The advent of the power MOSFET ranks as one of the most significant developments in power electronics in recent years. While the vertical devices which appeared in the late seventies looked set to find an important place in the market, particularly in the area of high-frequency power conversion, the overall dominance of the power bipolar transistor did not seem seriously threatened. However, when the more easily manufacturable vertical DMOS devices appeared in volume in 1978, the scene was set for a revolution. The power MOSFET rapidly achieved a reputation for being forgiving and easy to design with, but universal acceptance was delayed by its relatively high cost. The automotive electronics operating from car battery experiences transient voltages such as cold-cranking and load dump which can range from 4.5V to >30V. In addition, the new technologies such as start-stop, increase the frequency of such transients and operational requirements of electronic devices. This requires o-battery power ICs to withstand harsh operating conditions and reliably provide power to the whole vehicle. As an example, the air condition, front/back car lights are supposed to keep their functionality during start-stop induced cranking conditions. This requirement can be efficiently and reliably fulfilled from DC-DC converters. The automotive industry is rapidly switching from filament lamps to new systems (LED) for front/back lighting as they perform better in terms of energy efficiency than the conventional ones. However, due to the electrical characteristics of these systems present in a car cannot be powered directly from the automotive battery. They require specialized driving circuits which can respond to the changing needs of the loads as their electrical properties change while maintaining the uniform current. DC-DC converters other the easiest way to power such the load with a constant current. As result Buck, Boost, Buck-Boost DC-DC converters for automotive applications are of great interest for the automotive industry. In particular, not addressed so far are monolithic solutions in Smart Power technologies. Smart Power technologies allow integrating power transistor, control logic and diagnostic on a single chip (SOC – System On Chip). Because high yield requirements they involve only highly mature, well-experienced processing steps. Because of low-cost requirements, a reduced mask sequence is used, leading normally to two interconnecting levels (polysilicon and metal). In this thesis, it has been designed a DC-DC converter for automotive applications. The first chapter of this document is aimed to serve as an introduction to the reader for all the work descriptions along with the report. We need a high voltage technology to design an integrated DC-DC converter. Here, I will use smart power technology, this technology permits to create high side power switch with low resistance.

L'avvento del MOSFET di potenza è uno degli sviluppi più significativi nell'elettronica di potenza negli ultimi anni. Mentre i dispositivi verticali apparsi alla fine degli anni settanta sembravano destinati a trovare un posto importante nel mercato, in particolare nell'area della conversione di potenza ad alta frequenza, il predominio generale del transistor bipolare di potenza non sembrava seriamente minacciato. Tuttavia, quando i dispositivi DMOS verticali più facilmente fabbricabili apparvero in volume nel 1978, la scena era pronta per una rivoluzione. Il MOSFET di potenza ha rapidamente raggiunto la reputazione di essere tollerante e facile da progettare, ma l'accettazione universale è stata ritardata dal suo costo relativamente alto. L'elettronica automobilistica che funziona dalla batteria dell'auto subisce tensioni transitorie come l'avviamento a freddo e lo scarico del carico che possono variare da 4,5 V a> 30 V. Inoltre, le nuove tecnologie come start-stop aumentano la frequenza di tali transitori e i requisiti operativi dei dispositivi elettronici. Ciò richiede circuiti integrati di alimentazione o batteria per resistere a condizioni operative difficili e fornire alimentazione affidabile all'intero veicolo. Ad esempio, l'aria condizionata, le luci anteriori / posteriori dell'auto dovrebbero mantenere la loro funzionalità durante le condizioni di avviamento indotte da start-stop. Questo requisito può essere soddisfatto in modo efficiente e affidabile dai convertitori DC-DC. L'industria automobilistica sta rapidamente passando dalle lampade a filamento ai nuovi sistemi (LED) per l'illuminazione anteriore / posteriore in quanto offrono prestazioni migliori in termini di efficienza energetica rispetto a quelli convenzionali. Tuttavia, a causa delle caratteristiche elettriche di questi sistemi presenti in un'auto non può essere alimentato direttamente dalla batteria dell'auto. Richiedono circuiti di pilotaggio specializzati in grado di rispondere alle mutevoli esigenze dei carichi al variare delle loro proprietà elettriche mantenendo la corrente uniforme. I convertitori DC-DC sono il modo più semplice per alimentare tale carico con una corrente costante. Di conseguenza, i convertitori Buck, Boost e Buck-Boost DC-DC per applicazioni automobilistiche sono di grande interesse per l'industria automobilistica. In particolare, non affrontato finora sono soluzioni monolitiche nelle tecnologie Smart Power. Le tecnologie Smart Power consentono di integrare transistor di potenza, logica di controllo e diagnostica su un unico chip (SOC - System On Chip). Poiché i requisiti di resa elevata implicano solo fasi di lavorazione altamente mature e con esperienza. A causa dei requisiti di basso costo, viene utilizzata una sequenza di maschere ridotta, che porta normalmente a due livelli di interconnessione (polisilicio e metallo). In questa tesi è stato progettato un convertitore DC-DC per applicazioni automotive. Il primo capitolo di questo documento ha lo scopo di servire da introduzione al lettore per tutte le descrizioni del lavoro insieme al rapporto. Abbiamo bisogno di una tecnologia ad alta tensione per progettare un convertitore DC-DC integrato. Qui, userò la tecnologia smart power, questa tecnologia permette di creare interruttori di potenza high side con bassa resistenza.

