
ð1 − ᾱαþ ðᾱαþ 1Þ cos θÞ

− 4ᾱα
cos θ

2

cos φ
2

�
ᾱα log

�
eγEπ cos

φ

2
sec4

φ

4

�
− log ð4πeγEÞ þ 2 log

�
1þ sec

φ

2

��
− 4ᾱ2α2 log cos

φ

2

��
: ð3:29Þ

C. Cusp anomalous dimension

We now have all the ingredients to compute the cusp anomalous dimension and the corresponding bremsstrahlung
functions.
First of all, exploiting the previous results, we easily evaluate the cusp renormalization function Zcusp ¼ Zz=Zv at two

loops. Before expanding (2.13) and (3.29) at small ϵ, the full expression for logZcusp reads
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logZcusp ¼ ᾱα
g2N
4πϵ

�
cos θ

2

cos φ
2

ðcJμ2L2Þϵ − ðczÞϵ
�
−

g4N2

16π2ϵ2
ᾱαðᾱα − 1Þ

�
cos θ

2

cos φ
2

ððcJμ2L2Þ2ϵ − 2ðczcJμ2L2ÞϵÞ þ ðczÞ2ϵ
�

−
g4N2

32π2ϵ

�
2ᾱαðᾱα − 1Þ

�
ðczÞ2ϵ − 2

cos θ
2

cos φ
2

log

�
4πeγE

�
1þ sec

φ

2

�
−2
�
ðczcJμ2L2Þϵ

�

þ
�
ðᾱ2α2 − 1Þφ cscφ

�
cos θ þ 1 − ᾱα

1þ ᾱα

�
þ 4ᾱ2α2 log cos

θ

2
− 2φ cotφðᾱ2α2 − 1Þ

þ 4ᾱα
cos θ

2

cos φ
2

�
ᾱα log

�
πeγE cos

φ

2
sec4

φ

4

�
− log

�
4πeγE

ð1þ sec φ
2
Þ2
���

ðcJμ2L2Þ2ϵ
	
: ð3:30Þ

This expression is manifestly scheme dependent, and in a generic renormalization scheme, it does not reproduce the
expected result Zcusp ¼ 1 in the θ;φ → 0 limit (the trivial line). Rather, expanding in ϵ, we are left with the following
scheme dependent, finite expression:

lim
θ;φ→0

logZcusp ¼
�
ᾱα

g2N
4π

− ᾱαðᾱα − 1Þ g
4N2

16π2
log

�
π2e2γE−2cJμ2L2

cz

��
log

�
cJμ2L2

cz

�
: ð3:31Þ

Therefore, in order to restore Zcusp ¼ 1 in the limit, we are
forced to remove (3.31) by a finite renormalization of
logZcusp.

8 At the ᾱα ¼ 1 fixed point, expression (3.30)
reproduces logZcusp for the cusped 1=2 BPS line [27]. In
particular, the double pole appearing at two loops vanishes.
This can be used as a perturbative argument in favor of the
exponentiation of divergences as in (1.1) (in dimensional
regularization log μ=Λ is replaced by 1=ϵ). In fact, we recall
that while in four dimensions such an exponentialization is
predicted by a solid theorem [24–26]; in ABJM theory,
whether it occurs is still a challenging question. Our result
(3.30) shows that the double pole actually vanishes at both
fixed points, ᾱα ¼ 1 and ᾱ ¼ α ¼ 0, supporting the con-
jecture that exponentiation should work not only for the
cusped 1=2 BPS line, but also for 1=6 BPS bosonic one.

For generic ᾱα, instead, exponentiation does not work, as
logZcusp exhibits a double pole which is not the square of
the one-loop one. Since, in general, exponentiation guar-
antees the finiteness of the cusp anomalous dimension, in
this case, a consistent result for Γcusp is questionable.
However, as we are now going to show, our Γcusp is indeed
two-loop finite.
The cusp anomalous dimension is defined following the

nonstandard prescription (3.12). Taking into account that
result (3.30), subtracted by (3.31), depends on the μ scale
explicitly and through its dependence on g and ᾱα, which
are in turn functions of μ via their β functions (2.17),
the cusp anomalous dimension evaluates to (we replace
g2 → 2π

k )

Γcuspðφ;θ; ᾱ;αÞ¼
N
k
ᾱα

�
1−

cosθ
2

cosφ
2

�
þN2

k2

�
½ð1− ᾱ2α2Þð2cosφ−cosθÞ− ðᾱα−1Þ2� φ

2sinφ

þ ᾱαðᾱα−1Þþ2ᾱ2α2
�
cosθ

2

cosφ
2

−1

�
logsec

φ

2
þ ᾱαðᾱα−1Þ

�
cosθ

2

cosφ
2

−1

�
log

�
cJ
cz
μ2L2

��
þO

�
N3

k3

�
: ð3:32Þ

This is a finite, well-defined cusp anomalous dimension for
any defect theory along the RG flow, that is for any cusped
1=6 BPS fermionic Wilson line.

This quantity interpolates between the two cusp anoma-
lous dimensions at the RG fixed points, the known 1=2 BPS
one for ᾱα ¼ 1 [27], and the new result for the 1=6 bosonic
for ᾱα ¼ 0,

Γbos
cusp ¼

N2

k2
φ

sinφ

�
cosφ − cos2

θ

2

�
þO

�
N3

k3

�
; ð3:33Þ

which is consistent with results presented in [21,27,31].

8At the 1=6 BPS fixed point (ᾱα ¼ 0), scheme dependence
disappears completely, whereas a scheme-dependent finite one-
loop contribution survives at the 1=2 BPS fixed point (ᾱα ¼ 1).
This does not contradict the results of [27,28], since in those
papers it was implicitly assumed to work in a scheme where there
were no residual finite contributions in the θ;φ → 0 limit.
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It is important to stress that the cusp anomalous dimension
in (3.3) is renormalization group invariant, i.e., μ d

dμΓcusp¼0.
This is a strong consistency check of our definition (3.12) for
the interpolating cusp anomalous dimension.

