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Introduction
To exploit the ever-increasing amount of biological data 
available, efficient mathematical and computational models 
are becoming essential instruments for both theoretical and 
experimental biologists.1,2 Multicellular systems, such as tis-
sues and organs, can be now qualitatively and quantitatively 
investigated via a large number of efficient modeling frame-
works, which usually develop into useful simulation and anal-
ysis tools.3

Multiscale modeling approaches have proven reli-
able in representing complex biological phenomena at dif-
ferent abstraction levels, allowing one to capture processes 
with separate spatiotemporal scales, their hierarchies, and 
their communication rules.4,5 In the case of tissues and 
organs, these include intracellular processes such as gene 
regulation, and intercellular processes such as molecular  

signaling via pathways and microenvironment interactions. 
Phenomena such as tissue patterning, cellular migration, 
homeostasis, and clonal dynamics emerge from this inter-
play that, when disrupted, can lead to tumorigenesis and  
cancer development.6,7

In this context, an effective and comprehensive multi-
scale modeling framework is that provided by Chaste (Cancer, 
Heart and Soft Tissue Environment8,9), a general-purpose 
simulation tool aimed at the representation and the analysis of 
complex phenomena and processes in biology and physiology. 
Chaste divides into two main application areas: 1) cardiac 
Chaste, for continuum modeling of cardiac electrophysiology, 
and 2) cell-based Chaste, for individual-based modeling of 
cell populations. In particular, cell-based Chaste provides the 
modeler with multiple approaches to account for the spatial 
features of a system (via, eg, on- and off-lattice representations 
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of the geometry) and allows him or her to define deterministic 
force laws between cells or stochastic update rules for cell–cell 
interactions, cell killer objects (eg, for apoptosis), cell-cycle 
models, and cell mutation states. In general, cell-based Chaste 
provides a computational framework bridging across spatial 
and temporal scales within a single modeling tool, thus allow-
ing the user to define and run multiscale simulations (for a 
recent and exhaustive review on multiscale modeling frame-
works for the simulation and analysis of multicellular systems, 
see Ref. 3).

In this paper, we introduce CoGNaC (Chaste and Gene 
Networks for Cancer), a Chaste plugin for the multiscale 
modeling of multicellular systems where gene regulatory 
interactions are accounted for explicitly. This tool links the 
dynamics of gene regulatory networks to key properties of 
cell cycle and differentiation processes, to drive the spatial 
evolution of multicellular systems in cell-based Chaste. The 
possibility of modeling multicellular systems in cell-based 
Chaste makes it possible to use CoGNaC in various spatial-
modeling scenarios.10 We stress that the plugin is not tai-
lored toward a specific tissue or organ, but it is meant to be 
completely generic. In this first version, CoGNaC adopts the 
approach of noisy random Boolean networks (NRBNs)11–13 
to model gene regulatory networks (GRNs). Other model-
ing approaches have been used to describe GRNs, reproduce 
experimental data, and provide novel predictions. These 
are often ascribed to the broad categories of deterministic, 
stochastic, or hybrid approaches, according to their quan-
titative representation of the network (see Refs 15,16 and  
references therein).

Grounded in statistical physics and complex systems 
science, NRBNs are an abstract model of gene regulation 
relating cell differentiation to the robustness of cells against 
biological noise and specif ic perturbations.13 This well-
known approach focuses on the emergence of dynamical 
behavior by combining a Boolean representation of genes’ 
activity with a simplif ied form of regulatory interaction, 
the rationale being that no static analysis can capture the 
overall complexity gene regulation processes. When com-
pared to other approaches (eg, deterministic or stochastic 
ones, for a review see Ref. 14), the Boolean abstraction 
allows for an effective and unambiguous characterization 
of the gene activation patterns that characterize distinct 
cellular (pheno)types. A key goal is to investigate the 
generic properties of GRNs, ie, those properties shared 
by a broad range of distinct networks, by means of mas-
sive statistical ensemble analyses of networks under cer-
tain biological constraints. (Even though the approach 
clearly relies on several abstractions, it was repeatedly 
proved fruitful to investigate key emergent properties of 
real networks.17–22  Also, the simulation of the dynamics 
of completely characterized regulatory architectures and 
circuits with a Boolean representation is recently gaining 
great attention).23–25

Therefore, on one hand, CoGNaC can be effective for 
computational and experimental biologists to analyze dynam-
ical emergent properties of GRNs when their regulatory 
interactions are known, eg, available from public databases, 
hence allowing one to uncover relations and phenomena 
that a simple static analysis would probably fail to detect. 
On the other hand, by generating and simulating ensembles 
of networks sharing structural and functional parameters, 
CoGNaC allows one to investigate the generic properties 
of still partially characterized GRNs, possibly providing an 
ensemble-level understanding of experimental phenomena. 
A detailed description of the GRN model is provided in the 
next section.

