A complex network of surveillance mechanisms, called checkpoints, interrupts cell cycle progression when damage to the genome is detected or when cells fail to complete DNA replication, thus ensuring genetic integrity. In budding yeast, components of the DNA damage checkpoint regulatory network include the RAD9, RAD17, RAD24, MEC3, DDC1, RAD53, and MEC1 genes that are proposed to be involved in different aspects of DNA metabolism. We provide evidence that some DNA damage checkpoint components play a role in maintaining telomere integrity. In fact, rad53 mutants specifically enhance repression of telomere-proximal transcription via the Sir-mediated pathway, suggesting that Rad53 might be required for proper chromatin structure at telomeres. Moreover, Rad53, Mec1, Ddc1, and Rad17 are necessary for telomere length maintenance, since mutations in all of these genes cause a decrease in telomere size. The telomeric shortening in rad53 and mec1 mutants is further enhanced in the absence of SIR genes, suggesting that Rad53/Mec1 and Sir proteins contribute to chromosome end protection by different pathways. The finding that telomere shortening, but not increased telomeric repression of gene expression in rad53 mutants, can be suppressed by increasing dNTP synthetic capacity in these strains suggests that transcriptional silencing and telomere integrity involve separable functions of Rad53.

Longhese, M., Paciotti, V., Neecke, H., Lucchini, G. (2000). Checkpoint proteins influence telomeric silencing and length maintenance in budding yeast. GENETICS, 155(4), 1577-1591.

Checkpoint proteins influence telomeric silencing and length maintenance in budding yeast.

Longhese, MP;Lucchini, G.
2000

Abstract

A complex network of surveillance mechanisms, called checkpoints, interrupts cell cycle progression when damage to the genome is detected or when cells fail to complete DNA replication, thus ensuring genetic integrity. In budding yeast, components of the DNA damage checkpoint regulatory network include the RAD9, RAD17, RAD24, MEC3, DDC1, RAD53, and MEC1 genes that are proposed to be involved in different aspects of DNA metabolism. We provide evidence that some DNA damage checkpoint components play a role in maintaining telomere integrity. In fact, rad53 mutants specifically enhance repression of telomere-proximal transcription via the Sir-mediated pathway, suggesting that Rad53 might be required for proper chromatin structure at telomeres. Moreover, Rad53, Mec1, Ddc1, and Rad17 are necessary for telomere length maintenance, since mutations in all of these genes cause a decrease in telomere size. The telomeric shortening in rad53 and mec1 mutants is further enhanced in the absence of SIR genes, suggesting that Rad53/Mec1 and Sir proteins contribute to chromosome end protection by different pathways. The finding that telomere shortening, but not increased telomeric repression of gene expression in rad53 mutants, can be suppressed by increasing dNTP synthetic capacity in these strains suggests that transcriptional silencing and telomere integrity involve separable functions of Rad53.
Articolo in rivista - Articolo scientifico
Telomeres; checkpoints; S. cerevisiae
English
2000
155
4
1577
1591
none
Longhese, M., Paciotti, V., Neecke, H., Lucchini, G. (2000). Checkpoint proteins influence telomeric silencing and length maintenance in budding yeast. GENETICS, 155(4), 1577-1591.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/1833
Citazioni
  • Scopus 63
  • ???jsp.display-item.citation.isi??? 64
Social impact