IV. THE INTERPOLATING LATITUDE

We now focus on the construction of parametric oper-
ators defined on a latitude circle, which should interpolate
between the 1=6 BPS fermionic latitude and the 1=12 BPS
bosonic one [21]. As already reviewed in the Introduction,
at the two fixed points, latitude operators are known to be
strictly related to cusped ones through the bremsstrahlung
function. We now want to investigate how this cusp/latitude
correspondence gets modified in the presence of marginally
relevant deformations.
An operator interpolating between the 1=6 BPS fer-

mionic latitude and the 1=12 BPS bosonic one has been
previously introduced in [41]. Here, we resume its con-
struction including a few more details.
We start by considering operators supported on the

latitude circle,

xμðθ0; τÞ ¼ ðsin θ0; cos θ0 cos τ; cos θ0 sin τÞ; ð4:1Þ
where θ0 ∈ ½− π

2
; π
2
� is the (fixed) latitude angle, and τ

parametrizes the contour. The setup is illustrated in Fig. 3.
The latitude WL may carry also a dependence on an

internal angle freely chosen in ½0; π
2
�, which rotates matter

R-symmetry indices. In what follows, we are not going to
include it in the discussion.
As a starting point for the deformation we consider the

bosonic 1=12 BPS operator introduced in [21], which is
invariant under the action of the following two supercharges:

Q1¼
ffiffiffiffiffiffiffiffiffiffi
1þν

p ðQþ
12−ie−iθ0Sþ12Þ−i

ffiffiffiffiffiffiffiffiffi
1−ν

p
ðQ−

23þie−iθ0S−23Þ;
Q2¼

ffiffiffiffiffiffiffiffiffiffi
1þν

p ðQ34þ−ieiθ0S34þÞ−i
ffiffiffiffiffiffiffiffiffi
1−ν

p
ðQ14−þieiθ0S14−Þ;

ð4:2Þ
where we have defined ν≡ cos θ0.

There are, in principle, two operators preserving Q1 and
Q2, which are separately charged under each node of the
ABJ(M) quiver. We combine them in terms of a composite
superconnection,

L0¼
�
Aþ c 0

0 Â

�
where

�A≡Aμẋμ− ig2jẋjMI
JCIC̄J

Â≡Aμẋμ− ig2jẋjMI
JC̄

JCI

;

ð4:3Þ

and

MI
J ¼

0
BBB@

−ν 0 e−iτ
ffiffiffiffiffiffiffiffiffiffiffiffi
1− ν2

p
0

0 −1 0 0

eiτ
ffiffiffiffiffiffiffiffiffiffiffiffi
1− ν2

p
0 ν 0

0 0 0 1

1
CCCA: ð4:4Þ

The factor c in (4.3) stands for a constant shift that is
fixed by supersymmetry, as we detail momentarily.
It is convenient to introduce the rotated scalar basis

ðC̃1; C2; C̃3; C4Þ,

C̃1 ≡
ffiffiffiffiffiffiffiffiffiffiffi
1þ ν

p
C1 −

ffiffiffiffiffiffiffiffiffiffiffi
1 − ν

p
e−iτC3;

C̃3 ≡
ffiffiffiffiffiffiffiffiffiffiffi
1þ ν

p
C3 þ

ffiffiffiffiffiffiffiffiffiffiffi
1 − ν

p
eiτC1; ð4:5Þ

which diagonalizes the scalar coupling matrix (4.4)
to M ¼ diagð−1;−1; 1; 1Þ.
As done for the line, starting from the bosonic latitude,

we can construct a fermionic latitude preserving the same
supercharges, by applying the “hyperloop prescription”
[23,40]. The fermionic superconnection is still defined as

L ¼ L0 þ iQGþ G2; ð4:6Þ

where now Q is the sum of the two supercharges in (4.2),
and G is an off-diagonal matrix comprised of scalar fields.
It is determined by the condition that under the action ofQ2

it transforms as a covariant derivative, where the covariant
derivative includes the bosonic connections A and Â
augmented by constant shifts [we take them to be always
associated to the first node, as in (4.3)]. For details on the
prescription, we refer to [40].
We find that the action of Q2 on the scalar fields splits

them into two families, according to the shift they are
associated with. The relation between fields and shifts is
presented in Table I. We see that while the nonrotated set
(indices 2 and 4) is compatible with a ν-dependent shift, the
rotated set (indices 1 and 3) goes with a ν-independent
shift.
Although, in principle, the two elements of a given

family (rotated or nonrotated) correspond to shifts with
different signs, we can always perform a gauge trans-
formation to bring them to be associated with the same

FIG. 3. In red, the latitude curve supporting the WL under
investigation. The great circle corresponds to θ0 ¼ 0.

INTERPOLATING BREMSSTRAHLUNG FUNCTION IN ABJM … PHYS. REV. D 109, 126010 (2024)

126010-13



shift. They can then be simultaneously included in G,
however with a nontrivial τ-dependent relative phase.
For example, for the rotated pair, this construction leads

to the following form for G:

G¼
ffiffiffiffi
2i

p
g

�
0 α1

¯̃C1þeiτβ̄3
¯̃C3

ᾱ1C̃1þe−iτβ3C̃3 0

�
; ð4:7Þ

where ᾱ1;α1 and β3; β̄3 are complex (not complex con-
jugates) parameters. Therefore, they can be included
simultaneously, thus parametrizing a single operator.
For the nonrotated pair, in principle, G should be

G¼
ffiffiffiffi
2i

p
g

�
0 ᾱ2C2þie−iντβ4C4

α2C̄2þieiντβ̄4C̄4 0

�
; ð4:8Þ

where ᾱ2; α2 and β4; β̄4 are again complex (but not complex
conjugates) parameters. Nevertheless, an obstruction arises
here, which prevents us from including both C2 and C4 in
the same G. In fact, when Q acts on the superconnection L
in (4.6) it gives rise to the supercovariant derivative [19,62]
of G,

QL ¼ DτG ¼ ∂τGþ ifL; G�: ð4:9Þ

This is nothing but a supergauge transformation that upon
integration should leave the operator invariant. However,
due to the ν-dependent phases, the supergauge transforma-
tion does not have definite boundary conditions. We are
then forced to consider two separate branches of operators,
one parametrized by ᾱ2; α2 and one by β4; β̄4.
In summary, for a ν-independent shift G, we can include

both ᾱ1; α1 and β3; β̄3, whereas the ν-dependent G includes
either ᾱ2; α2 or β4; β̄4.

