SHP-2 is a protein tyrosine phosphatase functioning as signal transducer downstream to growth factor and cytokine receptors. SHP-2 is required during development, and germline mutations in PTPN11, the gene encoding SHP-2, cause Noonan syndrome. SHP-2 plays a crucial role in hematopoietic cell development. We recently demonstrated that somatic PTPN11 mutations are the most frequent lesion in juvenile myelomonocytic leukemia and are observed in a smaller percentage of children with other myeloid malignancies. Here, we report that PTPN11 lesions occur in childhood acute lymphoblastic leukemia (ALL). Mutations were observed in 23 of 317 B-cell precursor ALL cases, but not among 44 children with T-lineage ALL. In the former, lesions prevalently occurred in TEL-AML1(-) cases with CD19(+)/CD10(+)/cyIgM(-) immunophenotype. PTPN11, NRAS, and KRAS2 mutations were largely mutually exclusive and accounted for one third of common ALL cases. We also show that, among 69 children with acute myeloid leukemia, PTPN11 mutations occurred in 4 of 12 cases with acute monocytic leukemia (FAB-M5). Leukemia-associated PTPN11 mutations were missense and were predicted to result in SHP-2 gain-of-function. Our findings provide evidence for a wider role of PTPN11 lesions in leukemogenesis, but also suggest a lineage-related and differentiation stage-related contribution of these lesions to clonal expansion.

Tartaglia, M., Martinelli, S., Cazzaniga, G., Cordeddu, V., Iavarone, I., Spinelli, M., et al. (2004). Genetic evidence for lineage-related and differentiation stage-related contribution of somatic PTPN11 mutations to leukemogenesis in childhood acute leukemia. BLOOD, 104(2), 307-313 [10.1182/blood-2003-11-3876].

Genetic evidence for lineage-related and differentiation stage-related contribution of somatic PTPN11 mutations to leukemogenesis in childhood acute leukemia

Cazzaniga, G;PALMI, CHIARA;MASERA, GIUSEPPE;BIONDI, ANDREA
2004

Abstract

SHP-2 is a protein tyrosine phosphatase functioning as signal transducer downstream to growth factor and cytokine receptors. SHP-2 is required during development, and germline mutations in PTPN11, the gene encoding SHP-2, cause Noonan syndrome. SHP-2 plays a crucial role in hematopoietic cell development. We recently demonstrated that somatic PTPN11 mutations are the most frequent lesion in juvenile myelomonocytic leukemia and are observed in a smaller percentage of children with other myeloid malignancies. Here, we report that PTPN11 lesions occur in childhood acute lymphoblastic leukemia (ALL). Mutations were observed in 23 of 317 B-cell precursor ALL cases, but not among 44 children with T-lineage ALL. In the former, lesions prevalently occurred in TEL-AML1(-) cases with CD19(+)/CD10(+)/cyIgM(-) immunophenotype. PTPN11, NRAS, and KRAS2 mutations were largely mutually exclusive and accounted for one third of common ALL cases. We also show that, among 69 children with acute myeloid leukemia, PTPN11 mutations occurred in 4 of 12 cases with acute monocytic leukemia (FAB-M5). Leukemia-associated PTPN11 mutations were missense and were predicted to result in SHP-2 gain-of-function. Our findings provide evidence for a wider role of PTPN11 lesions in leukemogenesis, but also suggest a lineage-related and differentiation stage-related contribution of these lesions to clonal expansion.
Articolo in rivista - Articolo scientifico
Leukemia, Monocytic, Acute; Adolescent; Protein Tyrosine Phosphatases; Germ-Line Mutation; Cell Lineage; Humans; Precursor Cell Lymphoblastic Leukemia-Lymphoma; Prevalence; Cohort Studies; Intracellular Signaling Peptides and Proteins; Signal Transduction; Cell Differentiation; Protein Tyrosine Phosphatase, Non-Receptor Type 11; Child; ras Proteins
English
15-lug-2004
104
2
307
313
none
Tartaglia, M., Martinelli, S., Cazzaniga, G., Cordeddu, V., Iavarone, I., Spinelli, M., et al. (2004). Genetic evidence for lineage-related and differentiation stage-related contribution of somatic PTPN11 mutations to leukemogenesis in childhood acute leukemia. BLOOD, 104(2), 307-313 [10.1182/blood-2003-11-3876].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/14100
Citazioni
  • Scopus 241
  • ???jsp.display-item.citation.isi??? 226
Social impact