This paper reports on the development of a technology involving 100Mo -enriched scintillating bolometers, compatible with the goals of CUPID, a proposed next-generation bolometric experiment to search for neutrinoless double-beta decay. Large mass (∼1kg), high optical quality, radiopure 100Mo -containing zinc and lithium molybdate crystals have been produced and used to develop high performance single detector modules based on 0.2–0.4 kg scintillating bolometers. In particular, the energy resolution of the lithium molybdate detectors near the Q-value of the double-beta transition of 100Mo (3034 keV) is 4–6 keV FWHM. The rejection of the α-induced dominant background above 2.6 MeV is better than 8 σ. Less than 10μBq/kg activity of 232Th(228Th) and 226Ra in the crystals is ensured by boule recrystallization. The potential of 100Mo -enriched scintillating bolometers to perform high sensitivity double-beta decay searches has been demonstrated with only 10kg×d exposure: the two neutrino double-beta decay half-life of 100Mo has been measured with the up-to-date highest accuracy as T1 / 2 = [6.90 ± 0.15(stat.) ± 0.37(syst.)] ×1018years. Both crystallization and detector technologies favor lithium molybdate, which has been selected for the ongoing construction of the CUPID-0/Mo demonstrator, containing several kg of 100Mo.

Armengaud, E., Augier, C., Barabash, A., Beeman, J., Bekker, T., Bellini, F., et al. (2017). Development of 100Mo -containing scintillating bolometers for a high-sensitivity neutrinoless double-beta decay search. THE EUROPEAN PHYSICAL JOURNAL. C, PARTICLES AND FIELDS, 77(11) [10.1140/epjc/s10052-017-5343-2].

Development of 100Mo -containing scintillating bolometers for a high-sensitivity neutrinoless double-beta decay search

Capelli, S.;Gironi, L.;Nones, C.;Pagnanini, L.;Pattavina, L.;Pavan, M.;Pessina, G.;
2017

Abstract

This paper reports on the development of a technology involving 100Mo -enriched scintillating bolometers, compatible with the goals of CUPID, a proposed next-generation bolometric experiment to search for neutrinoless double-beta decay. Large mass (∼1kg), high optical quality, radiopure 100Mo -containing zinc and lithium molybdate crystals have been produced and used to develop high performance single detector modules based on 0.2–0.4 kg scintillating bolometers. In particular, the energy resolution of the lithium molybdate detectors near the Q-value of the double-beta transition of 100Mo (3034 keV) is 4–6 keV FWHM. The rejection of the α-induced dominant background above 2.6 MeV is better than 8 σ. Less than 10μBq/kg activity of 232Th(228Th) and 226Ra in the crystals is ensured by boule recrystallization. The potential of 100Mo -enriched scintillating bolometers to perform high sensitivity double-beta decay searches has been demonstrated with only 10kg×d exposure: the two neutrino double-beta decay half-life of 100Mo has been measured with the up-to-date highest accuracy as T1 / 2 = [6.90 ± 0.15(stat.) ± 0.37(syst.)] ×1018years. Both crystallization and detector technologies favor lithium molybdate, which has been selected for the ongoing construction of the CUPID-0/Mo demonstrator, containing several kg of 100Mo.
Articolo in rivista - Articolo scientifico
Physics and Astronomy
English
2017
77
11
785
partially_open
Armengaud, E., Augier, C., Barabash, A., Beeman, J., Bekker, T., Bellini, F., et al. (2017). Development of 100Mo -containing scintillating bolometers for a high-sensitivity neutrinoless double-beta decay search. THE EUROPEAN PHYSICAL JOURNAL. C, PARTICLES AND FIELDS, 77(11) [10.1140/epjc/s10052-017-5343-2].
File in questo prodotto:
File Dimensione Formato  
10281-184639.pdf

accesso aperto

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 2.48 MB
Formato Adobe PDF
2.48 MB Adobe PDF Visualizza/Apri
Development-of-Mo-containing-scintillating-bolometers-for-a-highsensitivity-neutrinoless-doublebeta-decay-search2017European-Physical-Journal-COpen-Access.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 2.48 MB
Formato Adobe PDF
2.48 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/184639
Citazioni
  • Scopus 102
  • ???jsp.display-item.citation.isi??? 104
Social impact