Point defects in the host lattice of a scintillator material can trap carriers, slowing down their migration or even preventing their transfer to luminescent centers. Such competition schemes between defects and luminescent centers may explain also the hysteresis effect, which consists of a progressive enhancement of scintillation efficiency with accumulated dose. We propose a comparison between the scintillation hysteresis effect of Yb-doped sol-gel silica glasses in bulk and fiber forms, and we correlate them with traps monitored by wavelength-resolved thermally stimulated luminescence in both materials. The results demonstrate that the fiber-drawing process is responsible for modifications of the defectiveness of the glass network, with a change of the local distribution of the traps surrounding the luminescent center. The consequence of such modifications is the removal, in the fiber samples, of the thermally stimulated luminescence peak ascribed to traps closer to Yb ions and unstable at room temperature. We highlight that suitable postdensification thermal treatments can significantly modify the concentration and spatial distribution of defects around a luminescent center and can therefore be used as a tool for the engineering of scintillating glasses.

Veronese, I., De Mattia, C., Fasoli, M., Chiodini, N., Cantone, M., Moretti, F., et al. (2015). Role of Optical Fiber Drawing in Radioluminescence Hysteresis of Yb-Doped Silica. JOURNAL OF PHYSICAL CHEMISTRY. C, 119(27), 15572-15578 [10.1021/acs.jpcc.5b04987].

Role of Optical Fiber Drawing in Radioluminescence Hysteresis of Yb-Doped Silica

FASOLI, MAURO;CHIODINI, NORBERTO;MORETTI, FEDERICO;VEDDA, ANNA GRAZIELLA
Ultimo
2015

Abstract

Point defects in the host lattice of a scintillator material can trap carriers, slowing down their migration or even preventing their transfer to luminescent centers. Such competition schemes between defects and luminescent centers may explain also the hysteresis effect, which consists of a progressive enhancement of scintillation efficiency with accumulated dose. We propose a comparison between the scintillation hysteresis effect of Yb-doped sol-gel silica glasses in bulk and fiber forms, and we correlate them with traps monitored by wavelength-resolved thermally stimulated luminescence in both materials. The results demonstrate that the fiber-drawing process is responsible for modifications of the defectiveness of the glass network, with a change of the local distribution of the traps surrounding the luminescent center. The consequence of such modifications is the removal, in the fiber samples, of the thermally stimulated luminescence peak ascribed to traps closer to Yb ions and unstable at room temperature. We highlight that suitable postdensification thermal treatments can significantly modify the concentration and spatial distribution of defects around a luminescent center and can therefore be used as a tool for the engineering of scintillating glasses.
Articolo in rivista - Articolo scientifico
Defects; Fibers; Glass; Hysteresis; Optical fibers; Point defects; Scintillation; Silica; Sol-gels; Thermoluminescence; Ytterbium; Fiber-drawing process; Optical fiber drawing; Progressive enhancement; Scintillating glass; Scintillation efficiency; Scintillator materials; Sol-gel silica glass; Thermally stimulated luminescence; Luminescence
English
2015
119
27
15572
15578
reserved
Veronese, I., De Mattia, C., Fasoli, M., Chiodini, N., Cantone, M., Moretti, F., et al. (2015). Role of Optical Fiber Drawing in Radioluminescence Hysteresis of Yb-Doped Silica. JOURNAL OF PHYSICAL CHEMISTRY. C, 119(27), 15572-15578 [10.1021/acs.jpcc.5b04987].
File in questo prodotto:
File Dimensione Formato  
acs.jpcc.5b04987.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 1.12 MB
Formato Adobe PDF
1.12 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/111727
Citazioni
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 14
Social impact