Moreover, thanks to the fine integration with Chaste, 
CoGNaC delivers a comprehensive multiscale modeling and 
simulation framework in which the GRN dynamics drives 
key properties of the cell cycle, cell growth, and the differ-
entiation fate of cells, thus linking the emergent properties 
of the GRN to the morphological dynamics of the tissue. 
Therefore, the use of CoGNaC with Chaste offers a power-
ful tool to model multicellular systems, possibly allowing the 
formulation of novel hypotheses on gene regulation and cel-
lular differentiation. Furthermore, and more importantly, the 
explicit representation of GRNs might allow the qualitative 
and quantitative assessment of the role of genomic alterations, 
eg, somatic mutations, in the emergence of tumors, at both the 
network and tissue levels.

The remainder of this paper is structured as follows. In the 
next section, the GRN model based on NRBNs is described, 
and subsequently the spatial modeling framework provided by 
Chaste is introduced. In section “The multiscale link,” the link 
connecting the emergent dynamical properties of the GRNs 
to the physical properties of the model at the tissue level is 
explained. In the next section, the main features of CoGNaC 
are described. Then, two example applications of CoGNaC 
are discussed, one concerning the analysis of the gene activa-
tion patterns of human T-helper cells and the other regarding 
the simulation of a simplified model of cancer development in 
a multicellular structure resembling an intestinal crypt. We 
finally summarize the conclusions and indications on further 
works, and finally give in the Appendix some details concern-
ing the implementation of CoGNaC.

Noisy Random Boolean Network Models of Gene 
Regulatory Networks 
Classic random Boolean networks (RBNs) were introduced by 
Kauffman to represent regulatory networks.26,27  An RBN is 
graph with n Boolean nodes associated with Boolean variables σi 
∈ {0, 1}, representing the activation of a gene: if σi = 1, then the 
ith gene synthesizes its product (ie, proteins or RNAs). Each node 
is connected to ki # n – 1 input nodes implementing the regula-
tory function, ie, those genes that influence the activation of the 
ith gene. Thus, the value of the node σi at time t + 1 is determined 
according to a Boolean function fi of the input nodes at time t.
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The deterministic evolution of the system consists of a par-
allel update of all nodes, at any discrete time step, and moves 
over configurations of the values in all nodes (ie, states). Since 
classic RBNs are synchronous and deterministic, any dynami-
cal trajectory will necessarily end up in a limit cycle, which 
is a finite, ordered sequence of configurations that endlessly 
repeat in time; this will be termed attractor, as in the jargon 
of dynamical systems (Fig. 1B). The biological interpretation 
is that all the cells of an organism share the same genome, 
yet each cellular function, eg, phenotype, is characterized by 
a specific dynamical gene activation pattern, in which some 
genes are always highly expressed (eg, housekeeping genes), 
others always inactive or oscillating with some particular 
scheme. Accordingly, in our approach all the cells share the 
same GRN, ie, the NRBN, whereas the attractors represent 
the distinct gene activation patterns.

Along the lines of Ref. 13, noise-resistance mechanisms 
of RBNs – and hence of GRNs – can be related to cellular 
differentiation processes yielding Noisy RBNs (NRBNs). By 
randomly changing node values in an attractor state (ie, single-
node “flips”, such as switching a gene “off” or “on”) and recom-
puting the network dynamics, noise-induced transitions among 
the attractors can be detected (Fig. 1B). When this process is 
repeated in a systematic way, a stability matrix, also called the 

attractor transition network (ATN), determines how robust a 
gene activation pattern is to biological “noise” (the more fre-
quently the network dynamics jumps to another attractor, the 
more unstable the attractor is) (Fig. 1C). On top of this com-
plex machinery, since noise-control mechanisms are known to 
be related to the degree of differentiation,28–32 NRBNs define 
a dynamical model of cell differentiation.