We could bypass such a subtlety by taking multiple
copies of the nodes of the underlying theory and associat-
ing different shifts to different copies of the same node.
This means taking a cover of the theory where some copies
of the nodes will contain ν-dependent shifts, whereas others
will contain ν-independent ones. We are not going to
pursue this direction here. Rather, we consider the simplest
setting where we do not take multiple copies and restrict to
the study of 2-node operators.
Precisely, we focus on the ν-dependent case, which is the

one distinguishing the latitude. We have two possible loops
built out of

G ¼
ffiffiffiffi
2i

p
g

�
0 ᾱ2C2

α2C̄2 0

�
or

G ¼
ffiffiffiffi
2i

p
g

�
0 β4C4

β̄4C̄4 0

�
: ð4:10Þ

If we want to avoid the appearance of inconvenient phases
in G, for each option, there is a precise choice of the node
that should accommodate the constant shift. These are
represented in Fig. 4, where the squigglyness indicates the
node with constant shift ν

2
. Inverting the position of the

squigglyness in each figure would correspond to adding
phases to α2; ᾱ2, or β4; β̄4 [see for instance Eq. (4.8)].
For concreteness, we focus on the operator in Fig. 4(a),

that is the supertraced holonomy of a superconnection that
is supplemented by a constant shift placed in the first node
and has periodic off-diagonal elements.
It is always possible to apply a gauge transformation to

remove the constant shift in the superconnection at the price
of adding a twist matrix T and changing the periodicity of
the off-diagonal elements. Details can be found in [41].
Since it turns out that the use of shifted connections is not
very convenient for performing perturbative analysis, here
we use the formulation with the T matrix, which in this
case reads

T ≡
�
1Ne−

iπν
2 0

0 1Ne
iπν
2

�
: ð4:11Þ

In this setup, the operator can be explicitely written as

Wν¼
1

ðsTrT ÞsTrPðe
−i
H
LdτT Þ; L¼

�
A f̄

f Â

�
; ð4:12Þ

FIG. 4. Branches of 1=12 BPS latitude loops. Points where supersymmetry is enhanced correspond to α2ᾱ
2 ¼ −β̄4β4 ¼ 1, where an

SUð2Þ subgroup of R symmetry is restored, and the operators become 1=6 BPS.

TABLE I. Pairs of fields inG and the corresponding shift c to be
added to the first node.

Fields in G Associated shift

C̃1;
¯̃C1 þ 1

2

C2; C̄2 þ ν
2

C̃3;
¯̃C3 − 1

2

C4; C̄4 − ν
2
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with A and Â defined as in (4.3), with scalar coupling
matrix in the ðC1; C2; C3; C4Þ basis given by (from now on,
we rename α2 ≡ α, ᾱ2 ≡ ᾱ)

MJ
I ¼

0
BBB@

−ν 0 e−iτ
ffiffiffiffiffiffiffiffiffiffiffiffi
1− ν2

p
0

0 −1þ 2ᾱα 0 0

eiτ
ffiffiffiffiffiffiffiffiffiffiffiffi
1− ν2

p
0 ν 0

0 0 0 1

1
CCCA;

ð4:13Þ

and off-diagonal elements,

f̄ ¼ −ᾱeiντ
2 η

� ffiffiffiffiffiffiffiffiffiffiffi
1þ ν

2

r
ψ̄1 −

ffiffiffiffiffiffiffiffiffiffiffi
1 − ν

2

r
eiτψ̄3

�
;

f ¼ −αe−iντ
2 ξ

� ffiffiffiffiffiffiffiffiffiffiffi
1þ ν

2

r
ψ1 −

ffiffiffiffiffiffiffiffiffiffiffi
1 − ν

2

r
e−iτψ3

�
; ð4:14Þ

where the commuting spinors η and ξ are

ηδ ¼ g
ffiffi
i

p
ð1;−ie−iτÞδ; ηδ ¼ g

ffiffi
i

p �
ie−iτ

1

�
δ

;

ξδ ¼ g
ffiffi
i

p
ð−ieiτ; 1Þδ; ξδ ¼ g

ffiffi
i

p � −1
−ieiτ

�
δ

: ð4:15Þ

This is a parametric latitude describing a 1=12 BPS
fermionic Wilson loop. Upon varying ᾱα, it interpolates
between the 1=12 bosonic latitude in (4.3) and (4.4)
corresponding to ᾱα ¼ 0, and the 1=6 BPS fermionic
latitude [21] corresponding to ᾱα ¼ 1. Generalizing to
the ν ≠ 1 case, the analysis done in [41] for parametric
WLs defined on the maximal circle, the RG flows con-
necting the two fixed points are enriched flows made by a
sequence of BPS but nonconformal points. The ᾱα terms in
(4.13) and (4.14) describe a marginally relevant deforma-
tion of the 1=12 BPS latitude WL.

A. Perturbative renormalization

Following [41,42], we study quantum properties of
the parametric latitude defined above, using the one-
dimensional auxiliary theory approach reviewed in Sec. II.
The perturbative evaluation of the latitude VEV mostly

follows the one for the 1=6 BPS fermionic latitude done in
[21]. The only modifications are the appearance of ᾱα
prefactors in front of some of the integrals and the need to
keep track of the OðϵÞ term at one loop, as we are going to
explain. Thus, we rely on previous calculations and some
refinements addressed in the following.
At one loop, there are two contributions coming from the

exchange of a gauge field and a fermion field, see Fig. 5. As
is well known [54], the one in Fig. 5(a) is framing
dependent, and at framing zero it vanishes. On the other

hand, the second one is always nonzero. Its finite part was
computed in [21] and reads

hWνið1Þ0 ¼ ᾱ0α0
g2N
2

ν cot
πν

2
þOðϵÞ: ð4:16Þ

However, for the scope of the present calculation, we
need to keep track also of the OðϵÞ term. In fact, this may
give finite contributions at two loops once the parameters
are renormalized. Since the evaluation of theOðϵÞ term has
not been done before, here we provide a few details of the
calculation.
First, starting from the integral corresponding to

Fig. 5(b),

−
Z

2π

0

dτ1

Z
τ1

0

dτ2ðe−iπν
2 hf̄ðτ1Þfðτ2Þi − e

iπν
2 hfðτ1Þf̄ðτ2ÞiÞ;

ð4:17Þ

we write

hf̄ðτ1Þfðτ2Þi ¼ g2ðμR cos θ0Þ2ϵN2ᾱ0α0
Γð1

2
− ϵÞ

41−ϵπ
3
2
−ϵ

×

�
d
dτ1

gϵðτ12Þ − iϵνgϵðτ12Þ
�
; ð4:18Þ

where we have defined

gϵðτÞ ¼
e
iντ
2

ðsin2 τ
2
Þ12−ϵ : ð4:19Þ

It follows that the OðϵÞ contributions can arise from the
evaluation of the following two integrals:

I1 ≡
Z

2π

0

dτ1

Z
τ1

0

dτ2
d
dτ1

gϵðτ12Þ;

