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Abstract

Due to their intrinsic nature, biological entities are universally considered as complex

systems. Over years, many different computational methods pertaining to the Systems

Biology field, have been devised to unravel this complexity. However, when taken alone,

most of times these methods are not able to provide a deep comprehension of struc-

tural, spatial and dynamical aspects of the systems under evaluation. For this reason,

approaches exploiting different levels of analysis are today a hot research topic in differ-

ent areas, such as the theoretical formalization of the method, and the development of

computational tools for the integration of different modeling perspectives.

In the present dissertation I developed a computational pipeline able to perform anal-

yses exploiting, one after the other, the three main modeling frameworks for biological

systems, gaining, from every level, a different type of information: i.e. identification of

flux distributions and metabolic sub-phenotypes from the ensemble evolutionary FBA

(a novel method inspired by Flux Balance Analysis); information on network structural

properties and topological metrics from graph theory approaches; estimation of kinetic

constants for mechanism-based modeling through the definition of an efficient version of

the Particle Swarm Optimizer based on Fuzzy Logic. Moreover, I also redefined a net-

work visualization strategy able to overlay flux values and topological metrics to network

structure.

In order to validate the proposed pipeline I also developed a “core model” of yeast

metabolism from which I identified two ensembles of flux distributions (possible solu-

tions) in agreement with the “Crabtree-positive” and “Crabtree-negative” metabolic

phenotypes. Moreover, by means of a cluster analysis, devised methods were able to

define groups inside each ensemble that I identified as putative “sub-phenotypes”.

Lastly, I contributed to reconstruct four reduced metabolic “core models”, deriving from

the Human Metabolic Atlas, and describing three tissue-specific cancer conditions and a

reference state. From these models a relevant heterogeneity emerged between reference

and cancer conditions in terms of metabolic flux values.
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Chapter 1

Introduction

1.1 Complex Systems

Complexity is a common trait of many systems sorrounding our everyday life, ranging

from biological to physical and sociological domains which exhibit a great variety in

terms of components and relations among elements [1]. Even if we perceive complex

systems under this great variety of forms, it is possible to identify some universal laws

governing them. The study of these laws has been, and still is, the driving force of

many scientific studies devoted to discover all the essential building blocks of modes of

interaction of matter [2].

Intuitively, complexity deals with systems composed of many interconnected elements

giving rise to a dynamical behavior that can not be guessed by the single components

dynamics. Strikingly, in order to acquire a thorough comprehension of the system under

examination it is necessary to understand both the dynamics of the elements (i.e. parts

that can be described in a simple way when analyzing the behavior of the whole system)

and of the system in its entirety [3]. Complex systems are commonly seen as hardly

understandable systems, and this is mainly due to the fact that it is not possible to

understand the whole system without analyzing each single part, and, at the same time,

each part must be investigated in light of the fact that they are in relation to other parts

[2].

Over years many different definitions of complex systems have been proposed in literature

(see [4] for a review) ranging from quantitative and formal descriptions of complexity in

specific domanins to qualitative, but rather unsatisfactory, universal statements.

Among this plethora of definitions, a particularly meaningful one has been proposed

in several works [5–7] by Yaneer Bar-Yam. His definition of complexity rely on the

1
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interdependance between “quantity of information” and scale at which the system is

evaluated. A complex system is a system (physical, biological or social) that involves a

number of elements, arranged in structure(s) which can exist on many scales.

In general all systems, given a constant number of components, can be represented by

one of the profiles illustrated in Figure 1.1 where information is related to scale. Here the

red curve represent random systems (such as the atoms in a gas) where the quantity of

information is high at low scale, but when increasing the scale, this amount decreases at

a fast rate. On the contrary the green curve describes the relation between information

and scale for “coherent” or “ballistic” systems where the information content is not

varying when moving from low to coharse grain scale (a flying cannonball could be a

good example for this kind of system). Finally, the blue curve illustrates the behaviour

for complex systems. In this case the information content is only slightly decreasing

when scaling from fine to coharse, meaning that from each level of detail it is possible

to retrieve knowledge on the structure and the dynamics of the system [5].

Figure 1.1: In this figure complexity profiles are illustrated in terms of scale at which
the system is described and its content of information. Modified from [5].

This graphical representation of complexity underlines the fact that the behavior of

the entire system can be interpreted in different ways depending on the scale at which

it is investigated. According to this vision, complexity can be seen as the amount of

information necessary to describe a system, being careful to integrate this definition

with the evaluation of the level of detail in the description of the system itself.

In the context of complexity, a key concept connected to the behavior of the system is

emergence [8]. This term indicates a property of the system that can not be reduced to

properties belonging to single components of the system itself but that derives from the
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synergistic interaction of parts at systemic level. In some ways, emergent properties can

be seen as being “unpredictable” when evaluating the isolated elements of the system.

Following this definition of emergence, a reductionist approach will fail to capture the

emergence of a property in a complex system. From this consideration it is clear that the

best way to study these kind of systems is by means of an holistic approach investigating

all the different parts in the context of the system as a whole.

It is evident that this new perspective in the study of complexity must be supported by

many different tools pertaining to different scientific domains such as information and

computation theory, Mathematics, applied Computer Science, Statistics, Physics and

Biology. Moreover, due to the fact that complex systems can be found virtually in any

scientific domain [3] and due to the increasing evidence that some of these domains are

overlapping, over last decades it is arising a new discipline devoted to the investigation

of universal principles governing complex systems [2].

In particular, due to the evident consequences on human health and due to the inherent

structure of biological matter, a promising domain of application of studies in complexity

is the investigation of biological systems ranging from population to molecular level [9];

the focus of the present work of thesis.

1.2 Complex Systems in Biology: Systems Biology

The branch of the complexity science applied to the investigation of the structure and

the function of biological organisms is called Systems Biology (or sometimes Complex-

Systems Biology), a research domain characterized by a deep analysis of complex inter-

actions inside and among biological systems represented by networks and based on the

holistic approach for the understanding of biological entities as “systems” [10].

The goal of Systems Biology is the integration of different disciplines, such as Biology,

Chemistry, Computer Science, Mathematics and Physics as well as data that are gener-

ated in these contexts, in order to explain cellular and intercellular processes in terms

of their regulation and dynamics [11].

This approach is declined in examining structure, dynamics and functioning of the sys-

tem at global level, instead of investigating peculiar traits of isolated parts of a cell or

of an organism [12]. This is due to the fact that many properties of “life” emerge only

at system level.

In this context, the word “system” indicates not only an ensemble of components in a

given configuration, but also the description of its emergent properties. The formal and
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detailed description of a system is an essential step in order to acquire a full compre-

hension of its behavior. At the same time, it is of pivotal relevance the possibility to

analyze the reactions of the system when determined stimuli or interferences are applied

to the system itself.

Systems Biology adopts an approach based on the integration of the different biological

knowledge on the analyzed system, and on the comprehension of how molecules interact

in the network of processes giving raise to life. Due to the complexity of interactions

among cellular mechanisms and due to the great number of involved components, it is

impossible to intuitively and deeply understand the behavior of entire cellular networks

[13].

The definition of a model is indeed a fundamental step in order to understand the

process under examination: mathematical models and computer simulations have proven

effective to investigate topology and dynamics of cellular processes (a significant review

can be found in [11]). Moreover, the huge amount of biological data deriving from high-

throughput and the impossibility to understand the system only describing interactions

among molecules, justify the need for a systematic approach in modeling.

Mathematical models are able to represent biochemical systems in a realistic way under

the aspect of their chemical, physical and biological behavior; they are able to integrate

a great variety of empirical observations and generate new useful hypotheses.

Indeed, computational methods have a relevant advantage with respect to the traditional

experimental techniques in biology, in terms of costs, saved time and increased usability.

Furthermore, “experiments” that are not feasible in vivo can be realized in silico [14].

It is possible, for example, simulate knockouts on multiples essential genes and monitor

their collective and individual effect on the cellular physiology. Clearly, these experi-

ments can not be realized in vivo because the cell would not survive. The development

of in silico predictive models give a great opportunity on one hand to control the system

[14], on the other hand also to apply modeling techniques to test hypotheses on those

components of the system that are not fully understood.

Computational analyses performed on biological systems are generally devoted to the

comprehension of the following characteristics:

(1) the structure of systems through the characterization of genes, metabolism, signal

transduction networks and physical structures; (2) system dynamics, i.e. their temporal

evolution described through simulations (for which is essential the knowledge of chemical-

physical parameters); (3) methods to control systems in order to understand the behavior

of the system in response to perturbations; (4) methods to engineer desired properties
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of systems, inducing, for example, the system to carry out features not present in nature

(a discipline named Synthetic Biology).

To realize goals of Systems Biology it is necessary to integrate competencies and infor-

mation deriving from different scientific domains such as: (1) genomics, proteomics and

other molecular biology techniques, (2) computational studies in the domain of simu-

lation, bioinformatic analyses applied to high-throughput and development of software

tools, (3) technologies for wide, systematic and accurate measurements of chemical-

physical parameters. This is undoubtedly a great multidisciplinary effort involving also

a change of perspective in the design of studies in the different disciplines involved.

In order to define a mathematical model, a biological system has to be converted in an

analogous in silico simplified system to facilitate the analysis, previsions, manipulation

and optimization of the real system. The typical approach to build a mathematical

model encompass eight phases (Figure 1.2) that defines a cycle of study [15] (or better

a spiral of study) named hypothesis driven research.

The following workflow can be adopted to develop the model:

1. Data selection: the first phase of the developement requires the identification

and the selection of data useful to assess if modeling goals have been reached.

In this first phase is also essential to define which questions we want to answer

with the study under planning: an efficient modeling process should increase the

global knowledge on the model, allowing to formulate predictions on its functioning

supported by experimental validation.

2. Defining the system structure and regulation through the analysis of scientific

literature on the topic, and when possible, by means of de novo “wet” experiments.

This phase could be particularly intricate due to the fact that the real topology

and regulation mechanisms of biochemical reactions describing the network is not

always clearly definable starting from literature data and additional analyses (if

performed).

3. Definition of assumptions and simplifications: after having collected all the infor-

mation on the biological model, the third phase is devoted to the integration of

this information with admissible assumptions and simplifications to overcome the

possible lack of knowledge on portions of the system. In this phase, interactions

and components to be integrated in the model are also defined. In other words,

during this phase it is necessary to define an adequate abstraction level. This

choice will lead to the definition of models identified either as fine-grained (e.g.,

mechanism-based) or coarse-grained (e.g., interaction-based or constraint-based).
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In Figure 1.3, it is presented an overview of these three main modeling approaches.

This includes a list of features (quantitative vs. qualitative, static vs. dynamic, pa-

rameterized vs. non parameterized, single volume vs. compartmental, well-stirred

vs. heterogeneous, etc.) that can be retrieved in each approach as suggested in

[16]. In literature, mechanism-based approaches are used when dealing with small

scale models (often defined as toy or core models), while interaction-based and

constraint-based approaches, due to the limited need of parameters, are widely

exploited for the analysis of large models (often defined genome-wide models). At

the beginning, modeling is performed through the realization of diagrams where

nodes represent components and links the interactions among them.

4. Selection of a framework for mathematical modeling: the mathematical formalism

to describe the model depends on the questions to be answered with the modeling

and on which methods can be applied to retrieve useful information. This step sees

the conversion of the model from a diagram representation to a formal description

in accordance to the selected mathematical formalism.

Mechanism-based models (right in Figure 1.3) are widely recognized as the most

powerful tool to understand biological processes due to their ability to reconstruct

the dynamics of the system exploiting mainly the numerical integration of systems

of differential equations. Unfortunately the difficulty to retrieve parameters limits

the applicability of this approach for a large class of systems (e.g. genome-wide

metabolic networks).

Interaction-based models (left in Figure 1.3) are characterized by a network rep-

resentation of biological systems and are designed to investigate qualitative and

general properties (sometimes defined as “design principles”), using methods deriv-

ing from the graph theory or the topological analysis. These emerging properties

are intriguingly considered transversal to different organisms [17] and can be seen

as universal in the domain of life. The investigation of topological properties such

as the presence of hubs (highly interconnected components), bottlenecks connect-

ing hubs among them, and modularity can provide relevant information in many

domains such as drug target discovery or sensitivity analysis [18].

Constraint-based modeling framework (center in Figure 1.3) shares features both

with interaction-based and mechanism based approaches. Even if constraint-based

models are not able to predict the dynamics of the system, they are able to deter-

mine biological states (i.e. metabolic fluxes) thanks to the imposition of a pool of

constraints (e.g. stoichiometric constraints ensuring the maintenance of the mass

balance and thermodynamic constraints due to the reversibility of reactions). The

outcome of this approach is often a (single) solution illustrating the flux through

every reaction in the network, the so called “flux distribution”.
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5. Parameter estimation: following the formulation of the model, the fifth phase is

committed to the definition of numerical values for the parameters of the system

(e.g. molecular quantities, reaction constants, flux boundaries, etc.). The identifi-

cation of these values is essential to determine if modeling outcomes are consistent

with experimental observations. If these values are unknown (a quite usual case

in Systems Biology), they should be identified through computational methods for

parameter estimation [19].

6. Model accordance: the behavior of the model should be in accordance with ex-

perimental data, but a contrast with them indicates which further investigations

should be performed. In the latter case it is necessary to identify if the contrast

is generated by wrong hypotheses, simplifications, faulty structure of the model,

inadequate experimental design or other factors not previously considered. The

correctness of the reconstruction is evaluated against a data set used for model

reconstruction in a process called cross-validation.

7. Model diagnostics: once the model has been correctly parameterized, the sev-

enth phase is devoted to model diagnostics by performing analyses devoted to

investigate model sensitivity in response to parameters variation and to determine

properties such as oscillations, attractors or bistabilities.

Lastly the sensitivity analysis shows how a parameter can influence the general

behavior of the system. If the system is sensitive towards a given parameter, even

small changes in its value could greatly affect the whole system. Sensitivity is

related to robustness, a concept characterizing the ability of the system to remain

in a solution space region where its behavior is not qualitatively varying, even if

subject to a wide variation of chemical-physical parameters.

Modeling purpose In addition to the steps illustrated in this section, it is also to take

into account that the goal of modeling and simulation of biological systems is (beyond

the comprehension of dynamics and constitutive mechanisms of the system) the control

of the system itself, governing or counteracting perturbations due to internal or external

factors. The control of the system is of pivotal relevance in studies concerning the

identification of therapeutic targets or the improvement in the production of determined

chemical compounds involved in industrial processes.

In the present work of thesis, modeling and simulation have been exploited in order

to widen knowledge and obtain insights on different biological systems such as signal

transduction pathways, i.e. the Post-Replication Repair (analyzed in Chapter 2), or the

energetic metabolism of yeast and mammalian cells (see Chapter 3).



Chapter 1. Introduction 8

Figure 1.2: The “cycle” of the Systems Biology approach for a hypothesis driven
research. Image from [15].

Figure 1.3: Schematic overview of the main modeling approaches for biological sys-
tems, together with their principal characteristics and differences. Moving from left
to right: interaction-based approach, constraint-based approach and mechanism-based

approach.
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1.3 Purpose and organization of the thesis

This dissertation has been conceived with the purpose to describe a novel computa-

tional pipeline for a multi-level analysis of biological complex systems focusing in par-

ticular to the investigation of metabolic networks. The goal of the pipeline is to exploit

qualitatively different approaches to gain a thorough comprehension of systems under

examination.

The organization of this thesis is as follows. In Chapter 2 I will introduce computa-

tional approaches for the analysis of complex biological systems (Systems Biology) and I

will give an example of signal transduction pathway modeling, moreover I will illustrate

the outline of the computational pipeline. In Chapter 3 I will focus on constraint-based

analyses and I will provide an application of novel developed methods on a metabolic net-

work. In Chapter 4 the focus will be on interaction-based analysis applied to metabolism

and in Chapter 5 I will describe methods for mechanism-based analyses along with a

novel application to estimate kinetic parameters for dynamic modeling. Lastly, in Chap-

ter 6, along with the discussion of the realized work, I will define some perspectives and

future works.



Chapter 2

Background

2.1 Computational approaches in Systems Biology

According to a well established view presented in Chapter 1, computational approaches

in Systems Biology can be divided in three different classes: interaction-based; constraint-

based and mechanism-based. Each of these approaches is profitably exploited to model a

set of biological systems [16]. In the following, I will briefly review these different classes

and I will illustrate their application to two main biological systems: signal transduction

pathways and metabolic networks.

Interaction-based modeling Is the Systems Biology approach requiring less amount

of information due to the fact that it considers only how components are connected

among them to form patterns, and eventually the topology of the network. Biological

networks can be classified in some functional categories such as signal transduction

networks, metabolic networks, transcriptional regulatory networks and protein-protein

interaction networks.

Static interactions in these networks are investigated through graph theory tools [20]. In

the context of metabolic networks a recent study underlined the fact that the scale-free

topology of these networks (few nodes having many links that are connected to many

nodes having few links) is a universal property in living organisms [21].

Graph-theoretical approaches have been proven useful to analyze some additional fea-

tures such as the modular structure of biological networks or to investigate centralities

and lethality in protein networks. It is also to underline that recently studies are rising

some doubts on the relevance of results and general principles emerging from interaction-

based analyses of biological networks [22], moreover this modeling approach (and the

10
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area of the so called network biology) can be considered still at its infancy, and next

years will provide advances both in theoretical and applicative studies.

Mechanism-based approaches Are the most powerful tools in Systems Biology due

to their ability of predicting cellular dynamics revealing the precise amount molecular

species over time. The most widely used approach in dynamic modeling exploits numer-

ical integration of ordinary differential equations deriving from biochemical equations

represented using the canonical chemical reaction scheme:

A+B
k1−→ C +D

In order to simulate the system, it is essential to determine the rate constant (k1) and

the initial concentration (or numerical amount) of each reactant (A, B, C, and D).

Unfortunately some difficulties emerges when dealing with this kind of models. First

of all the structure of the system could be not fully understood, then it is likely that

the numerical values of many parameters are not retrievable from literature or definable

with “wet” experiments. For these reasons, together with the fact that mechanism-

based methods are computationally intensives, the average size of biological systems

investigated is rather small, concerning mainly signal transduction pathways.

A strategy to overcome difficulties raising from mechanism-based modeling is to integrate

different autonomous mechanistic sub-models in a large consensus model. However, it

is not univocally defined how to integrate these modules to obtain a coherent dynamic

for the global model. Even if in recent years some steps in this direction has been made

[23], dynamic simulations of large-scale cell-wide models is still one of the key challenges

of Systems Biology.

Constraint-based approaches As introduced in Chapter 1, an intermediate ap-

proach between network-based and mechanism-based is represented by constraint-based

approaches and in particular by Flux Balance Analysis (FBA) [24] which is generally

regarded as the ancestor of these methods. In FBA, metabolic networks are investi-

gated exploiting their network topology, stoichiometric information and constraints on

reversibilities and allowable fluxes. These methods can be easily applied to genome-wide

networks due to the fact that they do not require kinetic parameters and are computa-

tionally less demanding than mechanistic models.

Full genome sequencing is nowadays a routine technique and complete genomes for many

organisms are already publicly available. These data integrated with other sources such
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as proteomics or metabolomics allow to reconstruct metabolic models containing every

known metabolic reaction (and some hypothesis to fill the gaps in the network when the

knowledge is not available). Some outstanding works [25, 26] lead to the reconstruction of

curated genome-scale metabolic models for human and the current challenge of Systems

Biology in this field is to use constraint-based methods to predict the effect of metabolic

perturbations.

In this chapter I will present some examples of Systems Biology approaches for the study

of signal transduction pathways (Section 2.2.1) and metabolic networks (Section 2.3)

which together represent a wide part of all the Systems Biology studies. In particular,

in Subsection 2.2.1.1 I will present a case study published on BMC Systems Biology [27]

where I proposed the first mathematical modeling approach for the Post-Replication

Repair pathway exploiting stochastic simulations in the context of a mechanism-based

model.

In Subsection 2.3.0.2 I will introduce some examples of metabolic reconstruction and

constraint-based modeling in metabolism as identified in a review [28] where I investi-

gated the state of the art on metabolic modeling.

In the last part of the chapter (Section 2.3.1) I will illustrate the limitations of these

methods for the acquisition of a deep knowledge on biochemical systems deriving from

the unique use of constraint-based approaches, and I will provide the structure of a

computational pipeline which is the subject of the present thesis.

2.2 Systems Biology approaches

2.2.1 Signal transduction pathways

A wide variety of environmental and internal stimuli are constantly delivered in cells.

The most common classes of stimuli are hormones, temperature, light conditions, os-

motic pressure, changes in concentrations of substances like glucose, ions, cofactors (e.g.

cAMP) or structural modifications as in the case of DNA damage. The detection and

the response to these stimuli are performed through signal transduction pathways. Typ-

ically a signaling system is composed by a receptor and a ligand that bind to constitute

the signal. This binding induces a change in the activity of the receptor that, in turn,

induces a propagation of the signal through a signaling cascade eventually leading to an

effector that produces a response. To modulate the effect of the signaling, the cell has

to tightly control levels of every component inside it.
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From the molecular point of view, signaling and metabolism involve similar processes

like molecular modifications (e.g. post-translactional modifications: phosphorylation,

methylation, acetylation, ubiquitylation), activation or inhibition of reactions and pro-

duction or degradation of substances. Nevertheless, when modeling these two classes of

biological systems, some differences have to be evaluated:

1. There is an evident difference in the nature of the transferring. Indeed signaling

pathways deal with information transfering and processing, while metabolism is

devoted to the transport of energy and cellular building blocks.

2. Metabolism is made up of well definable classes of objects, specifically, metabo-

lites, cofactors and enzymes that catalyze reactions. Instead, signaling pathways

involve a wider variety of objects often characterized by modularity, like molecular

complexes, that can assemble or disassemble to modulate the signal.

3. In metabolism, reactions convert a great amount of biological material (in the

range of 106, 1012 molecules per cell), while number of molecules taking part to

signaling processes are usually not exceeding 102, 104 molecules per cell.

4. Different ratio between catalysts/receptors and substrates/effectors. In the case

of signaling processes the ratio of receptors and effectors is close to 1, while in the

case of metabolism the ratio sees a low number of catalysts used to transform a

high number of substrates (justifying the quasi steady state assumption typical of

constraint-based models).

Keeping in mind these peculiarities of signal transduction pathways, it is possible to en-

visage a computational approach based on mechanism-based modeling that has, however,

to face lacks of knowledge (limited or incomplete) on components and relations inside

signaling pathways as well as effects of signaling on the whole state of the cell that impose

some choices for the determination of system boundaries. Lastly it is worth to underline

that the interpretation of the simulation outcomes is context- and knowledge-dependent

and therefore generalizations should be carefully evaluated.

All these issues have been faced when dealing with the development and analysis of a

Post-Replication Repair model of yeast.

2.2.1.1 When a mechanistic model is enough: the Post-Replication Repair

model of yeast

Genomic lesions are constantly generated in living organisms due to the exposition to a

great variety of damaging agents inducing DNA lesions of different nature.
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In living organisms, evolution lead to the development of several systems to repair or

tolerate DNA damage and counteract its negative effects on genome stability. In this

subsection I will investigate the Post-Replication Repair (PRR), the pathway involved

in the bypass of DNA lesions induced by sunlight exposure and UV radiation. In cells

there are two different mechanisms to activate PRR via a covalent modification of the

Proliferating Cell Nuclear Antigen (PCNA), a sliding clamp enclosing DNA. As described

in Figure 2.1 mono-ubiquitylation leads to a mechanism called translesion synthesis

(TLS), while poly-ubiquitylation induces the template switching (TS).

TS
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Rad18:Rad18 Rad6:U

PCNAon

PCNAon:U

Mms2:Ubc13:U

PCNAon:U:U

PCNAon:U:U:U

PCNAoff
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Figure 2.1: Graphical representation of the PRR pathway phases involved in the co-
valent modification of PCNA (mono- and poly-ubiquitylation) when activated by the
UV-induced damage. (a) lesion on DNA (grey triangle) caused by the UV radiation;
(b)(c) stall of the replication fork (PCNAon); (d)(e)(f) PCNA is mono-ubiquitylation
(PCNAon :U) by Rad6 and Rad18; (g) mono-ubiquitylated PCNA can activate the
Translesion DNA Synthesis sub-pathway (TLS), and hence lesion bypass and ubiqui-
tylation signal switch-off (PCNAoff); (h)(i)(j) if TLS is not activated PCNA is poly-
ubiquitylated by Ubc13-Mms2 and Rad5; (k)(l) poly-ubiquitylation is performed adding
a single ubiquitin moiety at a time, repeating steps from (h) to (k); (m)(n) lesion
bypass activated by the poly-ubiquitylated PCNA through the Template Switching

sub-pathway (TS) and switch-off of the ubiquitylation signal. Figure from [27].
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In [27] an approach combining in vivo and in silico studies has been used to investigate

with a System Biology approach the events of PCNA ubiquitylation occurring in PRR

in budding yeast cells.

The close synergy with a “wet” laboratory allowed to develop a novel ad hoc protocol to

measure the time-course ratio between mono-, di- and tri-ubiquitylated PCNA isoforms

on a single western blot1. Data emerging from the quantification of these western blots

were used as the wet readout for PRR events in wild type and mutant S. cerevisiae cells

exposed to acute UV radiation doses.

On the in silico side, a novel mechanistic model of PRR was defined on the basis of

literature analysis. PCNA ubiquitylation dynamics obtained by means of stochastic

simulations, evidenced a good agreement with experimental data at low UV doses (Figure

2.2), but indicated also a divergent behavior at high UV doses approximately higher than

30 J/m2 (Figure 2.3).

This disagreement lead to the definition and realization of supplementary experiments

to test the new hypothesis on the functioning of PRR.

In particular, this strategy allowed to define a UV dose for the saturation of the PRR

system (leading to a stable steady state for all the analyzed PCNA isoforms) after which

there is a malfunctioning in the error bypass process. Moreover, simulations shed light

on an unpredicted overlap between PRR and Nucleotide Excision Repair (NER), the

repair pathway known to fix UV-induced lesions during the G1 [29] and G2 [30] phases

of the cell cycle. Strikingly, experimental evidences underlined that NER is required

also for a proper S phase progression in response to UV irradiation.

Lasty, through a parameter sweep analysis (PSA) it was analyzed the effect of the size

variation for the free ubiquitin pool (Figure 2.4), the model gave a potential explanation

to the phenomenon of DNA damage sensitivity in yeast strains lacking deubiquitylating

enzymes, highlighting the fact that ubiquitin concentration can affect the rate of PCNA

ubiquitylation in PRR. Even if this findings suggest that the deubiquitylation of PCNA

has a key role in the mechanism of ubiquitylation signal switch-off after the bypass of

the damage, further in vivo and in silico investigation will be able to unveil molecular

details of the preocess.

Globally, investigating for the first time the PRR pathway with a mathematical model,

has been possible to determine how PRR is more complex and still far less character-

ized than previously thought; testifying at the same time the capabilities of the chosen

Systems Biology approach.

1Western blot or immunoblot is a standard technique in biochemistry that allows to identify a protein
of interest in a pool of proteins (deriving from a cellular extract) by means of a specific antibody.
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Figure 2.2: “Comparison between experimental and simulation results of PCNA ubiq-
uitylation dynamics obtained on wild type yeast cells at 5 J/m2 UV dose. The figure
shows the experimental measurements on WT yeast cells irradiated at 5 J/m2 UV
dose and the comparison with the corresponding simulation results. (A) Representa-
tive image of a western blot showing a time-course measurement of mono-, di- and
tri-ubiquitylated PCNA isoforms (top part, denoted by α-Ub) and of non modified
PCNA (bottom part, denoted by α-His), sampled from 0 to 5 h after UV irradiation.
The experiment was repeated 3 times. (B) Average dynamics of mono-ubiquitylated
PCNA (blue line) and of poly-ubiquitylated PCNA (orange line), obtained from 100
independent stochastic simulations, executed starting from the same initial conditions
and with an estimated number of DNA lesions equal to 1001. (C) Comparison be-
tween the mean dynamics of mono-, di- and tri-ubiquitylated PCNA isoforms emerging
from 100 independent stochastic simulations, and the mean value of experimental data
µ(#PCNAUbu

exp ), together with the respective standard deviation σ(#PCNAUbu
exp ). Col-

ored areas indicate the amplitude of stochastic fluctuations around the mean value
µ(#PCNAUbu

sim ). Data are plotted by using the units representation. (D) Comparison

between the ratio of experimental (÷PCNAUbu
exp , left bars) and simulated (÷PCNAUbu

sim ,
right bars) ubiquitylated PCNA isoforms at every sampled time point where experimen-
tal measurements yield a detectable amount of modified PCNA. Mean and standard
deviation bars of both experimental and simulated ratios are plotted by using the nor-

malized representation”. Figure and caption from [27].

For what concerns mathematical methods, the the temporal evolution of the PRR path-

way was simulated exploiting the stochastic algroithm tau-leaping [31] which is an effi-

cient version of the well known stochastic simulation algorithm (SSA) [32] (see Section

5.1.2 for a more accurate description). In SSA, every reaction is executed sequentially,

while in tau-leaping the speed-up is achieved through the parallel execution of sev-

eral reaction steps. Simulations and analyses were performed exploiting the software
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Figure 2.3: “Prediction of UV dose-dependent threshold and validation results on
wild type yeast cells at 20 J/m2 and 30 J/m2 UV doses. The figure shows the ex-
perimental measurements on WT cells irradiated at 20 J/m2 UV dose (top part) and
at 30 J/m2 UV dose (bottom part), as well as the comparison with the corresponding
simulation results. As the aim of these experiments was not to carry out a precise
quantification of the PCNA ubiquitylated isoforms, but only to verify the prediction
of computational analysis, they were conducted with a single repetition. (A-C) Com-
parison between the value of western blot quantification #PCNAUbu

exp deriving from a
single experiment, and the dynamics of mono-, di- and tri-ubiquitylated PCNA isoforms
#PCNAUbu

sim emerging from 100 independent stochastic simulations, executed starting
from the same initial conditions, with an estimated number of DNA lesions equal to
4005 (A) and 6007 (B). Colored areas indicate the amplitude of stochastic fluctuations
around the mean value µ(#PCNAUbu

sim ). Data are plotted by using the units represen-

tation. (B-D) Comparison between the ratio of experimental (÷PCNAUbu
exp , left bars)

and simulated (÷PCNAUbu
sim , right bars) ubiquitylated PCNA isoforms at every sampled

time point. Mean and standard deviation bars of simulated results are plotted by using
the normalized representation”. Figure and caption from [27].

BioSimWare [33] which combine an efficient implementation of SSA and tau-leaping,

with a handy graphical user interface.

In addition, a PSA was performed thanks to an ad hoc developed computational tool

that generates a set of different initial conditions for the model and then automatically

executes the corresponding stochastic simulations exploiting the tau-leaping algorithm.

From the biological point of view, the PSA was used to investigate effects on the dynam-

ics of the PRR pathway due to the variation of reaction constants, molecular amounts

and the number of DNA lesions within a specified range with respect to a fixed reference
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Figure 2.4: “Influence of free ubiquitin concentration and validation results on doa4∆
background yeast cells at 20 J/m2 UV dose. The figure shows the simulated dynamics of
PCNA mono-ubiquitylation (A) and poly-ubiquitylation (B) at a UV dose of 20 J/m2,
obtained from a PSA executed on the initial amount of ubiquitin, which is varied in
the interval [870, 17396] molecules – mimicking the biological conditions ranging from
a 10-fold reduction (corresponding to the severely impaired condition of doa1∆ yeast
cells) to a 2-fold overexpression of the total amount of free ubiquitin in WT cells. In
the plots, the thick lines correspond to the dynamics obtained with the reference value
for ubiquitin amount. The simulations show that for ubiquitin amounts lower than
the reference value, the amounts of mono- and poly-ubiquitylated PCNA decrease,
as also observed experimentally in doa4∆ cells (C, right part). On the other hand,
by increasing the ubiquitin amount occurring in the system, the dynamics show an
initial peak in the amount of mono- and poly-ubiquitylated PCNA, suggesting that
high amounts of ubiquitin might lead the system to a faster bypass of all lesions with
respect to the physiological reference value. (C) Western blot showing a comparison
between time-course measurements in WT yeast cells (left part) and doa4∆ yeast cells
(right part) of the mono-, di- and tri-ubiquitylated PCNA isoforms (top part, denoted
by α-Ub) and of non modified PCNA (bottom part, denoted by α-His), sampled at
30 min after UV irradiation. As the aim of these experiments was not to carry out
a precise quantification of the PCNA ubiquitylated isoforms, but only to verify the
prediction of computational analysis, they were conducted with a single repetition”.

Figure and caption from [27].

value. More precisely, the PSA varied one parameter at a time (OAT) using a linear

scale sampling for molecular amounts and a logarithmic sampling scale for reaction con-

stants. This last sampling for reaction constants was used to uniformly evaluate several

orders of magnitude in order to mimic several different experimental conditions.

In the context of PRR, PSA was performed in order to assess the soundness of the
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parametrization used in the model (values identified for stochastic constants and molec-

ular amounts). In particular the PSA was performed varying parameters in the following

way:

• the value of each stochastic constant was varied of 3 orders of magnitude above and

3 below the reference value manually estimated with a “trial and error” procedure;

• the value of the initial molecular amounts (at the beginning of the simulation) in

the system was varied in a range between 0 and twice the reference value identified

in literature, thus mimicking the biological conditions ranging from the deletion

to a 2-fold overexpression of the initial species.

Besides the PSA, the PRR model was further analyzed by means of a global sensitivity

analysis (SA) in order to understand how much the variation of the model input factors

(molecular species amounts, kinetic constants, etc.) determines the uncertainty in the

model outcome, and to identify effective control points for the dynamics of the system

through the determination of which input factors cause jointly the most striking effects

on the system behavior.

The SA on the values of stochastic constants was performed using a screening test called

“method of the elementary effects” (EE), as described in [34–36]. This method allows

to investigate how a specified model outcome changes according to a perturbation of

the model input factors and this is realized by varying one input factor at a time while

keeping all the others fixed.

The elementary effect can be defined as the ratio between the variation in the model

output and the variation in the input factor itself. To compute global sensitivity mea-

sures, several elementary effects are estimated and averaged. These calculated measures

are: the value µ∗ (i.e the module of the mean of the distribution of the elementary

effects), which determines the global influence of each factor on the model output, and

the value σ∗ (i.e. the standard deviation of the distribution of the elementary effects),

which quantifies the ensemble of the factor’s higher order effects.

Concerning the SA of the PRR model, I computed the sensitivity measures µ∗ and

σ∗ by considering as input factors the set of kinetic constants associated to the model

reactions and varying them over 4 orders of magnitude, 2 below and 2 above the reference

value. Molecular amounts of mono- and poly-ubiquitylated PCNA isoforms (uniformly

measured every 9 seconds along in silico simulations of the dynamics of PRR over 5

hours at the “low” 10 J/m2 UV dose), were used as model outcomes to compute the

EEs.
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The strategy presented in [36] was used to sample the variation interval of each reaction

constants in order to define the set of points of the parameter space used to compute the

EE and hence the sensitivity measures. In particular, in this strategy the Sobol’s quasi

random numbers [37] allowed to obtain a radial sampling (log-scaled over the variation

interval) leading to a set of ai points, i = 1, . . . , 1000, corresponding to the centers of the

radial samplings. For each ai a variation along the 25 dimensions (one for each reaction

constant) of the input factor space was considered to compute the EEs, yielding a total

of 1000·(25+1) different model parameterizations.

Reaction µ∗ σ∗

1 1.2146 2.1099
4 9.6114 · 10−2 2.2428 · 10−1

12 1.3929 · 10−3 1.1950 · 10−2

18 8.9356 · 10−6 1.1310 · 10−4

23 4.6616 · 10−6 1.6221 · 10−5

9 2.9883 · 10−6 9.2425 · 10−6

25 2.9548 · 10−6 1.4706 · 10−5

17 1.7377 · 10−6 1.5368 · 10−5

20 1.3714 · 10−6 8.2233 · 10−6

21 8.7619 · 10−7 4.4432 · 10−6

22 4.3180 · 10−7 2.9323 · 10−6

2 2.2217 · 10−7 1.8861 · 10−6

7 7.3924 · 10−8 5.0348 · 10−7

13 3.6523 · 10−8 5.4385 · 10−7

8 2.2538 · 10−8 1.2463 · 10−7

15 2.1505 · 10−8 4.7824 · 10−7

24 1.1074 · 10−8 1.2645 · 10−7

14 6.0435 · 10−9 4.8142 · 10−8

19 5.2410 · 10−9 3.4058 · 10−8

10 4.9045 · 10−10 4.4654 · 10−9

16 1.0037 · 10−11 2.0655 · 10−10

3 2.8808 · 10−13 3.5596 · 10−12

6 2.4153 · 10−13 2.4214 · 10−12

5 1.3459 · 10−14 1.2814 · 10−13

11 6.5943 · 10−23 1.7684 · 10−21

Reaction µ∗ σ∗

1 2.4371 · 10−1 6.6924 · 10−1

4 2.0837 · 10−2 7.3272 · 10−2

12 5.9092 · 10−3 3.1596 · 10−2

23 3.5319 · 10−5 1.0420 · 10−4

18 3.9620 · 10−6 5.7120 · 10−5

21 2.3807 · 10−6 1.2263 · 10−5

20 1.5264 · 10−6 8.7254 · 10−6

17 1.0145 · 10−6 8.4656 · 10−6

9 6.6420 · 10−7 3.1911 · 10−6

22 3.0728 · 10−7 2.3997 · 10−6

2 6.5226 · 10−8 7.9826 · 10−7

13 4.0320 · 10−8 5.4867 · 10−7

7 1.7669 · 10−8 1.3968 · 10−7

14 1.5766 · 10−8 1.1217 · 10−7

15 1.2015 · 10−8 2.1648 · 10−7

25 1.0743 · 10−8 1.0942 · 10−7

8 8.3652 · 10−9 6.7295 · 10−8

19 5.4418 · 10−9 3.7516 · 10−8

24 4.8583 · 10−9 5.4275 · 10−8

10 4.8308 · 10−10 3.7435 · 10−9

16 1.6753 · 10−11 1.5816 · 10−10

3 1.4687 · 10−13 3.0104 · 10−12

6 7.6793 · 10−14 7.5556 · 10−13

5 4.3665 · 10−15 6.0235 · 10−14

11 8.1343 · 10−23 1.9211 · 10−21

Table 2.1: Ranking of model reactions according to µ∗ for the mono-ubiquitylation
of PCNA (left) and poly-ubiquitylation of PCNA (right). Table from [27].

In Table 2.1 the values of µ∗ and σ∗ are listed for all reaction constants of mono- (left)

and poly-ubiquitylation (right) outputs. The ranking of reactions is here given following

decreasing values of µ∗. Same orders of magnitude of µ∗, are identified in the table by

horizontal blocks.

The SA was performed exploiting the LSODA simulation algorithm [38] on a determin-

istic version of the PRR model equivalent to the stochastic one and derived, according

to the methodology described in [32, 39], from the reactions graphically illustrated in

Figure 2.1. This choice has been determined due to the huge computational time re-

quired to perform the high number of necessary stochastic simulations to perform the

SA on the PRR model (about 2.6·108, assuming 104 independent simulations for each

sample to calculate the required histogram distance [40]).
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In Figure 2.5 are shown values of the measure µ∗ of all reaction constants for the two

model outputs – mono-ubiquitylation (top plot) and poly-ubiquitylation (bottom plot)

of PCNA – and the ranking of reactions according to decreasing values of µ∗. In each

plot, the inset represents the ranking on a log-scale.
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Figure 2.5: Sensitivity indexes µ∗ and σ∗ for mono- and poly-ubiquitylated isoforms.
Figure from [27].

Analyzing plots Figure 2.5 and the associated tables in Table 2.1, it is possible to de-

termine that, in response to the variation of considered input factors, the most sensitive

reactions (and hence the associated rate constants) are:

• Reaction 1, which corresponds to the identification of the UV-induced lesion on

DNA. The high global sensitivity of this reaction is motivated by its role in the

activation of the whole pathway;

• Reaction 4, which corresponds to the loading of ubiquitin on Rad6. This is a

key step for PCNA mono-ubiquitylation and, due to the stepwise mechanism of
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ubiquitylation considered in the model, it also influences the downstream binding of

additional moieties to PCNA (i.e., PCNA di-ubiquitylation and tri-ubiquitylation)

and, therefore, it affects the whole process of PCNA ubiquitylation;

• Reaction 12, which corresponds to the loading of ubiquitin on Rad5. This is crucial

for PCNA di-ubiquitylation and tri-ubiquitylation, which is less sensitive in the

mono-ubiquitylation output than in the mono-ubiquitylation output since its role

is downstream the first steps of the PRR pathway.

Intriguingly, the two model outcomes are only marginally influenced by other reactions.

The consistency of the PRR model was validated by comparing the outcome of stochastic

simulations with the experimental measurements carried out on the wild type (WT) yeast

strain at various UV doses. To this aim, by considering the western blots at each UV

irradiation dose, I first quantified the values of mono-, di- and tri-ubiquitylated PCNA

ratios, together with the respective mean and standard deviation of each PCNA isoform.

Then, from the outcome of stochastic simulations I derived the molecular amounts of

PCNA isoforms. In particular, to tame the effect of stochastic fluctuations that are

inherent in these computational analysis, I exploited the outcomes of a set of independent

simulations (performed with the same initial conditions) to calculate the mean and

standard deviation (#PCNAUbu
sim ) of PCNA amounts.

Afterwards, since I had to compare different kinds of measurements – namely, ratios of

modified PCNA derived from laboratory experiments on the one side, and molecular

amounts of modified PCNA obtained from stochastic simulations on the other side – I

introduced two different strategies for the graphical representation and comparison of

the experimental and the computational results:

1. the first strategy, referred as “normalized representation” (NR), consists of stacked

bar graphs: for each sample analyzed within the time interval of 0-5 h, the stacked

bars corresponding to the normalized ratios of mono-, di- and tri-ubiquitylated

PCNA isoforms obtained from stochastic simulations (denoted by ÷PCNAUbu
sim )

are plotted side by side to the experimental bars ÷PCNAUbu
exp (which, as stated

above, are already expressed as ratios);

2. in the second strategy, referred as “units representation” (UR), the molecular

amounts derived from stochastic simulations #PCNAUbu
sim are compared to the

western blot quantifications which, in this case, were specifically transformed into

molecular quantities (denoted by #PCNAUbu
exp ).
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It is worth to stress the fact that the NR allows a direct comparison between the ex-

perimental and simulation results, by considering the ratio of the three ubiquitylated

isoforms of PCNA with respect to the total amount of modified PCNA measured in

the system. Anyway, this strategy does not give any knowledge on the actual amount

of modified PCNA, and it does not allow to clearly evidence the switch-off of PCNA

ubiquitylation signal as long as the DNA lesions get processed, which can be instead

directly represented by using the UR.

2.3 Metabolism

A metabolic network is an abstract representation of cellular metabolism, that is the

complex system of anabolic and catabolic reactions sustaining cell survival, growth and

proliferation.

Due to the multiple tasks that a cell has to face, in every single instant, a great number of

reactions takes place inside a cell. As a consequence the network of metabolic reactions

reaches more than a thousand of reaction even for simple eucaryotic cells like yeast.

Moreover due to the fact that the product of a reaction is often used as substrate of

another reaction, metabolic networks are also deeply interconnected.

Formally, metabolic networks are represented exploiting directed graphs due to the fact

that biochemical reactions have a directionality. In a metabolic network it is possible to

attribute different meanings to nodes, and to every meaning is associated a determined

type of graph [41] (see Figure 2.6):

(A) in a substrate graph, nodes represent reagents of a given reaction and links connect

nodes if they take part to the same reaction;

(B) in reaction graph, nodes correspond to reactions ad a link is drawn between two

reactions if a metabolite is both the product of a reaction and the substrate of an-

other reaction, in other words reactions must share at least a common compound;

(C) in enzyme-centric graph, nodes correspond to enzymes and two enzymes establish

a link if a metabolite is the product of a reaction catalyzed by the other enzyme;

(D) in substrate-enzyme bipartite graph, two types of nodes are used to represent

respectively reactions and metabolites. In this last case, links connect nodes having

different nature, representing both relations of substrates and products.

As stated in Section 2.1 the main computational framework for the analysis of metabolic

networks is constraint-based modelling as it will also widely described in Chapter 3.
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Figure 2.6: Metabolic network representations. A) substrate graph; B) reaction
graph; C) enzyme-centric graph; D) substrate-enzyme bipartite graph.

However, the first step for this kind of analysis is the definition (or reconstruction) of a

metabolic network that usually is in the form of a substrate graph [42].

2.3.0.2 Metabolic networks reconstruction

Formal representations of metabolism are typically created in a bottom-up fashion based

on genomic and bibliomic data, which can possibly be integrated with data obtained

from laboratory experiments. Network reconstructions can vary in size (from genome-

wide networks to smaller – core – models focusing on specific metabolic pathways), and

can be characterized by different levels of abstraction, according to the scope of their

formulation. The generation of networks derived from top-down approaches (inference

of component interactions based on high-throughput data) solicited the development

of automatic reverse engineering methods, to devise a plausible network of biochemical

reactions that is able to reproduce the experimental observations. Reverse engineering

methods are usually applied to infer core models characterized by a small number of

molecular species and biochemical reactions [43].

In Chapter 3 I will discuss in detail the process to reconstruct genome-wide and core

models of metabolism with the perspective of their use for quantitative computational

analyses. Nevertheless, it should be mentioned that the starting point for the devel-

opment of the genome-wide models mentioned hereby are, often, metabolic network

reconstructions that are intended to summarize the available experimental knowledge

and may be studied with qualitative methods (e.g., the topological analysis described

in Chapter 4). These manually curated maps are collected in various databases, such as

EcoCyc [44], HinCyc[45] and KEGG [46].
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2.3.1 Partial views from current approaches

All the three different frameworks proposed by Stelling in [16] have been applied to

the modelling of metabolism. Table 2.2 gives an overview of recent works appeared

in literature and dealing with the modeling of metabolism at different scales and with

different goals. As it is possible to notice, FBA and ODEs are the most widely used

methods. However, all these approaches give, when used on their own, only partial views

on the comprehension of metabolism.

For example, constraint-based methods, and markedly FBA, are not able to determine

a unique flux distribution due to the structure of the mathematical approach itself

(further details will be given in Chapter 3) and, moreover, the “real” flux distribution in

the cell is subject to regulatory mechanisms involving kinetic characteristics determined

by enzyme expression/modification. It has also been verified that outcomes of FBA can

disagree with experimental data when regulatory loops are not properly managed [47].

The most relevant point is that constraint-based models, assuming steady-state condi-

tions, can not be used to model the dynamic behaviour of the metabolic system. This is

particularly relevant because the transient of metabolic systems has an important role

in the understanding of the response of cells to environmental changes. Indeed there

is an increasing evidence that cellular metabolism is a highly dynamic system. A fact

testified by the increasing number of publications on this topic. As an example it is

worth to remember dynamics emerging from temporal variations in the concentrations

of metabolic intermediates of the yeast glycolytic pathway [48, 49].

Connected to this point it is also to consider that cells may be in a suboptimal metabolic

condition and this is in contrast with the fundamental assumption of FBA of the opti-

mization towards an objective function (usually, maximization of biomass).

With regard to interaction-based approaches, even if they showed the ability to highlight

relevant emergent and general properties of metabolism [17], it is to underline that these

approaches showed many severe limitations. Among these, the most relevant is that

universal properties are not enough to determine the dynamics and the regulation of the

system. As already examined in Section 2.2.1, many aspects of metabolic networks are

inherently different from other biological networks (e.g. with signaling pathways).

Finally, due to the structure of metabolic networks where both reactions and metabo-

lites has to be drawn and investigated, several representation have been proposed (see

2.3). Strikingly, none of the them can be identified as the definitive one, suggesting the

necessity of the definition/use of more advanced methods than graph theory for their

analysis.



Chapter 2. Background 26

As stated in 2.1, the mechanism-based modeling of metabolism is usually seen as the end

point for the understanding of cellular metabolism. However in this context, mechanistic

modelling has a limited applicability due to the chronically lack of parameters such

as enzyme kinetics and reliable measurements for metabolites concentrations. This is

worsen by the fact that metabolic models usually encompass thousands of different

metabolites and reactions making detailed kinetic modeling almost unfeasible due to

high computational requirements even for some core models.
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Pathway / aim of the model Cell type / organ Organism Modeling approach & methodology Exp. data Reference

Glycolysis - T. brucei CM, ODE L Achcar et al. [50]

GW metabolic network and

succinic acid production
- S. cerevisiae GW, FBA M Agren et al. [51]

GW metabolic network - A. niger GW, FBA L Andersen et al. [52]

Mitochondrial energy metabolism,

Na+/Ca2+ cycle, K+ cycle
Heart, liver B. taurus, S. scrofa, R. norvegicus CM, DAE, PE, SA L, M Bazil et al. [53]

OXPHOS Cardiomyocytes R. norvegicus CM, ODE L Beard [54]

Electron transport chain Heart homogenates R. norvegicus CM, ODE, CRL L, M Chang et al. [55]

Glycolysis, OXPHOS Not specified Eukaryotic, H. sapiens CM, Control theory L Cloutier et al. [56]

Bow-tie architecture of metabolism Not specified H. sapiens GW, Topological analysis L Csete et al. [57]

Central metabolism - Yeast CM, FBA L Damiani et al. [58]

Energy metabolism Skeletal muscle cell Mammal CM, PDE L Dasika et al. [59]

Glycolysis and pentose phosphate pathway - E. coli CM, ODE, SA L Degenring et al. [60]

Biosynthesis of valine and leucine - C. glutaminicum CM, ODE, SDE M Dräger et al. [61]

GW metabolic network Not specified H. sapiens GW, FBA L Duarte et al. [25]

GW metabolic network - E. coli MG1655 GW, FBA M Edwards and Palsson [62]

GW metabolic network - H. influenzae GW, FBA L Edwards et al. [63]

Anabolic, catabolic, chemiosmosis pathways - E. coli GW, Control theory M Federowicw et al. [64]

Small world behavior of metabolism Not specified H. sapiens GW, Topological analysis L Fell et al. [65]

Cancer metabolic networks
Various

(NCI-60 collection)
H. sapiens

Network reconstruction, FBA,

gene (pair) analysis
L Folger et al. [66]

GW metabolic network HepatoNet1 Hepatocytes H. sapiens GW. Network reconstruction L Gille et al. [67]

Cytochrome bc1 complex, ROS production
Muscle, heart, liver,

kidney, brain
R. norvegicus CM, ODE L Guillaud et al. [68]

GW metabolic network EHMN Not specified H. sapiens GW, Network reconstruction L Hao et al. [69]

GW metabolic network - S. cerevisiae S288c GW, Network reconstruction, FBA L Heavner et al. [70]

GW metabolic network - S. cerevisiae Network reconstruction L Herrg̊ard et al. [71]

Topological properties of metabolism - 43 different organisms GW, Topological analysis L Jeong et al. [17]

Glycolysis, OXPHOS - Not specified CM, ODE, Game theory - Kareva [72]

Whole-cell life cycle model - M. genitalium GW, FBA, ODE L, M Karr et al. [23]

Glycolysis, pentose phosphate pathway - T. brucei CM, ODE L Kerkhoven et al. [73]

Energy metabolism Colorectal cells H. sapiens CM, FBA, EM M Khazaei et al. [74]

GW metabolic network - Synechocystis sp. PCC 6803 GW, FBA L Knoop et al. [75]

Glycolysis, gluconeogenesys,

glycogen metabolism
Hepatocytes H. sapiens CM, ODE L König et al. [76]

Adenine nucleotide translocase Heart mitochondria B. taurus CM, ODE, PE, SA L Metelkin et al. [77]

GW metabolic network - Z. mays L. subsp. mays GW, Network reconstruction L Monaco et al. [78]

Xylose metabolism - L. lactis IO-1 CM, ODE, SA M Oshiro et al. [79]

GW metabolic network - S. cerevisiae GW, Network reconstruction, FBA L Österlund et al. [80]

Continued on next page
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Pathway / aim of the model Cell type / organ Organism Modeling approach & methodology Exp. data Reference

GW metabolic network and

succinic acid production
- S. cerevisiae GW, FBA M Otero et al. [81]

Topological properties of metabolism - 43 different organisms, E. coli GW, Topological analysis L Ravasz et al. [82]

One-carbon metabolism, trans-sulfuration pathway,

synthesis of glutathione
Hepatocyte H. sapiens CM, ODE L Reed et al. [83]

Glycolysis, TCA cycle,

pentose phosphate pathway, glutaminolysis, OXPHOS
HeLa cell H. sapiens CM, FBA M Resendis-Antonio et al. [84]

Modularity of metabolism Not specified H. sapiens GW, Topological analysis L Resendis-Antonio et al. [85]

GW metabolic network Not specified H. sapiens GW, Network reconstruction L Sahoo et al. [86]

Acetone, butanol and ethanol production - C. acetobutylicum CM, ODE, SA M Shinto et al. [87]

Cancer metabolic networks
Various

(NCI-60 collection)
H. sapiens FBA L Shlomi et al. [88]

GW metabolic network - S. cerevisiae GW, FBA L Simeonidis et al. [89]

Glycolysis - S. cerevisiae CM, ODE M Teusink et al. [90]

GW metabolic network Not specified H. sapiens GW, FBA L Thiele et al. [26]

Primary metabolism - E. coli CM, ODE, EM - Tran et al. [91]

Fueling reaction network - E. coli W3110 CM, FBA M Varma et al. [92]

Reduced model of cell metabolism - - CM, FBA L Vazquez et al. [93]

Small-world property of metabolism - E. coli GW. Topological analysis L Wagner et al. [94]

GW metabolic network - C. glabrata GW, FBA L Xu et al. [95]

Erythrocyte metabolism Red blood cell H. sapiens Hybrid: ODE + MFA - Yugi et al. [96]

Mitochondrial energy metabolism Various tissues Mammal CM, ODE - Yugi [97]

Modularity of metabolism Not specified H. sapiens GW, Topological analysis L Zhao et al. [98]

ROS-induced ROS release

in mitochondria network
Cardiomyocytes C. porcellus

CM, ODE, PDE, RD,

Finite Difference Method
M Zhou et al. [99]

Table 2.2: Overview of some recent literature papers on the modeling and computational analysis of metabolism.
Abbreviations. CM: Core model; CRL: Chemiosmotic Rate Law; DAE: Differential Algebraic Equations; EM: Ensemble modeling; FBA: Flux Balance
Analysis; GW: Genome-wide model; L: experimental data obtained from literature; M: experimental data measured with ad hoc experiments; MFA:
Metabolic Flux Analysis; ODE: Ordinary Differential Equations; PDE: Partial Differential Equations; PE: Parameter Estimation; SA: Sensitivity

Analysis; SDE: Stochastic Differential Equations. Table from [28].
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Multi-level analysis to unravel complexity Due to the complex nature of bi-

ologic processes, in silico methods should consider multiple approaches to investigate

systems. Multi-level analysis is today a hot research topic in different areas, such as the

theoretical formalization of the method and the development of computational tools for

the integration of different modeling perspectives [100]. To fulfill the need of multi-level

approaches, I am developing a computational pipeline (see Figure 2.7) able to perform

analyses exploiting, one after the other, three main modeling frameworks for biologi-

cal systems: constraint-based analysis, interaction-based analysis and mechanism-based

analysis [16].

On the whole, results emerging from the performed analyses will give a synoptic vision

of the different properties of the system. In order to validate the developed method and

the computational pipeline proposed, I defined a core model of the cellular metabolism

in yeast.

The first step of the pipeline is a constraint-based analysis performed via FBA techniques

[24] maximizing or minimizing a certain physiological aspect; crucial for this task is

the optimization of an objective function achieved exploiting ensemble approaches and

genetic algorithms. The second part combines results from FBA with network analysis in

order to highlight emergent and general properties of the system. Finally, the last part is

devoted to the retrieval of kinetic constants from fluxes and to the mechanistic simulation

of the system. Hereafter I will briefly discuss the steps of my pipeline illustrated in Figure

2.7.

Figure 2.7: An overview of the computational pipeline presented in this thesis.
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Overview of the computational pipeline Step 1 : Determining the objective

function is pivotal in FBA; up to this date different formulations based on experimen-

talist sensitivity appeared in literature, but none of them can uniquely and precisely

describe the behavior of cells and still it is impossible to exclude that the organism is

found in a sub-optimal space.

In order to define more accurate and objective functions I defined two different au-

tomated methods not influenced by human bias. My first attempt [58] is based on

Ensemble Approach [101] and Monte Carlo sampling to setup an unbiased analysis of

the solutions space with the goal of identifying global network properties [102]. This

approach has been used to explore the space of the possible objective functions, by ran-

domly generating them, and then selecting those leading to the expected biological result

(collection of flux distributions). In the developed “ensemble FBA” approach (eeFBA

in figure 2.7) the structure of the network is never modified, while constraints are widely

modified in order to mimic different cellular or environmental conditions.

My second approach for an unbiased analyses has been inspired by the observation that

evolutionary algorithms have been used to optimize gene deletions in order to maximize

production of a certain metabolite [103].

The adoption of an evolutionary algorithm is useful to explore the solution space in a

more efficient way. In particular, the pipeline exploits a genetic algorithm (GA) [104] to

evolve a population of individuals corresponding to different sampled objective functions.

The population is selected accordingly to a fitness function that evaluates the distance

of every single solution from the metabolic response constraint.

The use of a genetic algorithm has a double purpose: the first goal has been the identifi-

cation of the solution that best matches the reference phenotype, while the second task

has been the collection of an optimal individuals pool to investigate possible ensemble

properties which characterize the phenotype. Up to now, the genetic algorithm has been

integrated with the FBA Cobra Toolbox [105] and tested on a yeast core model.

Step 2 : from “ensemble FBA” to cluster analysis. As a second step I developed

a hierarchical clustering analysis exploiting a dendrogram to illustrate how solutions

obtained with the genetic algorithm cluster together. In the dendrogram, the division

in two main groups corresponding to the matching and non matching solutions can be

clearly observed: strikingly in this analysis there are no solutions falling into the wrong

cluster. Moreover, the two ensembles (matching and non matching) can be further

clustered into some well defined sub-clusters.

Step 3 , is devoted to the visualization of fluxes on the network and to network

analysis. A first attempt exploits and integrates existing tools such as the CyFluxViz
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[106] plugin of Cytoscape [107] to map and visualize fluxes obtained from FBA analyses.

In this phase Cytoscape is also employed to analyze general (topological) properties of

the network such as modules and motifs.

Step 4 : Kinetic constants derivation and dynamic modeling. Here I first evaluated

the feasibility of the task implementing MetaFluxAnalysis, a LabVIEW [108] tool to

determine metabolic fluxes starting from mechanistic simulations.

Then, the last phase of the pipeline has been the definition of a method to estimate

kinetic constants for the yeast metabolic model starting from fluxes distributions identi-

fied after clustering solutions of the “ensemble FBA”. In this context, from each cluster

I derive an average flux distribution that will be the target for the estimation of ki-

netic constants by means of a Particle Swarm Optimizer (PSO) [109] implemented in

MATLAB. In order to have a more efficient estimation of the parameters I contributed

to develop a novel version of the PSO algorithm named Proactive Particles in Swarm

Optimization (PPSO) [110]. The peculiarity of this algorithm is the use of Fuzzy Logic

to determine the best setting for the key parameters of PSO (i.e. inertia, cognitive and

social factor).

In order to validate the developed method and the computational pipeline, I defined a

core model of the cellular metabolism in yeast and I am currently developing a version

for the human metabolism. The choice of a core model is due to the fact that, even

if genome scale networks require less assumptions on reactions to be included in the

model, the interpretation and the understanding of the simulation outcomes are not

always straightforward. On the other side, small scale (core) models need many more

assumptions to correctly define the set of reactions, but they could shed light on design

principles and emergent properties of the system under evaluation in an easier way.
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Constraint-based analysis

3.1 Constraint-based methods

Constraint-based analysis is the most widely used computational approach in the context

of metabolic modeling. The core of this approach can be identified in the assumption

that a biological system can uniquely express phenotypes that satisfy a given number

of constraints, and that the metabolic system will reach a condition that can be assim-

ilated to a steady state (referred as quasi-steady state). In other words, the setting of

these boundaries, allow the identification of the solution space defining every possible

functional state reachable or not reachable by the system. In this context, during the

last two decades, many different approaches appeared in literature, for an exhaustive

list, reader should refer to [111, 112].

In each one of these methods the first step for the analysis is the formulation of a matrix

indicating the variation in units (stoichiometric coefficients) of reactants and products

(metabolites, in rows) due to the application of every single reaction (represented in

columns) of the system. In technical terms this is defined as the stoichiometric matrix

S (see Figure 3.1).

The second key element, the quasi-steady state condition, is defined by the equation:

dx/dt = S · v = 0, (3.1)

where dx/dt are time derivatives of metabolite concentrations represented by the product

of the m×n matrix S multiplied by the vector of fluxes v = (v1, v2, . . . , vn), where vi is

the flux of reaction i, n is the number of reactions, and m is the number of metabolites.

The obtained null space corresponds to the so called solution space Σ.

32
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Figure 3.1: A scheme illustrating the main steps of constraint-based methods (FBA).
Figure from [113].

Constraints due to the stoichiometric information alone, define an under-determined

system because in metabolic networks the number of reactions (or equivalently fluxes)

is usually greater than the number of metabolites. To further limit the solution space,

it is hence necessary to incorporate additional constraints on thermodynamic properties

of reactions (reversibility), and capacity constraints determined by imposing to the re-

actions maximum and minimum flux values determined by means of “wet” experiments.

Formally Ii = [vmini , vmaxi ] define the space of acceptable fluxes I = I1 × I2 × . . . In.

The combination of the space of acceptable fluxes and the solution space, defines the

feasible solutions space Φ = I ∩ Σ.

3.1.1 Flux Balance Analysis (FBA) and derived methods

The ancestor of constraint-based methods can be identified in the Flux Balance Analysis

(FBA) [24].

Assuming that the cell behaves optimally towards the realization of a given task (e.g.

maximization of the biomass production), this method allows to compute a unique flux

distribution that optimizes this specific objective in the feasible solution space. The

metabolic “goal” is defined “objective function” (OF) and is mathematically represented
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by the equation:

z =

n∑
i=1

civi, (3.2)

where ci is a weight defining how much the flux vi of reaction i contributes to the OF.

Due to the fact that all the components of the FBA are expressed in a linear form (a

linear OF as described in Equation 3.2, and linear equations representing constraints), it

is possible to identify this approach as a linear programming problem that can be solved

using software packages (solvers) implementing the simplex algorithm. During years,

however, advanced versions of FBA were developed to deal with non-linear constraints,

but generally these methods are far less computational efficient when compared to the

original method (a complete review of the optimization techniques for FBA can be found

in [114]).

An evident limitation of FBA is caused by the use of the simplex algorithm, because,

even if it is designed to find a unique optimal solution for the optimization problem; it is

not able to exclude that in the system many equivalent optimal solutions can be found

(and actually, this is what happens even for small networks). It is therefore important

to find strategies to identify and enumerate all the different optimal flux distributions

in order to evaluate the different biological meanings of the alternative optimal fluxes

distributions.

Extreme Pathway Analysis [115] and Elementary Flux Modes [116] have been designed

to retrieve all the different “equally optimal” fluxes distributions over the entire solution

space. Unfortunately, the number of elementary flux modes grows exponentially with

the number of reactions in the network, so that their enumeration becomes intractable

for genome-scale networks. However, some strategies to make this computation possible

have been proposed [117, 118].

Flux Variability Analysis (FVA), by constraining the objective value to be close or equal

to its optimal value [119], is instead used to provide an indication of the range of vari-

ation (maximum and minimum allowed values) within each flux. Although FVA is less

computational demanding with respect to Extreme Pathway Analysis and Elementary

Flux Modes, it can be profitably used only for small models, and for this reason more

recent versions of the method has been recently developed [120].

A relevant aspect in FBA is connected to the fact that kinetic parameters are not needed.

If this on one hand allows to perform efficient simulations of otherwise hardy analyzable

systems, on the other hand makes FBA unsuitable for the investigation of the system

dynamics. To partially bridge this gap, methods globally referred as Dynamic Flux

Balance Analysis (dFBA) have been devised to simulate dynamics changes in metabolic
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networks exploiting two different strategies: Dynamic Optimization Approach (DOA)

[121], makes use of a non-linear optimization over the whole evaluated time interval

in order to derive flux distributions and metabolite levels, while Static Optimization

Approach (SOA) [121] is performed by dividing the evaluated period into small intervals,

optimizing via linear programming at the beginning of every single interval and then

integrating over the entire time interval.

Looking at the applications of FBA, it is clear that the original purpose was the design

of strategies to maximize the production of biochemical compounds of industrial use

(e.g., biofuels [122]) in the domain of metabolic engineering; whereas later applications

took advantage of the inherent properties of the FBA such as the fact that information

on kinetic parameters are not needed for this kind of modeling. This great advantage

respect to mechanism-based approaches lead to a renewed interest for FBA in the Sys-

tems Biology community for investigations on the physiopathological state of cellular

metabolism.

The most relevant application in this context can be found for the prevision of phe-

notypical characteristics of microorganisms [123] where the assumption of an optimal

(maximized) growth as cellular objective is particularly appropriate.

The following obvious qualitative step, in terms of analyzed complexity, has been the

analysis of eukcaryotic energetic metabolism through the exploitation of a OF maxi-

mizing the ATP production [93, 124] to investigate key physiological aspects of tumor

metabolism such as the Warburg effect (see [93] for further reference).

A last step to improve the predictive capabilities of constraint-based methods is given by

the chance to integrate regulatory and metabolic networks [125, 126], where regulation

of gene expression is obtained by tuning constraints on reactions to different values

according to expression levels. In the extreme case, if a gene is completely repressed,

the fluxes through reactions involving the protein expressed by the given gene, will be

constrained to zero.

A worthy conclusive remark to this introduction to FBA it is that, in any case, solutions

obtained with constraint-based methods are only as good as the constraints used to

identify them. Studies [127] highlighted the fact that identifying an appropriate OF is of

pivotal importance in FBA. This rise some issues due to the fact that the identification

of the “true” OF could be problematic. This is particularly true when dealing with

multicellular organisms where the objective can not be unequivocally defined, but is

rather a trade-off between competing tasks [128]. Lastly, even if the precise formulation

the OF would be available, it would still not be possible to exclude that the organism

is living in a sub-optimal state.
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These concerns are gaining relevance in literature, as it happened in [129] where authors

showed, following multi-objective optimization theory, that metabolism works near the

Pareto-optimal surface of a space defined by competing objectives.

For the above mentioned reasons, new approaches are emerging for an unbiased analysis

of the solutions space, aimed at describing global network properties [102]. In this

context, I developed a novel unbiased approach called Ensemble Evolutionary FBA

(eeFBA) [58] whose aim is to identify ensembles of flux distributions that comply with

one or more target phenotype(s).

3.1.2 ensemble evolutionary FBA (eeFBA)

An alteration of cellular metabolic fluxes could lead to different metabolic behaviors.

To understand which collection of flux distributions are compatible with the different

metabolic behaviors, in [58] I proposed, in the context of constraint-based modeling, an

innovative approach that focuses on the analysis of generic properties of ensembles of

solutions that satisfy phenotype(s) definition.

Differently from other literature cases, in the developed approach, changes in environ-

mental or cellular conditions are simulated by varying constraints in a systematic way,

while the network structure remains fixed. In order to sample different conditions an

evolutionary algorithm was adopted and for this reason it has been named evolutionary

approach.

In the devised approach, another difference with respect to the classical FBA is the

meaning given to the objective function z. In eeFBA it does not represent a physiologi-

cally plausible objective (e.g. maximization of biomass) or a bioengineering design goal

(e.g maximization of the production for a metabolite of interest), rather it is seen as a

way to explore the feasible solutions space.

Bordel et al. already proposed in [130] an approach that maximizes a random set of

objective functions to define the corners of the space of allowed solutions; in this same

work, randomization has been used to study the statistical distribution of the flux values

of all the reactions in a genome-scale model.

Moreover in [102] it was also proven that sampling randomly the feasible flux distribu-

tions can effectively characterize its content [102].

In the present case random sampling is instead used to search the “functional states”

in “agreement” with experimentally observed phenotypes previously defined. Solutions

with specified properties are quested within the feasible solutions space and for this

reason a search algorithm is combined with the developed sampling method.
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Figure 3.2: A graphical representation of the solution spaces according to definitions
provided in Subsection 3.1.2.

The formal definition of the phenotype is expressed in terms of a metabolic response

to environmental conditions variations: as an example, with this method the effects of

an experimental variation in nutrient availability could be observed in terms of fluxes

redistribution.

An environmental variation is mapped as variations in the boundaries of a reference flux

i, i.e. vi ∈ I li = [vl,mini , vl,maxi ] (a different interval for each environmental condition

l with l = 1, · · · , L). When it is intersected with the solution space Σ, defines the

phenotypic feasible solution space:

Φl = Il ∩ Σ (3.3)

where Il = I1 × · · · × I li × · · · × In.

The union of the L distinct Φl, one for each environmental condition, defines the phe-

notype space:

Φ =
⋃
l

Φl (3.4)

A graphical representation for the construction of the solution spaces is given in Figure

3.2.
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A metabolic response is investigated analyzing the system behavior under the L envi-

ronmental conditions. Formally this is obtained assigning to the same fixed OF zj in

each of the distinct Φl a distinct optimal fluxes distribution ŝlj calculated by means of

linear programming. At this step, it is then possible to define the set:

Sj =
{
ŝlj

}
l=1,··· ,L

(3.5)

that represent the metabolic response of the system subject to the L different conditions.

The exploration of Φ is realized through the definition of several, R, different OFs zj

and the consecutive sampling of a set of metabolic responses S = {Sj}j=1,··· ,R.

As stated at the beginning of this section, the OF is here used just to represent a par-

ticular network condition and therefore it is not intended to have any further biological

meaning.

The level of complexity in the identification of a phenotype reflecting a given behavior

could be raised supposing that, when increasing a flux vi (e.g. the uptake of a nutrient,

which can be simulated by increasing the boundaries of the flux), is associated an increase

in another flux vj (e.g. the secretion rate of a given metabolite).

In this case, and in in general for the eeFBA approach, solution will indicate a set of

functional states that, besides fulfilling the imposed constraints and their variations,

abides by the metabolic response definition (hereinafter also referred to as metabolic

response constraint).

An ensemble of solutions is, hence, generated by different OFs representing alternative

solutions that satisfy the specified property defined by a sufficiently loose metabolic

response (e.g. the behavior in correspondence of extreme levels of nutrient uptake). The

procedure to obtain such ensemble will be described in Subsection 3.1.3.

Emergent behaviors of the metabolic network under investigation can be discovered by

analyzing the “typical” behavior of ensembles of solutions sustaining the same metabolic

response in order to seek which functional states have the capability to sustain the

metabolic phenotype.

It is also likely that the solutions in the same ensemble can be clustered (by means of a

clustering algorithm) into different groups, suggesting that the same metabolic response

is represented by different conditions of the network. An example of this application

will be provided in Section 3.5.3.

In the case of multiple metabolic responses it could be of interest to compare the ensemble

of solutions representative of a metabolic response α (e.g. a physiological response)

against an ensemble of solutions obeying to a different response β (e.g. an altered

response).
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Figure 3.3: Workflow illustrating the eeFBA approach. Figure from [58].

This could reveal sets of fluxes with a different behavior in the two cases and that may

be associated to candidate pathways responsible for the different metabolic response. In

Section 3.5.3 it is shown an example exploiting a Kolmogorov-Smirnov test to identify

the set of fluxes significantly different between the two ensembles.

A schematic representation of the entire workflow is provided in Figure 3.3.

3.1.3 Sampling and populating methods

Sampling the solution space In the eeFBA approach, a random set of OFs are

maximized with linear programming. This is different from the commonly used method

of randomly sampling the feasible solutions by means of the “hit-and-run” sampler.

In Bordel et al. [130] random OFs were generated by selecting random pairs of reactions

and assigning them random weights. On the contrary, in eeFBA any number of reactions

can take part in the random OF with the goal to maximize sampled solutions variability.

In eeFBA number of reactions that constitutes the OF, is given by the cardinality of

the set of reactions having ci > 0. The fraction τ of considered reactions is drawn

at random, with uniform probability in (0, 1] with the aim of obtaining an objective

involving from one to all reactions with an uniform probability. To any selected reaction

is then assigned a random weight ci uniformly tossed from the interval (0, 1].

An instance j of the objective functions zj is defined as zj =
∑n

i=1 civi, where ci takes

value 0 with probability τ and takes a random value with uniform probability in [0, 1]

with probability 1− τ .

To every zj it is hence assigned an optimal solution ŝlj ∈ Φl calculated with the standard

FBA approach exploiting linear programming.
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Populating the ensembles of solutions Within the eeFBA framework, in order

to populate an ensemble of matching solutions A ⊆ S corresponding to a phenotype

of interest α, the solutions ŝlj have been characterized. In these solutions the observed

redistribution of fluxes obtained when moving the boundaries of a given flux vi while

maintaining zj and performing the optimization, respects the metabolic response con-

straint.

At this stage, with a procedure named sampling + filtering it is possible to sample

randomly the desired number of points (i.e. zj) and filter them accordingly to A =

{Sj | Sj ∈ S, A(Sj) = 1}, where α can be converted in a Boolean fashion to the Boolean

expression A (indeed the metabolic response constraint is either respected or not).

A further strategy to populate the ensemble of solutions could be the finding of the

behavior closest to the metabolic response constraint. This can be done, at the price of

reducing the variability within the ensembles, by means of an evolutionary algorithm.

In this case a genetic algorithm (GA) is used to explore the phenotype space. The

GA is exploited to build a set P = {zj} of p individuals, corresponding to different

sampled objective functions, and to evolve them accordingly to a fitness function a(Sj)
quantifying the distance from the metabolic response constraints to the corresponding

solutions in Sj .

The use of the GA is motivated by two mutually exclusive reasons: (I) identify the

solutions that best agree with the reference phenotype (genetic algorithms have been

devised to this end); (II) enlarge the ensemble selecting the highest number of solutions

to investigate the eventual presence of ”global” properties characterizing the phenotype.

To realize this second goal, it is possible to exploit, for each run of the GA, differently

initialized populations. Another adopted strategy consisted in amplifying the internal

variability of the ensemble A by selecting, in every run r, the best solution Sj,r and

a set of solutions “not too far from the best”. In the eeFBA this is done by selecting

all the individuals within a standard deviation from the best solution fitness value,

A = {Sj,r | Sj,r ∈ Φ, a(Sj,r) ≤ a(Sj,r) + σr}.

3.2 Genome-wide and core models

Besides the definition of an appropriate mathematical framework to study the “metabolic

system” with constraint-based approaches, it is fundamental to define an appropriate

model describing it. To this end, in literature two categories of models (genome-wide

models and core models, hereafter illustrated) can be identified.
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Genome-wide models With the advent of high-throughput technologies [131], an

unprecedented amount of quantitative data supplied by omics technologies such as ge-

nomics, transcriptomics, proteomics, metabolomics, allowed the identification of almost

every component of metabolic networks. These new potentialities lead to the develop-

ment of genome-wide (GW) models taking into account every single known reaction in

an organism and summarizing the knowledge on the system itself.

During last ten years, a great number of GW reconstructions appeared in literature,

analyzing more and more complex organisms: bacteria [75], lower [70, 95] and higher

eukaryotes [25, 26], plants [78]. The most relevant goal of these GW models is, in

the domain of Systems Biology, their ability to be used as “scaffolds” for computational

analyses exploiting both constraint-based and network-based approaches. Moreover they

can also be used as a sort of repository of the collected knowledge about metabolic

pathways [132].

An automated and efficient procedure of reconstruction of a GW model for an organism

of interest starts typically from the genomic sequence annotations, or from an existing

model of a related organism [133] used as reference for the definition of the initial draft

of the model.

The obtained draft must then undergo an accurate process of curation and refinement

in order to correct errors (such as reaction gaps and wrong directionalities) due to

incomplete or inaccurate annotation. This constitutes a time consuming process that

needs the manual integration and control of the reactions included in the draft, even if

the task can be aided by some semi-automated procedures [134–138].

An obvious challenge for Systems Biology, is the reconstruction of an accurate model

of the entire human metabolism. At present the most advanced human GW model

reconstruction is Recon 2 [26] that has been curated from a previous version of the

global human metabolic network, Recon 1 [25].

Recon 1 has been defined starting from an accurate human genome sequence anno-

tation, from which it was possible to retrieve the set of genes involved in metabolic

processes and hence corresponding enzymes catalyzing reactions. This information has

been subsequently integrated, in a refining and validation process, with the correct reac-

tion stoichiometry, compartmentalization and definition of exchange reactions in order

to account for the conservation of metabolic mass and charge.

Recon 2 can be seen as an extension of Recon 1 realized through the expansion of the

set of metabolic reactions (7440, almost the double with respect to the previous version)

supported by additional sources of metabolic information and by a further accurate

process of revision and validation.
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A further step in increasing the complexity of GW model is driven by the consideration

that cells in different tissues are characterized by metabolic pathways that are differently

active. For this reason, during last years, human GW models have been used to generate

cell type-specific models. For example, as it will further described in Section 3.4.1, the

INIT algorithm [139] has been used to integrate data deriving from the Human Protein

Atlas [140] and other sources in order to generate cell-type specific metabolic models

that will be analyzed in Section 3.4.

Several successful applications of GW models have been reported [51, 81, 141, 142], but,

as already stated in several points in this thesis, some limitations emerged for their ap-

plication. First of all, GW models are typically investigated through FBA methods (see

Section 3.1.1) due to the fact that the dimensions of the system (thousands of metabo-

lites and reactions) and the lack of kinetic parameters make them hardly analyzable

with the computationally-demanding mechanism-based modeling techniques.

In addition, even with the classical FBA techniques it is not always possible to predict the

actual metabolic flux distribution in the network, due to the presence of inconsistencies

in the network itself (wrong mass and charge balance, lack of reactions or metabolites

that are currently unidentified) [143], and due to the existence of thermodynamically

infeasible loops. This last point should always be critically evaluated, but unfortunately

the many methods devised for the complete identification and the removal of the loops

[47, 144] can be profitably used only for small scale networks due to their computational

cost.

Core models A complementary strategy to investigate metabolic networks, is the

definition of Core models (CM), i.e. models having a lower level of complexity (see

Chapter 1 for a meaningful definition) and that can be used either to investigate in detail

a particular pathway (e.g., glycolysis) [90, 145], or to represent the global metabolism of

a cell (see Figure 3.4 for an example) including only those pathways useful to investigate

emergent properties (e.g. the presence of a metabolic phenotype).

As an example of the first goal it is worth to cite a work where Kerkhoven and co-authors

[73] defined a CM evaluating exclusively the glycolysis and the pentose phosphate path-

ways, while the second task has been used in [84], where authors included metabolic

pathways that are supposed to have a pivotal role in cancer cell growth, namely, glycol-

ysis, TCA cycle, pentose phosphate, glutaminolysis and oxidative phosphorylation.

In the present dissertation it has been developed a yeast CM (Section 3.5 and [58]) with

the aim of analyzing the design principles behind the emergence of the Crabtree effect (a

metabolic behavior that is characteristic of several yeasts [146]) by means of the eeFBA
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approach presented in Subsection 3.1.2. This model has been designed to include the

most relevant pathways known to play a role in the emergence of the Crabtree effect but,

in order to both reduce the model complexity and avoid cell-type specificities, reactions

that belong to a linear cascade without branching were lumped together in a unique

fictitious reaction.

Although CMs are useful to reduce the complexity of the system description and to

ease the interpretation of simulation outcomes, they must be carefully exploited due

to a possible undervaluation of key multi-factorial relationships between the state of

the system and its response to different perturbations (e.g., in the modeling of complex

diseases) [147].

Figure 3.4: Yeast CM illustrating the most relevant metabolic pathways: glycolysis
(green arrows), alcoholic fermentation (blue arrows), pentose phosphate pathway (light
blue arrows), biosynthesis of fatty acids (violet arrows), Krebs cycle (red arrows) and

OXPHOS (orange arrows). Figure from [28].

3.3 Tools for constraint-based analysis: the COBRA tool-

box

In recent years many softwares have been developed to perform constraint-based analysis

(a list of the most relevant is provided in Table 3.1). Among these, a sort of standard for

the scientific community is the COBRA (COnstraint-Based Reconstruction and Anal-

ysis) Toolbox [149] a MATLAB environment software package for the constraint-based

analyses of models.
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Tool name Purpose Reference
BioMet Toolbox GW models validation, FBA, probabilistic FBA, gene set analysis [148]
Cobra Toolbox FBA, FVA, dFBA, gap filling, network visualization [149]

FAME Web based FBA and FVA [150]
FASIMU FBA, FVA, gene deletion analysis, gap filling [151]
OptFlux FBA, FVA, EFM, gene deletion analysis [152]

Pathway Tools GW reconstruction, FBA, gap filling [153]
Raven Toolbox GW reconstructions, FBA, network analysis and visualization [154]

SurreyFBA FBA, FVA, EFM [155]

Table 3.1: Main computational tools used in the modeling, simulation and analysis
of metabolism. Table from [28].

COBRA can be exploited with all the systems that can be represented as a list of

biochemical reactions (mainly metabolic models) and it is based on the classical aspects

of constraint-based analyses, such as the determination of chemical-physical constraints,

the cellular compartmentalization, the directionality of the reactions and the steady-

state assumption (conservation of the global mass).

The toolbox is structured as an ensemble of tools able to perform the most part of the

common analyses on metabolic networks:

• prediction of the maximal growth rate of a cell at different rates of uptake for

relevant nutrients;

• description of the composition of the cellular biomass to define the OF;

• prediction of effects on growth and reduction of flux through a single reactions

due to the deletion of a gene of interest (simulated exploiting information on the

expression level relative to a gene “involved” in the reaction);

• determination of the optimal flux distribution towards a given OF by means of

FBA techniques;

• Flux Variability Analysis (FVA), a method derived from FBA and able to analyze

the optimal alternative fluxes distributions calculating, for every reaction in the

system, the minimum and maximum value that the flux can assume.

A recent version (2.0) of the COBRA Toolbox includes further analysis methods such

as:

• geometric FBA (dealing with the fact that different solvers may return different

solutions);

• the elimination of thermodynamically infeasible loops through the Loop law;

• gap filling to replenish gaps of metabolic networks due to an incomplete knowledge

on the network structure;
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• tools for the metabolic engineering.

The COBRA toolbox adopts the standard SBML format for the import of metabolic

models, but it is also able to import from Excel spreadsheets. The software has some

dependencies (sometimes giving raise to installations problems) such as (I) libSBML, an

open source library for the writing, reading and manipulation of SBML models; (II) the

SBML toolbox to import/export SBLM from/to MATLAB; (III) one or more supported

linear programming solver such as Gurobi, CPLEX e GLPK.

The eeFBA method defined in Subsection 3.1.2, along as every script for contraint-

based analysis used in this thesis, have been implemented in MATLAB exploiting the

potentialities of the COBRA toolbox to manage SBML models and perform FBA.

3.4 Zooming in genome scale models, a reduction approach

In Section 3.2, it has been illustrated main advantages and disadvantages of GW and CM.

In this section, starting from already existing genome-scale metabolic models, the aim is

the reconstruction of manually curated core models that zoom in metabolic complexity.

Here, the study has been performed not focusing on a single model for a generic cell, but

on the comparison of tissue specific metabolic models describing three types of tumor

and a “reference state”. 1

The choice of evaluating the relevance of the tissue specific models has been done due

to the belief that the development of these kind of networks is a milestone towards

the implementation of a “virtual twin”, the fundamental tool in the Systems Medicine

perspective [156].

3.4.1 Genome-wide models: the Human Metabolic Atlas

To approach the study of the “generic” human cell metabolism and to highlight differ-

ences, in terms of fluxes values, that can be found in cancer cell metabolism, a good

starting point is the the analysis of the Human Metabolic Atlas (HMA), a database

where 69 cell types and 16 cancer metabolic networks described at genome-scale level

are deposited [139].

From the computational point of view these networks have been automatically generated

exploiting the Integrative Network Inference for Tissues (INIT) algorithm [139] that uses

as a reference the generic Human Metabolic Reaction (HMR) model [157].

1Disclaimer: Studies performed in Section 3.4 have been performed mainly M. Di Filippo (SYSBIO
- Centre of Systems Biology, Milan - Italy) under the supervision of the author.
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HMR has been built integrating information deriving from different sources representing

(at the time of the publication) the state of the art for metabolic modeling: Recon 1

[25], EHMN [158], HumanCyc [159] database and KEGG [46, 160] database.

In the following step, transcriptomic, proteomic and metabolomic data have been used to

select subsets of reactions that constitute the different cell or tissue specific genome-wide

metabolic networks. In particular, the Human Proteome Atlas (HPA) [161] has been

used for proteome data, while the Human Metabolome Database (HMDB) [162–164]

has been exploited to define the metabolic pools. Then INIT “weighs” every reaction

in the model accordingly to the soundness of the biological evidence and accordingly

to the level of expression. As a last step, the algorithm performs an optimization in

order to maximize reactions fluxes with a high weight. The process returns as output

an ensemble of networks called “active” due to the fact that they should represent

exclusively the portion of Human Metabolic Reaction with reactions effectively expressed

in every cell/tissue type.

3.4.2 Reduction of genome-wide models

As already stated in Section 3.2, CMs are useful to reduce the complexity of the sys-

tem description and to ease the interpretation of simulation outcomes. For this reason

four constraint-based core metabolic models have been reconstructed and compared. Of

these, one model has been obtained with a reduction of the generic HMR model while

the three others have been derived from the reduction of tissue-specific genome-scale

networks iLiverCancer1715, iBreastCancer1771 and iLungCancer1472 (as in the ver-

sion available in the HMA database on October 2013). These models have been selected

as the most harmful, among the networks generated using INIT, due to the high values

of parameters such as mortality, incidence and prevalence retrieved from the last esti-

mations of GLOBOCAN [165, 166], the online database of the International Agency for

Research on Cancer.

With the reduction process, only pathways that play a pivotal role in sustaining cancer

cells growth and proliferation have been selected [84, 167]: glycolysis, pentose phosphate

pathway (PPP), tricarboxylic acid cycle (TCA cycle), oxidative phosphorylation, glu-

tamine metabolism, amino acid synthesis, urea cycle, folate metabolism and palmitate

synthesis.

Moreover, to obtain models that can be simulated with the FBA approach, it has been

necessary to add elements such as exchange reactions (allowing metabolites to be trans-

ported between compartments of the models – cytosol, mitochondria and external en-

vironment), and “sink” reactions to define the environment around the cell, as they
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introduce nutrients to be metabolized by the cell. These kind of reaction has also been

introduced for those metabolites whose production is not explicitly modeled within the

core models, because pertaining to non considered pathways.

Demand reactions are added for compounds that are known to be secreted by the cell in

the extracellular environment. As for sink reactions, these reactions have been inserted

during the curation process to allow removal of metabolites whose consumption is not

entirely modeled in the network.

As discussed in Subsection 3.1.1, the fundamental step for the definition of a constraint-

based model is the addition of constraints. This has been done in the four “reduced

models” by means of (I) thermodynamic constraints specifying the reversibility or irre-

versibility of every reaction; (II) compartmentalization of metabolites; (III) environmen-

tal constraints (nutrients that can enter in the cell); (IV) capacity constraints (setting

the lower bound to zero for irreversible reactions, and leaving upper bound unlimited in

the allowed direction except for exchange reactions).

The fundamental assumption of FBA is the fact that metabolism behaves optimally

towards a given OF. In this case, since are mainly evaluated metabolic models describing

cancer cells, the “function” to be optimized has been identified in the maximization of

the biomass production.

The biomass formation pseudo-reaction associated to cancer models (including all the

needed metabolites, and the relative stoichiometric coefficient) has been adopted as

OF for both for the reference and cancer models. In the CMs the biomass formation

pseudo-reaction has been reduced from the full version to encompass only the subset

of metabolites needed for biomass synthesis that are involved in the pathways here

considered.

It is worth to underline that I am not neglecting the fact that normal and cancer cells

exhibit different behavior in terms of growth and proliferation rate (a fact also underlined

by different biomass formation pseudo-reactions in HMA models) and this choice has

been done in order to highlight their different metabolic requirements.

Following the identification of some incongruities in the exploited GW models, a large

amount of time has been dedicated to the manual curation of the CMs. Although the

HMA has been extensively curated, the inner complexity of GW models leaves room

for misinterpretations, suggesting to further check the formulation of reactions in terms

of metabolites taking part to them and searching for gaps (missing metabolic reactions

that wrongly interrupt a biochemical pathway), using as reference the database KEGG

and the state of the art human metabolic reconstruction Recon 2 [26]. The corrections

resulting from this process are listed in Table 3.2. From this table it is possible to

notice that the most common error involved a wrong directionality of the reactions.



Chapter 3. Constraint-based analysis 48

Original reactions Revised reactions Compartment
– 3-phospho-D-glycerate ⇒ 2-phospho-D-glycerate Cytosol

Acetyl-CoA + H2O + OAA ⇔ Citrate + CoA Acetyl-CoA + H2O + OAA ⇒ Citrate + CoA Mitochondria

Isocitrate + NAD+ ⇒ AKG + CO2 + H+ + NADH Isocitrate + NAD+ ⇔ AKG + CO2 + H+ + NADH Mitochondria

Isocitrate + NADP+ ⇒ AKG + CO2 + H+ + NADPH Isocitrate + NADP+ ⇔ AKG + CO2 + H+ + NADPH Mitochondria
AKG + Leucine ⇒ 4-methyl-2-oxopentanoate + Glutamate 4-methyl-2-oxopentanoate + Glutamate ⇔ AKG + Leucine Cytosol
AKG + Isoleucine ⇒ 2-oxo-3-methylvalerate + Glutamate 2-oxo-3-methylvalerate + Glutamate ⇔ AKG + Isoleucine Cytosol

Table 3.2: Revised reactions after the curation phase of the core models, performed
consulting KEGG database and the human metabolic reconstruction Recon 2. The first
reaction is the result of a gap correction found within the glycolysis pathway, which in
the starting genome-scale models, has been erroneously filled with two exchange reac-
tions for the metabolites 3-phospho-D-glycerate and 2-phospho-D-glycerate. A revision
of the directionality has been done for the other five reactions. In particular, the third
and fourth reactions have been corrected within the cancer models because it is known
that in tumors, unlike normal cells, the enzyme that is responsible for these reactions

works mainly in the reverse direction.

Genome-scale Core

Model # reactions # metabolites # reactions # metabolites

HMR database 8180 6011 274 251

Liver Cancer GW 4386 4020 257 241

Breast Cancer GW 4299 3955 244 233

Lung Cancer GW 3809 3653 236 230

Table 3.3: Number of reactions and metabolites for each of the genome-scale and core
metabolic models.

Whereas the first reaction is an example of a gap within the glycolysis erroneously filled

with two exchange reactions for the metabolites 3-phospho-D-glycerate and 2-phospho-

D-glycerate, a mistake probably due to automatic gap-filling procedures performed by

the INIT algorithm. In this case the correction restored the correct flow through the

pathway.

The number of metabolites and reactions of the final core models, compared to their

genome-wide counterparts is reported in Table 3.3. A topological analysis of the four

metabolic models has been performed. The results and the analysis description can be

found in Chapter 4.

The interested reader can retrieve the developed metabolic CMs from BioModels Database

[168] querying for the following identifiers:

MODEL1502100000, MODEL1502100001, MODEL1502100002, MODEL1502100003.

3.4.3 Differential analysis of flux distributions

The COBRA Toolbox of MATLAB [105, 149] (see Section 3.3 for a description) has been

used to perform FBA simulations in order to calculate flux distributions for each of the

four CMs described in the previous section.
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The four obtained flux distributions have been analyzed comparing each cancer model

with the reference model.

It must be noticed that in the analysis, in order to make the three cancer models com-

parable among them and making the differential analysis meaningful, has been adopted

a shared reference model instead of comparing each tumor against its corresponding

healthy model recently published within the Human Metabolic Atlas database [169].

3.4.4 Tissue-specific cancer redistributions of metabolic flux

The accurate analysis of the metabolic flux redistribution is a pivotal step to understand

mechanisms behind cancer cell growth and proliferation [170]. In this context, FBA has

been used to estimate the flux of metabolites through the reactions of CMs of cancer

cells and a “reference” cell (of the latter, a simplified version is illustrated in Figure 3.6

along with “active” reactions for this case). Of more interest has been the comparison

of the obtained distributions that allowed to understand up- and down-regulations of

fluxes in metabolic pathways. The main results of this analysis are illustrated in [171],

where green and red chromatic scales highlight, respectively, the detected up-regulations

and down-regulations, in terms of flux value, in the cancer condition with respect to the

reference one.

A first relevant outcome is the difference in biomass production rate among the models.

In particular, it is possible to notice a positive fold change of about 1.3-1.5 in favor of

the cancer cells: a biologically correct outcome that confirm the ability of the model to

distinguish between the the two states. Indeed, in populations of normal cells the cellular

proliferation is inhibited by cell-to-cell contact, while in cancer cells this inhibition is lost

[171] leading to a higher biomass production rate sustained by an extensive modification

of metabolic fluxes.

Analyzing the differential values for fluxes through the biochemical pathways, it emerges

that cancer cells exhibit an increased exploitation of the glycolytic metabolism, un-

derlined by a drastic decrease of the oxidative phosphorylation (OXPHOS) and in an

enhanced glycolytic activity that results in a higher level of lactate secretion, a proxy

indicating high fermentative levels and a way to regenerate NAD+ from NADH, allowing

in turns an enhanced glycolysis to persist.

Moreover, lactate secretion may be able to confer another advantage to tumor cells,

enhancing their invasiveness by disrupting normal tissue architecture, and promoting an

acidic tumor micro-environment to evade tumor-attacking immune cells [172].

The inefficiency of glycolysis compared to OXPHOS in producing the energetic molecule

ATP, reflects to an expected increase of uptake of the nutrient glucose as observed in
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Figure 3.5: Main results obtained from the Flux Balance Analysis. Green and
red chromatic scales highlight, respectively, the detected up-regulations and down-
regulations, in terms of flux value, in the cancer cells models with respect to the
reference model. From the figure it emerges that tumor cells, compared to the ref-
erence one, reprogram the metabolic pathways to satisfy their increased needs for the
synthesis of macromolecular precursors essential for biomass production during tumor
growth. Exploiting the FBA approach, it also emerged a heterogeneous behavior among

the three investigated tumors.

cancer models (up-regulation of about 4-6 fold).

Globally these indications suggest that the CMs of cancer cells are depicting a pheno-

type dominated by the Warburg effect, i.e. the enhanced use of the glycolytic pathway

(and lactate production), even in the presence of normal levels of oxygen [173].

The fatty acids synthesis is another fundamental pathway to sustain higher production

of biomass in cancer cells. The key precursor for this synthesis is citrate (produced

in the TCA cycle in the mitochondria and exported to cytosol), that is transformed

in acetyl-CoA and eventually to fatty acids (simplified in the CMs with the palmitate

synthesis) used as building blocks for cellular membranes. Therefore, in this view, the

1.3–1.4 fold up-regulation of ATP citrate lyase and fatty acid synthase is an expected

event.

Also for glutamine metabolism has been recognized a key role in cancer growth and pro-

liferation due to the fact that this metabolite is (along with glucose) an important source

of energy, and a source of carbon for many processes such as fatty acids and aminoacids

synthesis and to provide metabolites intermediates of the TCA cycle (a process called

anaplerosis, that allows the TCA cycle to be a provider of biomass precursors).
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Figure 3.6: Schematic representation of the “active” network relative to the refer-
ence core model. This map shown, in a simplified view, the information concerning
flux distribution in the reference core model within metabolic pathways under investi-
gation in our work, namely glycolysis, pentose phosphate pathway, tricarboxylic acid
cycle (TCA cycle), oxidative phosphorylation, glutamine metabolism, urea cycle, amino
acid and fatty acid synthesis. The grey and black arrows correspond, respectively, to
reactions having a null and a positive flux value. The direction of each black arrow
is set depending on the obtained flux value in the corresponding reaction. For rea-
sons of space, cellular compartments are not included. Abbreviations: G6P, glucose-
6-phosphate; 3PGA, 3-phospho-D-glycerate; PEP, phosphoenolpyruvate; Pyr, pyru-
vate; L-lac, L-lactate; D-lac, D-lactate; 6PGL, glucono-1,5-lactone-6-phosphate; 6PG,
6-phospho-D- gluconate; Ru5P, ribulose-5-phosphate; R5P, ribose-5-phosphate; Xil5p,
xylulose-5-phosphate; GAP, glyceraldehyde 3-phosphate; Sed7P, sedoheptulose-7-
phosphate; Sed1,7BP, sedoheptulose-1,7-bisphosphate; Ery4P, erythrose-4-phosphate;
F6P, fructose-6-phosphate; DHAP, dihydroxyacetone phosphate; PRPP, phosphoribo-
syl pyrophosphate; UQ, ubiquinone; UQH2, ubiquinol; CytC-Fe2+, ferrocytochromeC;
CytC-Fe3+, ferricytochromeC; Leu, leucine; Ile, isoleucine; Asp, aspartate; Phe, pheny-
lalanine; Cys, cysteine; Met, methionine; Gln, glutamine; Glu, glutamate; Cit, cit-
rate; Isoc, isocitrate; AKG, α-ketoglutarate; SucCoA, succinyl-CoA; Suc, succinate;
Fum, fumarate; Mal, malate; OAA, oxaloacetate; AcCoA, acetyl-CoA; CP, carbamoyl-
phosphate; Orn, ornithine; Pro, proline; Ci, citrulline; ArgSucc, argininosuccinate;
Arg, arginine, PHP, 3-phosphonooxypyruvate; 3PSER, 3-phosphoserine; Ser, serine;

Gly, glycine.
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In the developed cancer CMs the role of glutamine has been underlined by an increased

glutamine uptake (about 1.4 fold). The high anaplerotic flux is a more specific indicator

of cell growth with respect to the high glycolytic flux, since the latter is also stimulated

by stresses not involved in biomass production [174].

Besides the increased glycolysis, another aspect underlying the Warburg effect is the

presence, in cancer cells, of a down-regulated OXPHOS due to a reduced activity of all

its components, and in particular due to a complete inhibition of the complex I activity.

In the analyzed models, it emerges that OXPHOS is strongly decreased in breast and

liver cancer, but the lung cancer exhibit flux levels comparable to the reference case.

Nevertheless, recent studies by Hooda et al. in [175], demonstated a crucial role for

respiration in lung cancer cells to promote their development and growth.

The flux distributions obtained for each CM, along with model reactions, are available

in Appendix A.

In conclusion, the developed CMs were able to identify different flux distributions both

between reference and cancer conditions, and among the three evaluated cancer models,

indicating that cell specific models should be developed and analyzed to grasp this

heterogeneity. The variations among different cancer types are of great interest in the

medical field for the identification of cancer type - specific drug targets in order to

develop more effective treatments. Moreover, the observed heterogeneity suggest that

three different sub-phenotypes (belonging to the three tissues) can be identified, all

belonging to the cancer macro-phenotype.

As mentioned in Section 3.4.3, the three cancer models have been made comparable

among them using the same reference model. However, an extension of the work cur-

rently in progress, is the comparison between each of our three cancer core models with

their healthy tissue-specific model [169] counterparts, in order to identify specific pe-

culiarity linked to a certain type of tissue that are not highlighted using the reference

model.

Lastly, the emergence of cancer sub-phenotypes could be investigated by means of the

eeFBA approach (Subsection 3.1.2), a strategy complementary to the reconstruction of

distinct tissue-specific networks that makes use of a generic metabolic network to retrieve

ensemble of flux distributions compatible with the cancer macro-phenotype, and that

is also able to identify and describe sub-phenotypes inside the ensemble. In the next

section eeFBA will be used to investigate the Crabtree effect (a phenotype exhibiting

a number of common traits with the Warburg effect discussed in this section) and to

identify its sub-phenotypes.
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3.5 A core model of yeast to investigate the Crabtree effect

To better illustrate the eeFBA procedure defined in Subsection 3.1.2 and to investigate

the emergence of the Crabtree effect [176] it has been developed a CM for the yeast

metabolism consisting in 65 reactions and 37 metabolites defining the main metabolic

pathways. In this simplified model, oxygen is the unique carbon source. The Crabtree is

a well known phenomenon in which some yeasts (e.g. Saccharomyces cerevisiae) exhibit

a high production of ethanol via fermentation even in presence of high external glucose

concentrations (regardless of the availability of oxygen), rather than directing the pro-

duction of energy towards the more efficient oxidative phosphorylation - as other yeasts

do (also known as Crabtree-negative yeasts, e.g. Kluyveromyces) - therefore consuming

less oxygen.

To demonstrate the capabilities of CMs for the investigation of the implications of

the two different metabolic responses, the devised approach has been applied to the

“small” model drawn in Figure 3.7, which takes into account only the main pathways

and metabolites involved in the selected phenomenon.

3.5.1 Formalization of the Crabtree-positive and negative phenotypes

The Crabtree effect (CE) can be defined as the ability to repress respiration and ox-

idative phosphorylation as glucose concentration increases [146]. It is easily observed

experimentally as the persistence of aerobic alcoholic fermentation - with a concomi-

tant reduction in the respiration rate - when a pulse of glucose is added to the culture

medium of yeasts [177, 178] or when yeasts in glucose-limited chemostats are grown at

increasingly higher dilution rates, so that the flux of glucose from the medium to the

cell progressively increases [179].

To study the CE exploiting the eeFBA it is necessary to give a formal definition to the

metabolic response constraints corresponding to Crabtree-positive (C⊕ ) and Crabtree-

negative (C	 ) phenotypes.

To do this, two fluxes whose activity traditionally define the CE has been evaluated: the

first one is the oxygen uptake vo, a proxy the oxidative phosphorylation, and the second

one is ethanol secretion ve, a proxy for the fermentative metabolism. In our approach,

these two fluxes are considered in function of the glucose uptake vg due to an enhanced

difference between C⊕ and C	 yeasts in the kinetics of glucose uptake, as observed in

[178, 180].
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cofactors. Colored arrows indicate differentially expressed pathways in C⊕ and C	 .
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In particular, the uptake of this nutrient can be described exploiting a series of glucose

uptake indicating the set of glucose values at which each in-silico experiment is run and

defined as:

{vig | ∀ i < j vig < vjg}i,j=1,...,L (3.6)

Moreover, to obtain a description more adherent to the actual biological situation, in

both phenotypes it must imposed that a null glucose uptake, v1
g = 0, corresponds to

oxygen uptake and ethanol secretion null fluxes, ve(v
1
g) = vo(v

1
g) = 0.

As stated before, a peculiar characteristic of the C⊕ yeast can be recognized in the

fact that the ratio of aerobic glycolysis over respiration grows proportionally to the

glucose uptake. Or equivalently it is possible to state that at maximal values of glucose

uptake the ethanol secretion flux must overcome the oxygen uptake flux. It is also

necessary to exclude those solutions in which respiration is not simultaneously employed

with fermentation, meaning that, the oxygen consumption and ethanol secretion fluxes
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must be at least once non null in the evaluated interval. All the previously enumerated

constraints can be summarized in the logical expressions of Equation 3.7 used to filter

the solutions relative to the C⊕ :

( L∑
l=1

ve(v
l
g) > 0

)
∧
( L∑
l=1

vo(v
l
g) > 0

)
∧
(
ve(v

1
g) = 0

)
∧
(
vo(v

1
g) = 0

)
∧(

ve(v
L
g )− vo(vLg ) > 0

)
(3.7)

In this application, the filtering process has been applied, in order to explore relationship

between fermentation and respiration, only at the extreme levels of glucose uptake to

favor the emergence of the widest set of behaviors that satisfy Equation 3.7.

A similar reasoning has been applied for the C	 phenotype where a null or a specific

fermentation level has not been imposed; on the contrary, it has been verified that the

oxygen consumption does not grow faster than ethanol production as a function of glu-

cose uptake (i.e. is not C⊕ ), and of course that oxygen uptake must increase as function

of glucose uptake (i.e. for maximal values of glucose uptake it has to be greater than

zero). Under these premises, it is possible to define the C	 metabolic response Boolean

constraint:

(
ve(v

1
g) = 0

)
∧
(
vo(v

1
g) = 0

)
∧
(
vo(v

1
g)− vo(vLg ) < 0

)
(3.8)

To populate the two ensembles corresponding to the phenotypes of interest, following

the sampling of the space Φ, the retrieved solutions were firstly filtered exploiting the

Expression 3.7 to populate the C⊕ ensemble and then the filter defined in Expression

3.8 was used on the remaining solutions to populate the C	 ensemble.

Accordingly to this framework, it will be selected with the same probability both so-

lutions where the ratio of aerobic glycolysis over respiration is slightly growing as a

function of glucose uptake will and a solution in which this rate significantly increases.

If instead it is preferable to define an ensemble of C⊕ solutions where the response

constraint is maintained as much as possible (e.g. the increase in the aerobic glycol-

ysis/respiration is maximum), the search algorithm must be biased, for example, by

means of a fitness function able to do it.

To achieve this goal, in [58] I defined for the C⊕ case a fitness function a(Sj) to be

minimized:

(
ve(v

1
g) + vo(v

1
g) +

vo(v
L
g )

ve(vLg )

) (VMAX L)2∑L
l=1 ve(v

l
g)

∑L
l=1 vo(v

l
g)

(3.9)
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Qualitatively speaking, in the heuristic Expression 3.9, the sum terms ve(v
1
g) + vo(v

1
g)

requires that neither respiration nor fermentation should be observed when glucose up-

take is null, whereas the ratio
vo(vLg )

ve(vLg )
is intended to amplify the fact that the ethanol

secretion should overcome the oxygen uptake at the highest glucose intake level. If

vo(v
L
g ) = ve(v

L
g ) = 0, the second term of Expression 3.9 leads to an indefinite form that

has been solved by setting the fraction value to infinity to penalize those phenotypes

with no ethanol production at high glucose.

The last term (VMAX L)2∑L
l=1 ve(v

l
g)

∑L
l=1 vo(v

l
g)

has been introduced to impose a greater weight to

solutions having a not null glucose kinetics of the two main fluxes, with VMAX being the

higher bound value for all the fluxes so that
∑L

l=1 vo(v
l
g) ≤ LVMAX.

Analogously in the C	 case, the fitness function has been defined in the following terms:

ve(v
1
g) + vo(v

1
g) +

ve(v
L
g )

vo(vLg )
+
vo(v

1
g)

vo(vLg )
(3.10)

In this case, the third term of Expression 3.10 describes the “constraint” by which in the

C	 phenotype the oxygen uptake should overcome the ethanol secretion at high glucose.

For the C	 phenotype, the indefinite form has been solved imposing the fraction value

to infinity to penalize those solutions with no oxygen production at high glucose levels.

Eventually, the last term has been included to favor those solutions which increase

respiration as glucose uptake increases, and the indefinite form has been fixed to infinity

if vo(v
1
g) = vo(v

L
g ) = 0.

3.5.2 Tuning the Genetic Algorithm in eeFBA

The GA used with the eeFBA has been implemented in MATLAB in order to integrate

it with the other scripts governing the sampling procedure and the execution of the FBA

optimization. In this context, it is necessary to illustrate the parametrization used to

tune the GA (see [181] for a general introduction on GA and [103] for an application

to metabolism), keeping in mind that the goal of modeling the CE was to give a proof

of concept for the effectiveness of the eeFBA method and not the identification of the

most effective set of the GA parameters. In all the performed runs of the GA

• the initial population has been set to 100 individuals;

• the tournament selection has been of size 4;
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• a single point crossover has been used: a random crossover point h is drawn then

for the child vector c, then ci is equal to the ci of the first parent for all i < h or

to the ci of the second parent otherwise;

• a uniform random mutation has been applied: each entry in the vector c can be

replaced by another uniform random number in [0,1], with a probability of 0.05.

3.5.3 Results emerging with the eeFBA approach

Crabtree-positive and Crabtree-negative ensembles The striking aspect emerg-

ing from the eeFBA applied to the investigation of the Crabtree effect is a significative

difference in population composition for the ensembles A⊕ (solutions relative to the C⊕
phenotype), and the ensemble A	, (solutions relative to the C	 phenotype). This non

intuitive difference will be analyzed in the next lines.

By means of the filtering+sampling algorithm 42448 random OFs have been obtained;

among these the filter returned an ensemble of 933 C⊕ solutions (of which 930 are unique

solutions, i.e. at least the value of one flux across the different values of glucose uptake

is not identical) and en ensemble of 4746 C	 solutions (of which 4471 are unique). From

an easy comparison of these values it emerges that it is more than 5 times likely to ob-

serve the metabolic response typical of the Crabtree-negative yeasts than of observing

the CE (estimated as 11% against a 2% respectively) when performing unbiased sam-

pling of the phenotype space. Moreover the fact that the 87% of cases the metabolic

response observed can not be ascribed neither to C⊕ nor to C	 , suggests that the de-

vised constraint-based method is effective in excluding biologically implausible solutions

from the phenotype space.

For what concerns the GA, I performed 1000 runs, and from these runs 7455 individ-

uals have been selected according to the C⊕ fitness function (of these 397 are unique

solutions), where the C	 fitness functions resulted in 11181 (of which 884 are unique)

individuals. After checking A⊕ and A	 with the Boolean filter to discard the false

positives, only the population of A	 was reduced to 867 individuals, highlighting the

effectiveness of the chosen heuristic.

Perhaps the most significant differences emerged when comparing the properties of the

ensembles obtained with the sampling+filtering and GA algorithms. The clustering

analysis has been performed twice by means of a hierarchical clustering [182], each one

using data deriving from the GA or from the sampling+filtering. For each of these

two cases, the analysis has been performed by merging the C⊕ and C	 solutions. The

sampling+filtering case returned a dendrogram (not shown) that does not allow us to
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Figure 3.8: Dendrogram representing the hierarchical clustering of the solutions (C⊕
and C	 merged together) obtained with the GA. In the inserted plots: average of
oxygen uptake and ethanol secretion fluxes as a function of glucose uptake for the main

clusters. Figure from [58].

identify well separated clusters of solutions, not even those corresponding to the sets of

C⊕ and C	 solutions.

Instead, a clear distinction between two major groups can be clearly observed in the

dendrogram obtained with the GA (shown in Figure 3.8). In this case, the main branch

on the left are the set of C⊕ solutions, while on the right the main branch corresponds

to the set of C	 solutions. Strikingly, no solutions fall into the cluster representative

of the wrong ensemble, and even more relevant, some sub-clusters can also be clearly

identified within the two ensembles. The main sub-clusters (10 in total) can be identified

cutting the histogram at the value 2000 on the Y axis (an arbitrarily chosen distance)

and selecting sub-clusters composed of more than 10 individuals. In these sub-clusters

the existence of distinct behaviors compliant with the same metabolic response definition

(either C⊕ or C	 ) clearly emerged from the analysis of the average behavior of the

fluxes representative of respiration and fermentation: representative behaviors of the 5

major sub-clusters are depicted in the plots attached to the dendrogram in Figure 3.8.

Moreover the complete flux profile has been analyzed for those sub-clusters that are most

characterizing of the C⊕ and C	 phenotypes. In particular, in Figure 3.9 is represented

a heat map for all the fluxes of Crabtree-positive (top) and Crabtree-negative (bottom)

solutions. The most different fluxes between the two phenotypes are labeled 1, 2 and 3.

Globally, these areas show in the heat map a marked difference in fluxes value, con-

firming that a rearrangement of a subset of fluxes is associated with Crabtree-positive

and Crabtree-negative solutions/phenotypes (as also elucidated in 3.5.3). Within some

clusters of the C	 phenotype is also possible to identify smaller subset of reactions (grey

rectangles) underlining a higher plasticity.

Crabtree-positive vs Crabtree-negative average behavior: differentially ex-

pressed pathways At a more biochemical level the differences between the C	 e C⊕
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Figure 3.9: Heatmap illustrating the flux profile of the identified clusters (in the
heatmap are not shown clusters exhibiting a behavior similar to that of the central
cluster in Figure 3.8). In the heatmap each row represent a solution (i.e. a flux dis-
tribution), while columns illustrate the value of the fluxes for all the reactions of the
model at the 11 evaluated levels of simulated glucose. Adjacent fluxes are the most
similar, regardless of the relative level of glucose. Numbers at the bottom indicate
most different fluxes between C⊕ and C	 solutions. Grey rectangles highlight regions

with a higher plasticity. Figure from [58].

ensembles has been investigated limiting the analysis to the solutions belonging to the

clusters that better characterize the C⊕ and C⊕ phenotypes. To do this, out of the 10

obtained clusters, 3 were discarded because exhibiting an hybrid behavior close to those

of solutions not belonging neither to C⊕ , nor to C	 (i.e. similar to the small plot in

the middle of Figure 3.8).

In this context a Kolmogorov-Smirnov test has been applied to identify fluxes that

significantly distinguish the two ensembles. The statistical test has been performed on

all the 10 non-null levels of glucose: the fluxes that are significantly different for at least

9 out of 10 levels of glucose are marked in Figure 3.7. In particular red arrows indicate

that for a given reaction, fluxes are higher in the C⊕ case that in the C	 one; on the

contrary a green arrow indicate that higher fluxes are found in the C	 case. Black
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arrows belong to reactions whose Kolmogorov - Smirnov cumulative value is under the

threshold of 9.

Significative fluxes emerging from the Kolmogorov - Smirnov test confirmed that the

eeFBA approach is able to describe fluxes (evaluated as a function of glucose uptake)

typical of the Crabtree effect and of the Crabtree-negative phenotype (Figure 3.10). This

is underlined by the differences in reactions ascribable to fermentation and respiration. In

particular, in accordance to experimental results [178, 180], it emerges that the glycolytic

pathway is enhanced in the Crabtree phenotype; a fact confirmed by higher values

for fluxes belonging to glycolysis (e.g. F16P → Trp in Figure 3.10a) in the case of

C⊕ solutions with respect to fluxes distributions classified under the C	 phenotype.

Moreover, the expected phenotype is sustained by other fluxes besides glycolysis:

• pyruvate → acetylCoA (pyruvate carboxylase, Figure 3.10e) is enhanced in C	
phenotype [178, 180] as it is a bridge towards the TCA cycle and the respiratory

metabolism of yeast;

• pyruvate → acetaldehyde (pyruvate decarboxylase, Figure 3.10g) is enhanced in

C⊕ phenotype [178, 180] as it leads to ethanol production, final step of the fer-

mentative metabolism;

• acetaldehyde→ acetate (acetaldehyde dehydrogenase, Figure 3.10f) and acetate→
acetylCoA (acetylCoA synthetase, Figure 3.10d), redirecting C towards the TCA

cycle, have higher values in the case of C	 [178, 180];

• acetylCoA → fatty acids (Figure 3.10c) and ribose 5-phosphate → nucleic acids

(Figure 3.10b) [180]: according to [178] show higher fluxes in C	 cells because of

a greater production of biomass in comparison to C⊕ cells [183].

Intriguingly, the eeFBA approach has revealed also less expected differences in fluxes

related to redox cofactors such as NAD+ and NADH (Figure 3.10h and 3.10i). In the

case of C⊕ solutions, analyses suggest an enhanced used of NADH and a surplus of

NAD+ (with respect to the C	 solutions) due to the presence of a higher uptake of

NADH and a higher outflow of NAD+.

In conclusion it is worth to underline some relevant features emerged comparing the

Crabtree-positive and Crabtree-negative phenotypes of yeasts by means of the eeFBA.

• The sampled set of OFs has been divided, by means of a evolutionary algorithm, in

two distinct ensembles of solutions (i.e., specific distributions of metabolic fluxes),

that represent the Crabtree-positive yeasts and the Crabtree-negative yeasts.
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(a) F16P → TrP (b) Rib5p → NA (c) ATP + AcCoAc +
NADPH → ADP + FFA8

+ NAD

(d) AC + ATP → ADP +
AcCoAc

(e) NAD + Pyr → Ac-
CoAm + NADH

(f) ACD + NAD → AC +
NADH

(g) Pyr → ACD (h) NAD+ → (i) → NADH

Figure 3.10: The average flux as a function of glucose uptake of a specific reaction
for both the C⊕ and the C	 ensembles. The high variability in each ensemble is due
to the fact that the whole ensemble has been evaluated instead that characterizing the
distinct sub-phenotypes that can be observed in the heat map (Figure 3.9). Figure

from [58].

• In eeFBA, a genetic algorithm has been used for the first time to identify functional

states that are in agreement with experimentally observed phenotypes. Albeit,

evolutionary algorithms have been previously employed within the context of FBA,

e.g. to rapidly identify gene deletion strategies to optimize a desired phenotypic

objective function [103] or for nonlinear optimization problems [184].

• A cluster analysis has been exploited to further characterize the ensembles. The

procedure (implemented in MATLAB) has been able to divide the ensemble into

subsets highlighted with grey rectangles in in the heat map reported in Figure 3.9.

These regions showing high plasticity may represent distinct sub-phenotypes sus-

taining the same macro-phenotype (see [185]). This fact suggest that the developed
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method could be profitably used for the characterization of metabolic plasticity in

cases where a macro-phenotype, such as cancer, may be compatible with different

metabolic configurations [146, 186–188], or metabolic rearrangements emerging

from the modification of evolutionary, physio-pathological or developmental con-

straints.

• The “performance” of the system in terms of produced biomass has not been the

target of the investigations due to the fact that even poorly performing pheno-

types can be relevant in the search for the “design principles” of the phenomenon

under study. Moreover, it has been shown, at least for energetic metabolism in

mammals [189], that an optimal phenotype under a given selective condition, may

be suboptimal or even inefficient under a different condition. As well in yeast, the

same fitness level, in static environmental conditions, has been identified in strains

showing different abilities to respond to changes in carbon source. In the case of

a change in the carbon source (i.e. a dynamic alteration of the environment), the

fitness of the strains may change of a significative value [190].

• All the analyses has been done exploiting a simple model representing the main

pathways of yeast energetic metabolism and thereby confirming the potentialities

of CMs.



Chapter 4

Interaction-based analysis

The second step of the pipeline presented in this thesis (see Figure 2.7) is devoted to the

investigation of metabolic networks exploiting interaction-based analysis, a framework

that makes extensive use of graph theoretical techniques and concepts from literature

on random and scale-free networks.

Before illustrating the computational approaches applied to the models investigated in

Chapter 3, I will introduce, in the following section, some basic concept of graph theory

and a short description of network classification.

4.1 Elements of graph theory

The analysis of the structural properties of a network (i.e. its topology) is made possible

thanks to the standard notions in graph theory [191, 192], of which I will introduce some

key concepts.

A graph G is defined as a pair of elements V and E

G =< V,E >

where:

• V is the ensemble of graph components called nodes: V = {v1, v2, . . . , vn};

• E is the ensemble of links defining interactions among nodes: E = {e1, e2, . . . , em};
each element eh of the ensemble E, with h = 1, . . . ,m, corresponds to a pair of

nodes eh = (vi, vj) where vi, vj ∈ V .

63
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A graph is said to be directed or oriented, if each link belonging to it is defined by an

ordered pair of nodes, more formally ∀(v1, v2) ∈ V , e = (v1, v2), e′ = (v2, v1) ⇒ e 6= e′.

Metabolic networks belong to this class of graphs where the orientation represent the

directionality of the mass flow through a certain reaction. If instead links do not show

any directionality, the graph can be defined as “indirected”. This is the case, for example,

of protein-protein interaction networks, where it is obvious that two proteins establish

a mutual relation. Therefore, the choice to use a directed or indirected graph is only

dictated by the nature of the biological system under evaluation [191].

Another relevant aspect for the study of biological networks is the definition of a sub-

graph that can be seen as a portion of G. The relevance of these structures is due to

the fact that they are able to define substructures such as motifs and modules that help

to understand the structure of the network under examination reducing its complexity.

Node degree In graph theory, the most significant characteristic of a node is its

degree k [192].

For every node vi in the network, its degree ki can be calculated as the number of nodes

connected to it through a link ki = |Ki| being Ki = {e1 ∈ E |ej = (vh, vk)vh, vk ∈ V, h 6=
k then h = i or k = i}. In the case of a directed graph (e.g. metabolic networks), it is

possible to assign to every vi an in-degree and an out-degree:

• the in-coming degree of vi, k
in
i , is the number of nodes forming a link that ends in

vi. k
in
i = |Kin

i | being Kin
i = {e1 ∈ E | ej = (vh, vk) k = 1, . . . ,m j = 1, . . . ,m};

• the out-coming degree of vi, k
out
i , is the number of nodes forming a link that starts

in vi. k
out
i = |Kout

i | being Kout
i = {e1 ∈ E |ej = (vh, vk)k = 1, . . . ,mj = 1, . . . ,m}

.

Moreover, for an indirected graph having n nodes and m links, it is possible to calculate

the average degree as < k >= 2m
n [191].

Bipartite graphs A bipartite graph V is a network in which nodes can be divided

into two separated ensembles V1 and V2, such that V = V1 ∪ V2 and V1 ∩ V2 = ∅. In

these graph, each node of V1 establish a link with a node of V2 [192].

As already discussed in Section 2.3, bipartite graphs are a common representation for

metabolic networks where it is possible to identify two ensembles of nodes: metabolites

and reactions [192].
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Degree distribution When the degree of every node of the network is calculated,

it is possible to define the degree distribution P (k) [191, 192] as the probability that a

given node of the network assumes the degree k:

P (k) =
N(k)

n

where N(k) is the number of nodes having degree k. Since P (k) is a probability:

∑∞
k=1 P (k) = 1,

this means that the sum of the degree distributions, calculated for every value of k

that can be identified in the network, has always value 1. The relevance of the degree

distribution in network analysis is due to the fact that it allows to discriminate different

network topologies such as random, scale-free and hierarchical (see Section 4.2 for more

details).

The node degree can greatly vary in many real networks (including biological networks);

it is possible to identify isolated nodes having k = 0 and hubs having high value of k

and hence an elevated number of connections. Often the degree distribution function is

represented with a logarithmic graph where it is easier to identify hubs possibly existent

in the network.

Clustering coefficient The clustering coefficient, Ci [191, 192] is the fraction of

existing links among the nodes connected to node vi of the network and indicates the

extension of the connections of these last nodes among them. This is defined as follows:

Ci =
2Ni

ki(ki − 1)

where ki is the degree of the node vi, Ni indicates the number of links among all the

nodes connected to vi, and ki(ki − 1)/2 being the total number of possible links among

all the nodes connected to node vi. Ci can assume only values in the interval [0,1],

indeed:

• Ci = 0 if all nodes connected to the node vi are not connected among them;

• Ci = 1 if all nodes connected to the node vi are connected among them.

The clustering coefficient is a measure for the local density of the network, since the

higher is the value Ci, the more nodes connected to the node vi are interconnected

among them, and higher is the probability that a clique will be formed 1.

1A clique is a subgraph where for each possible pair of nodes there is a link connecting them.
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4.2 Network topologies

Thanks to the global measures of the graph given by the functions P (k) e C(k) described

in Section 4.1, it is possible to identify three different network topologies: (I) random

networks, (II) scale-free (or scale invariant) networks, (III) hierarchical networks.

4.2.1 Random networks

In random networks, links among the n nodes are randomly defined and every pair of

nodes have the same probability p to be connected. Steps to reconstruct a random

network are hereafter listed:

1. initialization of n isolated nodes;

2. selection of a pair of nodes and generation of a random number in the interval [0,1]:

if the number is higher than the probability p, the pair of nodes will be connected

by means of a link, otherwise the two nodes will remain disconnected;

3. step 2 is repeated for each of the n(n− 1)/2 pair of nodes.

In this way it is possible to generate a statistically homogeneous network, where the

most part of the nodes has the same degree of the average degree < k > of the whole

network [191, 192]: in a random graph the degree distribution P (k) follows a Poissonian

distribution, and there are few nodes having a markedly high or low degree.

The clustering coefficient C(k) in a random network, is a constant function independent

from the nodes’ degree, a fact that underlines the lack of modularity in this kind of

networks.

A further relevant property of random networks is the small-world effect: the average

length of paths 2 is proportional to the logarithm of the number of nodes in the graph

(i.e. l ∼ logN) [191]. The small-world property is shared by all the complex networks

and indicates that, regardless the dimension of the network, every pair of nodes can

be connected exploiting a contained number of links; a property that allows a fast

transmission of information through the network.

4.2.2 Scale-free networks

A great number of biological networks exhibit the so called scale-free network topology.

This kind of topology can be obtained starting from a random network and modifying

2The average length of paths is defined as the average shortest-path between two nodes.
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it by adding new nodes that will preferentially connect to nodes already having a high

degree. This process is defined preferential attachment (or rich get richer) [191, 192],

and constitutes an hypothesis to explain the formation of hubs: indeed, if a node has

already established many links, it will attract the formation of new links with a higher

probability [191].

Differently from random networks, scale-free networks are not statistically homogeneous,

but are characterized by the presence of few hubs and of many nodes with few connec-

tions. Scale-free networks can be recognized by means of an exponential degree dis-

tribution P (k) = k−γ , also defined power-law. In general, the γ coefficient assumes a

value in the interval [2, 3], suggesting that these networks are characterized by the ultra

small-world property, where the average length of paths is l ∼ log(logN) [191]. The

ultra small-world property has been identified in metabolic networks, where short paths

of 3 or 4 reactions connect the most part of metabolites pairs, meaning that the local

perturbation (removal of a metabolic node) could rapidly reach the entire network.

For what concerns the clustering coefficient, random and scale-free networks share the

same behavior (i.e. C(k) is a constant function and consequently they do not exhibit

modularity).

Lastly, scale-free networks are robust towards the random removal of a node (random

attack). However, if nodes are selectively removed, and if a removed node is a hub,

scale-free networks exhibit a high vulnerability resulting in a dramatic disconnection of

the graph.

4.2.3 Hierarchical networks

Hierarchical networks integrate scale-free topology and presence of local clusters. This is

underlined by the fact that, as in the case of scale-free networks, the degree distribution

is a power-law with γ ∼= 2.2 [191, 192].

Instead, the modularity of hierarchical networks can be deduced by the fact that the

C(k) is no longer a constant function but proportional to 1/k, meaning that given a node,

other nodes connected to it will tend to form a clique. The identification of clusters can

be seen as the observation of subnetworks such as modules and motifs.

A module (or cluster) is a subgraph that can be functionally separated by the rest of

the network and that is involved in a determined biological function showing a high

intra-connection among nodes and a low inter-connection with the rest of the network.

A motif is a small subgraph having a well defined structure that can be found also in
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the global structure of the network with a frequency markedly higher with respect to

the number of occurrences obtainable in a random network of the same size.

From the biological point of view, modularity seems to be a key aspect to sustain many

different functions. This fact is confirmed by the finding that the average clustering

coefficient < C > is significantly higher in biological networks with respect to random

network of equal size and degree distribution [191].

In Section 4.4.1 I will apply graph theory tools investigate topological properties of

GW metabolic networks previously analyzed by means of constraint-based methods (see

Chapter 3).

4.3 Network and fluxes visualization

Due to the pervasive nature of networks in the domain of biological complex systems,

during last years a strong need of tools able to represent them in an effective way has

emerged in the modeling community. To satisfy this need, visual representations of

biological networks have been extensively used to give an immediate representation of

the complexity beyond the systems and to sum-up some relevant information [193]. The

recourse to visualization strategies has been motivated by the fact that our brain has

acquired, through evolution, a remarkable capability to process visual information in

order to identify patterns (e.g. biochemical pathways) and other relevant topological

features (e.g. hubs) [194].

The “visual complexity” of these graphical representations range over various orders

of magnitude spanning from the description of a single pathway (signal transduction,

metabolic pathway, interaction pool of a protein), to the representation of the inter-

actions involving every single component of cellular systems. A pioneering example in

this sense is the Biochemical Pathways Poster developed by Michal in 1993 [195] that

provided an organized representation of the cellular metabolism still used as a reference

in many laboratories.

However, the later development of high-throughput -omics technologies has imposed a

change of paradigm for the definition of these representations. Indeed nowadays, due to

huge amount of data to be described, it is no longer possible to apply the manual curation

and refinement, and this reason motivated the thrive of softwares able to automatically

generate network visualizations.

Even if the huge effort has produced outstanding results (see [196] for an extensive

review), in this domain some challenges are still open.
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A first challenge is related to the scalability of these methods: since most of the softwares

make use of standard visualization packages, the most common layout of the network

is often a very uninformative “hair ball” [193]. The definition of this layout is mainly

due to the lack of knowledge on the inner organization of the network (e.g. cellular

localization of elements, molecular functions, structure of proteic complexes, etc.), but

also to the difficulty of representing the system in a way expected by the user (generally

a biologist having a forma mentis dictated by the classical biochemistry textbooks). A

second challenge is connected to the retrieval of desired information and to the network

navigation for the exploration of the “surroundings” of a given element; an activity that

could generate insights to direct the investigation of the system.

A last challenge can be identified in the enrichment of the visualization by adding further

information (e.g. attributes from external sources and database), and maintaining a

good readability of the relevant information.

In the following sections I will illustrate the visualization approaches that have been

used in this thesis to represent metabolic networks and flux distributions.

4.3.1 PAINT4NET

The Paint4Net toolbox [197] (an extension of the COBRA Toolbox (see Section 3.3) in

MATLAB), has been designed to offer a visualization tool for metabolites and reactions

in metabolic networks.

Paint4Net exploits two visualization approaches. The first approach has been devised

to represent large networks, in this case the information about nodes and links is shown

only when the cursor is moved over one of these elements (Figure 4.1); while the second

approach is instead more suited to represent subnetworks or few metabolic pathways

since it shows every element label (Figure 4.1). Moreover, the latter approach allows

to map fluxes values on links representing reactions, making it a useful tool to have an

overview of flux distributions.

Additional features of the software allow to retrieve a list of metabolites (including the

dead-end metabolites), exclude selected metabolites from the representation and find

subnetworks detached from the main component.

Relying on the COBRA Toolbox of MATLAB, Paint4Net is able to deal with models in

SBML format [198], and in this context it is able to take advantage of the Bioinformatics

toolbox of MATLAB to generate a layout for the network under investigation.

Unfortunately, Paint4Net has many limitations: (I) the layout of the network is auto-

matically generated and often it is particularly hard to decipher by the user, (II) links
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are assigned in a disorganized way exploiting curved connectors that limit the readabil-

ity of the model (see Figure 4.1 for an example), (III) the size of the visualized network

is limited at about a thousand reactions, whereas GW networks entail many thousands

of reactions.

For these reasons it has been preferred to use a more powerful and reliable tool (see next

section), even if it is not usable under the MATLAB environment.

Figure 4.1: An example of metabolic map for the glycolysis obtained with Paint4Net.
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4.3.2 Network analysis: Cytoscape

Cytoscape [107, 199], is a constantly maintained and developed bioinformatic software

to visualize networks of molecular interaction, biological pathways and in general is able

to represent biological networks of various nature (as well as non biological ones). The

software is commonly regarded as one of the most complete (in terms of functionalities)

and reliable (see Figure 4.2 for a comparison with the state of the art) environments for

network analysis and visualization.

Figure 4.2: Comparison of network analysis softwares available in literature. CY, Cy-
toscape (www.cytoscape.org); GM, GenMAPP (www.genmapp.org/introduction.html);
VA, VisANT (visant.bu.edu); OS, Osprey (biodata.mshri.on.ca/osprey);
CD, CellDesigner (www.celldesigner.org); AR, Ariadne Genomics Path-
way Studio (www.elsevier.com/online-tools/pathway-studio/about); IN, In-
genuity Pathways Analysis (www.ingenuity.com/products/ipa); GG, GeneGo
(sbp.qfab.org/software-architecture/genego); PI, PIANA (sbi.imim.es/piana); PR,
ProViz (cbi.labri.fr/eng/proviz.htm); BL, BioLayout (www.biolayout.org); PA,

PATIKA (www.patika.org/software). Figure from [107].

Core functions and plugins Cytoscape is able to perform many different core

tasks involving several aspects of the network analysis such as the visual representation

of the graph (along with labels of data), the selection of nodes and links, the integration

of external attributes, and the manual or automatic definition of the network layout

exploiting several algorithms that can be tuned ad hoc [107] (see Figure 4.3 for some

examples). The software offers the possibility to create a network from scratch, as well

as to load networks from the most widely used formats for Systems Biology such as

SBML, SIF (Simple Interaction File), GML, XGMML or using built-in functionalities

such as the Pathway Commons Web Service Client or the import from a text file or an

Excel spreadsheet.
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Figure 4.3: Some examples of Cytoscape layouts: A) Grid Layout; B) Force Directed
Layout; C) Spring-Embedded Layout; D) Attribute Circle Layout; E) Group Attributes

Layout. Modified from http://cytoscape.org/manual

Moreover, Cytoscape core functions can be extended through additional modules (called

plugins) available mainly through the online Cytoscape App Store where they are or-

ganized in categories such as data import from DBs, data visualization, topological

analysis, network enrichment, clustering, layout, ontologies, identification of modules

and motifs.

As stated at the beginning of this section, a key function of Cytoscape is the ability to

integrate in the network some attributes (i.e. additional information on links and nodes)

to further describe properties of the elements of the network and their relation. These

attributes are pairs (name, value) where names of both nodes and links are associated

to several kind of data such as: text, numerical values or external references.

In Cytoscape, through the data-to-visual attribute mapping, attributes can be mapped

to the network exploiting visual properties of nodes and links. Indeed, the graphical

representation of these elements can be modified using VizMapper, the visual editor of

Cytoscape; a tool that allows personalize node and link properties such as: color, size,

shape, label, etc. In particular, the visual mapping of attributes can be performed via

three different methods [200]: (I) the passthrough mapper is used to map an item to

the corresponding unique value (e.g. the name of a node); (II) the continuous mapper

is used to obtain a visual item (e.g. size of the line indicating a link) proportional to

a value in a continuous range (e.g. the flux value); (III) the discrete mapper, is the
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choice when mapping discrete values (e.g. different types of nodes) on “discrete” visual

attributes (e.g. different shapes).

Lastly, the software is able to filter both nodes and links on the basis of a given attribute

value or on the combination of several attributes. It is also possible to filter nodes and

links selecting their first neighbors.

These core functionalities are automatically exploited by plugins. In the next section I

will introduce a plugin used to map fluxes distributions obtained by means of constraint-

based analysis on a metabolic network.

4.3.2.1 The CyFluxViz plugin

FluxViz or (CyFluxViz in recent releases) [106] is an open-source Cytoscape plug-in

for the visualization of flux distributions in metabolic networks. The tool has been

firstly developed as a frontend for FASIMU [151], a software for FBA, but since it relies

exclusively on network structure and flux data, it can be used with any simulation tool

(in this thesis, notably with data from the COBRA toolbox).

Figure 4.4 illustrates the global workflow of the tool. After the loading of a net-

Figure 4.4: The FluxViz workflow. Figure from [106].

work, the first step of the procedure is the import of a table containing a list of pairs

(reactionidentifier, fluxvalue). Subsequently, a view of the network is generated by

means of a layout (both automatic or manual). In this step the plugin automatically

set the mapping properties of edges and returns a visual representation where the size

of lines corresponding to a link are proportional to the flux value. The output network

can be further analyzed by Cytoscape core functionalities and plugins (e.g. to perform

a topological analysis) and a snapshot of the network (or of a filtered subnetwork) can

be exported as image. Lastly, it is possible to modify the mapping function in order to

represent additional information such as gene expression data.

FluxViz is a powerful tool to obtain a bird-eye view of flux distributions but it is also

able to setup deeper analyses. However, there are some bugs in its implementation

and the plugin has not been updated to meet the requirements of the last version of
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Cytoscape (versions 3.X). For these reasons, and due to the fact that all its capabilities

can be implemented exploiting the core functions of Cytoscape, in this thesis I decided

not to use FluxViz, choosing instead to exploit the built-in tools of Cytoscape to perform

network visualization. Nevertheless, analyzing FluxViz has been useful to investigate

the feasibility of a Cytoscape plugin with features useful to the pipeline object of this

thesis.

In Figure 4.5 is illustrated a network visualization for the yeast CM developed in Section

3.5 and analyzed by means of the eeFBA approach. It is possible to notice that the

network is represented by a substrate-enzyme bipartite graph where two classes of nodes

(reactions, green diamonds and metabolites, blue circles) have been defined.

Figure 4.5: Visualization of flux distribution for the yeast core model.

The metabolic network has been arranged exploiting a manual layout representing the

main metabolic pathways in a form that can be easily recognized by a biologist/modeler

(e.g. the TCA cycle is a circle in the middle of the network, while glycolysis is a line

at his left side), cofactors have been positioned on the extreme left to help readability.

Moreover, exploiting the core functions of Cytoscape has been possible to map, on links

connecting reaction and metabolites nodes (and thereby representing the reaction itself),

the flux value derived from the average flux distribution for a “sub-phenotypes” emerged

with the clustering of the C	 ensemble (see Section 3.5.3, and Figure 3.9).
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A further visualization of the yeast CM has been developed starting from the previous

one but including, this time, the mapping of the degree node. In Figure 4.6 the size of

the nodes (both reactions and metabolites, i.e. diamonds and circles) is proportional to

the node degree calculated using the NetworkAnalyzer plugin (see Section 4.4.1).

Figure 4.6: Visualization of flux distribution and node degree for the yeast core model.

Following the same approach, a visual representation has been developed also for the

HMR “reference” CM developed in Section 3.4.2. In particular in Figure 4.7 (and in

Figure 4.8 after the filtering of cofactors) is illustrated a portion of the whole network

where link thickness is proportional to the value of the z-score for that reaction when

comparing two different tested conditions. Moreover, the green/red color indicates the

sign of the score.
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Figure 4.7: Visualization of flux distribution for the HMR core model. The color of
the links indicate the sign of the z-score, while the thickness identify the value.

Figure 4.8: Visualization of flux distribution for the HMR core model without cofac-
tors. The color of the links indicate the sign of the z-score, while the thickness identify

the value.
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4.4 Network metrics and correlations in fluxes distribu-

tions

4.4.1 Network metrics of genome-wide and core models

Graph theory measures illustrated in Section 4.1 have been exploited to perform a topo-

logical analysis networks, with the aim of investigating their structural properties3. The

analysis has been conducted on both the genome-wide and core metabolic networks

defined using a substrate graph (see Section 2.3 for a definition) and exploiting the Net-

workAnalyzer plugin of Cytoscape.

Overall, it emerged that both in the normal and in the cancer condition, the models

have the same structural characteristics. More in particular, this type of approach high-

lighted four important properties of these networks: hierarchical and scale-free topology,

modularity, ultra small-world property, disassortative nature.

The first outcome is the hierarchical topology that, by definition, integrates at the same

time two elements. The first element is the presence of modules, which can be inferred

by the topological parameter average coefficient clustering, the second element is the

presence of modules, suggested by the fact that in Figure 4.9 C(k) ∝ 1/k, meaning

that, given a node, other nodes connected to it will be likely to form a clique. In the

context of the metabolic networks, we suppose that each module corresponds to each of

the different pathways characterizing the metabolism of a cell.

The second result is the presence of a scale-free topology, inferred by the topological

parameter node degree, in which the most part of the metabolites takes part in few

reactions, establishing therefore a low number of interactions, while a small number of

metabolites (hubs), are characterized by a high number of connections as it is possible

to notice in Figures 4.10, 4.11, 4.12, 4.13. From a biological point of view, the presence

of hubs is of particular relevance since these species could correspond to some possible

target for the development of anti-cancer therapies. In this work, the detected hubs

correspond to the cofactors, which are the most involved species in the reactions, because

of their implication in the enzymatic mechanisms. However, in none of the studied cases,

we found strictly specific hubs for the cancer cells.

A third feature of these metabolic networks is the ultra small-world property that can

be inferred by the parameter path length and allows to give indications on the speed

of the system response with respect to an external perturbation. In Figures 4.14, 4.15,

4.17, 4.16, are illustrated the shortest path lengths for the four analyzed GW networks.

3Disclaimer: analyses in Subsection 4.4.1 have been performed mainly M. Di Filippo (SYSBIO -
Centre of Systems Biology, Milan - Italy) under the supervision of the author.
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Figure 4.9: Clustering coefficient plot for HMA GW networks in logarithmic scale:
on the x-coordinate is the number of nodes establishing a link with a given node, while
on the y-coordinateis represented the average clustering coefficient. A) HMR network,

B) Breast network, C) Liver network, D) lung network.

Figure 4.10: In and out degree distributions for the GW HMR model.

Figure 4.11: In and out degree distributions for the GW breast cancer cell model.
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Figure 4.12: In and out degree distributions for the GW liver cancer cell model.

Figure 4.13: In and out degree distributions for the GW lung cancer cell model.

Figure 4.14: Histogram representing the shortest path length distribution for the
GW HMR network. On the x-coordinate is reported the path length, while on the

y-coordinate the frequency.

Figure 4.15: Histogram representing the shortest path length distribution for the GW
breast cancer cell network. On the x-coordinate is reported the path length, while on

the y-coordinate the frequency.
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In particular, the ultra small-world property implies that, inside a network, each couple

of elements are linked by a low number of connections. This ensures a fast transmission

of the informations in the network and, at biological level, it means that the local

perturbations on the metabolites concentrations could reach the entire network very

quickly.

Lastly, the analyzed networks showed a disassortative nature. This property, which can

be inferred by the topological parameter neighborhood connectivity, implies that in a

metabolic network the most part of the interactions are established between hub and

metabolites having few edges. The disassortativity also implicates that two hubs avoid

to connect to each other, probably because the removal of one of them from the network

has, as a consequence, a considerable negative effect on the entire network structure.

Therefore, if two hubs with a common interaction were removed, the obtained effect

would be much more catastrophic in terms of connectivity among all the elements of the

network.

Overall, this analysis, performed on both the normal and tumor genome-scale and core

networks, has produced the same results (as an example node degree distribution for

CM model of HMR is provided in figure 4.18), confirming that the “model reduction”

performed in Section 3.4.2 is able to lower model complexity (see definition in Chapter

1), while maintaining the same topological properties.

However, the fact that comparable results have been obtained in all the evaluated models

suggest that the interaction-based approach has not predictive ability, in this context,

because it does not allow to highlight the redistribution of metabolic fluxes at the basis

of cellular transformation. For this reason, constraint-based approaches, or mechanism-

based approaches (when applicable) are the best choice to investigate structures and

paths behind the onset of cancer.
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Figure 4.16: Histogram representing the shortest path length distribution for the GW
liver cancer cell network. On the x-coordinate is reported the path length, while on the

y-coordinate the frequency.

Figure 4.17: Histogram representing the shortest path length distribution for the GW
lung cancer cell network. On the x-coordinate is reported the path length, while on the

y-coordinate the frequency.

Figure 4.18: In and out degree distributions for the GW HMR model.
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4.4.2 Node-flux correlation

Network visualizations realized in Subsection 4.3.2.1 suggested the possibility of a cor-

relation between the degree of a node (metabolite) and the value of the sum of reaction

fluxes pointing at the node. To investigate this hypothesis I initially identified the value

of fluxes for the yeast CM described in Chapter 3, by averaging the flux values obtained

in the Crabtree-negative ensemble; then I calculated the Pearson correlation coefficient %

between the two variables “node degree” and “cumulative flux”: the computed value has

been % = 0.98, indicating a strong correlation (Figure 4.19), (here significant correlation

is for % > 0.3).

To verify that this remarkable value is not due to the fact that a “metabolic hub” (e.g.

ATP) is correlated to high flux value due to the high number of pointing reactions

singularly carrying a low flux, I calculated the Pearson correlation coefficient also in the

case when the sum of fluxes pointing at a node is normalized dividing it by the node

degree. As expected, in this case the correlation coefficient lowered to a “moderated”

value % = 0.62 (Figure 4.19).

Moreover I performed the same analysis evaluating the HMR CM described in Section

3.4.1, a model having approximately 5 times more reactions and metabolites with respect

to the yeast CM. In this last case the correlation coefficient has further lowered (mod-

erate, % = 0.47, Figure 4.21) probably due to the fact that some particular structures

called “bottlenecks” are present in the network (i.e. nodes establishing few connections

but connecting hubs, and hence carrying a high flux value).

Attempts to investigate relations between flux distributions and topology has been pro-

posed in literature (e.g. in [201–203]). However, to the best of my knowledge, the

findings emerged from analyses performed in this section have not been confirmed by

other literature studies. For this reason investigations on the correlation between node

degree and flux value need to be extended to GW models in order to establish their

correctness and relevance.
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Figure 4.19: Scatter plot illustrating the correlation between node degree and flux
value in the yeast CM.
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Figure 4.20: Scatter plot illustrating the correlation between node degree and flux
value in the yeast CM, normalizing the flux value on the degree.
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Figure 4.21: Scatter plot illustrating the correlation between node degree and flux
value in the HMR CM.



Chapter 5

Mechanism-based analysis

As stated in Chapter 2, mechanism-based approaches in Systems Biology are the most

informative methods since they allow to fully reconstruct the spatio-temporal behavior of

biological complex systems. In this chapter I will illustrate some of the main mechanistic

approaches exploited in Systems Biology lingering, in particular, on those used in this

work of thesis (i.e. stochastic approaches for the Post-Replication Repair model in

Subsection 2.2.1.1, and differential equations to estimate parameters from the yeast

CM, see Section 3.5). Moreover I will discuss parameter estimation methods and a

devised strategy to identify parameters for mechanistic modeling starting from eeFBA

outputs.

5.1 Mechanistic approaches in Systems Biology

Thanks to mechanistic approaches it is possible to simulate the temporal evolution of

the different molecular species of a biological system. Strikingly, with these models it is

also possible to verify effects of system’s perturbations when initial conditions or kinetic

parameters are modified (see for example the PSA performed in Chapter 2 applied to

the PRR pathway). However, in order to perform these simulations it is necessary to

establish the correct interactions among elements and to define the proper value for

model parameters (i.e. kinetic constants and and initial quantities for species). The

retrieval of these parameters is, in Systems Biology, a challenging task that often limits

the applicability of mechanism-based methods only to “small” systems (see Figure 1.3).

To determine which mechanistic method is the most suitable for a given biological sys-

tem, some aspects of the model and of the system itself must be taken into account;

among these: size (in terms of number of reactions and species), abundance of every

84
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molecular species, relevance of biological noise due to stochastic fluctuations of species

[204] influencing the dynamics of the system (e.g. bistabilities).

In the case of a model/system of remarkable dimensions, molecular quantities on aver-

age & 103 for the different species, and a scarce relevance for the biological noise; the

system can be described by means of deterministic methods (Section 5.1.1). If otherwise

the model/system is rather “small”, quantities are on average . 103 for the different

species, and biological noise has relevant effects; it is preferable to investigate the system

through stochastic methods (Section 5.1.2). Lastly, if aspects are halfway between the

two previous cases, it should be evaluated if the system is analyzable through hybrid

approaches (Section 5.1.3) combining features both from deterministic and stochastic

methods.

5.1.1 Deterministic approaches

The use of a set of ordinary differential equations (ODEs) is the most common deter-

ministic approach for the mechanistic modeling of biochemical systems. Differential

equations (one for each of the N chemical species involved in the system) are defined

to evaluate the changes in times of species concentration: the dynamic of the system is

simulated solving the set of N ODEs, given an initial state X0 and a set of concentration

values.

When dealing with simple ODEs it is possible to obtain an exact solution, instead

complex ODEs need to be solved numerically by using linear approximations of smooth

curves over infinitesimal time intervals in order to calculate, for each time step, the value

of chemical species concentrations.

Dating back to XVII and XVIII centuries, many different and increasingly accurate

methods have been developed for the approximation of ODEs. Nowadays are publicly

available software libraries to solve them efficiently, among these an effective library is

LSODA (Livermore solver for ODEs with automatic method) [38].

ODEs have been widely used for modeling biochemical networks (see Table 2.2 for appli-

cations to metabolism); another relevant method for mechanistic modeling of biochemi-

cal systems are the so called S-systems. This approach is based on the fact that equations

describing the dynamics of biochemical systems can be written as sum of of logarithmic

or power law functions terms. Starting from this, efficient methods to calculate power

law approximations of ODEs systems have been developed.

Taylor series approximations of ODEs [205] have been used to estimate the reaction rate

at steady state. In this way it is possible to obtain a system of non-linear equations that
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can be transformed into linear equations when using a logarithmic coordinate system in

which the slope of the line is the kinetic order of the reaction. These linear equations can

be numerically solved in a computationally efficient way. Globally, S-systems allow a

great simplification of the system under evaluation exploiting a fast method that enables

a rapid evaluation of unknown parameter values.

A last method in the context of differential equations is represented by partial differential

equations (PDEs) [206] that, using partial derivatives, defines spatial and temporal

dependencies. This is a well understood and solid mathematical formalism that exploits

numerical methods to solve the PDEs in efficient way. Another strong point of PDEs

is the determination of both the temporal and spatial dynamic of the system. However

this method has some drawbacks due to the fact that it is somehow complicated to

implement/generalize for a standard biochemical system and it is not able to model

state of discontinuous transitions.

5.1.2 Stochastic approaches

In the case of biochemical systems exhibiting a low number of molecular quantities (i.e.

few units of each species) it is preferable to adopt a discrete and stochastic description

of the system. Here the term “discrete” refers to the domain of the chemical species

description where each species varies by an integer number of molecules. Instead, the

term “stochastic” underlines the probabilistic behavior of molecular dynamics; an aspect

that is not evaluated in the context of a deterministic treatise.

In particular, in the context of the stochastic approaches, it is possible to define the

Chemical Master Equation (CME) [207, 208], that is the equation describing the tem-

poral evolution associated to the state of the system. For complex systems, the CME

is analytically unsolvable and numerically intractable. It is however possible to identify

trajectories for the dynamic of the system trough Monte Carlo [209] simulation tech-

niques such as the stochastic simulation algorithm (SSA) [32, 210] that is able to provide

the dynamics of the system by applying a single reaction for each simulation step.

SSA is able to reproduce exact realization of the CME, however the computational cost

can be particularly high because it simulates one reaction after the other (intended as

collision of molecules), and even simple biochemical system involve a great number of

molecules and the execution of many reactions.

This problem lead to the development of approximate algorithms having an outstanding

advantage in terms of reduced simulation time. The algorithm used in the case of the

PRR pathway described in Section 2.2.1.1 is the so called tau-leaping [31, 211], that
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instead of keeping track of every single reaction, exploits a time interval τ in which a

certain number of reactions is performed simultaneously.

5.1.3 Hybrid approaches

As stated in the previous section, due to high computational costs, stochastic methods

such as tau-leaping and SSA are not adequate to simulate biochemical systems involving

a wide number of species or reactions, and in this case the deterministic approach can

provide a more efficient description of the system.

However in some cases there is the possibility that a system encompass some species

having a large amount of molecules and others having only few molecules. In these cases

both the deterministic and the stochastic approaches are not efficient in depicting the

system dynamics, either being too slow or too inaccurate. To solve this issue, and to

perform more efficient simulations, a class of hybrid modeling techniques [212] has been

developed.

These techniques partition (a priori or dynamically) the set of model reactions into two

groups: the first group is modeled using a stochastic approach while the second one

is modeled deterministically [28]. The a priori determination of the two sets is done

exploiting some biological knowledge about the system. The dynamic determination

is performed evaluating the amounts of the chemical species involved in the reactions

and their propensities to be executed (see [210]): if the molecules of the species are less

than a given threshold, all the reactions in which they are involved as reactants are

stochastically modeled; otherwise, they are treated as deterministic.

As a rule of thumb, in a comprehensive model (i.e. a model including both a metabolic

and a gene regulatory components), Alfonsi et al. [213] suggested to use a stochastic ap-

proach for the modeling of the gene regulatory component, and a deterministic modeling

for the metabolic part. This is due to the fact that metabolic pathways involves high-

numbered species that slow down the simulation algorithms like SSA and tau-leaping. In

other works (e.g. in [212]) it was suggested that metabolism can be simulated efficiently

by means of hybrid algorithms [28].

5.2 Bridging the gap from constraint-based to mechanism-

based models

In Chapter 3 it has been discussed how constraint-based methods, and in particular

FBA, have proven to be useful and accurate to calculate the flux of metabolites through
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reactions of a metabolic network. Despite of this, constraint-based methods alone have

not been able to explain mechanics of events and their temporal evolution, suggesting

that other in silico methods should be applied. Due to the complex nature of biologic

processes, in silico methods should consider multiple approaches to investigate systems.

Multi-level analysis is today a hot research topic in different areas, that still require an

appropriate theoretical formalization of the method and the development of computa-

tional tools for the integration of the different modeling perspectives.

As an example, in [214] the author presents a statistical approach that integrate high

throughput data and analyze dynamical mechanisms of metabolic networks under mild

perturbations. In particular in [214] it has been used a statistic framework able to

determine how fast metabolites can reach the steady state. In this context a “feasible

kinetic library” has been defined starting from high throughput metabolome technology

and it has been preferred to the determination of accurate kinetic information difficult to

retrieve. The devised approach has been tested on a core metabolic model and emerging

results will be useful to explore the relationship between dynamic and physiology in

metabolic reconstruction (possibly GW) and to overcome the chronic lack of kinetic

information.

A further example can be found in [100, 215]. Here authors delineated a method to

define kinetic models for metabolic networks exploiting only the information deriving

from reaction stoichiometries. As illustrated in Chapter 3, FBA is able to determine the

value of fluxes through every reaction in the model (i.e. the flux distribution). In the

devised method these fluxes are allowed to vary dynamically according to linlog kinetics,

where the linlog approximation [216] is used to simplify reaction rate laws in metabolic

networks. This method stems from metabolic control analysis describing the effect of

metabolite levels on flux as a linear sum of logarithmic terms and providing a good

approximation near a chosen reference state.

Another method in bridging constraint-based and mechanism-based approaches has been

developed in [91] where authors exploit an ensemble modeling (EM) to deal with large-

scale kinetic modeling through the reduction of the size of the parameter space by

means of experimental data (flux values, intracellular metabolite concentrations, ther-

modynamic constraints for the directionality of the reactions). The first step in the

EM procedure is the definition of a kinetic model predicting the experimentally ob-

served phenotypic characteristics. At this stage, the additional biological data are used

to screen the models until a minimal set of kinetic models are obtained. The EM has

been successfully used in modeling many different metabolic network; in particular an

outstanding work is presented in [74] where authors modeled a metabolic network for

cancer cells.
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Although these methods try to establish a bridge between constraint-based and

mechanism-based methods, the most accurate way to connect the two modeling ap-

proaches is the estimation of the kinetic parameters (and, if necessary, the molecular

concentrations of metabolites) starting from the metabolic flux distributions. In Section

5.3 I will review the most commonly used methods for parameter estimation, in partic-

ular in Section 5.3.1 I will describe in detail the Particle Swarm Optimization (PSO)

technique and its applications to the determination of kinetic parameters starting from

metabolic fluxes, and in Section 5.6 I will introduce a novel and efficient version of the

PSO algorithm that has been called “Proactive Particles in Swarm Optimization”.

5.3 Parameter estimation

In the context of Systems Biology, parameter estimation can be defined as “the ability to

calibrate a model in order to reproduce, through simulation, experimental results in the

most accurate way” [217]. In biochemical systems, the parameter estimation problem

can be defined in terms of a non linear programming task subject to constraints.

Moreover, due to the fact that optimization problems applied to biochemical systems are

usually multimodal, and in order to avoid local solutions, it is worth to underline that

exploited methods are here usually global optimizations. Indeed, local optima could

lead to misinterpretations in the calibration of models resulting in a bad fit between

simulations and experimental data [218].

Methods developed for global optimization can be categorized in deterministic and

stochastic. Whereas stochastic methods do not have a convergence theorem assuring

the retrieval of the best global solution, the deterministic methods are able to guarantee

the identification of the global optimum in a finite time. However, the computational

requirements of these latter strategies are extremely high and increase drastically with

the dimensionality of the problem.

For this reason, even at the cost of not having the best solution guaranteed, stochastic

methods are widely used to efficiently identify candidate best solutions (and in many

cases the retrieved optimal solution is close enough to the real one).

Moreover, these methods can be used as a “black box” because the original problem

does not need to be transformed. A fact that helps to integrate the optimizer with an

external software performing a further task.

Hereafter I will briefly illustrate some the main groups of stochastic methods for global

optimization in the context of Systems Biology:
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• Simulated annealing is a physics inspired method that mimic the cooling process

of metals in the fact that atoms assume the most stable configuration during a

slow decrease of metal temperature [219].

• Evolutionary computation methods are biology inspired strategies relying on mech-

anism governing the evolution of biological entities [220] (i.e. reproduction, mu-

tation, and individual fitness). Evolutionary computation methods mimic natu-

ral evolutionary process through the generation of individuals that are more and

more “fit”, i.e. solutions that are more and more close to the global best of the

optimization problem. The most used methods in this context are: Genetic Algo-

rithms [221, 222] (used in Section 3.5.1 to populate the ensembles of solutions in

the eeFBA algorithm), Evolutionary Programming [220], and Evolution Strategies

[223].

• Swarm intelligence methods are algorithms based on the concept of collective

behavior of agents exploring a solution space. Over years many bio-inspired meth-

ods have been developed; among these in ant colony optimization [224] simulated

“ants” keep track of position and quality of solution to attract more ants in fol-

lowing iterations (a mechanism mimicking pheromones), while Particle Swarm

Optimization (PSO) [225] mimic the movement of a bird flock attracted by food

or repelled by a predator.

In the next section (5.3.1) I will describe in detail the PSO strategy used to estimate

parameters for the kinetic modeling in this work of thesis.

5.3.1 Particle Swarm Optimization

In the context of swarm intelligence methods for global optimization, Particle Swarm

Optimization (PSO) is a population-based meta-heuristics where N particles (i.e. the

solutions) belong to a swarm “flying” in a M -dimensional search space to identify the

optimal solution in a cooperative manner. A particle i is described by two vectors:

xi ∈ RM that is the position in the search space, and vi ∈ RM that represent the velocity.

Each particle is initially positioned accordingly to a uniform random distribution over

the search space.

During the optimization process, particle velocity is influenced by the best position

individuated by the particle itself (bi ∈ RM ), and the best position identified collectively

by the swarm (g ∈ RM ) [110].

The PSO evaluates two distinct components for the update of the velocity:
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• the social factor csoc ∈ R+ determines the attraction of the particle towards the

best position identified by the swarm g and quantifies the extension of the velocity

update due to the best position;

• the cognitive factor ccog ∈ R+ determines the tendency of the particle to remain

in the vicinity of its best position bi.

Both the social and cognitive factor are multiplied by two vectors R1 and R2 of random

numbers sampled from the uniform distribution in the unit interval (0, 1), due to the

fact that a deterministic movement of particles could entrap particles in a local optima.

Instead, velocity is calibrated by means of an inertia weight w ∈ R+ to counteract the

chaotic movement of particles. The velocity update for the i-th particle during the t

iteration can be defined as:

vi(t) = w · vi(t− 1) + csoc ·R1 (xi(t− 1)− g(t− 1)) + ccog ·R2 (xi(t− 1)− bi(t− 1)) . (5.1)

Following the definition of velocity, and exploiting Equation 5.1 it is possible to calculate

the position of particles as:

xi(t) = xi(t− 1) + vi(t), for all i = 1, . . . , N. (5.2)

In PSO a fitness function f is exploited to evaluate the proximity of every particle to

the global best. Fitness values define a hyper-surface defined “fitness landscape”.

The fitness function drives the evolution of the whole swarm since it is used, iteration

by iteration, to evaluate the fitness of each particle and then to update the values of bi

and g. To prevent that particles could exit the feasible solution space, boundaries are

defined for example by using a random bounce when the particle reaches the limit of

the search space [226]. Also the velocity of particles is regulated exploiting a maximum

value vmaxm ∈ R+ along each m-th dimension of the search space, with m = 1, . . . ,M

[227].

The main drawback of this method is linked to the dependence of performances by the

adequate selection of the parameters of the algorithm such as: N, csoc, ccog, w and the

vector of maximum velocity values vmax [227]. In many cases a wrong parametrization

leads to poor performances in terms of quality of the solution and convergence speed.
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5.4 MetaFluxAnalysis

As a first step towards the estimation of parameters for mechanistic analysis, I performed

a “feasibility study” implementing “MetaFluxAnalysis”, a LabVIEW tool to determine

metabolic fluxes starting from mechanistic simulations.

LabVIEW is a development environment for a visual programming language defined

by National Instruments [108]. A LabVIEW tool is composed mainly of two virtual

instruments (VI). The first is a block scheme (Figure 5.1) where the different blocks

(control flow, constants and functions) are graphically represented and connected to

represent the source code. The second VI is a front panel (Figure 5.2) used to manage

inputs (called Controls) and outputs (Indicators).

The block scheme of MetaFluxAnalysis defines the instructions to calculate the following

outputs:

• the flux intensity graph, a heatmap illustrating the value of all the fluxes in the

metabolic network at every simulated time point;

• the dynamics of a single flux, i.e. the “amplitude” of the flux over time in terms

of units of molecules produced by the reaction in each time step;

• the minimum and maximum value of calculated fluxes;

• the histogram distribution, a diagram illustrating the count of “amplitudes” split

in a given number of bins representing the range of values calculated at the previous

step.

These outputs are calculated taking as input a file that contains the molecular quantities

of every metabolite at each simulated time step and some additional values such as the

indexes identifying each species and reaction in the stoichiometric matrix and the vectors

defining the values of the reaction constants, the molecular quantities of each species at

the beginning of the simulation, and, if needed, the species whose quantity is maintained

through the simulation.

The core of the procedure to calculate the value of the flux at every simulated time step

is based on the equations deriving the flux according to the mass action hypothesis:

vi = ki

M∏
w=1

[χw]αwi (5.3)



Chapter 5. Mechanism based analysis 93

Figure 5.1: MetaFluxAnalysis block scheme in LabVIEW.

Figure 5.2: MetaFluxAnalysis front panel in LabVIEW.

where vi is the flux through the reaction i, k is the rate constant of reaction i and∏M
w=1[χw]αwi , is the product of concentrations of species i raised to the stoichiometric

coefficient αwi.
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The software tool implemented in this section has been tested on a metabolic toy model

(with random parametrization for molecular quantities and reaction constants), mecha-

nistically simulated exploiting a mass action approach and the SSA algorithm introduced

in Section 5.1.2. A snapshot of the outputs of MetaFluxAnalysis is represented in Figure

5.2. Overall this approach has been useful to investigate the relation between fluxes and

kinetic constants, moreover it could be exploited to determine the value of metabolic

fluxes in a model having a mechanistic description, and to provide a an instantaneous

graphical overview of the fluxes dynamics.

5.5 Estimating kinetic constants for the eeFBA model of

yeast

In order to estimate kinetic constants for the eeFBA model of yeast is necessary to enrich

the model adding all the information on metabolic concentrations and kinetic constants

retrievable in literature. For this reason I exploited two tools: the Yeast Metabolome

Database and the KiPar information retrieval software (Section 5.5.1).

5.5.1 Integrating data of metabolic concentrations

The Yeast Metabolome Database (YMDB) [228] contains a wide range of information on

the metabolome of S. cerevisiae such as compound description, names and synonyms,

structural information, physical-chemical data, reference Nuclear Magnetic Resonance

(NMR) and Mass Spectrometry (MS) spectra, growth conditions and substrates, path-

way information, enzyme data, gene/protein sequence data, as well as numerous hyper-

links. Globally, from the database it is possible to retrieve information for more than

2000 metabolites and 1000 proteins connected with metabolism.

In the context of the present work, the most remarkable feature of YMDB is the avail-

ability of an extended documentation of experimental intracellular and extracellular

metabolite concentration data obtained by means of detailed MS and NMR metabolomic

analyses deriving both from literature and ad hoc performed experiments. In Appendix

B it is provided the list of identified concentrations for metabolites of the yeast CM.

In view of an extension of the work to human/mammalian models, it is worth to under-

line that the YMDB has been developed on the same line of the Human Metabolome

Database [162].

To retrieve the widest number of kinetic constants from literature, I exploited “KiPar”

[229], an information retrieval tool. This platform has been devised to retrieve textual
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documents containing information (such as kinetic parameters) for the kinetic modeling

of metabolic pathways. A further step performed by KiPar is the compilation of a

list of annotations regarding kinetic parameters and reactions/pathways where they are

involved.

The input of KiPar is defined through the use of biological ontologies and databases

(KEGG and Gene Ontology) related to pathways/reactions of interest. This strategy

has been chosen to overtake the terminological variability of biological sublanguages.

These ontologies or concepts are used to query the literature in order to search the

kinetic information for the model parametrization. To perform an efficient query, KiPar

makes use of the Entrez search and retrieval system implemented for the NCBI databases

PubMed and PubMed Central [230].

At this stage, a local database is used to store the collected information and it is queried

to retrieve information from the selected documents. A scoring system is eventually used

to weight matching concepts of each type considered and then the list of documents with

relative scores is returned to the user.

5.5.2 Estimation of kinetic constants with a particle swarm optimizer

(PSO)

From each cluster identified in Section 3.5.3 through a constraint-based technique, it is

possible to derive an average flux distribution at steady state that is used as the target

for the estimation of kinetic constants in the mechanism-based mass action CM of yeast

metabolism. This is performed exploiting the relation between fluxes and constants

expressed by the Equation 5.3.

The mass action kinetic constant is estimated by means of a particle PSO coupled with

deterministic simulations based on ODEs. As first approach, the goal is to identify a

set of plausible constants, keeping into account that their value could be far from the

experimentally measured one.

Equation 5.3 has infinite (ki,[χw]) pairs of solutions for a single vi, implying that as the

result of the method will be parametric, a subsequent phase to screen the ensemble of

obtained solutions will be necessary.

In order to estimate the rate constants with the PSO procedure, the main hypothesis

is here that the dynamics of the metabolic system will reach, when simulated, a steady

state at which the concentration of all the involved metabolites will be stable over time.

Under this hypothesis it possible to define a fitness function based on the output of a

mechanism-based simulation of the metabolic model where the time course for a generic

metabolite χw will be similar to the one represented in Figure 5.3 where, after a transient
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phase, the concentration of χw will reach a steady state.

For the definition of the fitness function it is sufficient to evaluate the concentration

[χw(t)] at two different time points: t1, t2 chosen after that when the steady state is

reached, such that t2 > t1. It is also possible to define Dw = |[χw(t1)] − [χw(t2)]| , the

distance between the hypothetic steady state reached at t1 and the actual concentration

reached at t2; if D = 0 it means that the steady state has actually been reached,

otherwise if Dw > 0, [χw] is still far from the steady state. Given these premises the

fitness function is defined as:

f = min

%∑
w=1

Dw (5.4)

that is the minimization of the distance Dw for each one of the % reactions in the

metabolic model.

Figure 5.3: Temporal evolution for the concentration of a metabolite χw during a
mechanism-based simulation.

To evaluate the fitness function it is needed to initialize the unknown kw and [χw]

assigning [χw] them a random value for each particle/reaction and then performing a

mechanism-based simulation (for the ODE system derived for the CM of yeast) till t2.

After this, the fitness function is evaluated applying Equation 5.4 and updating values

of bw, g and vw accordingly to the PSO algorithm that will terminate when the value

of f will not change for a given number of iterations.

To perform the parameter estimation, I decided to exploit the PSO implementations

and toolboxes already available under the MATLAB environment. This choice has been

done to maintain uniformity of development in the pipeline (eeFBA has been developed

in the same environment), moreover MATLAB provides an accessible, stable and reliable

environment to develop/modify the code and it supports by many libraries. However,

it is a well known fact that MATLAB implementations have poor performances when
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compared with other programming languages (see Figure 1 and Table 1 in [231] for

a performance comparison between MATLAB and other programming languages on

benchmarks).

It has been possible to identify at least four different implementations for the PSO algo-

rithm in MATLAB (http://www.mathworks.com/matlabcentral/fileexchange/) 1. Each

of these has been tested on selected benchmark functions among the canonical ones (Ack-

eley, Alpine and Rastrigin) where the evaluation of performances is in terms of iterations

to confluence. From the results of the comparison, the “Particle Swarm Optimization

(PSO) by Pramit Biswas” emrged as the best choice.

I tested the parameter estimation procedure using the selected implementation of the

PSO in MATLAB and many different values for parameters both of the PSO algorithm

N, csoc, ccog, w,vmax and for t1 and t2. Unfortunately, for the yeast CM, after 4000

iterations of the PSO, the convergence has never been reached.

This fact is probably due to some concomitants factors: as already stated, MATLAB, in

spite of a high usability, is a computationally inefficient environment, moreover the fit-

ness landscape generated by the problem could be potentially of difficult exploration and

the tested parameter settings could be inappropriate for the problem under evaluation.

To overcome this inability to reconstruct parameters, I contributed to define a more

efficient version of the PSO developed exploiting Fuzzy Logic for the determination of

PSO parameters. In Section 5.6 I will introduce the theoretical definition and the testing

of this novel version of the PSO (for greater details, the interested reader should refer

to [110]).

5.6 Proactive Particles in Swarm Optimization: a fuzzifi-

cation of PSO

As illustrated in Section 5.3.1, PSO performance is highly dependent on the proper tun-

ing of its parameters N, csoc, ccog, w, vmax. The setting of these parameters is dependent

on the problem under evaluation and their numerical value could be established only

with a precise knowledge of the fitness landscape shape; as a result, the search for a

good parameter set is a complex and time consuming procedure. For this reason the

definition and implementation of self-tuning and adaptive modifications of PSO is today

a hot research topic [232–234].

1 Particle Swarm Optimization Toolbox by Brian Birge 22 Apr 2005; Particle Swarm Optimization
(PSO) by Pramit Biswas 17 Sep 2013 (Updated 08 May 2014); Particle Swarm Optimization (PSO)
algorithm by Milan Rapai 24 Nov 2008; Another Particle Swarm Toolbox by Sam 01 Dec 2009 (Updated
01 Apr 2014)
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In particular, Fuzzy Logic (FL) [235] has been used to determine the behavior of the

swarm and to dynamically select the settings for the PSO (see [236] for an extensive

review of methods). In this context a first approach has been introduced in [237] where

a Fuzzy Rule-Based System (FRBS) has been used to determine the inertia weight for

the whole swarm, based on the performance of the best candidate solution and its inertia

in every iteration.

Another fuzzy approach has been introduced in [238] where the Fuzzy Adaptive Tur-

bulence in Particle Swarm Optimization algorithm has been devised to deal with the

premature convergence problem: here FL has been used to slow the convergence of the

swarm to the global best by means of an adaptive tuning of the minimum velocity of

particles.

A Fuzzy Particle Swarm Optimization (FPSO) algorithm has also been described in [239]

as a method to tune the inertia weight and a new parameter modulating the velocity of

particles and named “learning coefficient”.

It is worth noticing that all the works existing in literature exploit FL assigning to each

of the PSO parameters (w, csoc, ccog) an identical value for every particle of the swarm.

Instead in the present thesis and in [110], exploiting a FRBS it has been possible to

determine a specific setting for the parameters of the PSO tuning their value for each

particle. In this way individuals of the swarm become proactive optimizing agents and

hence the devised algorithm has been named Proactive Particles in Swarm Optimization

(PPSO). In this novel approach the setting of each particle, at each iteration, has been

determined using the FRBS to compute two indexes: the distance from the global best,

and a normalized fitness incremental factor.

Fuzzy Logic Fuzzy Logic (FL) was introduced by L. Zadeh in [235] as a “mathemat-

ical tool to cope with uncertainty and to provide a conceptual framework for the use of

ambiguous linguistic variables dealing with imprecise and approximate reasoning” (see

[240]). By means of FL, vague linguistic constructs can be represented with the goal to

build and automatic reasoning and inference system.

In this context, fuzzy set theory (FST) [235] is a generalization of the classical set theory

(considering only “crisp” values i.e. assuming only the Boolean values true or false).

In classical (crisp) set theory, an element can be part of a certain set only with Boolean

values meaning that the element either do or do not belong to a certain set. Following

this reasoning it is possible to define a membership function for the x element of the crisp

set C. However, in the “real world” it is not likely to assign an element to a set with

value TRUE or FALSE (e.g. a priori it is not possible to determine if the temperature
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35°C is hot with value TRUE). To deal with this kind of sets FL uses a mathematical

construct called FST by means of which it is possible to define a membership function

for the fuzzy set A as in crisp set theory:

Definiton 1. Let X be a set. A fuzzy subset A ⊆ X is defined by a membership function

f(a) : X → [0, 1].

Meaning that an element a of X belongs to the fuzzy subset A proportionally to a

number in the interval [0, 1] representing its “degree of membership”. A pivotal point

of the FST is the definition of the shape of the membership function, using for this task

the advice of an expert.

In order to apply FL to a given system, the system has to be defined in natural language

coupling the membership function with linguistic variables defined as follows:

Definiton 2. Let V be a variable, X the range of values of the variable and TV a finite

set of fuzzy (sub)sets. A linguistic variable can be defined as a triplet (V , X, TV ).

In fuzzy approaches the central part of the process is the fuzzy inference system (FIS)

that is the procedure to retrieve a crisp “defuzzified” output using as input linguistic

variables, fuzzy rules, and fuzzy reasoning.

To calculate the output of a FIS, given the inputs, a standard procedure has been defined

as follows:

1. Determination of a list of fuzzy rules; a FRBS of linguistic statements to encode

the behaviour of the FIS in the classification of a certain feature or to control a

certain output. The canonical form of a fuzzy rule is the following:

if (input 1 is membership function 1 ) and/or (input 2 is membership function

2 ) then (output n is output membership function n).

The ensemble of the rules of a fuzzy system is called the decision matrix.

2. Fuzzification of the inputs to link crisp inputs to the corresponding values on

membership functions in the range [0, 1].

3. Definition of an inference engine that, starting from fuzzified inputs use fuzzy rules

to establish the classification or the fuzzy output. The outcome of the application

of the fuzzy rules in the decision matrix depends on the type of fuzzy implication

chosen (e.g. Mamdani [241] or Sugeno [242]). Moreover all the different rules must

be applied to the decision matrix in order to obtain an output distribution. For

this reason all the fuzzy output of the FIS must be aggregated using an operator

for the union.
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4. A unique crisp value must be returned as output of the FIS (e.g. to determine

how to tune a controller) through the defuzzification process that can be achieved

choosing among several different definitions of defuzzification such as the “method

of the mean of maxima” (MeOM) and the “center of gravity method” (COG) [243].

Proactive PSO In the Proactive Particles in Swarm Optimization (PPSO)2, contrary

to previous attempts in literature (see Section 5.3.1), parameters (w, csoc, ccog) involving

particles of the swarm are individually tuned at each iteration to determine the velocity.

To this end, the Equation 5.1 is modified in the following way:

vi(t) = wi(t− 1) · vi(t− 1) + csoci (t− 1) ·R1 (xi(t− 1)− g(t− 1)) + ccogi (t− 1) ·R2 (xi(t− 1)− bi(t− 1)) ,

(5.5)

where wi(t), csoci(t) and ccogi(t) are the parameters of i-th particle at iteration t.

Moreover in this implementation, two values representing (I) the distance of the particle

from the global best g, and (II) a function measuring its fitness improvement with respect

to the previous iteration, have been defined to perform a dynamic fuzzy estimation of

w, csoc and ccog.

In formal terms, (I) can be written as a function having domain in Rm:

δ(xi(t),xj(t)) =

√√√√ M∑
m=1

(xi,m(t)− xj,m(t))2, (5.6)

here i and j are the two particles, xi,m, xj,m are the m-th components of the position

vectors xi,xj , respectively, for some i, j = 1, . . . , N .

While (II), named “normalized fitness incremental factor” is a function having codomain

in (−1, 1) and calculated according to the current and the previous positions of particle

i and the corresponding fitness values:

φ(xi(t),xi(t− 1)) =
min{f(xi(t)), f4} −min{f(xi(t− 1), f4)}

|f4|
· δ(xi(t),xi(t− 1))

δmax
, (5.7)

2 Disclaimer: the mathematical formalization of the PPSO has been realized in collaboration with
D. Besozzi (Department of Informatics, University of Milan), P. Cazzaniga (Department of Human
and Social sciences, University of Bergamo) and G. Pasi (Department of Informatics, Systems and
Communication, University of Milan – Bicocca), while implementation and testing of PPSO has been
realized by M. S. Nobile (Department of Informatics, Systems and Communication, University of Milan –
Bicocca) using the Python language. The standard PSO algorithm, exploited to compare performances,
has been implemented in plain vanilla Python code. The fuzzy engine used for the implementation is
“pyfuzzy” (http://pyfuzzy.sourceforge.net) and NumPy (http://www.numpy.org) (see [244]).
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where δmax is the length of the diagonal of the hyperrectangle defined by the search

space, and f4 represents the estimated worst fitness value for the optimization problem

under investigation, and whose evaluation shortly follows.

The correct estimation of the worst fitness value is comparable to the solution of the

optimization problem due to the fact the shape of the fitness landscape for the problem is

unknown in most of the cases. For this reason, fitness values for all particles is calculated

in the first iteration of PPSO along with their position. From this, f4 is assumed to be

the worst value at that iteration. Thereafter, by means of the min functions in Equation

5.7, it is possible to clamp fitness values worse than f4 in the optimization phase.

Moreover in the same equation, since a minimization problem is here evaluated, the first

factor considers the improvement of the fitness value of the i-th particle, normalizing to

[−1, 1] by dividing by |f4|.
In this case, a low value of φ(xi(t),xi(t − 1)) in [−1, 1] corresponds to a lower fitness

value of particle i when compared to its value in the previous iteration, indicating a

better solution for the optimization problem. In Equation 5.7 the second term has been

introduced to weigh φ evaluating the distance between the current and the previous

position of the particle. This factor can assume values [0, 1] due to the normalization

obtained by dividing by δmax.

A FRBS of 9 fuzzy rules (Table 5.1) has been defined to establish the values wi(t), csoci(t)

and ccogi(t), for each particle i = 1, . . . , N at each iteration t.

Two linguistic variables named “distance from g” (δi) and “normalized fitness incre-

mental factor” (φi) have been used in the antecedent, while the output variables in the

consequent of rules correspond to the PSO parameters described in Section 5.3.1 and

have been named Inertiai, Sociali and Cognitivei.

Rule n. Rule definition

1 IF (φi IS Worse OR δi IS Medium OR δi IS High) THEN Inertiai IS Low

2 IF (φi IS Unvaried OR δi IS Low) THEN Inertiai IS Medium

3 IF φi IS Better THEN Inertiai IS High

4 IF (φi IS Better OR δi IS Medium) THEN Sociali IS Low

5 IF φi IS Unvaried THEN Sociali IS Medium

6 IF (φi IS Worse OR δi IS Low OR δi IS High) THEN Sociali IS High

7 IF δi IS High THEN Cognitivei IS Low

8 IF (φi IS Unvaried OR φi IS Worse OR δi IS Low OR δi IS Medium) THEN Cognitivei
IS Medium

9 IF φi IS Better THEN Cognitivei IS High

Table 5.1: Fuzzy rules used by PPSO. Table from [110].

Following Equation 5.6, the numeric values of the distance between xi and g define

the universe of discourse of δi and its base variable is defined the interval [0, δmax].
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Output variable Term Value

Low 0.3

Inertiai Medium 0.5

High 1.0

Low 0.1

Sociali Medium 1.5

High 3.0

Low 0.1

Cognitivei Medium 1.5

High 3.0

Table 5.2: Defuzzification of output variables. Table from [110].

Linguistic values Low, Medium and High, form the term set of δi allowing in this way to

characterize the proximity of particles to the global best. In Figure 5.4 it is shown the

membership functions linked to the linguistic values of δi. Values defining the shape of

the three membership functions (δ1, δ2, δ3 ∈ [0, δmax]) have been set in accordance to the

dimensions of the search space. Lastly, the domain expertise on PSO has been exploited

to set the following parameters: δ1 = 0.05 · δmax, δ2 = 0.1 · δmax, δ3 = 0.15 · δmax.

Following Equation 5.7, values of function φ of particle i with respect to the previous

iteration, determine the universe of discourse of φi and its base variable is defined in

the interval [−1, 1]. Linguistic values Better, Unvaried and Worse, form the term set

of φi defining the improvement of a particle with respect to its value in the previous

iteration. In Figure 5.5 it is shown the membership functions associated to the linguistic

values of φi. According to the domain expertise, the values φ1, φ2 ∈ [−1, 1] are set to

φ1 = −0.0025 and φ2 = 0.0025 and define the shape of the fuzzy set associated with the

Unvaried linguistic value.

Based on the Sugeno inference method [242], a FRBS has been defined to set fuzzy rules

with fuzzy inputs and crisp outputs. The defuzzification process is synthesized in Table

5.2: here the output variables (Inertiai, Sociali, Cognitivei) can assume three different

linguistic values: Low, Medium and High, each one modeled as a fuzzy singleton.

Sugeno is used to calculate the final numerical value of an output variable (given a set

R of R rules, all having the same output variable in their consequent) as the weighted

average of the output of all rules in R, accordingly to:

output =

∑R
r=1 ρrzr∑R
r=1 ρr

, (5.8)

where ρr is the membership degree of the input variable of the r-th rule, and zr represents

the output crisp value for the r-th rule, as reported in Table 5.2.
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Figure 5.4: Distance from g: membership functions. Here the shape of the mem-
bership function is trapezoid for Low and High, while Medium has a triangular shape.

Figure modified from [110].

Figure 5.5: Normalized fitness incremental factor: membership functions. Here all
the membership functions (Better, Unvaried and Worse) have a triangular shape.

Figure modified from [110].

The FRBS is defined by rules listed in Table 5.1. The FRBS has been divided into 3

groups according to the output variable. Inertiai (rules 1–3), Sociali (rules 4–6) and

Cognitivei (rules 7–9). Accordingly to the value of the input linguistic variables (φi and

δi), each rule defines the changes in the settings of the PPSO and in Figure 5.6 the

three resulting surfaces for Inertiai, Sociali and Cognitivei calculated using the Sugeno

method are shown.

The first group of rules is aimed at tuning the variable Inertiai (that determines the

contribution of the previous velocity of a particle to its current velocity) in order to

find better solutions for the optimization problem. This is done in order to increase the
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Figure 5.6: 3D plots describing the surfaces obtained for the inertia value (top), the
social factor (center) and the cognitive factor (bottom) at different values of δi (here
δmax = 1) and φi. Surfaces have been obtained thanks to the FRBS illustrated in Table

5.1. Figure modified from [110].

value of the variable when the particle shows a good performance (in terms of fitness),

and to lower it in a different case. This is obtained by means of the imposition of a

Low value when φi is Worse, or the distance δi from the global best is High or Medium.

A High value is instead set when the particle is following the right direction (i.e., φi

is Better). Lastly, Inertiai assumes a neutral (Medium) value, in the case there are no

relevant variations in fitness or the distance from the global best is Low.
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The second group of rules has been defined to control the strength of the social infor-

mation sharing among particles. This is obtained through the setting of the variable

Sociali, that tunes the attraction of particle i to g (the global best of the swarm). Here

the particle should ignore the information retrieved from the swarm (setting Sociali to

Low) when it is finding better solutions (i.e., φi is Better), or is positioned near g (i.e.,

δi is Medium). In the inverse case, the particle should set Sociali to High following “the

advice” of the other components of the swarm when it is not able to find better solutions

or it is positioned far from g. Moreover, if φi is Unvaried (i.e. if no relevant changes in

the fitness value are seen) an intermediate value is assigned by the FRBS to the Sociali.

The third group of rules is defined to determine the value for the variable Cognitivei,

weighting the attraction of the particle to bi (personal best). In the case of a High

distance of the particle from g, its movement towards bi should be limited by setting

Cognitivei to Low. Instead, the tendency of the particle to move towards bi should be

balanced (with respect to the effect of the social component) by setting an intermediate

value of Cognitivei, when particle is not improving its fitness value or it is not far from

g. Lastly, if φi is Better (i.e. better optimizations are seen), the particle should be

encouraged to perform a local exploration around its current position within the search

space by setting Cognitivei to High.

Summing up the above described rules, Figure 5.6 shows the three resulting surfaces for

Inertiai, Sociali and Cognitivei computed by means of the Sugeno method.

Analyzing the surface relative to Inertiai (Figure 5.6, top), it emerges how the maximum

value is reached at the minimum value of φi and δi . The value of Inertiai then decreases

both increasing the distance δi, and, strongly, φi. A minimum value of Inertiai is found

in a large hollow approximately delimited by 0 < φi < 1 and 0.35 < δi < 1.

The surface associated to Sociali (Figure 5.6, center), shows how the maximum value for

this output is reached for a large plateau in 0 < φi < 1 and almost for any δi (except for

a deep dip centered at δi=∼0.3). The large plateau undergoes a smooth decrease in the

range −1 < φi < 0, for all the values of δi except for the already mentioned dip. This

slope determines a lowering of the Sociali value gradually from the maximum value 3 to

1.55.

The bottom plot in Figure 5.6, depicts the surface obtained for Cognitivei. In this last

case, the highest value for the output is found in a peak located around minimum values

for both φi and δi. A small plateau can be found in the region delimited by 0 < δi < 0.3

and 0 < φi < 1. The remaining part of the plot is characterized by a gentle and wide

dip centered in φi=0 where Cognitivei has a minimum value.
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Moreover, in the tuning of the PPSO, the size N of the swarm has been determined in an

automatic fashion by means of an heuristic described in [245] where N = b10 + 2
√
Mc.

Lastly it has been defined, along each component of the search space, the maximum

velocity of particle as vmaxm = 0.2 · |bmaxm − bminm |, for m = 1, . . . ,M .

Comparative evaluation of PSO and PPSO PPSO has been tested comparing its

performance with a standard implementation of PSO evaluating 12 reference benchmark

functions parametric in the number of dimensions M ∈ N and illustrated in Table 5.3.

Function Equation Search space Value in global minimum

Ackley f(x) = 20 + e− 20 exp(−.2
√

1
M

∑M
m=1 x

2
m)− exp( 1

n

∑M
m=1 cos(2πxm)) [−30, 30]M f(0) = 0

Alpine 1 f(x) =
∑M
m=1 |xm sin(xm) + .1xm| [−10, 10]M f(0) = 0

Bohachevsky f(x) =
∑M−1
m=1 (x2m + 2x2m+1 − .3 cos(3πxm)− .4 cos(4πxm+1) + .7) [−15, 15]M f(0) = 0

Griewank f(x) = 1
4000

∑M
m=1 x

2
m −

∏M
m=1 cos( xm√

m
) + 1 [−600, 600]M f(0) = 0

Michalewicz f(x) = −
∑M
m=1 sin(xm) sin2k(

mx2m
π

), with k = 10 in this work [0, π]M f(0) = −1.8013

Mishra 1 f(x) = (1 + αM )αM , αM = M −
∑M−1
m=1 xm [0, 1]M f(1) = 2

Ferretti 1 f(x) = 30 +
∑M
m=1bxmc [−5.12, 5.12]M f(-5.12) = −6M + 30

Quintic f(x) =
∑M
m=1 |x

5
m − 3x4m + 4x3m + 2x2m − 10xm − 4| [−10, 10]M f(-1) = 0

Rastrigin f(x) = 10M +
∑M
m=1(x2m − 10 cos(2πxm)) [−5.12, 5.12]M f(0) = 0

Rosenbrock f(x) =
∑M−1
m=1 [100(x2m − xm+1)2 + (xm − 1)2] [−2048, 2048]M f(1) = 0

Schwefel 26 f(x) = 418.98M −
∑M
m=1 xm sin(

√
|xm|) [−512, 512]M f(420.9) = 0

Xin-She Yang 2 f(x) =
∑M
m=1 |xm|[exp(

∑M
m=1 sin(x2m)]−1 [−2π, 2π]M f(0) = 0

Table 5.3: Benchmark functions. Table modified from [110].

To perform the comparison it has been exploited the Average Best Fitness (ABF), a

value calculated as the mean of the global best particle fitness value found at each

iteration t. The value has been evaluated over a number Θ of runs using both PSO or

PPSO:

ABF =
1

Θ

Θ∑
θ=1

f(gθ(t)), (5.9)

where gθ(t) is the global best found at iteration t during the θ-th run using either PSO

or PPSO. In the present case Θ has been set to 30.

For what concerns the PSO, the following values have been set for the parameters of the

algorithm:

• inertia w linearly decrementing from 0.9 to 0.4;

• cognitive factor ccog = 1.9;

• social factor csoc = 1.9.

While, both for PSO and PPSO the values of N and vmaxm have been determined on

the basis of the heuristic illustrated in Section 5.6. For both algorithms, the damping

boundary condition was used and the number of iterations was fixed to 400.
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All the benchmark functions in Table 5.3 have been tested with PSO and PPSO by

setting M = 100. In Figure 5.7 values for the ABF are illustrated both for the canonical

PSO algoritm (red dashed lines) and for the PPSO (green solid lines) In all tested

cased the ABF value is lower in the PPSO case respect to the canonical PSO, thereby

indicating that PPSO outperforms PSO in terms of convergence to better solutions.

In Figure 5.7 are illustrated comparisons for M = 100. Here, the canonical PSO is hardly

reaching the optimal solution, whereas with PPSO, the ABF is constantly improving

Globally, in this section it has been shown how the developed PPSO algorithm, exploiting

FL, has better performances with respect to standard PSO when tested on 12 standard

multi-dimensional benchmark functions: for all the tested benchmarks, PPSO exhibit

both faster convergence and better average fitness values than standard PSO.

The next step, not included in this work of thesis, but currently under implementation,

is the exploitation of the efficient performances of the PPSO for the estimation of the

kinetic constants described in Section 5.5.
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Figure 5.7: In this figure is shown the evaluation of PPSO performance (green)
compared to the standard PSO (red). ABF values for the benchmark functions in
Table 5.3 are illustrated on x axis for Θ = 30 runs, where the size of M was 100. Small

plots zoom on the final 100 iterations. Figure from [110].



Chapter 6

Conclusions and perspectives

6.1 Conclusions

The complex nature of biological systems highlight the need for methods that are able to

investigate the system under different aspects. In this context, in the scientific commu-

nity is emerging an increasing interest for the definition and application of methods able

to integrate information deriving from multiple “levels” of analysis in order to obtain

a thorough comprehension of the system under evaluation. The need for a multi-level

analysis has been underlined by the fact that, at present, there is no computational

“silver bullet” for the understanding biological complex systems such as metabolism.

To overtake limitations of the single modeling methods, in this thesis I defined and imple-

mented a computational approach dealing with complexity in biological systems through

the definition of a computational pipeline exploiting all the three different “levels” of

Systems Biology analyses (i.e. interaction-based, constraint-based and mechanism-

based).

The main novelty of the approach is the attempt to gain, from every level, a different

type of information, i.e. identification of flux distributions and metabolic sub-phenotypes

from the ensemble evolutionary FBA (eeFBA); information on network structural prop-

erties, correlations between flux values and topological metrics from graph theory ap-

proaches; estimation of kinetic constants and simulation of dynamics by means of mech-

anistic approaches. Moreover, to provide a better communication of the experimental

results, I also redefined a network visualization strategy able to overlay flux values and

topological metrics to network structure.

More in detail, in Chapter 3, the eeFBA approach has been exploited to explore the

space of the randomly generated objective functions, by means of a filtering procedure
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selecting solutions matching a metabolic phenotype, or by means of a genetic algorithm

to identify both solutions that best matches the reference phenotype and a pool of so-

lutions (individuals) characterizing the ensemble properties of the phenotype.

The procedure has been tested on a yeast core model from which it was possible to re-

trieve two ensembles of solutions matching a definition for Crabtree-positive and negative

phenotypes based on the evaluation of the oxygen uptake flux (proxy of the oxidative

phosphorylation) and the ethanol secretion flux (proxy for the fermentative metabolism).

With a hierarchical clustering it has been possible to identify, inside each phenotype,

some sub-clusters revealing potential sub-phenotypes.

Moreover, through a Kolmogorov-Smirnov test it has been possible to highlight metabolic

fluxes that are enhanced in the Crabtree-positive and negative phenotypes. In particu-

lar, accordingly to literature data, the glycolytic pathway is enhanced in the Crabtree-

positive phenotype, while reactions linking glycolysis with the TCA cycle and reactions

producing building blocks are up-regulated in the Crabtree-negative case.

Lastly, the classical FBA approach has been used to assess the correctness of predictions

emerging from the reduction of genome-wide metabolic models of three different types of

cancer cells (iLiverCancer1715, iBreastCancer1771, iLungCancer1472) and a “reference”

cell (HMR). In the reduced models, flux of metabolites through the reactions has been

investigated to understand up-and down-regulations in metabolic pathways involved in

the redistribution of fluxes in the cancer condition. In particular, results underlined that

flux distributions significantly differ both between the reference and cancer models and

among the three cancer models.

In Chapter 4, an interaction-based approach based on graph theory has been used to

analyze topological measures of the genome-wide models exploited in Chapter 3 and on

the derived “core” versions. This modeling framework confirmed that, in the analyzed

networks, it is possible to retrieve some key features typical of biological networks such

a scale-free and hierarchical topology (indicating the presence of modules). At the same

time these networks exhibit the ultra small-world property and the disassortative nature.

Remarkably, topological measures assumed comparable values in all the evaluated mod-

els confirming that the interaction-based approach has not predictive ability due to the

fact that it does not allow to highlight the redistribution of metabolic fluxes at the basis

of cellular transformation.

A further investigation has involved the evaluation of the correlation between node de-

gree and flux value emerged from FBA both from yeast core model (evaluating the

average of fluxes from the Crabtree-negative ensemble) and the HMR model. In both

cases analyses pointed out a significant value of correlation suggesting a key role of hubs

in sustaining the flux of metabolites through metabolic reactions.
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In Chapter 5, in the context of mechanism-based analyses I developed MetaFluxAnalysis,

a LabVIEW tool to determine metabolic fluxes starting from mechanistic simulations.

This has been a first step towards the estimation of kinetic constants from a flux dis-

tribution obtained with FBA. The flux distribution is the target for the estimation of

kinetic constants by means of a Particle Swarm Optimizer (PSO). Unfortunately, the

exploited MATLAB PSO implementation has not been able to provide a set of kinetic

constants due to convergence problems. For this reason a novel version of the PSO al-

gorithm named Proactive Particles in Swarm Optimization (PPSO) has been developed

exploiting Fuzzy Logic to automatically tune particle parameters (inertia, social and

cognitive components).

From the comparative evaluation of PSO and PPSO it emerged that PPSO has bet-

ter performances when evaluating 12 standard multi-dimensional benchmark functions,

confirming the effectiveness of the method.

6.2 Perspectives

The next step in the application of the computational pipeline will be the conclusion of

the kinetic constants estimation by means of the PPSO algorithm. Once putative kinetic

constants have been estimated, the following task will be the mechanistic simulation of

a metabolic system (e.g. the yeast CM exploited in this thesis).

It is worth to underline that besides being able to simulate the kinetic evolution of the

metabolic system (i.e. the transient state [246, 247] and the variations of the steady

state due the modification of both the molecular quantities and the kinetic constants),

mechanism-based approach can be used as a framework to investigate the sensitivity of

the kinetic constants and to determine which reactions are the most relevant governing

points of the system behavior.

A further future development of the eeFBA approach will be its application to curated

genome-wide models. In this case, because of the higher computational requirements

due to the expected extension of the random set of objective functions (performed to

mitigate the effects of a possible under sampling of the solution space), or due to the

increase of the number of individuals evaluated by the genetic algorithm in the sampling

and searching methods of the eeFBA, high-performance computing (HPC) capabilities

will be probably required (see [248] for a discussion on perspectives for the integration

of Systems Biology and HPC).

Theoretical approaches defined in the present dissertation are currently being applied

to develop a model to investigate cancer cell proliferation [171], a system level property

that can be fully understood only exploiting strategies able to tackle the complexity of
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the underlying metabolic network. In this context, recent studies suggested that the

enhanced proliferation is sustained by an extensive metabolic rewiring involving an up-

regulated glycolytic flux and an increased uptake of glutamine [167].

The investigation of cancer metabolic rewiring by means of a computational model is

a fundamental step towards the understanding of how this metabolic phenotype rises

and is a starting point to devise strategies to counteract the phenomenon. To this end

I am contributing to develop a CM of metabolism simulated by means of a constraint-

based approach leading to the prediction of fluxes distribution underlying the metabolic

rewiring in pseudo-hypoxic conditions and in the case of glutamine limitation.

As widely discussed in Chapter 2, dynamic mechanism-based models are considered the

best way to achieve a detailed comprehension of metabolic processes. However they

require knowledge not only of the metabolic network and stoichiometry of reactions, but

also of the kinetic rate of each reaction and of the initial concentration of all the metabo-

lites. By exploiting the computational pipeline here devised I aim at identifying values

for these parameters to analyze the system exploiting the three different frameworks

proposed by Stelling in [16] and with the final goal to develop a computational model

able to describe the interplay between enhanced glycolysis and its related pathways and

glutamine utilization pathways, a condition that may be relevant in sustaining tumor

forming ability.

The modeling of cancer metabolic rewiring, and in particular the desirable identification

of sub-phenotypes with the eeFBA approach, is part of a new vision postulating the

transition from a Systems Biology to a Systems Medicine perspective [156].

The need for a Systems Medicine approach is highlighted by the many limitations of

current clinical approaches such as the evidence that many drugs are effective only in a

reduced portion of patients or the fact that targeting some relevant functions is ineffective

for the remission of the disease. Moreover, from the systemic point of view it is more

and more evident that biological basis of many diseases can be fully understood only in

a network perspective where altered mechanisms can affect topologically or functionally

remote factors possibly influenced by individual variability [249].

The final goal of the paradigm shift is therefore the realization of the personalized

medicine [250] through the implementation of a “virtual twin” [251], i.e. an accurate,

multi-scale and personal, computational description of the human physiology.

In this context the evaluation, quantification and the management of the complexity

(as illustrated in this thesis) is a pivotal aspect to fruitfully integrate -omics data (with

potential incompatibilities due to the structure of the data, and to the conflicting evi-

dences emerging from studies performed under different experimental settings) and to

perform accurate and reliable simulations of the whole body physiology.



Appendix A

Flux distributions in reference

and cancer CMs

In this appendix flux distributions emerging from FBA are illustrated for the four core

models (CMs) derived in Chapter 3 from the corresponding genome-wide models. The

first column of the hereafter shown table, indicates the structure of the metabolic reac-

tion, while in the second column the value of the flux in the “reference” model is reported

(HMR model). Columns from 3 to 5 list the value of fluxes for the tissue specific cancer

models (i.e. liver, breast and lung).

113



F
lu

x
d

istrib
u

tio
n

s
in

referen
ce

a
n

d
can

cer
C

M
s

114

Reactions HMR model Liver Cancer model Breast Cancer model Lung Cancer model

glucose[s] → glucose[c] 88,50025942 367,3906121 346,9188093 599,797916

ATP[c] + glucose[c] → ADP[c] + glucose-6-phosphate[c] 88,50025942 367,3906121 346,9188093 599,797916

glucose-6-phosphate[c] → fructose-6-phosphate[c] 88,50025942 367,3906121 346,9188093 599,797916

ATP[c] + fructose-6-phosphate[c] → ADP[c] + fructose-1,6-bisphosphate[c] 83,45954903 352,9138514 332,4325152 580,5023231

fructose-1,6-bisphosphate[c] → DHAP[c] + GAP[c] 83,45954903 352,9138514 332,4325152 580,5023231

DHAP[c] ↔ GAP[c] 78,41883865 352,9138514 332,4325152 561,2067303

GAP[c] + NAD[c] + Pi[c] → 1,3-bisphospho-D-glycerate[c] + H[c] + NADH[c] 151,7969669 698,5893225 657,6218834 1103,117868

1,3-bisphospho-D-glycerate[c] + ADP[c] → 3-phospho-D-glycerate[c] + ATP[c] 0 698,5893225 657,6218834 1103,117868

1,3-bisphospho-D-glycerate[c] → 2,3-bisphospho-D-glycerate[c] 151,7969669 - - -

2,3-bisphospho-D-glycerate[c] + H2O[c] → 3-phospho-D-glycerate[c] + Pi[c] 151,7969669 - - -

3-phospho-D-glycerate[c] → 2-phospho-D-glycerate[c] 58,71125853 564,9197185 523,8642541 946,2022284

2-phospho-D-glycerate[c] → H2O[c] + PEP[c] 58,71125853 564,9197185 523,8642541 946,2022284

ADP[c] + PEP[c] → ATP[c] + pyruvate[c] 58,71125853 564,9197185 523,8642541 946,2022284

H[c] + NADH[c] + pyruvate[c] → L-lactate[c] + NAD[c] 0 223,7461825 152,7124929 871,6275454

H[c] + NADH[c] + pyruvate[c] → D-lactate[c] + NAD[c] 0 0 0 0

L-lactate[c] → L-lactate[s] 0 223,7461825 152,7124929 871,6275454

D-lactate[c] → D-lactate[s] 0 0 0 0

DHAP[c] + erythrose-4-phosphate[c] ↔ sedoheptulose-1,7-bisphosphate[c] 5,040710385 0 0 19,29559284

ATP[c] + ribose-5-phosphate[c] → AMP[c] + PRPP[c] 15,12213115 21,71514101 21,72944105 57,88677852

glucose-6-phosphate[c] + NADP[c] ↔ glucono-1,5-lactone-6-phosphate[c] + H[c] + NADPH[c] 0 0 0 0

glucono-1,5-lactone-6-phosphate[c] + H2O[c] → 6-phospho-D-gluconate[c] 0 0 0 0

6-phospho-D-gluconate[c] + NADP[c] → CO2[c] + H[c] + NADPH[c] + ribulose-5-phosphate[c] 0 0 0 0

ribulose-5-phosphate[c] ↔ ribose-5-phosphate[c] 10,08142077 14,47676067 14,48629404 38,59118568

fructose-6-phosphate[c] + GAP[c] ↔ D-xylulose-5-phosphate[c] + erythrose-4-phosphate[c] 5,040710385 7,238380336 7,243147018 19,29559284

D-xylulose-5-phosphate[c] ↔ ribulose-5-phosphate[c] 10,08142077 14,47676067 14,48629404 38,59118568

GAP[c] + sedoheptulose-7-phosphate[c] ↔ D-xylulose-5-phosphate[c] + ribose-5-phosphate[c] 5,040710385 7,238380336 7,243147018 19,29559284

GAP[c] + sedoheptulose-7-phosphate[c] ↔ erythrose-4-phosphate[c] + fructose-6-phosphate[c] 0 -7,238380336 -7,243147018 0

ADP[c] + sedoheptulose-1,7-bisphosphate[c] ↔ ATP[c] + sedoheptulose-7-phosphate[c] 5,040710385 0 0 19,29559284

CoA[m] + NAD[m] + pyruvate[m] → acetyl-CoA[m] + CO2[m] + H[m] + NADH[m] 150,480784 0 0 0

ATP[m] + H[m] + HCO3-[m] + pyruvate[m] → ADP[m] + OAA[m] + Pi[m] 0 256,8650979 286,7878036 2129,154672

acetyl-CoA[m] + H2O[m] + OAA[m] → citrate[m] + CoA[m] 150,480784 0 0 0

citrate[m] ↔ isocitrate[m] 0 0 -299,6337474 -270,1459903

isocitrate[m] + NAD[m] → AKG[m] + CO2[m] + H[m] + NADH[m] 0 - - -

isocitrate[m] + NADP[m] → AKG[m] + CO2[m] + H[m] + NADPH[m] 0 - - -

isocitrate[m] + NAD[m] ↔ AKG[m] + CO2[m] + H[m] + NADH[m] - 0 0 -270,1459903

isocitrate[m] + NADP[m] ↔ AKG[m] + CO2[m] + H[m] + NADPH[m] - -199,8162148 -299,6337474 -

AKG[m] + CoA[m] + NAD[m] → CO2[m] + H[m] + NADH[m] + succinyl-CoA[m] 519,6058158 48,54131611 18,8197293 270,1459903

GDP[m] + Pi[m] + succinyl-CoA[m] ↔ CoA[m] + GTP[m] + succinate[m] 519,6058158 48,54131611 18,8197293 270,1459903

FAD[m] + succinate[m] ↔ FADH2[m] + fumarate[m] 519,6058158 48,54131611 18,8197293 270,1459903

fumarate[m] + H2O[m] ↔ malate[m] 300,961568 371,2156973 280,8140181 345,9665426

malate[m] + NAD[m] ↔ H[m] + NADH[m] + OAA[m] 150,480784 371,2156973 280,8140181 -1783,18813

Continued on next page
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Reactions HMR model Liver Cancer model Breast Cancer model Lung Cancer model

malate[m] + NAD[m] → CO2[m] + H[m] + NADH[m] + pyruvate[m] 0 0 0 2129,154672

malate[m] + NADP[m] → CO2[m] + H[m] + NADPH[m] + pyruvate[m] 150,480784 0 0 0

ATP[c] + citrate[c] + CoA[c] → acetyl-CoA[c] + ADP[c] + OAA[c] + Pi[c] 139,1493155 199,8162148 199,9477996 176,7466129

fumarate[c] + H2O[c] ↔ malate[c] 225,0351401 -313,4971609 -253,4695539 9,072484036

malate[c] + NAD[c] ↔ H[c] + NADH[c] + OAA[c] 225,0351401 -313,4971609 -253,4695539 9,072484036

GTP[c] + OAA[c] → PEP[c] + GDP[c] + CO2[c] - 0 0 -

citrate[c] ↔ isocitrate[c] 0 -199,8162148 0 -

isocitrate[c] + NADP[c] → AKG[c] + CO2[c] + H[c] + NADPH[c] 0 0 - -

isocitrate[c] + NADP[c] → H[c] + NADPH[c] + oxalosuccinate[c] - - 0 -

oxalosuccinate[c] → AKG[c] + CO2[c] - - 0 -

H2O[c] + Ppi[c] → 2 Pi[c] 1507,428888 67,5771657 66,96313845 97,87172871

5 H[m] + NADH[m] + ubiquinone[m] → 4 H[c] + NAD[m] + ubiquinol[m] 953,250357 0 0 345,9665426

FADH2[m] + ubiquinone[m] → FAD[m] + ubiquinol[m] 916,6305718 238,8836195 299,2749852 528,6194987

2 ferricytochrome-C[m] + 2 H[m] + ubiquinol[m] → 2 ferrocytochrome-C[m] + 4 H[c] + ubiquinone[m] 1879,070456 252,0796356 312,4796912 886,2585232

4 ferrocytochrome-C[m] + 8 H[m] + O2[m] → 4 ferricytochrome-C[m] + 4 H[c] + 2 H2O[m] 939,5352282 126,0398178 156,2398456 443,1292616

ADP[m] + 4 H[c] + Pi[m] → ATP[m] + 4 H[m] + H2O[m] 2851,683233 156,7184564 255,1221305 1588,862692

H[c] + pyruvate[c] → H[m] + pyruvate[m] 0 256,8650979 286,7878036 0

citrate[m] → citrate[c] 150,480784 - 299,6337474 270,1459903

isocitrate[m] → isocitrate[c] - 199,8162148 - -

H[c] + Pi[c] ↔ H[m] + Pi[m] 3680,232945 - - -

ADP[c] + ATP[m] ↔ ADP[m] + ATP[c] 0 - - -270,1459903

H[s] ↔ H[c] 22,8222203 30,13595287 30,15579827 26,65663346

CO2[c] ↔ CO2[m] -820,1090951 408,798092 567,6018218 -

CoA[c] ↔ CoA[m] 5,588887057 - - -

O2[s] → O2[c] 1000 208,9136882 239,1682909 516,4350036

O2[c] → O2[m] 939,5352282 126,0398178 156,2398456 443,1292616

GDP[c] + GTP[m] ↔ GDP[m] + GTP[c] 3370,372471 -52,92151619 -12,84594381 -

ADP[c] + GTP[c] ↔ ATP[c] + GDP[c] 3370,372471 -52,92151619 -12,84594381 -38,67873965

ADP[m] + GTP[m] ↔ ATP[m] + GDP[m] -2850,766656 101,4628323 31,66567311 270,1459903

H2O[s] ↔ H2O[c] -310,0952067 195,2657261 295,7387908 6,472486166

H2O[c] ↔ H2O[m] -4296,650859 - - -

riboflavin[s] ↔ riboflavin[c] 0 0 -5,55383232728890e-29 2,83222534537321e-29

ATP[c] + riboflavin[c] → ADP[c] + FMN[c] 0 0 -5,55383232728890e-29 2,83222534537321e-29

ATP[c] + FMN[c] → FAD[c] + Ppi[c] 0 0 -5,55383232728890e-29 2,83222534537321e-29

FAD[c] + H[c] + NADPH[c] → FADH2[c] + NADP[c] 397,024756 190,3423034 280,4552559 258,4735084

FAD[m] + FADH2[c] ↔ FAD[c] + FADH2[m] 397,024756 190,3423034 280,4552559 258,4735084

AKG[c] + Pi[m] ↔ AKG[m] + Pi[c] 528,5047212 -269,752865 -249,148345 194,3254381

NH3[c] → NH3[s] 562,979771 707,2877507 817,7963379 687,0063997

NH3[c] ↔ NH3[m] 9,357194155 110,6284946 1,90581567040500e-13 0

fumarate[m] + Pi[c] ↔ fumarate[c] + Pi[m] 218,6442478 -322,6743811 -261,9942888 -75,82055223

CO2[c] + H2O[c] → H[c] + HCO3-[c] 48,31173694 69,37488965 69,42057501 61,36527397

CO2[m] + H2O[m] → H[m] + HCO3-[m] 0,458288739 257,5231933 286,7878036 2129,154672

glutamine[s] → glutamine[c] 706,0189519 1000 1000 1000

Continued on next page
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Reactions HMR model Liver Cancer model Breast Cancer model Lung Cancer model

glutamine[c] + H2O[c] → glutamate[c] + NH3[c] 524,880328 749,7692653 749,6044812 701,3019512

glutamate[c] + H[c] → glutamate[m] + H[m] 0 0 0 0

glutamine[c] + H[c] → glutamine[m] + H[m] 0 0 - -

glutamine[m] + H2O[m] → glutamate[m] + NH3[m] 0 0 - -

ATP[c] + glutamate[c] + H2O[c] → ADP[c] + glutamate[s] + Pi[c] 0 - - -

glutamine[c] + H2O[c] + PRPP[c] → 5-phosphoribosylamine[c] + glutamate[c] + Ppi[c] 5,932603611 8,519124894 8,524734982 46,21429662

aspartate[c] + GTP[c] + IMP[c] → adenylosuccinate[c] + GDP[c] + Pi[c] 0 0 0 38,67873965

adenylosuccinate[c] ↔ AMP[c] + fumarate[c] 0 0 0 38,67873965

5-phosphoribosylamine[c] + ATP[c] + glycine[c] → ADP[c] + GAR[c] + Pi[c] 5,932603611 8,519124894 8,524734982 46,21429662

10-formyl-THF[c] + GAR[c] → N-formyl-GAR[c] + THF[c] 5,932603611 8,519124894 8,524734982 46,21429662

ATP[c] + glutamine[c] + H2O[c] + N-formyl-GAR[c] →
5-phosphoribosylformylglycinamidine[c] + ADP[c] + glutamate[c] + Pi[c]

5,932603611 8,519124894 8,524734982 46,21429662

5-phosphoribosylformylglycinamidine[c] + ATP[c] → ADP[c] + AIR[c] + Pi[c] 5,932603611 8,519124894 8,524734982 46,21429662

AIR[c] + CO2[c] ↔ 5-phosphoribosyl-4-carboxy-5-aminoimidazole[c] 5,932603611 8,519124894 8,524734982 46,21429662

5-phosphoribosyl-4-carboxy-5-aminoimidazole[c] + aspartate[c] + ATP[c] →
ADP[c] + Pi[c] + SAICAR[c]

5,932603611 8,519124894 8,524734982 46,21429662

SAICAR[c] ↔ AICAR[c] + fumarate[c] 5,932603611 8,519124894 8,524734982 46,21429662

10-formyl-THF[c] + AICAR[c] ↔ FAICAR[c] + THF[c] 5,932603611 8,519124894 8,524734982 46,21429662

FAICAR[c] ↔ H2O[c] + IMP[c] 5,932603611 8,519124894 8,524734982 46,21429662

IMP[c] + NADP[c] + NH3[c] ↔ GMP[c] + H[c] + NADPH[c] -1448,473116 8,519124894 8,524734982 7,535556967

ATP[c] + GMP[c] ↔ ADP[c] + GDP[c] 0,750308087 1,077430539 1,078140058 0,953036762

GDP[c] → dGDP[c] + H2O[c] 0,750308087 1,077430539 1,078140058 0,953036762

ADP[c] + dGDP[c] ↔ ATP[c] + dGMP[c] 0,750308087 1,077430539 1,078140058 0,953036762

2 ADP[c] ↔ AMP[c] + ATP[c] -1475,491193 -21,71514101 -21,0709123 -95,98340261

ADP[c] → dADP[c] + H2O[c] 1,12476352 1,615142614 1,616206232 1,428667772

ADP[c] + dADP[c] ↔ ATP[c] + dAMP[c] 1,12476352 1,615142614 1,616206232 1,428667772

H2O[c] + IMP[c] + NAD[c] → H[c] + NADH[c] + xanthosine-5-phosphate[c] 1454,40572 0 0 0

ATP[c] + NH3[c] + xanthosine-5-phosphate[c] → AMP[c] + GMP[c] + Ppi[c] 1454,40572 0 0 0

2 ATP[c] + glutamine[c] + H[c] + H2O[c] + HCO3-[c] →
2 ADP[c] + carbamoyl-phosphate[c] + glutamate[c] + Pi[c]

9,189527543 13,19601612 13,20470607 11,67248191

aspartate[c] + carbamoyl-phosphate[c] ↔ N-carbamoyl-L-aspartate[c] + Pi[c] 9,189527543 13,19601612 13,20470607 11,67248191

N-carbamoyl-L-aspartate[c] ↔ S-dihydroorotate[c] + H2O[c] 9,189527543 13,19601612 13,20470607 11,67248191

S-dihydroorotate[c] + ubiquinone[m] ↔ orotate[c] + ubiquinol[m] 9,189527543 13,19601612 13,20470607 11,67248191

orotate[c] + PRPP[c] ↔ orotidine-5-phosphate[c] + Ppi[c] 9,189527543 13,19601612 13,20470607 11,67248191

orotidine-5-phosphate[c] → CO2[c] + UMP[c] 9,189527543 13,19601612 13,20470607 11,67248191

ATP[c] + UMP[c] ↔ ADP[c] + UDP[c] 6,44678122 9,257475803 9,263572117 8,188662235

UDP[c] → dUDP[c] + H2O[c] 1,12476352 1,615142614 1,616206232 1,428667772

dUMP[c] + 5,10-methylene-THF[c] ↔ dihydrofolate[c] + dTMP[c] 1,12476352 1,615142614 1,616206232 1,428667772

dUDP[c] + ADP[c] ↔ dUMP[c] + ATP[c] 1,12476352 1,615142614 1,616206232 1,428667772

ADP[c] + UTP[c] ↔ ATP[c] + UDP[c] -5,3220177 -7,642333189 -7,647365885 -6,759994463

ADP[c] + CTP[c] ↔ ATP[c] + CDP[c] 5,3220177 7,642333189 7,647365885 6,759994463

ADP[c] + CDP[c] ↔ ATP[c] + CMP[c] 4,571709613 6,56490265 6,569225827 5,806957701

ATP[c] + NH3[c] + UTP[c] → ADP[c] + CTP[c] + Pi[c] 5,3220177 7,642333189 7,647365885 6,759994463

Continued on next page
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CDP[c] → dCDP[c] + H2O[c] 0,750308087 1,077430539 1,078140058 0,953036762

dCDP[c] + ADP[c] ↔ dCMP[c] + ATP[c] 0,750308087 1,077430539 1,078140058 0,953036762

glutamate[m] + H2O[m] + NAD[m] ↔ AKG[m] + H[m] + NADH[m] + NH3[m] 0 -309,7866141 -299,6337474 0

glutamate[m] + H2O[m] + NADP[m] ↔ AKG[m] + H[m] + NADPH[m] + NH3[m] -8,898905416 199,8162148 299,6337474 0

AKG[c] + aspartate[c] ↔ glutamate[c] + OAA[c] -364,1844556 113,680946 53,52175431 -185,8190969

glutamate[m] + OAA[m] ↔ AKG[m] + aspartate[m] 0 628,0807952 567,6018218 345,9665426

aspartate[m] + glutamate[c] + H[c] → aspartate[c] + glutamate[m] + H[m] 0 628,0807952 567,6018218 345,9665426

aspartate[c] → fumarate[c] + NH3[c] 0 0 0 0

2 ATP[m] + H[m] + HCO3-[m] + NH3[m] → 2 ADP[m] + carbamoyl-phosphate[m] + Pi[m] 0,458288739 0,658095376 - -

carbamoyl-phosphate[m] + ornithine[m] ↔ citrulline[m] + Pi[m] 0,458288739 0,658095376 - -

citrulline[m] + H[c] + ornithine[c] → citrulline[c] + H[m] + ornithine[m] 0,458288739 0,658095376 - -

citrulline[c] + H[c] + ornithine[m] → citrulline[m] + H[m] + ornithine[c] 0 0 - -

aspartate[c] + ATP[c] + citrulline[c] → AMP[c] + argininosuccinate[c] + Ppi[c] 0,458288739 0,658095376 - -

argininosuccinate[c] ↔ arginine[c] + fumarate[c] 0,458288739 0,658095376 - -

arginine[c] + H2O[c] → urea[c] + ornithine[c] 0 0 - -

ornithine[s] → ornithine[c] - - 427,5801385 0

ornithine[c] → CO2[c] + putrescine[c] 0 268,8685564 427,5801385 0

putrescine[c] → putrescine[s] 0 268,8685564 427,5801385 0

urea[c] → urea[s] 0 0 - -

arginine[c] + glycine[c] ↔ ornithine[c] + guanidinoacetate[c] 0 0 - -

H2O[c] + arginine[c] → NH3[c] + citrulline[c] 0 - - -

ornithine[m] + AKG[m] ↔ glutamate[m] + Lglu5semialdehyde[m] 7,81908002052499e-19 1,56381600410500e-18 - -

H[m] + NADH[m] + glutamate[m] ↔ H2O[m] + Lglu5semialdehyde[m] + NAD[m] 8,898905416 109,9703993 - -

Lglu5semialdehyde[m] ↔ Lglu5semialdehyde[c] 8,898905416 - - -

Lglu5semialdehyde[c] ↔ 1-Pyrroline5carboxylate[c] + H2O[c] 8,898905416 12,77868734 12,78710247 11,30333545

1-Pyrroline5carboxylate[c] + H[c] + NADH[c] → proline[c] + NAD[c] 0 12,77868734 0 0

1-Pyrroline5carboxylate[c] + H[c] + NADPH[c] → proline[c] + NADP[c] 8,898905416 - 12,78710247 11,30333545

glutamate[c] + 4-methyl-2-oxopentanoate[c] ↔ AKG[c] + leucine[c] 5,505053751 7,905170061 7,910375843 6,99248574

glutamate[c] + 2-oxo-3-methylvalerate[c] ↔ AKG[c] + isoleucine[c] 1,834552176 2,634387891 2,636122711 2,330236999

aspartate[c] + ATP[c] + glutamine[c] + H2O[c] → AMP[c] + asparagine[c] + glutamate[c] + Ppi[c] 5,96334249 - - -

asparagine[c] + H2O[c] → aspartate[c] + NH3[c] 0 - - -

glutamate[c] + phenylpyruvate[c] ↔ AKG[c] + phenylalanine[c] 4,587079052 - - -

O2[c] + phenylalanine[c] + tetrahydrobiopterin[c] → H2O[c] + tyrosine[c] + dihydrobiopterin[c] 2,752526876 - - -

glutamate[c] + mercaptopyruvate[c] ↔ AKG[c] + cysteine[c] 0,596613693 0,856727821 0,857292001 0,757815079

4-methylthio-2-oxobutanoic-acid[c] + 2 H[c] + glutamine[c] → glutamate[c] + methionine[c] 0,917974699 - - -

glutamate[c] + 4-methylthio-2-oxobutanoic-acid[c] → AKG[c] + methionine[c] 0 1,31819714 1,31906521 1,166005871

3-phospho-D-glycerate[c] + NAD[c] ↔ 3-phosphonooxypyruvate[c] + H[c] + NADH[c] 93,08570838 133,669604 133,7576293 156,9156394

3-phosphonooxypyruvate[c] + glutamate[c] ↔ AKG[c] + 3-phosphoserine[c] 93,08570838 133,669604 133,7576293 156,9156394

H2O[c] + 3-phosphoserine[c] → Pi[c] + serine[c] 93,08570838 133,669604 133,7576293 156,9156394

serine[c] + THF[c] ↔ 5,10-methylene-THF[c] + glycine[c] + H2O[c] 74,73739217 107,3217123 107,3923868 133,6097199

serine[c] → pyruvate[c] + NH3[c] 0 0 0 0

glutamine[c] + pyruvate[c] → 2-oxoglutaramate[c] + alanine[c] 58,71125853 84,30843807 84,3639576 74,57468294

2-oxoglutaramate[c] + H2O[c] → AKG[c] + NH3[c] 58,71125853 84,30843807 84,3639576 -

Continued on next page
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serine[c] → serine[m] 0 - - 0

glycine[m] ↔ glycine[c] 0 - - 0

THF[m] + serine[m] ↔ 5,10-methylene-THF[m] + H2O[m] + glycine[m] 0 0 4,74044086878493e-29 0

folate[s] → folate[c] -2,00198482106296e-14 - - -

folate[c] → folate[m] 0 7,44536339118936e-29 -2,33573474355777e-29 0

formate[m] → formate[c] 0 - 0 -

H[m] + NADPH[m] + folate[m] → NADP[m] + dihydrofolate[m] 0 7,52324185198316e-29 -2,33573474355777e-29 0

H[m] + NADPH[m] + dihydrofolate[m] ↔ NADP[m] + THF[m] 0 7,25199159220308e-29 -2,33573474355777e-29 0

ATP[m] + THF[m] + formate[m] ↔ 10-formyl-THF[m] + ADP[m] + Pi[m] 0 - -6,32058782504658e-29 -

10-formyl-THF[m] + H[m] ↔ 5,10-methenyl-THF[m] + H2O[m] 0 -7,20428107894788e-29 -6,03749898051165e-29 0

5,10-methenyl-THF[m] + NADH[m] ↔ 5,10-methylene-THF[m] + NAD[m] -141,5818786 -7,44536339118936e-29 -4,74044086878493e-29 0

5,10-methenyl-THF[m] + NADPH[m] ↔ 5,10-methylene-THF[m] + NADP[m] 141,5818786 - - -

H[c] + NADH[c] + folate[c] ↔ NAD[c] + dihydrofolate[c] -2,00198482106296e-14 -2,77847254161773e-14 -2,76720364574264e-14 7,87217655715256e-15

H[c] + NADPH[c] + folate[c] ↔ NADP[c] + dihydrofolate[c] 0 0 0 0

H[c] + NADH[c] + dihydrofolate[c] ↔ NAD[c] + THF[c] 0 0 0 0

H[c] + NADPH[c] + dihydrofolate[c] ↔ NADP[c] + THF[c] 1,12476352 1,615142614 1,616206232 1,428667772

ATP[c] + THF[c] + formate[c] ↔ 10-formyl-THF[c] + ADP[c] + Pi[c] 5,246567725 7,533988218 7,538949566 -39,75245891

10-formyl-THF[c] + H2O[c] + NADP[c] → CO2[c] + H[c] + NADPH[c] + THF[c] 66,99398915 96,20230815 96,26566013 -

10-formyl-THF[c] + H[c] ↔ 5,10-methenyl-THF[c] + H2O[c] -73,61262865 -105,7065697 -105,7761805 -132,1810521

5,10-methenyl-THF[c] + NADPH[c] ↔ 5,10-methylene-THF[c] + NADP[c] -1997,936164 -387,9434655 -490,9736465 -529,6594979

5,10-methenyl-THF[c] + NADH[c] ↔ 5,10-methylene-THF[c] + NAD[c] 1924,323535 282,2368958 385,197466 397,4784458

acetoacetyl-CoA[c] + CoA[c] ↔ 2 acetyl-CoA[c] -31,47940635 -45,20392931 -45,2336974 -39,98495018

acetoacetyl-CoA[c] + acetyl-CoA[c] + H2O[c] → CoA[c] + HMG-CoA[c] 31,47940635 45,20392931 45,2336974 39,98495018

2 H[c] + HMG-CoA[c] + 2 NADPH[c] → 2 NADP[c] + CoA[c] + R-mevalonate[c] 31,47940635 45,20392931 45,2336974 39,98495018

R-mevalonate[c] + ATP[c] → ADP[c] + R-5-phosphomevalonate[c] 31,47940635 45,20392931 45,2336974 39,98495018

R-5-diphosphomevalonate[c] + ADP[c] ↔ ATP[c] + R-5-phosphomevalonate[c] -31,47940635 -45,20392931 -45,2336974 -39,98495018

isopentenyl-pPP → dimethylallyl-PP[c] 10,49313545 15,06797644 15,07789913 13,32831673

R-5-diphosphomevalonate[c] + ATP[c] → ADP[c] + CO2[c] + isopentenyl-pPP[c] + Pi[c] 31,47940635 45,20392931 45,2336974 39,98495018

dimethylallyl-PP[c] + isopentenyl-pPP[c] → geranyl-PP[c] + Ppi[c] 10,49313545 15,06797644 15,07789913 13,32831673

geranyl-PP[c] + isopentenyl-pPP[c] → farnesyl-PP[c] + Ppi[c] 10,49313545 15,06797644 15,07789913 13,32831673

2 farnesyl-PP[c] ↔ Ppi[c] + presqualene-PP[c] 5,246567725 7,533988218 7,538949566 6,664158364

H[c] + NADPH[c] + presqualene-PP[c] → NADP[c] + Ppi[c] + squalene[c] 5,246567725 7,533988218 7,538949566 6,664158364

H[c] + NADPH[c] + O2[c] + squalene[c] → H2O[c] + NADP[c] + squalene-2,3-oxide[c] 5,246567725 7,533988218 7,538949566 6,664158364

squalene-2,3-oxide[c] → lanosterol[c] 5,246567725 7,533988218 7,538949566 6,664158364

H[c] + NADPH[c] + lanosterol[c] + O2[c] →
4,4-dimethyl-14alpha-hydroxymethyl-5alpha-cholesta-8,24-dien-3beta-ol[c] + H2O[c] + NADP[c]

5,246567725 7,533988218 7,538949566 6,664158364

H[c] + NADPH[c] + 4,4-dimethyl-14alpha-hydroxymethyl-5alpha-cholesta-8,24-dien-3beta-ol[c] + O2[c] →
4,4-dimethyl-14alpha-formyl-5alpha-cholesta-8,24-dien-3beta-ol[c] + 2 H2O[c] + NADP[c]

5,246567725 7,533988218 7,538949566 6,664158364

H[c] + NADPH[c] + 4,4-dimethyl-14alpha-formyl-5alpha-cholesta-8,24-dien-3beta-ol[c] + O2[c] →
4,4-dimethyl-5alpha-cholesta-8,14,24-trien-3beta-ol[c] + H2O[c] + NADP[c] + formate[c]

5,246567725 7,533988218 7,538949566 6,664158364

4,4-dimethyl-5alpha-cholesta-8,14,24-trien-3beta-ol[c] + H[c] + NADPH[c] →
14-demethyllanosterol[c] + NADP[c]

5,246567725 7,533988218 7,538949566 6,664158364

14-demethyllanosterol[c] + H[c] + NADPH[c] + O2[c] →
4-alpha-hydroxymethyl-4beta-methyl-5alpha-cholesta-8,24-dien-3beta-ol[c] + H2O[c] + NADP[c]

5,246567725 7,533988218 7,538949566 6,664158364

Continued on next page
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4-alpha-hydroxymethyl-4beta-methyl-5alpha-cholesta-8,24-dien-3beta-ol[c] + H[c] + NADPH[c] + O2[c]

→ 4-alpha-formyl-4beta-methyl-5alpha-cholesta-8,24-dien-3beta-ol[c] + 2 H2O[c] + NADP[c]
5,246567725 7,533988218 7,538949566 6,664158364

4-alpha-formyl-4beta-methyl-5alpha-cholesta-8,24-dien-3beta-ol[c] + H[c] + NADPH[c] + O2[c] →
4-alpha-carboxy-4beta-methyl-5alpha-cholesta-8,24-dien-3beta-ol[c] + H2O[c] + NADP[c]

5,246567725 7,533988218 7,538949566 6,664158364

4-alpha-carboxy-4beta-methyl-5alpha-cholesta-8,24-dien-3beta-ol[c] + NAD[c]

→ 3-keto-4-methylzymosterol[c] + CO2[c] + H[c] + NADH[c]
0 0 0 0

4-alpha-carboxy-4beta-methyl-5alpha-cholesta-8,24-dien-3beta-ol[c] + NADP[c]

→ 3-keto-4-methylzymosterol[c] + CO2[c] + H[c] + NADPH[c]
5,246567725 7,533988218 7,538949566 6,664158364

3-keto-4-methylzymosterol[c] + 3 H[c] + NADP[c] → 4-alpha-methylzymosterol[c] + NADPH[c] 5,246567725 7,533988218 7,538949566 6,664158364

4-alpha-methylzymosterol[c] + H[c] + NADPH[c] + O2[c] →
4-alpha-hydroxymethyl-5alpha-cholesta-8,24-dien-3beta-ol[c] + H2O[c] + NADP[c]

5,246567725 7,533988218 7,538949566 6,664158364

4-alpha-hydroxymethyl-5alpha-cholesta-8,24-dien-3beta-ol[c] + H[c] + NADPH[c] + O2[c] →
4-alpha-formyl-5alpha-cholesta-8,24-dien-3beta-ol[c] + 2 H2O[c] + NADP[c]

5,246567725 7,533988218 7,538949566 6,664158364

4-alpha-formyl-5alpha-cholesta-8,24-dien-3beta-ol[c] + H[c] + NADPH[c] + O2[c] →
4-alpha-carboxy-5alpha-cholesta-8,24-dien-3beta-ol[c] + H2O[c] + NADP[c]

5,246567725 7,533988218 7,538949566 6,664158364

4-alpha-carboxy-5alpha-cholesta-8,24-dien-3beta-ol[c] + NADP[c] →
5-alpha-cholesta-8,24-dien-3-one[c] + CO2[c] + H[c] + NADPH[c]

5,246567725 7,533988218 7,538949566 6,664158364

5-alpha-cholesta-8,24-dien-3-one[c] + H[c] + NADPH[c] → NADP[c] + zymosterol[c] 5,246567725 7,533988218 7,538949566 6,664158364

zymosterol[c] → 5-alpha-cholesta-7,24-dien-3beta-ol[c] 5,246567725 7,533988218 7,538949566 6,664158364

5-alpha-cholesta-7,24-dien-3beta-ol[c] + H[c] + NADPH[c] + O2[c] →
7-dehydrodesmosterol[c] + 2 H2O[c] + NADP[c]

5,246567725 7,533988218 7,538949566 6,664158364

7-dehydrodesmosterol[c] + H[c] + NADPH[c] → desmosterol[c] + NADP[c] 5,246567725 7,533988218 7,538949566 6,664158364

desmosterol[c] + H[c] + NADPH[c] → cholesterol[c] + NADP[c] 5,246567725 7,533988218 7,538949566 6,664158364

ATP[c] + acetyl-CoA[c] + HCO3-[c] + H[c] → ADP[c] + Pi[c] + malonyl-CoA[c] 39,1222094 56,17887353 56,21586894 49,69279206

acetyl-CoA[c] + ACP[c] → acetyl-ACP[c] + CoA[c] 5,588887057 8,025553362 8,03083842 7,098970294

malonyl-CoA[c] + ACP[c] → malonyl-ACP[c] + CoA[c] 39,1222094 56,17887353 56,21586894 49,69279206

acetyl-ACP[c] + malonyl-ACP[c] → ACP[c] + acetoacetyl-ACP[c] + CoA[c] 5,588887057 8,025553362 8,03083842 7,098970294

acetoacetyl-ACP[c] + NADPH[c] + H[c] → NADP[c] + R-3-hydroxybutanoyl-ACP[c] 5,588887057 8,025553362 8,03083842 7,098970294

R-3-hydroxybutanoyl-ACP[c] → but-2-enoyl-ACP[c] + H2O[c] 5,588887057 8,025553362 8,03083842 7,098970294

but-2-enoyl-ACP[c] + H[c] + NADPH[c] → NADP[c] + butyryl-ACP[c] 5,588887057 8,025553362 8,03083842 7,098970294

butyryl-ACP[c] + malonyl-ACP[c] → ACP[c] + 3-oxohexanoyl-ACP[c] + CO2[c] 5,588887057 8,025553362 8,03083842 7,098970294

3-oxohexanoyl-ACP[c] + H[c] + NADPH[c] → NADP[c] + D-3-hydroxyhexanoyl-ACP[c] 5,588887057 8,025553362 8,03083842 7,098970294

D-3-hydroxyhexanoyl-ACP[c] → 2E-hexenoyl-ACP[c] + H2O[c] 5,588887057 8,025553362 8,03083842 7,098970294

2E-hexenoyl-ACP[c] + H[c] + NADPH[c] → hexanoyl-ACP[c] + NADP[c] 5,588887057 8,025553362 8,03083842 7,098970294

hexanoyl-ACP[c] + malonyl-ACP[c] → ACP[c] + 3-oxooctanoyl-ACP[c] + CO2[c] 5,588887057 8,025553362 8,03083842 7,098970294

3-oxooctanoyl-ACP[c] + H[c] + NADPH[c] → R-3-hydroxyoctanoyl-ACP[c] + NADP[c] 5,588887057 8,025553362 8,03083842 7,098970294

R-3-hydroxyoctanoyl-ACP[c] → 2E-octenoyl-ACP[c] + H2O[c] 5,588887057 8,025553362 8,03083842 7,098970294

2E-octenoyl-ACP[c] + H[c] + NADPH[c] → NADP[c] + octanoyl-ACP[c] 5,588887057 8,025553362 8,03083842 7,098970294

malonyl-ACP[c] + octanoyl-ACP[c] → ACP[c] + 3-oxodecanoyl-ACP[c] + CO2[c] 5,588887057 8,025553362 8,03083842 7,098970294

3-oxodecanoyl-ACP[c] + H[c] + NADPH[c] → NADP[c] + R-3-hydroxydecanoyl-ACP[c] 5,588887057 8,025553362 8,03083842 7,098970294

R-3-hydroxydecanoyl-ACP[c] → 2E-decenoyl-ACP[c] + H2O[c] 5,588887057 8,025553362 8,03083842 7,098970294

2E-decenoyl-ACP[c] + H[c] + NADPH[c] → NADP[c] + decanoyl-ACP[c] 5,588887057 8,025553362 8,03083842 7,098970294

decanoyl-ACP[c] + malonyl-ACP[c] → ACP[c] + 3-oxododecanoyl-ACP[c] + CO2[c] 5,588887057 8,025553362 8,03083842 7,098970294

Continued on next page
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Reactions HMR model Liver Cancer model Breast Cancer model Lung Cancer model

3-oxododecanoyl-ACP[c] + H[c] + NADPH[c] → NADP[c] + D-3-hydroxydodecanoyl-ACP[c] 5,588887057 8,025553362 8,03083842 7,098970294

D-3-hydroxydodecanoyl-ACP[c] → 2E-dodecenoyl-ACP[c] + H2O[c] 5,588887057 8,025553362 8,03083842 7,098970294

2E-dodecenoyl-ACP[c] + H[c] + NADPH[c] → NADP[c] + dodecanoyl-ACP[c] 5,588887057 8,025553362 8,03083842 7,098970294

dodecanoyl-ACP[c] + malonyl-ACP[c] → ACP[c] + 3-oxotetradecanoyl-ACP[c] + CO2[c] 5,588887057 8,025553362 8,03083842 7,098970294

3-oxotetradecanoyl-ACP[c] + H[c] + NADPH[c] → NADP[c] + HMA[c] 5,588887057 8,025553362 8,03083842 7,098970294

HMA[c] → 2E-tetradecenoyl-ACP[c] + H2O[c] 5,588887057 8,025553362 8,03083842 7,098970294

2E-tetradecenoyl-ACP[c] + NADPH[c] + H[c] → NADP[c] + tetradecanoyl-ACP[c] 5,588887057 8,025553362 8,03083842 7,098970294

tetradecanoyl-ACP[c] + malonyl-ACP[c] → ACP[c] + 3-oxohexadecanoyl-ACP[c] + CO2[c] 5,588887057 8,025553362 8,03083842 7,098970294

3-oxohexadecanoyl-ACP[c] + H[c] + NADPH[c] → NADP[c] + R-3-hydroxypalmitoyl-ACP[c] 5,588887057 8,025553362 8,03083842 7,098970294

R-3-hydroxypalmitoyl-ACP[c] → 2E-hexadecenoyl-ACP[c] + H2O[c] 5,588887057 8,025553362 8,03083842 7,098970294

2E-hexadecenoyl-ACP[c] + H[c] + NADPH[c] → hexadecanoyl-ACP[c] + NADP[c] 5,588887057 8,025553362 8,03083842 7,098970294

H2O[c] + hexadecanoyl-ACP[c] → ACP[c] + palmitate[c] 5,588887057 8,025553362 8,03083842 7,098970294

biomass synthesis’ 139,7221764 200,638834 200,7709605 177,4742574

Ex glucose[s]’ -88,50025942 -367,3906121 -346,9188093 -599,797916

Ex O2[s]’ -1000 -208,9136882 -239,1682909 -516,4350036

Ex folate[s]’ 2,00198482106296e-14 - -

Ex D-lactate[s]’ 0 0 0 0

Ex L-lactate[s]’ 0 223,7461825 152,7124929 871,6275454

Ex urea[s]’ 0 0 - -

Ex biomass[s]’ 139,7221764 - - -

Ex cancer-biomass[s]’ - 200,638834 200,7709605 177,4742574

Ex glutamate[s]’ 0 - - -

Ex riboflavin[s]’ 0 0 5,55383232728890e-29 -2,83222534537321e-29

Ex H2O[s]’ 310,0952067 -195,2657261 -295,7387908 -6,472486166

Ex H[s]’ -22,8222203 -30,13595287 -30,15579827 -26,65663346

Ex glutamine[s]’ -706,0189519 -1000 -1000 -1000

Ex NH3[s]’ 562,979771 707,2877507 817,7963379 687,0063997

Ex putrescine[s]’ 0 268,8685564 427,5801385 0

Ex ornithine[s]’ - - -427,5801385 0

Ex ornithine[c]’ -0,458288739 -269,5266517 - -

Ex guanidinoacetate[c]’ 0 0 - -

Ex mercaptopyruvate[c]’ -0,596613693 -0,856727821 -0,857292001 -0,757815079

Ex phenylpyruvate[c]’ -4,587079052 - - -

Ex dihydrobiopterin[c]’ 2,752526876 - - -

Ex tetrahydrobiopterin[c]’ -2,752526876 - - -

Ex 4-methylthio-2-oxobutanoic-acid[c]’ -0,917974699 -1,31819714 -1,31906521 -1,166005871

Ex 4-methyl-2-oxopentanoate[c]’ -5,505053751 -7,905170061 -7,910375843 -6,99248574

Ex 2-oxo-3-methylvalerate[c]’ -1,834552176 -2,634387891 -2,636122711 -2,330236999

Ex citrate[c]’ 11,33146851 0 99,68594789 93,39937742

Ex CoA[m]’ 5,588887057 - - -

Ex CO2[c]’ 917,5541354 - - -

Ex ADP[c]’ 11,95602664 17,16866503 17,17997109 131,2226911

Ex ATP[c]’ -13,5390789 -19,44190302 -19,45470607 -94,55473484

Continued on next page
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Reactions HMR model Liver Cancer model Breast Cancer model Lung Cancer model

Ex folate[c]’ - 2,77847254161772e-14 2,76720364574265e-14 -7,87217655715256e-15

Ex formate[c]’ - 0 - 46,41661727

Ex glutamate[c]’ - 0 0 0

Ex AKG[c]’ - 386,7644439 426,4710334 159,6558419

Ex Lglu5semialdehyde[c]’ - -12,77868734 -12,78710247 -11,30333545

Ex Lglu5semialdehyde[m]’ - 109,9703993 - -

Ex CoA[c]’ - 8,025553362 8,03083842 7,098970294

Ex serine[m]’ - 0 -4,74044086878493e-29

Ex glycine[m]’ - 0 4,74044086878493e-29

Ex 10-formyl-THF[m]’ - 7,20428107894788e-29 - -

Ex 2-oxoglutaramate[c]’ - - - 74,57468294

Table A.1: Flux distributions in reference and tumoral CMs.



Appendix B

Metabolites concentrations from

the YMDB database

The table hereafter shown, illustrates the value of metabolic concentrations retrieved

from the Yeast Metabolome Database (YMDB) [228]. In detail, the first column reports

the name of the metabolite, while the second column indicates the interval of concen-

trations in a given medium (column 3) and with an associated oxigen condition (column

4). Lastly, column 5 indicates the literature reference of the retrieved data using the

PubMed unique identifier.
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Metabolite Interval Medium Oxigen condition Reference

Acetate 25775 ± 1289 µM YEB media with 0.5 mM glucose aerobic Experimentally Determined

18500 ± 16500 µM Synthetic medium with 1% glucose and 0.1% yeast extract aerobic PMID: 16623706

Acetyl-CoA[c] Not Available

Acetyl-CoA[m] Not Available

Acetaldehyde 50 ± 50 µM Synthetic medium with 1% glucose and 0.1% yeast extract aerobic PMID: 16623706 Link out

ADP 420 ± 110 µM

20 ml 2% (wt/vol) glucose, 0.5% (wt/vol) ammonium sulfate,

0.17% (wt/vol) yeast nitrogen base without

amino acids (Difco, Detroit, MI) and

100 mM potassium phthalate at pH 5.0, supplemented with

required nutrients (40 mg/L uracil, 40 mg/L Ltryptophan, 60

aerobic PMID: 11135551

1400 ± 800 µM
Minimal medium supplemented

with ammonia salts and glucose
aerobic and anaerobic;resting cells PMID: 4578278

950 ± 350 µM
Minimal medium supplemented

with ammonia salts and (glucose or galactose)
aerobic;growing cells PMID: 4578278

320 ± 20 µM Synthetic medium with 2% glucose aerobic;growing cells PMID: 6229402

530 ± 100 µM Synthetic medium with 2% glucose aerobic;resting cells PMID: 6229402

530 ± 140 µM Synthetic medium with 2% glucose anaerobic;resting cells PMID: 6229402

1100 ± 300 µM Synthetic medium with 2% galactose aerobic;resting cells PMID: 6229402

Alphaketoglutarate[in] 410 ± 195 µM Synthetic medium with 20 g/L glucose aerobic PMID: 12584756

Alphaketoglutarate[out] 5500 ± 500 µM Minimal medium supplemented with ammonia salts and glucose aerobic;resting cells PMID: 4578278

1300 ± 0 µM Minimal medium supplemented with ammonia salts and glucose anaerobic;resting cells PMID: 4578278

10 ± 0 µM Minimal medium supplemented with ammonia salts and galactose aerobic;growing cells PMID: 4578278

2500 ± 2300 µM Minimal medium supplemented with ammonia salts and glucose aerobic;growing cells PMID: 4578278

5000 ± 200 µM Synthetic medium with 2% glucose aerobic;growing cells PMID: 6229402

210 ± 10 µM Synthetic medium with 2% glucose aerobic;resting cells PMID: 6229402

1500 ± 400 µM Synthetic medium with 2% glucose anaerobic;resting cells PMID: 6229402

3700 ± 700 µM Synthetic medium with 2% galactose aerobic;resting cells PMID: 6229402

ATP 2800 ± 320 µM

20 ml 2% (wt/vol) glucose, 0.5% (wt/vol) ammonium sulfate,

0.17% (wt/vol) yeast nitrogen base

without amino acids (Difco, Detroit, MI)

and 100 mM potassium phthalate at pH 5.0,

supplemented with required nutrients (40 mg/L uracil,

40 mg/L Ltryptophan, 60

aerobic PMID: 11135551

2650 ± 1750 µM Minimal medium supplemented with ammonia salts and glucose aerobic and anaerobic;resting cells PMID: 4578278

1250 ± 150 µM Minimal medium supplemented with ammonia salts and (glucose or galactose) aerobic;growing cells PMID: 4578278

1900 ± 100 µM Synthetic medium with 2% glucose aerobic;growing cells PMID: 6229402

1800 ± 100 µM Synthetic medium with 2% glucose aerobic;resting cells PMID: 6229402

1600 ± 300 µM Synthetic medium with 2% glucose anaerobic;resting cells PMID: 6229402

1500 ± 200 µM Synthetic medium with 2% galactose aerobic;resting cells PMID: 6229402

Citrate 2400 ± 100 µM Minimal medium supplemented with ammonia salts aerobic;resting cells PMID: 4578278

13500 ± 9500 µM
Minimal medium supplemented

with ammonia salts and glucose
aerobic and anaerobic;resting cells PMID: 4578278

Continued on next page
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Metabolite Interval Medium Oxigen condition Reference

700 ± 0 µM
Minimal medium supplemented with

ammonia salts and (glucose or galactose)
aerobic;growing cells PMID: 4578278

5200 ± 500 µM Synthetic medium with 2% glucose aerobic;growing cells PMID: 6229402

210 ± 10 µM Synthetic medium with 2% glucose aerobic;resting cells PMID: 6229402

1500 ± 400 µM Synthetic medium with 2% glucose anaerobic;resting cells PMID: 6229402

3700 ± 700 µM Synthetic medium with 2% galactose aerobic;resting cells PMID: 6229402

Ethanol[in] 325823 ± 68594 µM YEPD media 200g/L glucose anaerobic;30C;12h PMID: 3513699

583052 ± 120040 µM YEPD media 200g/L glucose anaerobic;30C;24h PMID: 3513699

1406185 ± 291526 µM YEPD media 200g/L glucose anaerobic;30C;48h PMID: 3513699

1825 ± 91 µM YEB media with 0.5 mM glucose aerobic Experimentally Determined

Ethanol[out] 868282 ± 8000 µM hops, malted barley anaerobic PMID: 16448171

291526 ± 17149 µM YEPD media 200g/L glucose anaerobic;30C;12h PMID: 3513699

943173 ± 17149 µM YEPD media 200g/L glucose anaerobic;30C;24h PMID: 3513699

1920643 ± 171486 µM YEPD media 200g/L glucose anaerobic;30C;48h PMID: 3513699

1500 ± 1000 µM Synthetic medium with 1% glucose and 0.1% yeast extract aerobic PMID: 16623706

Fructose 1,6-bp 90 ± 70 µM Minimal medium supplemented with ammonia salts aerobic;resting cells PMID: 4578278

3800 ± 3200 µM Minimal medium supplemented with ammonia salts and glucose aerobic and anaerobic;resting cells PMID: 4578278

50 ± 0 µM Minimal medium supplemented with ammonia salts and ethanol aerobic;growing cells PMID: 4578278

3500 ± 1000 µM Minimal medium supplemented with ammonia salts and (glucose or galactose) aerobic;growing cells PMID: 4578278

1700 ± 10 µM Synthetic medium with 2% glucose aerobic;growing cells PMID: 6229402

410 ± 70 µM Synthetic medium with 2% glucose aerobic;resting cells PMID: 6229402

530 ± 130 µM Synthetic medium with 2% glucose anaerobic;resting cells PMID: 6229402

2700 ± 600 µM Synthetic medium with 2% galactose aerobic;resting cells PMID: 6229402

FAD Not Available

FADH2 Not Available

Fatty Acid 16:1 Not Available

Fatty Acid 16:0 Not Available

Fatty Acid 18:1 Not Available

Fatty Acid 18:0 Not Available

Fatty Acid 14:0 Not Available

Fatty Acids total Not Available

Fumarate Not Available

Glucose-6P 2050 ± 110 µM

20 ml 2% (wt/vol) glucose, 0.5% (wt/vol) ammonium sulfate,

0.17% (wt/vol) yeast nitrogen base

without amino acids (Difco, Detroit, MI)

and 100 mM potassium phthalate at pH 5.0,

supplemented with required nutrients

(40 mg/L uracil, 40 mg/L Ltryptophan, 60

aerobic PMID: 11135551

2300 ± 200 µM Synthetic medium with 2% glucose aerobic;growing cells PMID: 6229402

560 ± 80 µM Synthetic medium with 2% glucose aerobic;resting cells PMID: 6229402

340 ± 130 µM Synthetic medium with 2% glucose anaerobic;resting cells PMID: 6229402

1360 ± 600 µM Synthetic medium with 2% galactose aerobic;resting cells PMID: 6229402

Glucose[in] 1500 ± 100 µM 1% wt/vol glucose 2%wt vol yeast nitrogen base aerobic PMID: 9457857

Continued on next page
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2122 ± 106 µM YEB media with 0.5 mM glucose aerobic Experimentally Determined

1500 ± 500 µM Synthetic medium with 1% glucose and 0.1% yeast extract aerobic PMID: 16623706

Glucose[out] Not Available

Glyoxylate Not Available

H2O 60.4 (±0.2) % Bionumbers 1

Isocitrate Not Available

Malate 2515 ± 126 µM YEB media with 0.5 mM glucose aerobic Experimentally Determined

dCTP 18 ± 0 µM YEPD medium aerobic PMID: 14573610

dATP 44 ± 0 µM YEPD medium aerobic PMID: 14573610

dGTP 15 ± 0 µM YEPD medium aerobic PMID: 14573610

dTTP 70 ± 0 µM YEPD medium aerobic PMID: 14573610

NAD 950 ± 150 µM
Minimal medium supplemented with

ammonia salts and glucose
aerobic and anaerobic;resting cells PMID: 4578278

1300 ± 300 µM
Minimal medium supplemented with

ammonia salts and (glucose or galactose)
aerobic;growing cells PMID: 4578278

NADH 70 ± 0 µM Minimal medium supplemented with ammonia salts aerobic;resting cells PMID: 4578278

250 ± 0 µM Minimal medium supplemented with ammonia salts and glucose aerobic;resting cells PMID: 4578278

500 ± 0 µM Minimal medium supplemented with ammonia salts and glucose anaerobic;resting cells PMID: 4578278

1025 ± 775 µM Minimal medium supplemented with ammonia salts and (glucose or galactose) aerobic;growing cells PMID: 4578278

NADP 325 ± 305 µM Minimal medium supplemented with ammonia salts and glucose aerobic;resting cells PMID: 4578278

85 ± 65 µM Minimal medium supplemented with ammonia salts and (glucose or galactose) aerobic;growing cells PMID: 4578278

NADPH 100 ± 0 µM Minimal medium supplemented with ammonia salts and glucose aerobic;resting cells PMID: 4578278

100 ± 50 µM Minimal medium supplemented with ammonia salts and (glucose or galactose) aerobic;growing cells PMID: 4578278

O2[in] Not Available

O2[out] Not Available

Oxaloacetate 25 ± 25 µM Minimal medium supplemented with ammonia salts and (glucose or galactose) aerobic;growing cells PMID: 4578278

Phosphoenolpyruvate 15 ± 15 µM Synthetic medium with 2% glucose aerobic;growing cells PMID: 6229402

Pyruvate 3390 ± 540 µM

20 ml 2% (wt/vol) glucose, 0.5% (wt/vol) ammonium sulfate,

0.17% (wt/vol) yeast nitrogen base

without amino acids (Difco, Detroit, MI)

and 100 mM potassium phthalate at pH 5.0,

supplemented with required nutrients (40 mg/L uracil,

40 mg/L Ltryptophan, 60

aerobic PMID: 11135551

3380 ± 169 µM YEB media with 0.5 mM glucose aerobic Experimentally Determined

130 ± 0 µM Minimal medium supplemented with ammonia salts aerobic;resting cells PMID: 4578278

140 ± 80 µM Minimal medium supplemented with ammonia salts and glucose aerobic and anaerobic;resting cells PMID: 4578278

5250 ± 4750 µM Minimal medium supplemented with ammonia salts and (glucose or galactose) aerobic;growing cells PMID: 4578278

1600 ± 10 µM Synthetic medium with 2% glucose aerobic;growing cells PMID: 6229402

440 ± 40 µM Synthetic medium with 2% glucose aerobic;resting cells PMID: 6229402

340 ± 110 µM Synthetic medium with 2% glucose anaerobic;resting cells PMID: 6229402

1300 ± 300 µM Synthetic medium with 2% galactose aerobic;resting cells PMID: 6229402

Continued on next page
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Ribose-5P Not Available

Succinate 600 ± 30 µM YEB media with 0.5 mM glucose aerobic Experimentally Determined

Succynil-CoA Not Available

TrioseP DHAP 330 ± 10 µM Synthetic medium with 2% glucose aerobic;growing cells PMID: 6229402

120 ± 10 µM Synthetic medium with 2% glucose aerobic;resting cells PMID: 6229402

460 ± 70 µM Synthetic medium with 2% galactose aerobic;resting cells PMID: 6229402

TrioseP Gly3P 46 ± 4 µM Synthetic medium with 2% glucose aerobic;resting cells PMID: 6229402

100 ± 13 µM Synthetic medium with 2% galactose aerobic;resting cells PMID: 6229402

Table B.1: Metabolites concentrations from the YMDB database.
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Å. Sivertsson, C. Kampf, E. Sjöstedt, A. Asplund, et al., “Tissue-based map of

the human proteome,” Science, vol. 347, no. 6220, p. 1260419, 2015.

[170] R. J. DeBerardinis, A. Mancuso, E. Daikhin, I. Nissim, M. Yudkoff, S. Wehrli,

and C. B. Thompson, “Beyond aerobic glycolysis: transformed cells can engage

in glutamine metabolism that exceeds the requirement for protein and nucleotide

synthesis,” PNAS, vol. 104, no. 49, pp. 19345–50, 2007.



Bibliography 142

[171] D. Hanahan and R. A. Weinberg, “Hallmarks of cancer: the next generation,”

Cell, vol. 144, no. 5, pp. 646–74, 2011.

[172] J. W. Locasale and L. C. Cantley, “Altered metabolism in cancer,” BMC Biol,

vol. 8, p. 88, 2010.

[173] M. G. Vander Heiden, L. C. Cantley, and C. B. Thompson, “Understanding the

Warburg effect: the metabolic requirements of cell proliferation,” Science, vol. 324,

no. 5930, pp. 1029–33, 2009.

[174] R. J. DeBerardinis, J. J. Lum, G. Hatzivassiliou, and C. B. Thompson, “The

biology of cancer: metabolic reprogramming fuels cell growth and proliferation,”

Cell Metab, vol. 7, no. 1, pp. 11–20, 2008.

[175] J. Hooda, D. Cadinu, M. M. Alam, A. Shah, T. M. Cao, L. A. Sullivan, R. Brekken,

and L. Zhang, “Enhanced heme function and mitochondrial respiration promote

the progression of lung cancer cells,” PLoS One, vol. 8, no. 5, p. e63402, 2013.

[176] R. H. De Deken, “The Crabtree effect: a regulatory system in yeast,” J Gen

Microb, vol. 44, no. 2, pp. 149–156, 1966.

[177] J. P. Barford and R. J. Hall, “An examination of the Crabtree Effect in Saccha-

romyces cerevisiae: the role of respiratory adaptation,” J Gen Microb, vol. 114,

1979.

[178] H. Van Urk, W. Voll, W. Scheffers, and J. Van Dijken, “Transient-state analysis of

metabolic fluxes in crabtree-positive and crabtree-negative yeasts,” Appl Environ

Microb, vol. 56, no. 1, pp. 281–287, 1990.

[179] D. Porro, L. Brambilla, and L. Alberghina, “Glucose metabolism and cell size in

continuous cultures of Saccharomyces cerevisiae,” FEMS microbiol lett, vol. 229,

no. 2, pp. 165–171, 2003.

[180] M. Papini, I. Nookaew, M. Uhlén, and J. Nielsen, “Scheffersomyces stipitis: a

comparative systems biology study with the Crabtree positive yeast Saccharomyces

cerevisiae,” Microb Cell Fact, vol. 11, p. 136, Jan. 2012.

[181] M. Mitchell, An Introduction to Genetic Algorithms. The MIT Press, 1996.

[182] S. C. Johnson, “Hierarchical clustering schemes,” Psychometrika, vol. 2, pp. 241–

254, 1967.

[183] A. Hagman, T. Säll, C. Compagno, and J. Piskur, “Yeast “make-accumulate-

consume” life strategy evolved as a multi-step process that predates the whole

genome duplication,” PloS One, vol. 8, no. 7, p. e68734, 2013.



Bibliography 143

[184] S. Supudomchok, N. Chaiyaratana, and C. Phalakomkule, “Co-operative co-

evolutionary approach for flux balance in Bacillus subtilis,” in Evolutionary Com-

putation, 2008. CEC 2008. (IEEE World Congress on Computational Intelli-

gence). IEEE Congress on, pp. 1226–1231, 2008.

[185] D. Segre, A. DeLuna, G. M. Church, and R. Kishony, “Modular epistasis in yeast

metabolism,” Nat Genet, vol. 37, no. 1, pp. 77–83, 2005.

[186] L. Alberghina, D. Gaglio, R. M. Moresco, M. C. Gilardi, C. Messa, and M. Vanoni,

“A systems biology road map for the discovery of drugs targeting cancer cell

metabolism,” Curr Pharm Design, 2013.

[187] M. Chiu, L. Ottaviani, M. G. Bianchi, R. Franchi-Gazzola, and O. Bussolati,

“Towards a metabolic therapy of cancer?,” Acta bio-medica: Atenei Parmensis,

vol. 83, no. 3, pp. 168–176, 2012.

[188] T. Soga, “Cancer metabolism: key players in metabolic reprogramming,” Cancer

Sci, vol. 104, no. 3, pp. 275–281, 2013.

[189] H. Kitano, K. Oda, T. Kimura, Y. Matsuoka, M. Csete, J. Doyle, and M. Mura-

matsu, “Metabolic syndrome and robustness tradeoffs,” Diabetes, vol. 53, no. suppl

3, pp. S6–S15, 2004.

[190] I. A. Razinkov, B. L. Baumgartner, M. R. Bennett, L. S. Tsimring, and J. Hasty,

“Measuring competitive fitness in dynamic environments,” J Phys Chem B,

vol. 117, no. 42, pp. 13175–13181, 2013.

[191] A.-L. Barabási and Z. N. Oltvai, “Network biology: understanding the cell’s func-

tional organization,” Nat Rev Genet, vol. 5, no. 2, pp. 101–13, 2004.

[192] “Network science book project,

http://barabasilab.neu.edu/networksciencebook/.”

[193] M. Suderman and M. Hallett, “Tools for visually exploring biological networks,”

Bioinformatics, vol. 23, no. 20, pp. 2651–2659, 2007.

[194] G. A. Pavlopoulos, A.-L. Wegener, and R. Schneider, “A survey of visualization

tools for biological network analysis,” BioData Min, vol. 1, no. 1, p. 12, 2008.

[195] G. Michal, “Biochemical pathways (poster),” Boehringer Mannheim, Penzberg,

1993.

[196] N. Gehlenborg, S. I. O’Donoghue, N. S. Baliga, A. Goesmann, M. A. Hibbs, H. Ki-

tano, O. Kohlbacher, H. Neuweger, R. Schneider, D. Tenenbaum, et al., “Visu-

alization of omics data for systems biology,” Nat methods, vol. 7, pp. S56–S68,

2010.



Bibliography 144

[197] A. Kostromins and E. Stalidzans, “Paint4Net: COBRA Toolbox extension for

visualization of stoichiometric models of metabolism,” Biosystems, vol. 109, no. 2,

pp. 233–239, 2012.

[198] M. Hucka et al, “The systems biology markup language (SBML): a medium for rep-

resentation and exchange of biochemical network models,” Bioinformatics, vol. 19,

no. 4, pp. 524–531, 2003.

[199] M. S. Cline, M. Smoot, E. Cerami, A. Kuchinsky, N. Landys, C. Workman,

R. Christmas, I. Avila-Campilo, M. Creech, B. Gross, K. Hanspers, R. Isserlin,

R. Kelley, S. Killcoyne, S. Lotia, S. Maere, J. Morris, K. Ono, V. Pavlovic, A. R.

Pico, A. Vailaya, P.-L. Wang, A. Adler, B. R. Conklin, L. Hood, M. Kuiper,

C. Sander, I. Schmulevich, B. Schwikowski, G. J. Warner, T. Ideker, and G. D.

Bader, “Integration of biological networks and gene expression data using Cy-

toscape,” Nat Protoc, vol. 2, no. 10, pp. 2366–82, 2007.

[200] “Tutorial Cytoscape,

http://wiki.cytoscape.org/cytoscape user manual/visual styles.”

[201] A. P. Burgard, E. V. Nikolaev, C. H. Schilling, and C. D. Maranas, “Flux coupling

analysis of genome-scale metabolic network reconstructions,” Genome Res, vol. 14,

no. 2, pp. 301–312, 2004.

[202] A. Samal, S. Singh, V. Giri, S. Krishna, N. Raghuram, and S. Jain, “Low de-

gree metabolites explain essential reactions and enhance modularity in biological

networks,” BMC bioinformatics, vol. 7, no. 1, p. 118, 2006.

[203] S. Singh, A. Samal, V. Giri, S. Krishna, N. Raghuram, and S. Jain, “Flux-based

classification of reactions reveals a functional bow-tie organization of complex

metabolic networks,” Phys Rev E, vol. 87, no. 5, p. 052708, 2013.

[204] M. B. Elowitz, A. J. Levine, E. D. Siggia, and P. S. Swain, “Stochastic gene

expression in a single cell,” Science, vol. 297, pp. 1183–1186, Aug 2002.

[205] M. A. Savageau, “Biochemical systems theory: operational differences among vari-

ant representations and their significance,” J Theor Biol, vol. 151, no. 4, pp. 509–

530, 1991.

[206] A.-M. Wazwaz, Partial Differential Equations. CRC Press, 2002.

[207] D. McQuairre, “Stochastic approach to chemical kinetics,” J Applied Probability,

vol. 4, pp. 413–478, 1967.

[208] D. Gillespie, “A rigorous derivation of the chemical master equation,” Physica A,

vol. 188, pp. 404–425, 1992.



Bibliography 145

[209] D. Gillespie, Markov Processes: An Introduction for Physical Scientists. Academic

Press, 1991.

[210] D. Gillespie, “A general method for numerically simulating the stochastic time

evolution of coupled chemical reactions,” J Comp Phys, vol. 22, pp. 403–434,

1976.

[211] D. Gillespie, “Approximate accelerated stochastic simulation of chemically react-

ing systems,” J Chem Phys, vol. 115, pp. 1716–1733, 2001.

[212] J. Pahle, “Biochemical simulations: stochastic, approximate stochastic and hybrid

approaches,” Brief Bioinform, vol. 10, no. 1, pp. 53–64, 2009.

[213] A. Alfonsi, E. Cancès, G. Turinici, B. Di Ventura, and W. Huisinga, “Adaptive

simulation of hybrid stochastic and deterministic models for biochemical systems,”

in ESAIM: Proc, vol. 4, pp. 1–13, 2005.

[214] O. Resendis-Antonio, “Filling kinetic gaps: dynamic modeling of metabolism

where detailed kinetic information is lacking,” PLoS One, vol. 4, no. 3, p. e4967,

2009.

[215] K. Smallbone, E. Simeonidis, N. Swainston, and P. Mendes, “Towards a genome-

scale kinetic model of cellular metabolism,” BMC Syst Biol, vol. 4, p. 6, Jan.

2010.

[216] V. Hatzimanikatis and J. E. Bailey, “Effects of spatiotemporal variations on

metabolic control: approximate analysis using (log) linear kinetic models,”

Biotechnol Bioeng, vol. 54, no. 2, pp. 91–104, 1997.

[217] C. G. Moles, P. Mendes, and J. R. Banga, “Parameter estimation in biochemical

pathways: a comparison of global optimization methods,” Genome Res, vol. 13,

pp. 2467–2474, 2003.

[218] J. R. Banga, “Optimization in computational systems biology,” BMC Syst Biol,

vol. 2, no. 1, p. 47, 2008.

[219] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by Simulated An-

nealing,” Science, vol. 220, no. 4598, pp. 671–680, 1983.
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