To determine the respective roles of insulin and glucagon for hepatic glycogen synthesis and turnover, hyperglycemic clamps were performed with somatostatin [0.1 μg/(kg · min)] in healthy young men under conditions of: (I) basal (fasting) portal vein insulinemia-hypoglucagonemia, (II) basal portal vein insulinemia-basal glucagonemia, and (III) basal peripheral insulinemia-hypoglucagonemia. Synthetic rates, pathway (direct versus indirect) contributions, and percent turnover of hepatic glycogen were assessed by in vivo 13C nuclear magnetic resonance spectroscopy during [I- 13C]glucose infusion followed by a natural abundance glucose chase in conjunction with acetaminophen to noninvasively sample the hepatic UDP- glucose pool. In the presence of hyperglycemia (10.4±0.1 mM) and basal portal vein insulinemia (192±6 pM), suppression of glucagon secretion (plasma glucagon, I: 31 ± 4, II: 63 ± 8 pg/ml) doubled the hepatic accumulation of glycogen (V(syn)) compared with conditions of basal glucagonemia [I: 0.40±0.06, II: 0.19±0.03 mmol/(liter · min); P < 0.0025]. Glycogen turnover was markedly reduced (I: 19±7%, II: 69±12%; P < 0.005), so that net rate of glycogen synthesis increased approximately fivefold (P < 0.001) by inhibition of glucagon secretion. The relative contribution of gluconeogenesis (indirect pathway) to glycogen synthesis was lower during hypoglucagonemia (42±6%) than during basal glucagonemia (54±5%; P < 0.005). Under conditions of basal peripheral insulinemia (54±2 pM) and hypoglucagonemia (III) there was negligible hepatic glycogen synthesis and turnover. In conclusion, small changes in portal vein concentrations of insulin and glucagon independently affect hepatic glycogen synthesis and turnover. Inhibition of glucagon secretion under conditions of hyperglycemia and basal concentrations of insulin results in: (a) twofold increase in rate of hepatic glycogen synthesis, (b) reduction of glycogen turnover by ~ 73%, and (c) augmented percent contribution of the direct pathway to glycogen synthesis compared with conditions of basal glucagonemia

Roden, M., Perseghin, G., Petersen, K., Hwang, J., Cline, G., Gerow, K., et al. (1996). The roles of insulin and glucagon in the regulation of hepatic glycogen synthesis and turnover in humans. THE JOURNAL OF CLINICAL INVESTIGATION, 97(3), 642-648 [10.1172/JCI118460].

The roles of insulin and glucagon in the regulation of hepatic glycogen synthesis and turnover in humans

PERSEGHIN, GIANLUCA
Secondo
;
1996

Abstract

To determine the respective roles of insulin and glucagon for hepatic glycogen synthesis and turnover, hyperglycemic clamps were performed with somatostatin [0.1 μg/(kg · min)] in healthy young men under conditions of: (I) basal (fasting) portal vein insulinemia-hypoglucagonemia, (II) basal portal vein insulinemia-basal glucagonemia, and (III) basal peripheral insulinemia-hypoglucagonemia. Synthetic rates, pathway (direct versus indirect) contributions, and percent turnover of hepatic glycogen were assessed by in vivo 13C nuclear magnetic resonance spectroscopy during [I- 13C]glucose infusion followed by a natural abundance glucose chase in conjunction with acetaminophen to noninvasively sample the hepatic UDP- glucose pool. In the presence of hyperglycemia (10.4±0.1 mM) and basal portal vein insulinemia (192±6 pM), suppression of glucagon secretion (plasma glucagon, I: 31 ± 4, II: 63 ± 8 pg/ml) doubled the hepatic accumulation of glycogen (V(syn)) compared with conditions of basal glucagonemia [I: 0.40±0.06, II: 0.19±0.03 mmol/(liter · min); P < 0.0025]. Glycogen turnover was markedly reduced (I: 19±7%, II: 69±12%; P < 0.005), so that net rate of glycogen synthesis increased approximately fivefold (P < 0.001) by inhibition of glucagon secretion. The relative contribution of gluconeogenesis (indirect pathway) to glycogen synthesis was lower during hypoglucagonemia (42±6%) than during basal glucagonemia (54±5%; P < 0.005). Under conditions of basal peripheral insulinemia (54±2 pM) and hypoglucagonemia (III) there was negligible hepatic glycogen synthesis and turnover. In conclusion, small changes in portal vein concentrations of insulin and glucagon independently affect hepatic glycogen synthesis and turnover. Inhibition of glucagon secretion under conditions of hyperglycemia and basal concentrations of insulin results in: (a) twofold increase in rate of hepatic glycogen synthesis, (b) reduction of glycogen turnover by ~ 73%, and (c) augmented percent contribution of the direct pathway to glycogen synthesis compared with conditions of basal glucagonemia
Articolo in rivista - Articolo scientifico
13C NMR spectroscopy; acetaminophen; glucoacogenesis; somatostatin; Medicine (all)
English
1996
97
3
642
648
reserved
Roden, M., Perseghin, G., Petersen, K., Hwang, J., Cline, G., Gerow, K., et al. (1996). The roles of insulin and glucagon in the regulation of hepatic glycogen synthesis and turnover in humans. THE JOURNAL OF CLINICAL INVESTIGATION, 97(3), 642-648 [10.1172/JCI118460].
File in questo prodotto:
File Dimensione Formato  
JCI-Roden-96.pdf

Solo gestori archivio

Dimensione 212.52 kB
Formato Adobe PDF
212.52 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/165532
Citazioni
  • Scopus 139
  • ???jsp.display-item.citation.isi??? 128
Social impact