I2 ≡
Z

2π

0

dτ1

Z
τ1

0

dτ2gϵðτ12Þ: ð4:20Þ

We can rewrite the first one as

I1 ¼ −
Z

2π

0

dτ1

Z
τ1

0

dτ2
d
dτ2

gϵðτ12Þ

¼
Z

2π

0

dτ1ðgϵðτ1Þ − gϵð0ÞÞ; ð4:21Þ

FIG. 5. One-loop diagrams: single (a) gauge and (b) fermion
exchanges.
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and follow the standard way of regularizing the result by
discarding the gϵð0Þ term. Now, the two integrals can be
easily computed by writing the denominator of gϵ in (4.19)
in terms of exponential functions (see [21] for details).
Since hfðτ1Þf̄ðτ2Þi is simply obtained from the previous

result with the substitution ν → −ν, summing up the two
contributions, normalizing as in (4.12) and combining with
the finite part (4.16) we obtain9

hWνið1Þ0 ¼ ᾱ0α0
g2N
2

ðRνÞ2ϵν cot πν
2

× ½1þ ϵðlogð4πeγEÞ −H−1−ν
2
−H−1þν

2
Þ�; ð4:22Þ

where Hx are the harmonic numbers, and we have restored
the sphere radius R for dimensional reasons.
Differently from the case of the maximal circle [41,42],

now theone-loopVEVis finite and no longer vanishing in the
ϵ → 0 limit. This implies that, once we replace the bare
parameters with the renormalized ones, it acquires divergent
contributions, as well as finite (scheme-dependent) terms
present in the renormalization functions. Precisely, expres-
sion (4.22) given in terms of the renormalized ᾱα reads

hWνið1Þ ¼ ᾱα
g2N
2

ν cot
πν

2

þ ᾱαðᾱα− 1Þ
4π

g4N2ðμRνÞ2ϵν cotπν
2

×

�
1

ϵ
þ logð4πeγEczÞ−H−1−ν

2
−H−1þν

2

�
: ð4:23Þ

At two loops, it is convenient to distinguish between
purely bosonic and purely fermionic diagrams, as the α; ᾱ
parameters end up contributing only to the fermionic ones.
In any case, one can easily check that the presence of the
parameters does not affect the structure of the Feynman
integrals. Therefore, the results found in [21] still hold, and
we simply need to adapt the coefficients accordingly.
In particular, in the planar limit the bosonic diagrams

evaluate to

ð4:24Þ

ð4:25Þ

while the fermionic ones give

ð4:26Þ

Including also the normalization factor 1=sTrðT Þ, the complete two-loop contribution sums up to

hWνið2Þ ¼−
g4N2

2
ðμRνÞ4ϵ

�
ᾱαðᾱα−1Þ

2π

�
1

ϵ
þ2 logð4πeγEÞ−4Hν−1

2

�
νcot

πν

2
þ
�
1

6
þ ᾱαðᾱα−1Þν−ðᾱ2α2−1Þ

4
ν2
�	

: ð4:27Þ

In principle, this expression is divergent in the ϵ → 0 limit. However, the renormalization at one loop has produced a
divergent term in (4.23) which removes exactly this divergence. It follows that the renormalized VEV for the 1=12 BPS
parametric latitude Wilson loop, up to two loops, is finite and given by (again, g2 → 2π

k )

hWνi ¼ 1 −
N
k
πᾱαν cot

πν

2
þ N2

k2
π

6

�
−πð3ν2ðᾱ2α2 − 1Þ − 12νðᾱα − 1Þᾱα − 2Þ

þ 6ᾱαðᾱα − 1Þ
�
log

�
4πeγEμ2R2ν2

cz

�
þH−1þν

2
− 3Hν−1

2

�
ν cot

πν

2

�
þO

�
N3

k3

�
: ð4:28Þ

9Here, the superscript stands for the loop order, whereas the subscript indicates that the result is expressed in terms of the bare parameters.
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Using the one-loop β functions in (2.17), it can be rewritten as

hWνi ¼ 1 −
N
k
πᾱαν cot

πν

2
−
N2

k2
π2

6
ð3ν2ðᾱ2α2 − 1Þ − 2Þ þ βᾱα

N
k
π

2

��
log

�
4πeγEμ2R2ν2

cz

�
þH−1þν

2
− 3Hν−1

2

�
ν cot

πν

2
− 2ν

�

þO
�
N3

k3

�
: ð4:29Þ

As a consistency check, it is easy to see that this
expression satisfies the Callan-Symanzik equation,

�
μ
∂

∂μ
þ βᾱα

∂

∂ᾱα

�
hWνi ¼ 0: ð4:30Þ

Moreover, at the ᾱα ¼ 0, 1 fixed points, it correctly
reproduces the large N limit of the 1=12 BPS bosonic
and 1=6 BPS fermionic latitudes [21].
Going back to (4.27), we note that 1=ϵ pole cancels in the

ν → 1 limit, in agreement with the finiteness of the two-
loop result for the maximal circle, previously found in [41].
However, also in the ν ¼ 1 case, there is no reason to expect
finite loop contributions at any order, as long as the VEV is
expressed in terms of bare parameters. Simply, the pattern
we are obtaining at two loops for the latitude will appear at
higher orders for the maximal circle. Of course, the same
reasoning applies to the scheme-dependent terms. This
pattern is similar to what occurs for the interpolating
latitude WL in N ¼ 4 SYM [50] and for WLs in non-
conformal N ¼ 2 SYM in four dimensions [52].

V. THE INTERPOLTING
BREMSSTRAHLUNG FUNCTIONS

The coefficients of the cusp anomalous dimension in the
small angles expansion are known as bremsstrahlung
functions B. Precisely, they are defined as

Γcusp ∼ θ2Bθ − φ2Bφ: ð5:1Þ

In the Introduction, we have recalled their physical mean-
ing, and their relationship in the case of 1=2 BPS fermionic
and 1=6 BPS bosonic operators in ABJM theory.
An additional important property of these functions is

that at the 1=2 and 1=6 BPS fixed points exact identities
hold, which allow one to express them as derivatives of
circular Wilson loops. Originally introduced in [63] to
express Bφ

1=6 as the derivative of a multi-winding circular
Wilson loop with respect to the winding number m,

Bφ
1=6 ¼

1

4π2
∂

∂m
log jhWmij

���
m¼1

; ð5:2Þ

this identity was later generalized to obtain B1=2, Bθ
1=6 and

Bφ
1=6 as derivatives of latitude Wilson loops with respect to

the latitude parameter ν [21,35,64],

B1=2 ¼
1

4π2
∂

∂ν
log jhW1=6ij

���
ν¼1

;

Bθ
1=6 ¼

1

2
Bφ
1=6 ¼

1

4π2
∂

∂ν
log jhW1=12ij

���
ν¼1

: ð5:3Þ

The proof of these identities strongly relies on the (super)
conformal invariance of the defect theory living on the
Wilson loop. Therefore, outside the fixed points, we do not
expect them to be valid. Nevertheless, we want to study
how they get modified when the superconformal defect at
the fixed point is perturbed by a marginally relevant
operator. Having computed Γcusp and the latitude VEV
in the presence of parametric deformations, we have all the
ingredients to address this question.
Expanding the two-loop result (3.3) at small θ;φ angles,

we can easily extract the bremsstrahlung functions at this
order. For a generic interpolating operator, we obtain two
different functions (restoring g2 → 2π=k),

BθðᾱαÞ ¼ 1

8

N
k
ᾱα −

1

4

N2

k2
ðᾱ2α2 − 1Þ

−
1

16

N
k
βᾱα log

�
cJ
cz

μ2L2

�
;

BφðᾱαÞ ¼ 1

8

N
k
ᾱα −

1

2

N2

k2
ðᾱ2α2 − 1Þ

−
1

16

N
k
βᾱα log

�
cJ
cz

μ2L2e−
4
3

�
; ð5:4Þ

where we have used the β functions in (2.17) at ϵ ¼ 0.
These results reproduce correctly the relations holding at

the fixed points. In fact, setting ᾱα ¼ 0, we obtain
Bθð0Þ ¼ 1

2
Bφð0Þ, in agreement with the general identity

[32]. Setting instead ᾱα ¼ 1, we recover the well known
result for the 1=2 BPS case where the two functions
coincide [27].
Results (5.4) clarify the structure of the RG flows for the

bremsstrahlung functions. The interpolating B’s have
corrections at both even and odd orders in N=k with a
precise ᾱα dependence: Odd orders are proportional to ᾱα,
whereas even orders comewith a ðᾱα − 1Þ factor. Therefore
they correctly interpolate between an odd function of N=k
at the 1=2 BPS fixed point and an even function at the 1=6
BPS fixed point.
Inverting (2.18), we can trade μ in (5.4) with its

expression in terms of ᾱα. This imports the Λ parameter
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in Bθ, Bφ such that they become eventually functions of the
ΛL combination. In Fig. 6, we plot Bθ for different values
of the scheme parameter c≡ ðΛLÞ2cJ=cz.
We now move to study how identities (5.3) generalize

away from the fixed points. In Sec. IV, we computed the
expectation value of the 1=12 BPS latitude Wilson loop,
which in the ν → 1 limit corresponds to the interpolating
1=6 BPS fermionic operator. When we take the derivative
of the logarithm of hWi in (4.28) with respect to ν, we
obtain (restoring g2 ¼ 2π=k)

1

4π2
∂ loghWνi

∂ν

����
ν¼1

¼1

8

N
k
ᾱα−

1

4

N2

k2
ðᾱ2α2−1Þ

−
1

16

N
k
βᾱα log

�
4π

cz
eγE−2μ2R2

�
: ð5:5Þ

This expression reproduces correctly the values of
ðBθ

1=6; B
φ
1=6Þ and B1=2, at ᾱα ¼ 0 and ᾱα ¼ 1 fixed points,

respectively, in agreement with (5.3).
For generic ᾱα, instead, comparing this result with

BθðᾱαÞ and BφðᾱαÞ in (5.4) and neglecting higher order
terms we are led to

BθðᾱαÞ ¼ 1

4π2
∂ loghWνi

∂ν

����
ν¼1

þ βᾱα
1

16

N
k
log

�
4π

cJ
eγE−2

R2

L2

�
;

BφðᾱαÞ ¼ 1

4π2
∂ loghWνi

∂ν

����
ν¼1

−
1

4

N2

k2
ðᾱ2α2 −1Þ

þ βᾱα
1

16

N
k
log

�
4π

cJ
eγE−

2
3
R2

L2

�
: ð5:6Þ

The second term in the rhs of BφðᾱαÞ accounts for the
deviation of Bφ from Bθ when moving from the 1=2 BPS to
the 1=6 BPS fixed point. As expected, the general identities
in (5.3) are broken by contributions proportional to the
conformal anomaly βᾱα, which introduces a (scheme-
dependent) deviation starting at two loops.

VI. DEFECT CORRELATION FUNCTIONS

(Super)conformalWilson loops describe one-dimensional
defects and provide a natural setting for studying the one-
dimensional conformal field theory (dCFT) living on them.
A dCFT is characterized by the spectrum of correlations

functions of local and nonlocal operators. Restricting to
line defects, the n-point correlation function of a local
operator OðsÞ localized on the line is defined as (an
analogous definition holds for the circle)

⟪OðsnÞOðsn−1Þ…Oðs1Þ⟫ ¼ hTrWð∞; snÞOðsnÞWðsn; sn−1Þ…Wðs2; s2ÞOðs1ÞWðs1;−∞Þi
hWð∞;−∞Þi : ð6:1Þ

When we deal with Wilson operators depending on a
parameter such as a latitude or a cusp angle, taking n
derivatives of the WL with respect to the parameter
naturally leads to correlation functions of type (6.1)
integrated on the line, where OðsÞ is the operator that
appears in the (super)connection L multiplied by (a
function of) the parameter.
This fact is at the basis of the proof of the cusp/latitude

correspondence (5.3), giving the remarkable relation
between the bremsstrahlung function as obtained from
the cusp anomalous dimension and the latitude WL. In
fact, its proof [29,34] relies on showing that the double
derivative of a latitude WL with respect to the latitude angle
and the double derivative of a cusped WL with respect to
the cusp angle, which in turn is proportional to the
bremsstrahlung function, give rise to the same two-point
function integrated on the circle and on the line,

respectively. The key ingredient of the proof is the
conformal invariance of the defect, which constraints the
form of the two-point functions both on the circle and on
the line and allows to conformally map one into the other.
Already in Sec. V, we gave perturbative evidence that in

the case of nonconformal WLs the cusp/latitude corre-
spondence gets spoiled by terms proportional to the
conformal anomaly. Here, we provide an alternative inter-
pretation of this result from a defect perspective. We show
that the breaking of the correspondence can be traced back
to the appearance of an anomalous dimension for fermionic
operators localized on the defect.
To begin with, in Sec. VI A, we re-compute the brems-

strahlung function through the evaluation of two-point
functions on the defect. In Sec. VI B, we discuss the
general structure of the two-point functions and the
emergence of an anomalous dimension for the fermions

FIG. 6. The interpolating bremsstrahlung function Bθ for
ᾱα∈ ½0; 1�, N=k ¼ 0.03 and different values of c ¼ ðΛLÞ2cJ=cz.
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entering the definition of the defect. Finally, in Sec. VI C,
we show that this anomalous dimension is indeed respon-
sible for deforming the cusp/latitude correspondence away
from the fixed points.

