A first principles study on the stability and structural and electronic properties of two-dimensional silicon allotropes on a semiconducting layered metal-chalcogenide compound, namely SnS2, is performed. The interactions between the two-dimensional silicon layer, commonly known as silicene, and the layered SnS2 template are investigated by analyzing different configurations of silicene. The calculated thermodynamic phase diagram suggests that the most stable configuration of silicene on SnS2 belongs to a family of structures with Si atoms placed on three different planes; so-called dumbbell silicene. This particular dumbbell silicene structure preserves its atomic configuration on SnS2 even at a temperature of 500 K or as a â flakeâ layer (i.e., a silicene cluster terminated by H atoms), thanks to the weak interactions between the silicene and the SnS2 layers. Remarkably, an electric field can be used to tune the band gap of the silicene layer on SnS2, eventually changing its electronic behavior from semiconducting to (semi)metallic. The stability of silicene on SnS2 is very promising for the integration of silicene onto semiconducting or insulating substrates. The tunable electronic behavior of the silicene/SnS2 van der Walls heterostructure is very important not only for its use in future nanoelectronic devices, but also as a successful approach to engineering the bang-gap of layered SnS2, paving the way for the use of this layered compound in energy harvesting applications. [Figure not available: see fulltext.]

Scalise, E., Houssa, M. (2017). Predicting 2D silicon allotropes on SnS2. NANO RESEARCH, 10(5), 1697-1709 [10.1007/s12274-016-1409-y].

Predicting 2D silicon allotropes on SnS2

Scalise, E
;
2017

Abstract

A first principles study on the stability and structural and electronic properties of two-dimensional silicon allotropes on a semiconducting layered metal-chalcogenide compound, namely SnS2, is performed. The interactions between the two-dimensional silicon layer, commonly known as silicene, and the layered SnS2 template are investigated by analyzing different configurations of silicene. The calculated thermodynamic phase diagram suggests that the most stable configuration of silicene on SnS2 belongs to a family of structures with Si atoms placed on three different planes; so-called dumbbell silicene. This particular dumbbell silicene structure preserves its atomic configuration on SnS2 even at a temperature of 500 K or as a â flakeâ layer (i.e., a silicene cluster terminated by H atoms), thanks to the weak interactions between the silicene and the SnS2 layers. Remarkably, an electric field can be used to tune the band gap of the silicene layer on SnS2, eventually changing its electronic behavior from semiconducting to (semi)metallic. The stability of silicene on SnS2 is very promising for the integration of silicene onto semiconducting or insulating substrates. The tunable electronic behavior of the silicene/SnS2 van der Walls heterostructure is very important not only for its use in future nanoelectronic devices, but also as a successful approach to engineering the bang-gap of layered SnS2, paving the way for the use of this layered compound in energy harvesting applications. [Figure not available: see fulltext.]
Articolo in rivista - Articolo scientifico
chalcogenide; dumbbell; silicene; tin sulfide; van der Waals (vdW) heterostructure; Materials Science (all); Electrical and Electronic Engineering
English
2017
10
5
1697
1709
reserved
Scalise, E., Houssa, M. (2017). Predicting 2D silicon allotropes on SnS2. NANO RESEARCH, 10(5), 1697-1709 [10.1007/s12274-016-1409-y].
File in questo prodotto:
File Dimensione Formato  
Scalise-2017-Nano Research-VoR.pdf

Solo gestori archivio

Descrizione: Research Article
Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 2.35 MB
Formato Adobe PDF
2.35 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/181828
Citazioni
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 15
Social impact