Evidence from neuropsychological studies in brain-damaged patients with disorders of spatial cognition, from experiments in neurologically unimpaired subjects, and from neurophysiological studies in the animal concur to suggest that the internal representation of space includes a number of independent components. Major divisions are between spatial representations of the body versus extrapersonal space and far versus near extrapersonal space. A main factor that accounts for these multiple spatial representations is the kind of action that is performed and the motor effector used (e.g., space within/outside hand reach). Our experience of space is however highly integrated and, phenomenologically, largely unitary. We can perceive distant objects and, at the same time, attend to the voice of a friend nearby, or walk to a distant target location, while we reach for something in our pocket or scratch our head. In all these examples, multiple frames of references and effectors can be used simultaneously, and many different inputs, located in different space sectors, or on our own body, can be perceived as a continuous and uniform perceptual experience. This is achieved largely though the integration of the diverse sensory inputs, which continuously reach the different sensory receptors of our body. Furthermore, in the intact brain, the multiple frames of reference are used simultaneously and with comparable efficiency, to achieve effectively any kind of perceptual/motor goal at any given time. The neurological underpinnings of these spatial representations, which link perception and action, are being progressively discovered and clarified by the modern neurosciences. They include the frontal premotor cortex and the posterior parietal cortex, as well as some subcortical structures, such as the thalamus, the basal ganglia and the superior colliculus. These different structures can exert their control over different aspects of space representation because they hold, on the one hand, a high level of specificity for some given perceptual/motor functions, and, on the other hand, are highly interconnected through cortico-cortical and cortico-subcortical connections. A unitary representation of space and of the body in space can be only produced by the integrity of such complex networks, as shown by the variegate clinical pictures described in the neuropsychological literature.

Vallar, G., Maravita, A. (2009). Personal and extra-personal spatial perception. In G.G. Berntson, J.T. Cacioppo (a cura di), Handbook of neuroscience for the behavioral sciences (pp. 322-336). Hoboken, NJ : Wiley.

Personal and extra-personal spatial perception

VALLAR, GIUSEPPE;MARAVITA, ANGELO
2009

Abstract

Evidence from neuropsychological studies in brain-damaged patients with disorders of spatial cognition, from experiments in neurologically unimpaired subjects, and from neurophysiological studies in the animal concur to suggest that the internal representation of space includes a number of independent components. Major divisions are between spatial representations of the body versus extrapersonal space and far versus near extrapersonal space. A main factor that accounts for these multiple spatial representations is the kind of action that is performed and the motor effector used (e.g., space within/outside hand reach). Our experience of space is however highly integrated and, phenomenologically, largely unitary. We can perceive distant objects and, at the same time, attend to the voice of a friend nearby, or walk to a distant target location, while we reach for something in our pocket or scratch our head. In all these examples, multiple frames of references and effectors can be used simultaneously, and many different inputs, located in different space sectors, or on our own body, can be perceived as a continuous and uniform perceptual experience. This is achieved largely though the integration of the diverse sensory inputs, which continuously reach the different sensory receptors of our body. Furthermore, in the intact brain, the multiple frames of reference are used simultaneously and with comparable efficiency, to achieve effectively any kind of perceptual/motor goal at any given time. The neurological underpinnings of these spatial representations, which link perception and action, are being progressively discovered and clarified by the modern neurosciences. They include the frontal premotor cortex and the posterior parietal cortex, as well as some subcortical structures, such as the thalamus, the basal ganglia and the superior colliculus. These different structures can exert their control over different aspects of space representation because they hold, on the one hand, a high level of specificity for some given perceptual/motor functions, and, on the other hand, are highly interconnected through cortico-cortical and cortico-subcortical connections. A unitary representation of space and of the body in space can be only produced by the integrity of such complex networks, as shown by the variegate clinical pictures described in the neuropsychological literature.
Capitolo o saggio
Space representation; personal space; extra-personal space; unilateral spatial neglect; right cerebral hemisphere
English
Handbook of neuroscience for the behavioral sciences
Berntson, GG; Cacioppo, JT
2009
978-0-470-08355-0
Wiley
322
336
Vallar, G., Maravita, A. (2009). Personal and extra-personal spatial perception. In G.G. Berntson, J.T. Cacioppo (a cura di), Handbook of neuroscience for the behavioral sciences (pp. 322-336). Hoboken, NJ : Wiley.
none
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/9722
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact