Interfacing topological insulators (TI) with ferromagnetic (FM) layers is a promising route towards the next generation of ultra-low power spintronic devices based on charge-to-spin current conversion. Here, we present the Fe/Sb2Te3 interface structure, its chemical composition and magnetic properties. Thin films (30 nm) of the topological insulator Sb2Te3 were synthesized by Metal Organic Chemical Vapor Deposition (MOCVD) at room temperature on Si/SiO2 substrates, then capped with a 54Fe(10 nm)/57Fe(1 nm) bilayer by Pulsed Laser Deposition (PLD) to allow interface-sensitive Conversion Electron Mössbauer Spectroscopy (CEMS). X-ray diffraction (XRD) showed the polycrystalline nature of both the Fe and Sb2Te3 layers. X-ray reflectivity (XRR) identified a non-trivial layered structure with the presence of an intermixed layer at the Fe/Sb2Te3 interface. Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) confirmed the partial elemental interdiffusion between the Fe and Sb2Te3 layers. Interface-sensitive CEMS evidenced that about a half of the 1-nm-thick 57Fe layer in contact with Sb2Te3 coordinates ferromagnetically, whereas the remaining paramagnetic fraction preferentially bonds with Te. The Fe/Sb2Te3 system was shown to have a far from sharp interface, exhibiting a marked chemical reactivity already at room temperature. The tendency of Fe to preferentially bond with the chalcogenide element of topological insulators has been previously observed for the interface with Bi2Se3 and Bi2Te3, thus suggesting a possible universal behavior at the interface between Fe and chalcogenide-based TI.

Longo, E., Wiemer, C., Cecchini, R., Longo, M., Lamperti, A., Khanas, A., et al. (2019). Chemical, structural and magnetic properties of the Fe/Sb2Te3 interface. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 474, 632-636 [10.1016/j.jmmm.2018.12.009].

Chemical, structural and magnetic properties of the Fe/Sb2Te3 interface

Longo, E.
;
Fanciulli, M.
Penultimo
Membro del Collaboration Group
;
2019

Abstract

Interfacing topological insulators (TI) with ferromagnetic (FM) layers is a promising route towards the next generation of ultra-low power spintronic devices based on charge-to-spin current conversion. Here, we present the Fe/Sb2Te3 interface structure, its chemical composition and magnetic properties. Thin films (30 nm) of the topological insulator Sb2Te3 were synthesized by Metal Organic Chemical Vapor Deposition (MOCVD) at room temperature on Si/SiO2 substrates, then capped with a 54Fe(10 nm)/57Fe(1 nm) bilayer by Pulsed Laser Deposition (PLD) to allow interface-sensitive Conversion Electron Mössbauer Spectroscopy (CEMS). X-ray diffraction (XRD) showed the polycrystalline nature of both the Fe and Sb2Te3 layers. X-ray reflectivity (XRR) identified a non-trivial layered structure with the presence of an intermixed layer at the Fe/Sb2Te3 interface. Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) confirmed the partial elemental interdiffusion between the Fe and Sb2Te3 layers. Interface-sensitive CEMS evidenced that about a half of the 1-nm-thick 57Fe layer in contact with Sb2Te3 coordinates ferromagnetically, whereas the remaining paramagnetic fraction preferentially bonds with Te. The Fe/Sb2Te3 system was shown to have a far from sharp interface, exhibiting a marked chemical reactivity already at room temperature. The tendency of Fe to preferentially bond with the chalcogenide element of topological insulators has been previously observed for the interface with Bi2Se3 and Bi2Te3, thus suggesting a possible universal behavior at the interface between Fe and chalcogenide-based TI.
Articolo in rivista - Articolo scientifico
Interface; Mössbauer Spectroscopy; Spintronics; Topological insulators; X-ray reflectivity;
Ferromagnetisms, Topological insulators, Interfaces
English
2019
474
632
636
none
Longo, E., Wiemer, C., Cecchini, R., Longo, M., Lamperti, A., Khanas, A., et al. (2019). Chemical, structural and magnetic properties of the Fe/Sb2Te3 interface. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 474, 632-636 [10.1016/j.jmmm.2018.12.009].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/263706
Citazioni
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 12
Social impact