We describe the use of a bright-field microscope for dynamic light scattering experiments on weakly scattering samples. The method is based on collecting a time sequence of microscope images and analyzing them in the Fourier space to extract the characteristic time constants as a function of the scattering wave vector. We derive a theoretical model for microscope imaging that accounts for (a) the three-dimensional nature of the sample, (b) the arbitrary coherence properties of the light source, and (c) the effect of the finite numerical aperture of the microscope objective. The model is tested successfully against experiments performed on a colloidal dispersion of small spheres in water, by means of the recently introduced differential dynamic microscopy technique. Finally, we extend our model to the class of microscopy techniques that can be described by a linear space-invariant imaging of the density of the scattering centers, which includes, for example, dynamic fluorescence microscopy. © 2009 The American Physical Society.

Giavazzi, F., Brogioli, D., Trappe, V., Bellini, T., Cerbino, R. (2009). Scattering information obtained by optical microscopy: Differential dynamic microscopy and beyond. PHYSICAL REVIEW E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS, 80(3) [10.1103/PhysRevE.80.031403].

Scattering information obtained by optical microscopy: Differential dynamic microscopy and beyond

BROGIOLI, DORIANO COSTANTINO;
2009

Abstract

We describe the use of a bright-field microscope for dynamic light scattering experiments on weakly scattering samples. The method is based on collecting a time sequence of microscope images and analyzing them in the Fourier space to extract the characteristic time constants as a function of the scattering wave vector. We derive a theoretical model for microscope imaging that accounts for (a) the three-dimensional nature of the sample, (b) the arbitrary coherence properties of the light source, and (c) the effect of the finite numerical aperture of the microscope objective. The model is tested successfully against experiments performed on a colloidal dispersion of small spheres in water, by means of the recently introduced differential dynamic microscopy technique. Finally, we extend our model to the class of microscopy techniques that can be described by a linear space-invariant imaging of the density of the scattering centers, which includes, for example, dynamic fluorescence microscopy. © 2009 The American Physical Society.
Articolo in rivista - Articolo scientifico
microscopy; near field scattering
English
2009
80
3
open
Giavazzi, F., Brogioli, D., Trappe, V., Bellini, T., Cerbino, R. (2009). Scattering information obtained by optical microscopy: Differential dynamic microscopy and beyond. PHYSICAL REVIEW E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS, 80(3) [10.1103/PhysRevE.80.031403].
File in questo prodotto:
File Dimensione Formato  
PhysRevE_2009.pdf

accesso aperto

Dimensione 727.31 kB
Formato Adobe PDF
727.31 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/36546
Citazioni
  • Scopus 119
  • ???jsp.display-item.citation.isi??? 114
Social impact