(2021). DC-DC Buck Converter For Automotive Applications. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2021).

DC-DC Buck Converter For Automotive Applications

DI LORENZO, ROBERTO
2021

Abstract

The advent of the power MOSFET ranks as one of the most significant developments in power electronics in recent years. While the vertical devices which appeared in the late seventies looked set to find an important place in the market, particularly in the area of high-frequency power conversion, the overall dominance of the power bipolar transistor did not seem seriously threatened. However, when the more easily manufacturable vertical DMOS devices appeared in volume in 1978, the scene was set for a revolution. The power MOSFET rapidly achieved a reputation for being forgiving and easy to design with, but universal acceptance was delayed by its relatively high cost. The automotive electronics operating from car battery experiences transient voltages such as cold-cranking and load dump which can range from 4.5V to >30V. In addition, the new technologies such as start-stop, increase the frequency of such transients and operational requirements of electronic devices. This requires o-battery power ICs to withstand harsh operating conditions and reliably provide power to the whole vehicle. As an example, the air condition, front/back car lights are supposed to keep their functionality during start-stop induced cranking conditions. This requirement can be efficiently and reliably fulfilled from DC-DC converters. The automotive industry is rapidly switching from filament lamps to new systems (LED) for front/back lighting as they perform better in terms of energy efficiency than the conventional ones. However, due to the electrical characteristics of these systems present in a car cannot be powered directly from the automotive battery. They require specialized driving circuits which can respond to the changing needs of the loads as their electrical properties change while maintaining the uniform current. DC-DC converters other the easiest way to power such the load with a constant current. As result Buck, Boost, Buck-Boost DC-DC converters for automotive applications are of great interest for the automotive industry. In particular, not addressed so far are monolithic solutions in Smart Power technologies. Smart Power technologies allow integrating power transistor, control logic and diagnostic on a single chip (SOC – System On Chip). Because high yield requirements they involve only highly mature, well-experienced processing steps. Because of low-cost requirements, a reduced mask sequence is used, leading normally to two interconnecting levels (polysilicon and metal). In this thesis, it has been designed a DC-DC converter for automotive applications. The first chapter of this document is aimed to serve as an introduction to the reader for all the work descriptions along with the report. We need a high voltage technology to design an integrated DC-DC converter. Here, I will use smart power technology, this technology permits to create high side power switch with low resistance.
BASCHIROTTO, ANDREA
DEL CROCE, PAOLO
DC-DC buck; Gate Driver; Automobilistico; Logica di Controllo; Tempo costante
DC-DC buck; Gate Driver; automotive; control logic; Tempo costante
FIS/04 - FISICA NUCLEARE E SUBNUCLEARE
English
1-feb-2021
FISICA E ASTRONOMIA
33
2019/2020
open
(2021). DC-DC Buck Converter For Automotive Applications. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2021).
File in questo prodotto:
File Dimensione Formato  
phd_unimib_827249.pdf

accesso aperto

Descrizione: Tesi di Di Lorenzo Roberto - 827249
Tipologia di allegato: Doctoral thesis
Dimensione 10.92 MB
Formato Adobe PDF
10.92 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/301996
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact