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Abstract

Generic models of regular black holes have separate outer and inner horizons, both with nonzero

surface gravity. It has been shown that a nonzero inner horizon surface gravity results in exponential

instability at the inner horizon controlled by this parameter. This phenomenon takes the name of

“mass inflation instability”, and its presence has put in question the physical viability of regular

black holes as alternatives to their (singular) general relativity counterparts. In this paper, we show

that it is possible to make the inner horizon surface gravity vanish, while maintaining the separation

between horizons, and a non-zero outer horizon surface gravity. We construct specific geometries

satisfying these requirements, and analyze their behavior under different kinds of perturbations,

showing that the exponential growth characteristic of mass inflation instability is not present for

these geometries. These “inner-extremal” regular black holes are thereby better behaved than

singular black holes and generic regular black holes, thus providing a well-motivated alternative of

interest for fundamental and phenomenological studies.
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I. INTRODUCTION

Regular black holes are deformations of solutions of the vacuum Einstein field equations

in which the inner singularity is excised and replaced by a non-singular core. This procedure

is highly non-unique, and the literature contains numerous proposals for both spherically

symmetric [1–6] and rotating [7–11] regular black holes. The main distinguishing feature of

these proposals is the existence of an inner horizon. In fact, in spherical symmetry it has

been shown that inner horizons must be present for the regularity conditions to hold [12–14].1

Generically, inner horizons have a non-zero surface gravity, which translates into a char-

acteristic dynamical behavior of geodesics and metric perturbations in their vicinity. The

main effect of this dynamical behavior is a phase of exponential growth of the gravitational

energy in a neighborhood of the inner horizon, which is known as mass inflation [15–17].

Mass inflation is present when both ingoing and outgoing perturbations are considered. One

can employ simplified models of matter perturbations around the inner horizon while still

capturing the salient features of mass inflation. Existing analyses either model both kinds

of perturbations as null shells [18–20], or use null shells to describe outgoing perturbations

while using null dust to characterize ingoing perturbations [18, 21, 22], the latter dating

back to Ori’s model of mass inflation of Reissner–Nordström black holes [16].

In this paper, we consider regular black holes with vanishing surface gravity at the inner

horizon, and show that they do not display an exponential growth of perturbations, in

contrast to the case of a finite surface gravity. At the same time, we show that the coefficients

of the metric can be chosen in such a way that the outer horizon is well separated from

the inner horizon and features a finite nonzero surface gravity. In other words, regular

black hole metrics without mass inflation can be constructed while maintaining the outer

horizon to be non-extremal. We propose the name “inner-extremal” regular black holes for

these geometries. The absence of unstable modes makes these regular black holes appealing

candidates to describe astrophysical black holes, candidates which are well behaved down

to the inner core.

The paper is organized as follows. We start by describing the geometries of inner-extremal

regular black holes in Sec. II. We then study the behaviour of the metric under the two models

of perturbations mentioned above, the double-null shell model and Ori’s model, in Secs. III

1 The question of whether inner horizons are necessary for regularity in rotating black holes is technically

open, though all known proposals display this feature.
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and IV respectively. We finish the paper with a summary of our results and a discussion of

their implications in Sec. V.

II. INNER-EXTREMAL REGULAR BLACK HOLES

The aim of this section is to show the existence of regular black hole geometries for which

the surface gravity at the inner horizon vanishes. We will work in spherical symmetry for

simplicity, and we start by analyzing static configurations without the accretion of matter.

Under these assumptions, the most general line element can be written in advanced null

coordinates as

ds2 = −e−2φ(r)F (r)dv2 + 2e−φ(r)dvdr + r2dΩ2, (1)

where F (r) and φ(r) are two arbitrary functions, with the only restriction that φ(r) must

be finite for the metric determinant to be well defined.

It is also useful to introduce the Misner–Sharp quasi-local mass m(r) defined by the

expression [23, 24]

F (r) = 1− 2m(r)

r
. (2)

For simplicity, we will restrict our attention to geometries in which F (r) is a rational function

of the radial coordinate, namely

F (r) =
Nn(r)

Dn(r)
, (3)

where Nn and Dn are polynomials of the same degree n. This simplifying assumption has

been considered before, for instance in [25].

The conditions for regularity at r = 0 have been studied previously, e.g. [13]. If the

metric functions are finite everywhere, so that we can write

m(r) = m0 +m1r +m2r
2 +O(r3),

φ(r) = φ0 + φ1r + φ2r
2 +O(r3), (4)

then demanding regularity is equivalent to

m0 = m1 = m2 = φ1 = 0. (5)
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These conditions can be obtained in different but equivalent ways, for instance calculating the

effective energy density and pressures at r = 0, or calculating the orthonormal components

of the Riemann tensor at r = 0. Demanding that these quantities are finite leads to Eq. (5).

