Recombinant proteins and antibodies are the key reagents for development of diagnostic immunoassays. Recombinant proteins are commonly produced in both prokaryotic and eukaryotic microorganism because they allow high productivity with rapidity and low costs. However, complex proteins that contain posttranslational modifications, several disulphide bonds or multiple subunits, such as antibodies, are challenging to be expressed in these hosts. Indeed, to obtain properly folded and functional complex biomolecules it is required the posttranscriptional metabolic machinery only available in mammalian cells. Although different approaches for gene transfer have been developed in the last 15 years, it is still difficult to obtain stable, high-producing cell lines for industrial applications. Conventional methods, based on spontaneous integration of episomal DNA, often result in low efficiency of clone establishment and in low transgene expression mainly due to plasmid concatemers silencing and/or positional effects. To overcome these limitations, in my thesis project, I evaluated the potentiality of using an improved PiggyBac (PB) transposon system as new molecular tool for transgene delivery. Transposon-based approaches rely on the ability of transposase enzyme to catalyze single transgene integration into actively transcribed regions of genome. In order to assess the suitability of PB transposon vectors compared to conventional methods, two different model proteins, the human fibroblast growth factor 23 (hFGF23) and one mouse recombinant antibody, have been cloned into both expression plasmids and produced in CHO (Chinese Hamster Ovary) cells. A preliminary comparison between the two expression systems demonstrated that PB transposition increased the frequency of stable cell lines generation up to 10-15 fold compared to standard plasmid transfection. Cell lines establishment was faster and the frequency of high-producing clones was enhanced, thus reducing the extent of clones screening to recover the best performing cell lines. In addition, I also evaluated that changing PB promoter strength affected the frequency of high-producing clones. Taking advantages from these results, I was able to generate CHO cell lines expressing hFGF23 protein with an average yield of 35 mg/L in batch culture. The obtained purified protein was correctly detected by an automated chemiluminescence immunoassay (DiaSorin) with results comparable to a commercial available mammalian recombinant hFGF23 protein and it resulted biologically active when tested in a cell proliferation assay. Then I evaluated the application of PB transposon system for the generation of recombinant antibodies. After identification of heavy and light chain variable regions from an IgG2a mouse immunoglobulin developed by hybridoma technology, I have generated a chimeric IgG1 antibody by cloning mouse variable regions upstream of mouse heavy and light chain constant sequences. The ensuing full length sequences were cloned into standard vectors and transposon for co-expression in CHO cells. In these set of experiments, my results highlighted the advantages of using PB transposon to stably integrate, in one transfection step, two different transgenes with an appropriate molar ratio (light/heavy chain ratio unbalanced in favour of light chian), as required for proper antibody assembly. Random integrations, typical of standard plasmid transfections, showed difficulties in fine tuning of co-transfected transgenes expression, resulting in 80% of clones with very low productivity. In contrast, integrations mediated by PB transposase increased the number of high producing clones. The chimeric IgG1 immunoglobulin, purified from the best producing clone, showed affinity and immunochemical performances comparable to that of the parental hybridoma IgG2a antibody, confirming the potentiality of our system. In conclusion, my work demonstrates that the PB transposon system is a quick and powerful alternative to standard method for generation of stable, high-producing recombinant mammalian cell lines to generate critical reagents useful for diagnostic applications.

Proteine ricombinanti e anticorpi sono reagenti chiave per lo sviluppo di saggi immunodiagnostici. Tuttavia proteine che hanno modifiche post-transcrizionali complesse o più subunità, come gli anticorpi, sono raramente espresse in microrganismi. Infatti, per ottenere una corretta conformazione sono necessarie le modifiche post-transcrizionali tipiche delle cellule di mammifero. Negli ultimi anni sono stati sviluppati diversi metodi per il trasferimento genico, ma nonostante ciò è ancora difficile ottenere linee cellulari stabili e altamente produttive. Le strategie convenzionali si basano sull’integrazione spontanea di DNA episomale e perciò hanno una bassa efficienza di generazione di cloni e, spesso, una scarsa espressione del transgene a causa di effetti posizionali e del silenziamento di transgeni integrati come concatameri.Per superare questi limiti, ho valutato le potenzialità dell’utilizzo dei trasposoni piggyBac come nuovo metodo per veicolare transgeni. I sistemi basati sui trasposoni sfruttano la capacità dell’enzima trasposasi di catalizzare in trans l’integrazione del transgene in regioni genomiche attivamente trascritte. Per studiare questo sistema e confrontarlo con i vettori tradizionali ho clonato, in entrambi i plasmidi, due proteine modello, il fibroblast growth factor 23 (hFGF23) e un anticorpo ricombinante per la produzione in cellule CHO (chinese hamster ovary). I risultati ottenuti hanno dimostrato che la trasposizione aumenta la frequenza di generazione di linee cellulari stabili di circa 15 volte rispetto alla trasfezione di plasmidi standard. Inoltre, lo screening dei cloni è facilitato perchè la generazione di linee cellulari stabili è più rapida e la frequenza di cloni produttivi è maggiore. Infine ho dimostrato che la frequenza di cloni altamente produttivi è influenzata dalla forza del promotore clonato nel PB. Grazie a questo sistema, ho generato linee cellulari in grado di esprimere l’hFGF23 con una resa media di 35 mg/L in colture batch. La proteina purificata è stata correttamente riconosciuta da un test immunodiagnostico (DiaSorin) con risultati paragonabili ad un hFGF23 ricombinante commerciale. In seguito ho valutato l'utilizzo del sistema dei trasposoni per la generazione di anticorpi ricombinanti. Dopo l'identificazione delle regioni variabili della catena pesante (HC) e leggera (LC) di una immunoglobulina IgG2a murina sviluppata con la tecnologia dell’ibridoma, ho generato un anticorpo chimerico IgG1. A tal scopo, le sequenze variabili sono state clonate a monte delle sequenze costanti della rispettive catene e poi inserite o in vettori standard o nei trasposoni per la co-espressione in cellule CHO. I risultati ottenuti hanno evidenziato i vantaggi dell’uso del sistema dei trasposoni PB per integrare stabilmente due transgeni con un’unica trasfezione, mantenendo un rapporto molare appropriato come richiesto per la corretta formazione di anticorpi (sbilanciato a favore di LC). Le integrazioni casuali, tipiche delle trasfezioni con plasmidi standard, hanno creato difficoltà nella co-espressione dei transgeni, infatti l’80% dei cloni aveva una produttività molto bassa. Al contrario, le integrazioni mediate dalla trasposasi PB hanno aumentato il numero di cloni altamente produttivi. Infine, l'immunoglobulina IgG1 chimerica è stata purificata e ha mostrato affinità e prestazioni immunochimiche paragonabili a quelle dell'anticorpo IgG2a prodotto dall’ibridoma originale, confermando le potenzialità del nostro sistema. In conclusione, questa tesi dimostra che il sistema basato sui trasposoni PB può essere considerato una rapida ed efficace alternativa al metodo standard per la generazione di linee cellulari stabili capaci di produrre alte rese di reagenti critici per applicazioni diagnostiche.

