In the search of new drug delivery carriers for the brain, self-assembled nanoparticles (NP) were prepared from poly(N,N-dimethylacrylamide)-block-polystyrene polymer. NP displayed biocompatibility on cultured endothelial cells, macrophages and differentiated SH-SY5Y neuronal-like cells. The surface-functionalization of NP with a modified fragment of human Apolipoprotein E (mApoE) enhanced the uptake of NP by cultured human brain capillary endothelial cells, as assessed by confocal microscopy, and their permeability through a Transwell Blood Brain Barrier model made with the same cells, as assessed by fluorescence. Finally, mApoE-NP embedding doxorubicin displayed an enhanced release of drug at low pH, suggesting the potential use of these NP for the treatment of brain tumors. In the search of novel drug carriers for brain drug delivery, poly(N,N-dimethylacrylamide)-b-polystyrene nanoparticles (NP) have been functionalized with a modified fragment of Apolipoprotein E (mApoE). These NP show to be uptaken and to overcome a Blood-Brain Barrier (BBB) in vitro cellular model. The cytotoxicity of NP is also investigated on different cell lines, showing high biocompatibility.

Gregori, M., Bertani, D., Cazzaniga, E., Orlando, A., Mauri, M., Bianchi, A., et al. (2015). Investigation of Functionalized Poly(N,N-dimethylacrylamide)-block-polystyrene Nanoparticles As Novel Drug Delivery System to Overcome the Blood-Brain Barrier in Vitro. MACROMOLECULAR BIOSCIENCE, 15(12), 1687-1697 [10.1002/mabi.201500172].

Investigation of Functionalized Poly(N,N-dimethylacrylamide)-block-polystyrene Nanoparticles As Novel Drug Delivery System to Overcome the Blood-Brain Barrier in Vitro

GREGORI, MARIA
;
BERTANI, DANIELA
Secondo
;
CAZZANIGA, EMANUELA;ORLANDO, ANTONINA;MAURI, MICHELE;BIANCHI, ALBERTO;RE, FRANCESCA;SESANA, MARIA SILVIA;MINNITI, STEFANIA;NARDO, LUCA;SALERNO, DOMENICO;MANTEGAZZA, FRANCESCO;MASSERINI, MASSIMO ERNESTO
Penultimo
;
SIMONUTTI, ROBERTO
Ultimo
2015

Abstract

In the search of new drug delivery carriers for the brain, self-assembled nanoparticles (NP) were prepared from poly(N,N-dimethylacrylamide)-block-polystyrene polymer. NP displayed biocompatibility on cultured endothelial cells, macrophages and differentiated SH-SY5Y neuronal-like cells. The surface-functionalization of NP with a modified fragment of human Apolipoprotein E (mApoE) enhanced the uptake of NP by cultured human brain capillary endothelial cells, as assessed by confocal microscopy, and their permeability through a Transwell Blood Brain Barrier model made with the same cells, as assessed by fluorescence. Finally, mApoE-NP embedding doxorubicin displayed an enhanced release of drug at low pH, suggesting the potential use of these NP for the treatment of brain tumors. In the search of novel drug carriers for brain drug delivery, poly(N,N-dimethylacrylamide)-b-polystyrene nanoparticles (NP) have been functionalized with a modified fragment of Apolipoprotein E (mApoE). These NP show to be uptaken and to overcome a Blood-Brain Barrier (BBB) in vitro cellular model. The cytotoxicity of NP is also investigated on different cell lines, showing high biocompatibility.
Articolo in rivista - Articolo scientifico
blood-brain barrier; controlled drug release; copolymers; drug delivery; nanoparticles; Biotechnology; Bioengineering; Biomaterials; Polymers and Plastics; Materials Chemistry2506 Metals and Alloys
English
2015
15
12
1687
1697
none
Gregori, M., Bertani, D., Cazzaniga, E., Orlando, A., Mauri, M., Bianchi, A., et al. (2015). Investigation of Functionalized Poly(N,N-dimethylacrylamide)-block-polystyrene Nanoparticles As Novel Drug Delivery System to Overcome the Blood-Brain Barrier in Vitro. MACROMOLECULAR BIOSCIENCE, 15(12), 1687-1697 [10.1002/mabi.201500172].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/106485
Citazioni
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 23
Social impact