Note further that, when including time dependence, the regularity conditions are the natural

generalization of Eq. (5) with m0, m1, m2 and φ0 now functions of v.

Eq. (5) implies that F (r) = 1 at r = 0. It is then clear that regularity implies that the

metric must have an even number of horizons counting multiplicities, where the locations of

the horizons are defined as usual by the roots of F (r) [19]. A black hole with a single simple

root of F (r) such as the Schwarzschild black hole cannot be regular. At the very least two

simple roots, or one double root, are needed for regularity. These are the standard type of

regular black holes analyzed in the literature.

However, here we are interested in a different realization. We will consider situations in

which F (r) has two roots r+ ≥ r−. In most situations these two roots will be different, but

it is useful to keep the analysis general enough so that the coincidence limit can be taken.

The quantity r+ thus indicates the position of the outer horizon, and r− the position of the

inner horizon. The inner surface gravity is then given by

κ− = e−φ(r−) dF (r)

dr

∣∣∣∣
r=r−

. (6)

For situations with two single roots, the inner surface gravity is nonzero as long as the black

hole is nonextremal, r+ 6= r−. These situations are then unstable, as shown in previous

work [18, 19, 22], with the instability timescale being controlled by the value of κ−.

However, the condition κ− = 0 can be also satisfied away from extremality if r− is not a

single root. This is tantamount to requiring that

dF (r)

dr

∣∣∣∣
r=r−

= 0. (7)

Note that the function φ(r), which must be finite, can only change the value of κ− when the

latter is nonzero. As we are interested in situations in which κ− = 0 due to Eq. (7) being

satisfied, we can assume that φ(r) = 0 for simplicity.

While we have little knowledge of the behaviour of the black hole metric in the immediate

vicinity of the inner core, it is reasonable to assume that general relativity holds as a good

4



approximation about the outer horizon r = r+ if the two scales r− and r+ are well separated.

Therefore, we maintain that r+ is a single root of F (r), in analogy with general relativity.

In this situation, for the inner surface gravity to vanish, the root r = r− has to be at least

cubic. The lowest possible degree for the polynomials in F (r) to satisfy this requirement is

n = 4. For instance, we would have that Nn=4(r) is given by

Nn=4(r) = (r − r−)3 (r − r+), (8)

so that we can write

F (r) =
(r − r−)3 (r − r+)

a4r4 + a3r3 + a2r2 + a1r + a0
. (9)

Note that, while the coefficients of Nn=4(r) are determined in terms of r± , this is not

true a priori for the coefficients of Dn=4(r). However, the regularity conditions in Eq. (5),

which are equivalent to

F (r) = 1 +O(r2) , (10)

and the asymptotic condition

F (r) = 1− 2M

r
+O(r−2), (11)

can be used to fix

F (r) =
(r − r−)3 (r − r+)

(r − r−)3 (r − r+) + 2Mr3 + b2r2
. (12)

This specifies the denominator in terms of the physically meaningful quantities r−, r+, M ,

and one remaining free parameter b2, where now a2 = b2 + 3r−(r− + r+). Thence

D4(r) = (r − r−)3 (r − r+) + 2Mr3 + b2r
2

= r4 + (2M − 3r− − r+)r3 + a2r
2 − r2−(3r+ + r−)r + r3−r+. (13)

This can be rewritten as a sum of squares

D4(r) = r2
[
r +

(2M − 3r− − r+)

2

]2
+ c2r

2 + r3−r+

[
1− 1

2
r

(
3

r−
+

1

r+

)]2
, (14)
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where now

a2 = b2 + 3r−(r− + r+) = c2 +
(2M − 3r− − r+)2

4
+
r3−r+(3/r− + 1/r+)2

4
. (15)

Certainly, as long as c2 ≥ 0, (that is, as long as a2, [or b2], are sufficiently large), the

denominator will be a positive sum of squares, and so the denominator will have no zeros

on the real axis — and thence the metric function F (r) will have no poles on the real axis.

Let us now consider some more specific physically plausible choices of parameters. Assume

that both r− � r+ ∼ 2M and more specifically that r− ∼ |r+ − 2M |, (the following analysis

changes slightly if we do not assume r− ∼ |r+ − 2M |). Under these conditions

a2 ∼ c2 + 4r2− +
9

4
r+r− ∼ c2 +

9

4
r+r−. (16)

The condition for a non-zero denominator (c2 > 0) is then equivalent to

a2 &
9

4
r+r−. (17)

This is the only condition we have to impose on a2 in order to avoid the presence of zeros

in the denominator.

In summary, we consider the metric in Eq. (1) with

F (r) =
(r − r−)3 (r − r+)

(r − r−)3 (r − r+) + 2Mr3 + [a2 − 3r−(r+ + r−)]r2
, φ(r) = 0 , (18)

subject to

r− � r+ ∼ 2M ; r− ∼ |r+ − 2M | ; a2 &
9

4
r+r−. (19)

III. ANALYSIS OF PERTURBATIONS: DOUBLE NULL SHELL MODEL

Let us now study the stability of the geometry just introduced. We begin by following the

analysis of [19, 26, 27] considering a perturbation constituted by two null shells crossing at a

radius r0 and we study the backreaction on the geometry as r0 approaches the inner horizon

along an outgoing null shell. These shells meet at r0 at a given moment of time. We can

also use null coordinates, which is useful as we are interested in analyzing the behavior of
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Figure 1: Schematic representation of the relevant sections of the Penrose’s diagram of a regular

black hole. A pair of outgoing/ingoing null shells cross at a point r0(v) close to the inner horizon

dividing the spacetime into four regions (A, B, C and D). We will consider several ingoing shells

and analyze the behavior of the system as the point r0(v) is displaced along the outgoing null shell.

the system when r0 is displaced along a null outgoing curve. Hence, we can take a constant

value u = u0, being this value arbitrary but for the condition that it lies inside the outer

horizon, and modify the value of v, which means that we can describe the trajectory of the

crossing point in terms of the curve r0(v)u=u0 .

As shown in Fig. 1, we can see that the spacetime is divided into four regions (A, B,

C and D). The DTR relation [19, 26, 27] allows us to relate the geometry, and hence the

Misner–Sharp masses, in the aforementioned four regions, obtaining [19]

mA(r0) = mB(r0) +min(r0) +mout(r0)−
2mout(r0)min(r0)

r0FB(r0)
, (20)

where mA and mB are the values of the Misner–Sharp mass in the regions A and B respec-

tively, and mout ≡ mD−mB and min ≡ mC−mB denote the jump of the Misner-Sharp mass

across the two shells. The values of these jumps depend on the energy of the perturbation

and on the specific theory under consideration. The quantity FB(r) in the denominator of

Eq. (20) goes to zero for r close to the inner horizon as

F (r) =
1

3!
F ′′′(r) (r − r−)3 +O

[
(r − r−)4

]
. (21)
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However, before concluding that this leads to an unbounded growth of mA, we need to

study the behavior of min and mout. It is useful to impose boundary conditions on the

asymptotically flat regions, in particular on I + and I −, and it is useful to use the value

of the Bondi mass on I −, Min, to write these conditions explicitly. The Bondi mass will

shift due to the existence of an ingoing shell. We can then translate this shift into the shift

of the Misner–Sharp mass m(r), which is a function of r and Min. At first order, and along

the ingoing shell, we would have for instance

min(r0,M,Min) =
∂m

∂M

∣∣∣∣
r=r0

Min +O(M2
in) . (22)

Note the explicit dependence of min on r0 , while Min has no such dependence. We need

to evaluate this dependence explicitly in order to draw conclusions. In physical terms, the

meaning of this dependence is the following: a given ingoing shell has a fixed value of Min

by construction, but the value of the Misner–Sharp mass changes along the shell, and also

changes if the shell is dropped earlier or later (due to the spacetime being time-dependent).

Hence, for the setting that we are considering here, in which r0 is displaced along an outgoing

null shell, the value of the Misner–Sharp mass at r0(v)u=u0 will ultimately be a function of

v.

However, it is useful to evaluate Eq. (22) for a fixed value of v = v0 first, and then gen-

eralize it to include this time dependence explicitly. For the geometry under consideration,

we have

m(r,M) =
1

2
r

(
1− (r − r−(M))3 (r − r+(M))

(r − r−(M))3 (r − r+(M)) + 2Mr3 + b2(M)r2

)
. (23)

A direct computation of the partial derivative with respect to M shows that the resulting

expression can be arranged in two separate pieces:

∂m

∂M
= d1(r,M)

∂r−
∂M

(r − r−(M))2 + d2(r,M) (r − r−(M))3 , (24)

where d1(r,M) and d2(r,M) are functions of r and M , with the exact functional forms being

irrelevant for the current discussion, as we only need to consider their values at the inner

8



horizon, which are given by

d1 (r−,M) = −3

2

r+(M)− r−(M)

r−(M) (2Mr2−(M) + b2(M))
, (25)

and

d2 (r−(M),M) =
1

2

∂

∂M

(
r+(M)− r−(M)

r−(M) (2Mr−(M) + b2(M))

)
. (26)

The important feature in Eq. (24) is that the first term vanishes quadratically when r0 → r−

if ∂r−/∂M 6= 0, while the second term vanishes at least cubically. Hence, the partial

derivative ∂m/∂M vanishes quadratically if the location of the inner horizon depends on

the asymptotic mass, which we will assume below as this is the case for the most commonly

considered metrics [19].2

Combining Eqs. (24) and (22), we obtain

min(r0,M,Min) = d1(r−,M)
∂r−
∂M

∣∣∣∣
r=r−

(r0 − r−)2Min +O[(r0 − r−)3] . (27)

A similar statement applies to mout as a function of Mout (the asymptotic mass defined on

the other asymptotic region in Fig. 1), so that we can write

mout(r0,M,Mout) = d1(r−,M)
∂r−
∂M

∣∣∣∣
r=r−

(r0 − r−)2Mout +O[(r0 − r−)3] . (28)

The r0 dependence in these equations translates into a dependence on v when the crossing

radius r0 approaches the inner horizon along the outgoing shell, following a trajectory r0(v).

Let us calculate this dependence explicitly. To this end, we note that, along an outgoing

null trajectory,

dv =
2 dr

F (r)
=

12 dr

F ′′′(r−)(r − r−)3
[1 +O (r − r−)] , (29)

where we have used Eq. (21). The leading order of this equation can be easily integrated,

2 From the discussion of this section it also follows that if ∂m/∂M = 0 in a region containing the inner

horizon there would be no backreaction of the shells on the geometry. Alternatively, the geometry close

to the inner horizon is controlled only by the regularization scale, with no interplay with the ADM mass.

Due to the lack of backreaction on the position of the inner horizon, mass inflation cannot manifest in

these specific situations.
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obtaining

v ' − 6

F ′′′(r−)(r − r−)2
+ v? =⇒ r − r− '

√
|F ′′′(r−)|
v − v?

. (30)

Aside from the dependence on v through r0(v), in the specific problem we are analyzing

Min becomes a function of v, as we are considering a stream of ingoing shells (recall Fig. 1).

Putting all these ingredients together we obtain, at leading order,

min (r0(v),M,Min(v)) ' h(M)

v
Min(v), (31)

where h(M) is a function of M (thus with no dependence on v), and

mout (r0(v),M,Mout) '
h(M)

v
Mout. (32)

We just need one further ingredient to extract the asymptotic behavior of Eq. (20), which

is obtained by plugging Eq. (30) into Eq. (21), thus obtaining

F (r(v)) ' |F ′′′(r−)|5/2 v3/2 . (33)

Substituting these expressions into Eq. (20), we obtain

mA(r0(v)) = mB(r0(v)) + hv−1Min(v) + hv−1Mout −
2h2

r− |F ′′′(r−)|5/2
v−1/2Min(v)Mout. (34)

Thus we see that the geometry under consideration does not suffer from the mass inflation

instability when perturbed with two null shells. In fact the energy of the perturbations Mout

and Min is not blueshifted close to the inner horizon, and their backreaction on the geometry

goes to zero for large v when Min(v) decays in time, or even in the case in which it remains

constant.

IV. ANALYSIS OF PERTURBATIONS: MODIFIED ORI MODEL

Let us now consider a different model for perturbations in which the ingoing null geodesic

is replaced by a continuous flux of matter. This setup was originally considered by Ori in

[16] to study the instability of the Cauchy horizon of a Reissner–Nordström black hole. The
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Figure 2: Schematic representation of the relevant sections of the Carter–Penrose diagram of a

regular black hole. An outgoing null shell divides the spacetime in two regions

outgoing shell, which is a shared ingredient with the model studied in the previous section,

divides the spacetime into two regions. With reference to Fig. 2 we denote the region exterior

to this shell as R1, while the interior region will be R2. The metrics in each of these regions

can be written without loss of generality as a generalization of Eq. (1) in which the functions

F (r) and φ(v) are now time-dependent:

ds21/2 = −e−2φ1/2(v,r)F1/2(v, r)dv
2 + 2e−φ(r)dvdr + r2dΩ2. (35)

As we have seen in the previous section, and is discussed in numerous works [15–22], the

instability is controlled by the inner surface gravity, the main features of which are contained

in the function F (v, r). Hence, for simplicity we can consider that φ(v, r) = φ(v), which

can be then absorbed in a redefinition of v. In practice, we will thus be working with the

metrics

ds21/2 = −F1/2(v, r)dv
2 + 2dvdr + r2dΩ2. (36)

We will further assume that both F1 and F2 take the functional form in Eq. (18), with

M1/2 being promoted to functions of v. The functional form of M1 determines the amount of
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energy that is being absorbed by the black hole. There are different choices for this function

and, to follow standard conventions, we will assume that the decay of the perturbation is

described by the power law

M1 = M0 − β
(
v

v0

)−γ
. (37)

This relation is typically used at late times, in which regime it is known as Price’s law [28, 29].

While focusing only on the late-time behavior is justified in situations in which there is mass

inflation or, in other words, to argue for unstable behavior, arguing for stability would require

one to show that quantities remain bounded at all points during evolution. Hence, we will

assume that Eq. (37) is valid at all times as a working assumption.

Eq. (37) fixes the form of the metric in the region external to the shell, which means that

we just need to determine the behavior of internal metric. In particular, we are interested in

understanding the behavior of the gravitational energy enclosed by the outgoing shell, which

is given by m2(v, r0), which is related to F2(v, r0) by Eq. (2). This function can be obtained

using the junction conditions on the outgoing shell which, as described in [22], results into

the equation
1

F1

∂m1

∂v

∣∣∣∣
r=R(v)

=
1

F2

∂m2

∂v

∣∣∣∣
r=R(v)

, (38)

in which v := v1 is the v coordinate in the exterior region.

This equation can be solved numerically assuming that the geometry is described by Eq. (18)

both outside and inside the shell. To perform the numerical integration, we need to make

some choices on the free parameters. As a working example, we consider

r+ = 2M ; r− = `

(
1 + α

`

M
+O

(
`2

M2

))
. (39)

where ` is the regularization parameter and α is an order one constant. The reason for this

choice of the expression for r− is that it describes the location of the inner horizon for the

geometries that are usually studied in the literature [19].

Finally, in order to check that the absence of the instability is due the the vanishing of

the surface gravity at the inner horizon, we will study the slightly modified geometry

F (r) =
(r − r−)(r − kr−)2(r − r+)

r4 + (2M − 3r− − r+)r3 + a2r2 − r2−(r− + 3r+)r + r3−r+
. (40)
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Figure 3: Numerical evolution of the Misner–Sharp m+ for different values of κ−. For the numerical

integration we have considered M0 = 100, ` = 1, α = β = v0 = 1, γ = 12, a2 = 10M0`.

For k = 1 this geometry reduces to the one in (18), whereas for k 6= 1 the surface gravity at

the inner horizon is non-zero, and is given by

κ− =
1

2

dF

dr
= − r+ − r−

2 (2Mr− + a2 − 3r− (r− + r+))
(1− k)2 . (41)

Fig. 3 shows the result of the numerical integration of Eq. (38). We can see that the

instability timescale is longer for smaller values of the surface gravity, and for κ− = 0 the

numerical integration does not show any sign of instability.

V. CONCLUSIONS

We have discussed the features of a new kind of regular black hole that combines features

of non-extremal and extremal black holes: inner-extremal regular black holes have two

horizons, at positions r = r+ and r = r−, an arbitrary outer surface gravity κ+, and a

vanishing inner surface gravity κ− = 0.

The main motivation behind our proposal is the fact that, in previously analyzed regular
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black in which κ− 6= 0, the timescale for mass inflation (and the corresponding exponential

instablity) is controlled by κ−. Hence, that it is possible to find regular black holes in which

the inner surface gravity vanishes, suggests that these situations can avoid the mass inflation

issue.

However, answering this question was not as simple as using the expressions for κ− 6= 0

and taking the limit κ− → 0, as these expressions are not valid in this limit. Reaching a

definitive answer required evaluating the next order in the equations evolving the evolution

of perturbations on top of these geometries. We have performed this calculation for two

different models that are routinely used in the study of mass inflation: a model with two

null shells, and a model with a null shell and a continuous stream of radiation (Ori model).

In both cases, we have seen that there is indeed no exponential mass inflation, and that

the backreaction of perturbations vanishes asymptotically as long as perturbations decay in

time (or, at most, remain constant).

These non-extremal regular black holes with κ− = 0 are therefore natural candidates to

consider as alternative to singular black holes, and also to regular black holes with κ− 6= 0.

Our proposal represents an improvement with respect to these two kinds of geometries,

and provides a proof of principle that singularity regularization does not need to result in

exponential instabilities. A fundamental question that remains to be answered is whether

these geometries could represent the stable endpoint of the dynamical evolution driven by

the backreaction of perturbations in unstable (κ− 6= 0) regular black holes. We hope to

come back to this question in the future.
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