Consider an NRBN attractor Ai (ie, a limit cycle of the 
network dynamics standing for a specific gene activation pat-
tern): another attractor Aj is “δ-reachable” from Ai if at least a 
fraction δ of different single-node flips (in any state of Ai) leads 
the dynamics to switch from Ai to Aj. A set of attractors such 
that 1) all the attractors in the set are mutually δ-reachable 
and 2) no attractors in the set are δ-reachable from any attrac-
tor not belonging to the set is defined as a threshold ergodic 
set (TES). The above conditions are equivalent to selection of 
strongly connected components, restricted to δ-reachability.13

By picking increasingly higher thresholds for δ, a hierar-
chical structure of such sets emerges from the original ATN 
(at δ = 0), and this allows us to characterize a specific degree 
of differentiation with a specific threshold. Thus, TESs rep-
resent cell types showing gene activation patterns varying as 
differentiation progresses. At δ = 0, one typically has a unique 
TES with many interconnected attractors, which represents 
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Figure 1. GRN model of cell differentiation in CoGNaC. Simplified representation of cell differentiation via NRBNs. (A) Example RBN with three genes 
(nodes) and edges subsuming regulatory interactions (via a Boolean function, not shown). (B) Example dynamics to highlight network’s attractors, which 
model gene activation patterns A1,…, A5, and possible transitions among them induced by noise (ie, single flips). (C) These transitions yield an attractor 
transition network that generates five cellular types when three thresholds, δi  , are evaluated and the corresponding threshold ergodic sets computed. In 
this model, where the efficiency of noise-control mechanisms are related to differentiation types, stem cells (pink), intermediate stages (light blue), and 
fully differentiated cells (yellow, purple and gray) emerge. The corresponding differentiation tree is shown (Fig. modified from Ref. 7).
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less differentiated cells (eg, toti- and multi-potent stem cells). 
For higher δ, TESs break into disjoint smaller components 
(ie. intermediate stages) until fully differentiated cells have 
TESs with a unique stable gene activation pattern. This hier-
archy among cell types identifies a specific differentiation tree, 
which emerges from the NRBN (Fig. 1C). This approach is 
general (ie, it is not related to a specific organism) and repro-
duces key phenomena of the differentiation processes, eg, hier-
archical, stochastic, and deterministic differentiation strategies 
and induced pluripotency.33

This is the model of cell differentiation implemented in 
CoGNaC, and represents the GRN component of the multi-
scale framework. Emergent properties of this model are fur-
ther linked to tissue-dynamics, as explained in a later section.

Representation of the Morphological Dynamics 
via Chaste
The wide range of modeling frameworks available within 
Chaste allow us to use the generic cell models provided by the 
CoGNaC plugin in a variety of cell-based settings. In particu-
lar, several distinct modeling approaches for the representa-
tion of the spatial dynamics of cell populations in tissues and 
organs are provided by the cell-based component of Chaste, 
namely 1) lattice-free models, such as center-based models, in 
which the connectivity is defined by Voronoi tessellations,34,35 
and vertex-based models,36 and 2) lattice-based models, such as  
the cellular Potts model (CPM)37 and other cellular automata  
(CA) models.38 In general, lattice-free approaches aim at mod-
eling the geometry and the physics of the system in a realistic 
way, yet, as they involve biomechanical forces and complex 
geometries, the space of parameters and variables can be dra-
matically large. Conversely, lattice-based models use simpli-
fied cellular automata-based representations of multicellular 
systems to describe cell displacement, movement, and interac-
tions. Clearly, the optimal tradeoff between the complexity of 
the model and that of the represented phenomena and pro-
cesses depends on the research focus.

In the following, we briefly outline the main features of the 
center-based Voronoi tesselation model, which is successively 
used in one of the two example applications. For a description 
of the other spatial models implemented in Chaste, see Ref. 9, 
whereas for an exhaustive comparison of the spatial modeling 
approaches for multicellular systems see Ref. 3.

Center-based spatial model. The center-based Voronoi 
tessellation model included in the Chaste cell-based compo-
nent is an off-lattice model, developed by Meineke et al.35 and 
subsequently used by van Leeuwen et al.39 as a model of intes-
tinal crypt dynamics. Each cell is connected to neighboring 
cells by linear springs, where the cell neighbor is determined 
by a Delaunay triangulation and the cell shape is determined 
by the dual of the triangulation, the Voronoi tessellation.

Specifically, inertial effects are neglected, and the viscous 
drag on cell centers is balanced with cell–cell interaction forces 
associated with the compression and extension of the springs 

connected to the neighboring cell centers. Accordingly, the 
equations of motion are
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where t is time, ri is the position of cell center i, n is the overall 
number of cells, Sij(t) and βij are the rest length and the elastic 
constant, respectively, of the spring connecting cell centers i 
and j, Si is the set of cells that are adjacent to cell i, µi is the 
drag coefficient, which depends on cell i ’s type and models the 
cell–stroma adhesion.

In the current implementation, when cell i divides after a 
full cell cycle (characterized by a specific duration), its daughter 
cell j is positioned at a distance of 0.1 cell diameters from cell i, 
in a randomly chosen direction. In order to model cell growth, 
the rest length of the spring connecting parent and daughter 
cell, Sij(t), increases from 0.1 to 1 (natural length) in a time span 
equal to ø (default = 1 hour) (for more details see Ref. 40).

The Multiscale Link 
Low-level properties emerging from the internal GRN can 
drive high-level physical properties of the model at the tissue 
level.7 This approach is independent from Chaste’s framework 
chosen for spatial representation of the tissue (center-based, 
vertex-based, CPM or CA).

Recall that all the cells share the same genome – thus the 
same GRN – yet every single cell is characterized by a spe-
cific degree of differentiation and a specific type as time pro-
gresses. From a modeling perspective, in CoGNaC, a unique 
NRBN is computed, and each cell is allowed to track – in its 
“internal” state – the gene activation pattern that is driving 
its dynamics, eventually jumping among attractors while dif-
ferentiating. Accordingly, emerging properties of the NRBN 
drive cell-type-specific cellular properties such as 1) cell cycle 
length and 2) differentiation fate at the spatial level (Fig. 2).

Cell cycle length. Recall that a cellular type is mapped 
to a TES, which is a collection of interconnected gene activa-
tion patterns, given a specific resistance to noise. It is natural 
to expect that some of those patterns will be prevalent, so cells 
of that type, before differentiating, will tend to express a sub-
set of such patterns. The ergodicity property of TESs makes 
it natural to think of such patterns as a particular type of sto-
chastic process that possess a stationary probability π – the 
probability of observing a specific pattern expressed, in the 
long run. (This is derived mathematically by interpreting an 
ATN as a discrete-time Markov chain and applying standard 
numerical techniques to estimate π.)

So, patterns with higher stationary probability would be 
more relevant. In general, one would like to link an emergent 
property such as the cell cycle length for a cell of type τ, to the 
“length” of such attractors proportionally weighted with their 
long-run probability.
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Putting this formally, if πτ(A) is the stationary probabil-
ity of attractor A in the TES modeling cell type τ, the length 
ℓτ of the cell cycle for a cell of that type is

	
τ τπ= ( )∑ A Ai i

Ai

• ,| | 	 (2)

where |Ai| is the pattern length (number of different configu-
rations it contains).

A conversion between the time-units of the GRN dynam-
ics (ie, the NRBN step, an abstract time unit) and that of the 
spatial model (hours, in Chaste) is then required. Following 
Ref. 7, we link the internal and external timescales as

	
1 NRBN step hours= Λ

τ
, 	 (3)

where τ  is the average of the cell cycle values predicted by 
Equation (2) and Λ is the analogous cell-cycle time at the 

spatial level (in hours). Hence, the relative difference in the 
lengths of the cell cycles of the cells of different types accounts 
for the difference in the replication paces, and emerges from 
the GRN model. Notice that this link can be set regard-
less the modeling approach chosen to represent a tissue  
in Chaste.

Differentiation fate. Following Ref. 13, it is possible 
to hypothesize that cells wander across gene activation 
patterns that are specific to their own cell type, accord-
ing to random genomic mutations that can be estimated 
from experimental data.41 In our theoretical framework, 
it is possible to (probabilistically) estimate in which pat-
tern (ie, attractor) the cell will be found when reaching the 
mitosis stage, on the basis of the distinct stationary prob-
abilities of the attractors belonging to a TES. Once chosen, 
the cell type of the daughter cells will be given by the TES 
(with successive increasing threshold) in which the selected 
attractor is included, thus describing the process of stochas-
tic differentiation (Fig. 2).

Center-based simulation of spatial dynamics in chaste with CoGNaC
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Main Features of CoGNaC
CoGNaC can generate and simulate a random NRBN model 
with some predefined structural features, or a specific hard-
coded network model may be specified.

Network modeling. Three distinct modes for the genera-
tion of NRBNs are available: 

Random generation. CoGNaC can create random networks 
with the following structural parameters: 1) number of nodes 
N; 2) average network connectivity K (average number of edges 
for each node); 3) network topology (either Erdos-Renyii,12 or 
Barabasi–Albert’s preferential attachment scale-free42); 4) prob-
ability p of associating a canalyzing function to a random node 
(whereas, 1 – p is the probability of associating a random Bool-
ean function).20 (The distribution of regulatory rules is likely to 
be structured and not completely random. A canalyzing func-
tion has at least one input such that if that input is set then the 
output value is fixed. In GRNs, this is analogous to saying that 
some genes are mainly regulated by one other gene.)

Custom structure, random regulatory interactions. An NRBN  
structure can be provided via a file in the Graph Modeling 
Language syntax (gml file); CoGNaC can then associate 
Boolean functions to the nodes, with the previously defined 
parameter p.

Custom structure and regulatory interactions. A complete 
description of a network and its Boolean regulatory interac-
tions can be passed to CoGNaC through standard network 
definition files, such as, eg, net and cnet files.43

Network simulation. CoGNaC can process any randomly 
generated or inputted network. The tool searches for the limit 
cycles (ie, the NRBN attractors, standing for gene activation 
patterns) by performing an exhaustive search (see the Appen-
dix for the algorithmic details). The number of configurations 
of each attractor will be successively used in the multiscale 
model, to define the cell cycle length of cell types at the spatial 
level (see section “The multiscale link”).

Afterward, the stability to noise of each attractor is 
tested, by performing one-time-step single-flip (ie, 1 → 0 or 
0 → 1) perturbations of random nodes in random positions 
in the attractors. The noise-induced probability of switching 
between attractors defines the ATN; an automatic algorithm 
for thresholds detection and TES estimation allows the extrac-
tion of a hierarchical differentiation tree. In turn, stationary 

probabilities are computed to complete the multiscale link (see 
section “Noisy Random Boolean Network Models of Gene 
Regulatory Networks”).

When CoGNaC is asked to generate a random network, 
the process can be iterated until a user-specified differentiation 
tree is matched by the generated network. This allows one to 
constrain the generation of GRN models so that the emergent 
differentiation patterns fits the provided biological data. Once 
a suitable NRBN is found, time-unit conversion concludes 
this phase. We refer to Table 1 for the definition of the main 
CoGNaC parameters.

Example Applications
The CoGNaC plugin may be used generically within Chaste 
across a variety of modeling scenarios. We here present two 
applications of CoGNaC: the first in which the gene activation 
patterns of a real GRN, specifically that of human T-helper 
cells, are determined and investigated, confirming current evi-
dence from experimental publications; the second regarding a 
simplified intestinal crypt-like multiscale model where, in cer-
tain cases, tumor cells emerge and start colonizing the tissue.

Gene activation patterns in T-helper cell differentiation. 
Dynamical modeling and simulation of real architectures of 
GRNs is increasingly gaining attention, mostly in conjunction 
with the characterization of gene activation patterns identify-
ing specific cellular functions, which are often not explainable 
with static analysis of genes and their interactions. Despite the 
underlying abstractions, Boolean modeling appears to be effec-
tive to this end and can be exploited with CoGNaC. In this 
example, the signaling network that drives the differentiation 
of T-helper (Th) cells – which is structurally and functionally 
characterized44 – was analyzed with CoGNaC (Fig. 3). Note 
that several studies showed that this network is sufficient to 
qualitatively describe the real differentiation process of Th cells, 
see, eg, Ref. 45.

In brief, the human immune system includes several cell 
populations, including antigen-presenting cells, natural killer 
cells, and B and T lymphocytes. T lymphocytes can be divided 
into Th cells and T-cytotoxic cells (Tc). Th cells participate in 
cell- and antibody-mediated immune responses by secreting 
various cytokines, and they are subdivided into different cell 
types depending on the set of cytokines that they secrete.46

Table 1. CoGNaC input parameters.

Module Parameter Description Type Range

RBN generation N
K
Topology
p

Number of nodes in the network
Average connectivity
Either scale free (0) or random (1)
Probability to generate a canalyzing function

Unit
Unit
Boolean
Double

.0
[1, N]
{0,1}
[0,1]

RBN from file File path Path to the network description
Path to the RBN description

String
String

.gml

.net/.cnet

Differentiation tree Λ Average duration (in hours) of the cell cycle 
of the different cell types at the spatial level.

