Direct comparisons of microbial fuel cells based on maximum power densities are hindered by different reactor and electrode sizes, solution conductivities, and materials. We propose an alternative method here, the electrode potential slope (EPS) analysis, to enable quantitative comparisons based on anode and cathode area-based resistances and operating potentials. Using EPS analysis, the brush anode resistance (RAn = 10.6 ± 0.5 mΩ m2) was shown to be 28% lower than the resistance of a 70% porosity diffusion layer (70% DL) cathode (RCat = 14.8 ± 0.9 mΩ m2) and 24% lower than the solution resistance (RΩ = 14 mΩ m2) (acetate in a 50 mM phosphate buffer solution). Using a less porous cathode (30% DL) did not impact the cathode resistance but did reduce the cathode performance due to a lower operating potential. With low-conductivity domestic wastewater (RΩ = 87 mΩ m2), both electrodes had higher resistances [RAn = 75 ± 9 mΩ m2, and RCat = 54 ± 7 mΩ m2 (70% DL)]. Our analysis of the literature using EPS analysis shows how electrode resistances can easily be quantified to compare system performance when the electrode distances are changed or the sizes of the electrodes are different.

Rossi, R., Cario, B., Santoro, C., Yang, W., Saikaly, P., Logan, B. (2019). Evaluation of electrode and solution area-based resistances enables quantitative comparisons of factors impacting microbial fuel cell performance. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 53(7), 3977-3986 [10.1021/acs.est.8b06004].

Evaluation of electrode and solution area-based resistances enables quantitative comparisons of factors impacting microbial fuel cell performance

Santoro C;
2019

Abstract

Direct comparisons of microbial fuel cells based on maximum power densities are hindered by different reactor and electrode sizes, solution conductivities, and materials. We propose an alternative method here, the electrode potential slope (EPS) analysis, to enable quantitative comparisons based on anode and cathode area-based resistances and operating potentials. Using EPS analysis, the brush anode resistance (RAn = 10.6 ± 0.5 mΩ m2) was shown to be 28% lower than the resistance of a 70% porosity diffusion layer (70% DL) cathode (RCat = 14.8 ± 0.9 mΩ m2) and 24% lower than the solution resistance (RΩ = 14 mΩ m2) (acetate in a 50 mM phosphate buffer solution). Using a less porous cathode (30% DL) did not impact the cathode resistance but did reduce the cathode performance due to a lower operating potential. With low-conductivity domestic wastewater (RΩ = 87 mΩ m2), both electrodes had higher resistances [RAn = 75 ± 9 mΩ m2, and RCat = 54 ± 7 mΩ m2 (70% DL)]. Our analysis of the literature using EPS analysis shows how electrode resistances can easily be quantified to compare system performance when the electrode distances are changed or the sizes of the electrodes are different.
Articolo in rivista - Articolo scientifico
microbial fuel cell, electrochemistry, performance, polarization curves;
English
27-feb-2019
2019
53
7
3977
3986
open
Rossi, R., Cario, B., Santoro, C., Yang, W., Saikaly, P., Logan, B. (2019). Evaluation of electrode and solution area-based resistances enables quantitative comparisons of factors impacting microbial fuel cell performance. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 53(7), 3977-3986 [10.1021/acs.est.8b06004].
File in questo prodotto:
File Dimensione Formato  
ES&T published.pdf

accesso aperto

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 1.43 MB
Formato Adobe PDF
1.43 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/301210
Citazioni
  • Scopus 79
  • ???jsp.display-item.citation.isi??? 73
Social impact