A. A third way to B

The starting point for writing the bremsstrahlung func-
tion Bθ in terms of two-point functions is the observation
that, regardless of conformality of the defect, our definition
(3.12) for the cusp anomalous dimension together with
the RG flow equations lead to the following chain of
identities:

Γcuspðᾱ0; α0Þ≡
�
μ
d
dμ

− L
d
dL

�
logZcusp

¼
�
μ
d
dμ

− L
d
dL

�
loghWcuspi0

¼ βg2
∂

∂g2
loghWcuspi0: ð6:2Þ

In the first line, we simply replaced logZcusp ¼
loghWcuspi0 − loghWcuspi and used the Callan-Symanzik
equations for hWcuspi. The second line follows from the fact
that the explicit dependence of hWcuspi0 on μ always enters
through the combination μL, whereas an implicit depend-
ence comes through g2.
Using the standard definition B ¼ 1

2
∂
2

∂θ2
Γcuspjθ¼0 together

with (6.2), we can write

Bθðᾱ0; α0Þ ¼ βg2
∂

∂g2

�
1

2

∂
2

∂θ2
loghWcuspi0

���
θ¼0

�
: ð6:3Þ

The actual expression for Bθ is eventually obtained by
replacing the bare parameters with their renormalized
counterparts.
To evaluate explicitly the right-hand side of (6.3), we

start applying 1
2
∂
2

∂θ2
to the cusped Wilson line constructed in

Sec. III. Setting the geometrical angle φ ¼ 0, we can
expand the superconnection with couplings (3.5), (3.6)
in powers of θ,

L ¼ Lθ¼0 þ θLð1Þ þOðθ2Þ;

Lð1Þ ¼
�−ig2ðOþ ŌÞ gffiffi

2
p χ̄

gffiffi
2

p χ −ig2ðÔþ ¯̂OÞ

�
; ð6:4Þ

where

O¼C3C̄1; Ō¼ C̄3C1; Ô¼ C̄1C3;

¯̂O¼C1C̄3; χ̄ ¼−iᾱ0
ffiffiffi
2

p
ηψ̄3; χ ¼ α0

ffiffiffi
2

p
ψ3η̄: ð6:5Þ

It follows that taking the double derivative with respect to θ
gives rise to the Lð1Þ two-point function integrated along
the line10

1

2

∂
2

∂θ2
loghWcuspi

���
θ¼0

¼ −
1

4N

Z
∞

−∞
ds1

Z
s1

−∞
ds2⟪Lð1Þðs1ÞLð1Þðs2Þ⟫

¼ 1

4N

Z
∞

−∞
ds1

Z
s1

−∞
ds2½2g4ð⟪Oðs1ÞŌðs2Þ⟫

þ ⟪Ôðs1Þ ¯̂Oðs2Þ⟫Þ − g2⟪χ̄ðs1Þχðs2Þ⟫�: ð6:6Þ

The evaluation of this expression at order g4 requires the
tree-level two-point function for the scalars and the one-
loop one for the fermions.
The lowest order of the O, Ô two-point functions easily

evaluates to11

⟪OðsÞŌð0Þ⟫ð0Þ ¼ ⟪ÔðsÞ ¯̂Oð0Þ⟫ð0Þ

¼ N3
Γ2ð1

2
− ϵÞ

16π3−2ϵ
μ4ϵ

s2−4ϵ
; ð6:7Þ

and its integrated version then reads

Z
L

−L
ds1

Z
s1

−L
ds2⟪Oðs1ÞOðs2Þ⟫ð0Þ

¼ −
N3

64π2

�
1

ϵ
þ 2 log ð4πeγEþ2Þ þ 2 log ð4μ2L2Þ

�
: ð6:8Þ

The tree-level contribution to the fermionic two-point
function is

⟪χðsÞχ̄ð0Þ⟫ð0Þ ¼ −ᾱ0α0N2 Γð32 − ϵÞ
2π

5
2−ϵ

μ2ϵ

s2−2ϵ
; ð6:9Þ

At one loop, we have three sources of contributions, one
from fermionic arcs,

⟪χðsÞχ̄ð0Þ⟫ð1Þjarcs ¼ ᾱ20α
2
0

g2N3

8π3−2ϵ
Γð1

2
− ϵÞΓð3

2
− ϵÞ

ϵ

× ð22ϵL2ϵ þ 2s2ϵÞ μ4ϵ

s2−2ϵ
; ð6:10Þ

10We neglect the one-point function ⟪Lð2Þ⟫ since one-point
functions of local operators vanish even away from the RG fixed
points. Moreover, in order to avoid clattering, from here on, we
neglect the subscript 0 in all VEVs, though they are meant to be
expressed in terms of bare parameters.

11We include a μ power coming from the overall g4 in (6.6).
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the second one from fermions-gauge vertices,

⟪χðsÞχ̄ð0Þ⟫ð1Þjvertices ¼ −ᾱ0α0
g2N3

41−ϵπ3−2ϵ
Γ
�
3

2
− 2ϵ

�

× Γ
�
1

2
− ϵ

�
ΓðϵÞ cosðπϵÞ μ4ϵ

s2−4ϵ
;

ð6:11Þ
and the third one coming from the expansion of W at the
denominator of (6.1),

hWðL;−LÞi0
¼1− ᾱ0α0

g2N
4π

�
1

ϵ
þ logð4μ2L2Þþ logð4πeγEÞ

�
: ð6:12Þ

Summing up these expressions, integrating them together
with the tree-level contribution (6.9) and expanding in
powers of ϵ, we eventually obtain

Z
L

−L
ds1

Z
s1

−L
ds2⟪χðs1Þχ̄ðs2Þ⟫ ¼ ᾱ0α0

N2

8π

�
1

ϵ
þ log ð4πeγEÞ þ log ð4μ2L2Þ

�
− ᾱ20α

2
0

g2N3

16π2ϵ

− ᾱ0α0ðᾱ0α0 − 1Þ g
2N3

16π2ϵ

�
1

2ϵ
þ log ð4πeγEÞ þ logð4μ2L2Þ

�
þOðϵÞ: ð6:13Þ

At this point, expressions (6.8) and (6.13) can be inserted in (6.6), leading to Bθ, via (6.3)

Bθðᾱ0α0Þ ¼ ᾱ0α0
g2N
16π

½1þ ϵ log ð4πeγEÞ þ ϵ log ð4μ2L2Þ� − ᾱ0α0ðᾱ0α0 − 1Þ g
4N2

32π2ϵ

− ðᾱ20α20 − 1Þ g
4N2

16π2
− ᾱ0α0ðᾱ0α0 − 1Þ g

4N2

16π2
½log ð4πeγEÞ þ log ð4μ2L2Þ�: ð6:14Þ

This is a UV divergent result which, however, is rendered finite upon renormalization of the bare parameters [see (2.14)].
Eventually, replacing g2 → 2π=k, we find

BθðᾱαÞ ¼ 1

8

N
k
ᾱα −

1

4

N2

k2
ðᾱ2α2 − 1Þ − 1

16

N
k
βᾱα log

�
16πeγE

cz
μ2L2

�
þO

�
N3

k3

�
: ð6:15Þ

This expression coincideswith result (5.4) obtained inSec.V,
if there we choose the particular scheme cJ ¼ 16πeγE .

B. Defect correlation functions
and anomalous dimensions

Going back to the perturbative evaluation of the two-
point function for χ on the line, if we partially expand in ϵ
Eqs. (6.9)–(6.12), we can cast it in the following form:

⟪χðsÞχ̄ð0Þ⟫ ¼ c1
μ2ϵ

s2−2ϵ
þ g2c2

μ4ϵ

s2−4ϵ
; ð6:16Þ

where

c1 ¼ −ᾱ0α0
N2

4π
½1þ ϵ log ð4πeγE−2Þ� þOðg4Þ;

c2 ¼ ᾱ20α
2
0

N3

4π2
þ ᾱ0α0ðᾱ0α0 − 1Þg

2N3

4π2

�
1

2ϵ
þ log ð4πeγE−2Þ

�

þOðg2Þ: ð6:17Þ

Since c2 is
1
ϵ divergent, we further expand (6.16) for ϵ → 0,

keeping at most OðϵÞ terms. The result reads

⟪χðsÞχ̄ð0Þ⟫ ¼ ðc1 þ g2c2Þ
s2

�
1þ ϵ

c1 þ 2g2c2
c1 þ g2c2

log ðμ2s2Þ
�
:

ð6:18Þ

The term proportional to log s2 signals the appearance of an
anomalous dimension for χ, which up to Oðg2Þ is given by

γχ ¼ −ϵ
�
1þ g2

c2
c1

�
¼ N

k
ðᾱα − 1Þ: ð6:19Þ

This result is consistent with the fact that in the 1=2 BPS
case (ᾱα ¼ 1) χ is a protected operator, being part of the
displacement supermultiplet. For any other value ᾱα ≠ 1, it
no longer belongs to a protected multiplet and in fact
γχ ≠ 0.
The same investigation can be carried on for the scalar

operators O and Ô on the line. Since they are protected in
both the 1=2 BPS and the 1=6 BPS bosonic defects, we
expect possible anomalous dimension contributions to be
proportional to the β functions. However, up to one loop, it
is easy to check that there are no corrections of this type.

CASTIGLIONI, PENATI, TENSER, and TRANCANELLI PHYS. REV. D 109, 126010 (2024)

126010-20



What we have discussed so far holds for the line defect.
The question is whether we find a similar pattern on the
circle, in particular, if we find a similar structure for the
two-point functions. In the absence of conformal sym-
metry, we can no longer rely on the line-to-circle mapping
to infer the structure of the correlators on the circle from the
ones on the line. Thus, in principle, we should reevaluate

correlation functions directly on the circle. However, we
can by-pass this step by exploiting the results that we have
found for the latitude WL, as follows.
We start from the observation that taking the derivative

of the logarithm of the latitude WL with respect to ν gives
rise to same linear combination of two-point functions as
the ones in (6.6) coming from cusp derivatives. Precisely,

∂

∂ν
loghWνi

���
ν¼1

¼ 1

N

Z
2π

0

dτ1

Z
τ1

0

dτ2 cos τ12½2g4ð⟪Oðτ1ÞŌðτ2Þ⟫þ ⟪Ôðτ1Þ ¯̂Oðτ2Þ⟫Þ − g2⟪χ̄ðτ1Þχðτ2Þ⟫�; ð6:20Þ

where now the correlation functions are integrated on the
maximal circle (ν ¼ 1).
We now assume that the two-point functions on the circle

are still given by (6.16), with the same c1, c2 coefficients
and the obvious replacement s12 → 2 sin τ12

2
. In principle,

this assumption is not supported by conformal invariance
and might be spoiled by nontrivial contributions propor-
tional to the β functions. However, plugging expressions
(6.16)–(6.17) in (6.20) and solving the integrals,12 we
find perfect matching with the two-loop expression on
the left-hand side as read from (5.5). This is clear evidence
that up toOðg4Þc1 and c2, and consequently the anomalous
dimension in (6.19), are the same on the line and the circle,
regardless of conformal invariance.

C. Interpolating cusp/latitude correspondence

Supported by the evidence that (6.16) holds for both the
line and the circle, we now compute explicitly its integrated

version on a linear and a circular contour. For the former,
we introduce the usual IR cutoff L and obtain

Z
L

−L
ds1

Z
s1

−L
ds2

μ2ϵ

s2−2ϵ12

¼ −
1

2

�
1

ϵ
þ logð4e2μ2L2Þ

�
;

Z
L

−L
ds1

Z
s1

−L
ds2

μ4ϵ

s2−4ϵ12

¼ −
1

2

�
1

2ϵ
þ logð4e2μ2L2Þ

�
: ð6:21Þ

For the latter, the regulator is given as usual by the radius R
of the circle, and we find
Z

2π

0

dτ1

Z
τ1

0

dτ2 cosτ12
μ2ϵ

ð2sinτ12
2
Þ2−2ϵ¼π2½1þϵlogðμ2R2Þ�;

Z
2π

0

dτ1

Z
τ1

0

dτ2 cosτ12
μ4ϵ

ð2sinτ12
2
Þ2−4ϵ¼π2½1þ2ϵlogðμ2R2Þ�:

ð6:22Þ
Collecting the results on the line, from Eq. (6.6), we find

βg2
∂

∂g2

�
1

2

∂
2

∂θ2
loghWcuspi

���
θ¼0

�
¼ g2

4N
½c1ð1þ ϵ logð4e2μ2L2ÞÞ þ g2c2ð1þ 2ϵ logð4e2μ2L2ÞÞ�; ð6:23Þ

while from Eq. (6.20), on the circle, we obtain

1

4π2
∂

∂ν
loghWνijν¼1 ¼

g2

4N
½c1ð1þ ϵ logðμ2R2ÞÞ þ g2c2ð1þ 2ϵ logðμ2R2ÞÞ�: ð6:24Þ

The ratio of the two expressions above then reads

βg2
∂

∂g2 ð12 ∂
2

∂θ2
loghWcuspijθ¼0Þ

1
4π2

∂

∂ν loghWνijν¼1

¼ 1þ ϵ

�
1þ g2

c2
c1

�
log

�
4e2

L2

R2

�
: ð6:25Þ

Recalling identity (6.3) for the bremsstrahlung function, the interpolating cusp/latitude correspondence finally reads

BθðᾱαÞ ¼
�
1 − γχ log

�
4e2

L2

R2

��
1

4π2
∂

∂ν
loghWνijν¼1; ð6:26Þ

where in (6.26) we have recognized the χ anomalous dimension as given in (6.19).

12The integrals on the circle can be easily performed following [55].
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In conclusion, away from the fixed points, the terms
spoiling the usual cusp/latitude correspondence can be
traced back to the anomalous dimension acquired by
fermions localized on the defect.
We stress that this result is valid perturbatively, up to two

loops. At this order, the deforming γχ term enters multiplied
by the one-loop contribution to the ν derivative of the
latitude. Since this is proportional to ᾱα, we easily
reconstruct the one-loop β function βᾱα. Therefore, identity
(6.26) is in perfect agreement with (5.6) in the cJ ¼ 16πeγE
scheme, consistently with what we have found in (6.15).
It is interesting to note that factor appearing in front of

the ν derivative in (6.26) is scheme independent. It depends
only on the scales of the linear and circular contours. Of
course, scheme dependence in (6.26) is still present, being
encoded in the explicit expressions of Bθ and ∂ν loghWνi.
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APPENDIX: CONVENTIONS
AND FEYNMAN RULES

We follow the conventions in [21]. We work in three-
dimensional Euclidean space with coordinates xμ ¼
ðx0; x1; x2Þ. The three-dimensional gamma matrices are
defined as

ðγμÞαβ ¼ ð−σ3; σ1; σ2Þαβ; ðA1Þ

with ðσiÞαβ (α, β ¼ 1, 2) being the Pauli matrices, such that
γμγν ¼ δμν þ iϵμνργρ, where ϵ123 ¼ ϵ123 ¼ 1 is totally anti-
symmetric. Spinorial indices are lowered and raised as
ðγμÞαβ ¼ ϵαγðγμÞγδϵβδ, with ϵ12 ¼ −ϵ12 ¼ 1. The Euclidean
action of UðNÞk ×UðNÞ−k ABJM theory is

SABJM ¼ k
4π

Z
d3xϵμνρ

�
−iTr

�
Aμ∂νAρ þ

2i
3
AμAνAρ

�
þ iTr

�
Âμ∂νÂρ þ

2i
3
ÂμÂνÂρ

�

þ Tr
�
1

ξ
ð∂μAμÞ2 − 1

ξ
ð∂μÂμÞ2 þ ∂μc̄Dμc − ∂μ

¯̂cDμĉ
�	

þ
Z

d3xTr½DμCIDμC̄I þ iψ̄ IγμDμψ I�

−
2πi
k

Z
d3xTr½C̄ICIψJψ̄

J − CIC̄Iψ̄JψJ þ 2CIC̄Jψ̄ IψJ

− 2C̄ICJψ Iψ̄
J − ϵIJKLC̄Iψ̄JC̄Kψ̄L þ ϵIJKLCIψJCKψL� þ Sbosint ; ðA2Þ

where Aμ and Âμ are the connections of the two gauge groups, whereas CI and ψ I describe scalar and fermion matter,
respectively. The covariant derivatives are defined as

DμCI ¼ ∂μCI þ iAμCI − iCIÂμ; DμC̄I ¼ ∂μC̄I − iC̄IAμ þ iÂμC̄I;

Dμψ̄
I ¼ ∂μψ̄

I þ iAμψ̄
I − iψ̄ IÂμ; Dμψ I ¼ ∂μψ I − iψ IAμ þ iÂμψ I: ðA3Þ

Wework in Landau gauge for vector fields and in dimensional regularization with d ¼ 3 − 2ϵ. The tree-level propagators
are (with g2 ¼ 2π=k)

hðAμÞpqðxÞðAνÞrsðyÞið0Þ ¼ δspδ
q
r ig2

Γð3
2
− ϵÞ

2π
3
2
−ϵ

ϵμνρðx − yÞρ
jx − yj3−2ϵ ;

hðÂμÞp̂q̂ðxÞðÂνÞr̂ŝðyÞið0Þ ¼ −δŝp̂δ
q̂
r̂ ig

2
Γð3

2
− ϵÞ

2π
3
2
−ϵ

ϵμνρðx − yÞρ
jx − yj3−2ϵ ;

hðψα
I ÞjîðxÞðψ̄J

βÞl̂kðyÞið0Þ ¼ −iδJI δl̂iδ
j
k

Γð3
2
− ϵÞ

2π
3
2
−ϵ

ðγμÞαβðx − yÞμ
jx − yj3−2ϵ ¼ iδJI δ

l̂
iδ

j
kðγμÞαβ∂μ

�
Γð1

2
− ϵÞ

4π
3
2
−ϵ

1

jx − yj1−2ϵ
�
;

hðCIÞĵiðxÞðC̄JÞl
k̂
ðyÞið0Þ ¼ δJI δ

l
iδ

ĵ
k̂

Γð1
2
− ϵÞ

4π
3
2
−ϵ

1

jx − yj1−2ϵ ; ðA4Þ
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while the one-loop propagators read

hðAμÞpqðxÞðAνÞsrðyÞið1Þ ¼ δspδ
q
rg4N

Γ2ð1
2
− ϵÞ

4π3−2ϵ

�
δμν

jx − yj2−4ϵ − ∂μ∂ν
jx − yj2ϵ

4ϵð1þ 2ϵÞ
�
;

hðÂμÞp̂q̂ðxÞðÂνÞŝr̂ðyÞið1Þ ¼ δŝp̂δ
q̂
r̂ g

4N
Γ2ð1

2
− ϵÞ

4π3−2ϵ

�
δμν

jx − yj2−4ϵ − ∂μ∂ν
jx − yj2ϵ

4ϵð1þ 2ϵÞ
�
: ðA5Þ

The latin indices are color indices. For instance, ðAμÞpq ≡ Aa
μðTaÞpq where Ta are UðNÞ generators in fundamental

representation.
We work in the large N, k limit with g2N ≪ 1.
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