(2015). Transposon-based technology enhances the generation of stable and high-producing CHO clones for industrial production of recombinant proteins and antibodies. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2015).

Transposon-based technology enhances the generation of stable and high-producing CHO clones for industrial production of recombinant proteins and antibodies

STRIPPOLI, LAURA
2015

Abstract

Recombinant proteins and antibodies are the key reagents for development of diagnostic immunoassays. Recombinant proteins are commonly produced in both prokaryotic and eukaryotic microorganism because they allow high productivity with rapidity and low costs. However, complex proteins that contain posttranslational modifications, several disulphide bonds or multiple subunits, such as antibodies, are challenging to be expressed in these hosts. Indeed, to obtain properly folded and functional complex biomolecules it is required the posttranscriptional metabolic machinery only available in mammalian cells. Although different approaches for gene transfer have been developed in the last 15 years, it is still difficult to obtain stable, high-producing cell lines for industrial applications. Conventional methods, based on spontaneous integration of episomal DNA, often result in low efficiency of clone establishment and in low transgene expression mainly due to plasmid concatemers silencing and/or positional effects. To overcome these limitations, in my thesis project, I evaluated the potentiality of using an improved PiggyBac (PB) transposon system as new molecular tool for transgene delivery. Transposon-based approaches rely on the ability of transposase enzyme to catalyze single transgene integration into actively transcribed regions of genome. In order to assess the suitability of PB transposon vectors compared to conventional methods, two different model proteins, the human fibroblast growth factor 23 (hFGF23) and one mouse recombinant antibody, have been cloned into both expression plasmids and produced in CHO (Chinese Hamster Ovary) cells. A preliminary comparison between the two expression systems demonstrated that PB transposition increased the frequency of stable cell lines generation up to 10-15 fold compared to standard plasmid transfection. Cell lines establishment was faster and the frequency of high-producing clones was enhanced, thus reducing the extent of clones screening to recover the best performing cell lines. In addition, I also evaluated that changing PB promoter strength affected the frequency of high-producing clones. Taking advantages from these results, I was able to generate CHO cell lines expressing hFGF23 protein with an average yield of 35 mg/L in batch culture. The obtained purified protein was correctly detected by an automated chemiluminescence immunoassay (DiaSorin) with results comparable to a commercial available mammalian recombinant hFGF23 protein and it resulted biologically active when tested in a cell proliferation assay. Then I evaluated the application of PB transposon system for the generation of recombinant antibodies. After identification of heavy and light chain variable regions from an IgG2a mouse immunoglobulin developed by hybridoma technology, I have generated a chimeric IgG1 antibody by cloning mouse variable regions upstream of mouse heavy and light chain constant sequences. The ensuing full length sequences were cloned into standard vectors and transposon for co-expression in CHO cells. In these set of experiments, my results highlighted the advantages of using PB transposon to stably integrate, in one transfection step, two different transgenes with an appropriate molar ratio (light/heavy chain ratio unbalanced in favour of light chian), as required for proper antibody assembly. Random integrations, typical of standard plasmid transfections, showed difficulties in fine tuning of co-transfected transgenes expression, resulting in 80% of clones with very low productivity. In contrast, integrations mediated by PB transposase increased the number of high producing clones. The chimeric IgG1 immunoglobulin, purified from the best producing clone, showed affinity and immunochemical performances comparable to that of the parental hybridoma IgG2a antibody, confirming the potentiality of our system. In conclusion, my work demonstrates that the PB transposon system is a quick and powerful alternative to standard method for generation of stable, high-producing recombinant mammalian cell lines to generate critical reagents useful for diagnostic applications.
VANONI, MARCO ERCOLE
DAL CORSO, ANDREA
Transposons, CHO cells, recombinant proteins, antibodies
BIO/11 - BIOLOGIA MOLECOLARE
English
12-feb-2015
Scuola di dottorato di Scienze
BIOTECNOLOGIE INDUSTRIALI - 15R
27
2013/2014
open
(2015). Transposon-based technology enhances the generation of stable and high-producing CHO clones for industrial production of recombinant proteins and antibodies. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2015).
File in questo prodotto:
File Dimensione Formato  
PhD_unimib_760857.pdf

Accesso Aperto

Descrizione: Tesi di dottorato
Tipologia di allegato: Doctoral thesis
Dimensione 4.8 MB
Formato Adobe PDF
4.8 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/68384
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact