L-Glutamic acid acts as the major excitatory neurotransmitter and, at the same time, represents a potential neurotoxin for the mammalian central nervous system (CNS). The termination of excitatory transmission and the maintenance of physiologic levels of extracellular glutamate, which is necessary to prevent excitotoxicity, are prominently mediated by a family of high-affinity sodium-dependent excitatory amino acid transporters (EAATs). Five subtypes of EAATs have been cloned, possessing distinct pharmacology, localization, sensitivity to transport inhibitors and modulatory mechanisms. Expression and activity of EAATs have been shown to be amenable to fine endogenous and, potentially, pharmacological regulation by substrate itself, growth factors, second messengers, hormones, biological oxidants, inflammatory mediators and pathological conditions. The present review describes basic pharmacological studies, mostly performed on animal models or cell preparations, in order to obtain an updated picture of the known regulatory mechanisms of single EAAT expression and activity. New insight into molecular pathways involved in EAAT regulation will allow pharmacological manipulation of excitatory CNS activity, possibly avoiding adverse effects of glutamate receptor blockade.

Beretta, S., Begni, B., Ferrarese, C. (2003). Pharmacological manipulation of glutamate transport. DRUG NEWS & PERSPECTIVES, 16(7), 435-445 [10.1358/dnp.2003.16.7.829355].

Pharmacological manipulation of glutamate transport

BERETTA, SIMONE;FERRARESE, CARLO
2003

Abstract

L-Glutamic acid acts as the major excitatory neurotransmitter and, at the same time, represents a potential neurotoxin for the mammalian central nervous system (CNS). The termination of excitatory transmission and the maintenance of physiologic levels of extracellular glutamate, which is necessary to prevent excitotoxicity, are prominently mediated by a family of high-affinity sodium-dependent excitatory amino acid transporters (EAATs). Five subtypes of EAATs have been cloned, possessing distinct pharmacology, localization, sensitivity to transport inhibitors and modulatory mechanisms. Expression and activity of EAATs have been shown to be amenable to fine endogenous and, potentially, pharmacological regulation by substrate itself, growth factors, second messengers, hormones, biological oxidants, inflammatory mediators and pathological conditions. The present review describes basic pharmacological studies, mostly performed on animal models or cell preparations, in order to obtain an updated picture of the known regulatory mechanisms of single EAAT expression and activity. New insight into molecular pathways involved in EAAT regulation will allow pharmacological manipulation of excitatory CNS activity, possibly avoiding adverse effects of glutamate receptor blockade.
Recensione in rivista
Amino Acid Transport System X-AG; Animals; Glutamic Acid; Central Nervous System Diseases
English
set-2003
16
7
435
445
none
Beretta, S., Begni, B., Ferrarese, C. (2003). Pharmacological manipulation of glutamate transport. DRUG NEWS & PERSPECTIVES, 16(7), 435-445 [10.1358/dnp.2003.16.7.829355].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/33205
Citazioni
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 5
Social impact