Double .0
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In Figure  3 we show the three single-point attractors 
detected by CoGNaC on the Th network, as well as their sta-
bility in terms of ATN. It should be noted that these attractors 
indeed represent the gene activation patterns of the three main 
phenotypes characterizing the unperturbed T-helper network, 
namely, Th0, Th1, and Th2 cells. From experimental evidence 
(see, eg, Ref. 44), in fact, Th0  cells are supposed to produce 
none of the cytokines included in the model, ie, (IFN-β, IFN-
γ, IL-10, IL-12, IL-18, and IL-4). The gene activation pat-
tern representing Th1  cells, instead, is characterized by high 
activation of IFN-γ, IFN-γ R, T-bet, and SOCS1. Finally, in 
Th2 cells high level of activation of GATA-3, IL-10, IL-10R, 
IL-4, IL-4R, STAT3, and STAT6 are observed.

Besides, by simply assessing the patterns’ stability, it 
is possible to hypothesize that Th0 type is the less resistant 
to biological noise and specific perturbations (eg, triggering 
signals) and, thus, it might represent an unstable precursor 
stage in a differentiation path toward the more stable Th1 and 
Th2 types. This hypothesis is experimentally validated, as the 
Th cells’ differentiation process is supposed to proceed from 
precursors Th0 toward the effectors Th1 (secreting IFN-γ) 
and Th2 (secreting IL-4), which also appear to be more stable 
against perturbations.46

We remark that this example serves as a proof of concept 
to show the usefulness and accuracy of CoGNaC in assessing 
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Figure 3. T-helper signaling network analysis. (Upper left) The regulatory network that rules the differentiation process of Th cells. Positive regulatory 
interactions are shown with green arrows, and negative interactions with red ones.44 (Bottom) The three single-point attractors of the T-helper network 
detected by CoGNaC are shown. On the column header, the names of the genes are displayed, from Ref. 45. Each row corresponds to a specific attractor 
of the network, which is denoted by the corresponding cell type, namely Th0, Th1, and Th2. In the table, black cells represent inactive genes and white 
cells active genes. (Upper right) The stability of the gene activation patterns in terms of attractor transition network. Each edge stands for the probability 
of switching from a specific gene activation pattern (Th0, Th1, or Th2) to another, as a consequence of a random single-gene flip.

the gene activation patterns of real gene regulatory networks 
and their stability. A direct application to more complex 
networks and biological phenomena will be achievable once 
experimental data on real architectures and regulatory func-
tions becomes available, especially in regard with the investi-
gation of the so-called cancer attractors (see, eg, Refs 47,48).

Cancer cell colonization of a colon crypt. A simplified 
multiscale model of a multicellular system that structurally 
resembles an intestinal crypt was designed and simulated with 
CoGNaC and Chaste. The model combines a center-based 
2-D representation of cells at the spatial level, and an NRBN-
based underlying GRN, as described in section “Noisy ran-
dom Boolean network models of gene regulatory networks”.

In particular, a certain number of structurally analogous 
NRBNs have been generated with the following parameters: 
100 nodes, Alberts–Barabasi’s preferential attachment scale-
free topology, average connectivity K  =  3, and mixed Bool-
ean functions. These parameters were chosen, in accordance 
with similar studies,7,49 as the number of nodes is in agree-
ment with the number of estimated driver genes in colorectal 
cancer50 and the topology is supposed to be plausible for real 
GRNs.51,52 Among all the simulated networks, a specific one 
was then selected because of the properties of the emerging 
differentiation tree and of the attractor landscape (see Fig. 4 for 
details): the differentiation tree predicted by CoGNaC includes 
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four cell types: a stem-like cell type (TES with δ = 0) and three 
differentiated cell types (three distinct TESs at δ = 0.45). Note 
that one of these non-stem types is characterized by a very low 
stationary probability and a short cycle length, thus reasonably 
representing cancer cells – unlikely to emerge, but with very 
fast proliferation pace. This network was specifically selected to 
allow the investigation of the scenarios under which the GRN 
dynamics may lead to cancer cells colonizing a healthy crypt.

Predicted cell types have the following cell cycle lengths, 
in NRBN time steps:

stem cells (dark blue)	 lstem = 180
differentiated type 1 (grey)	 ldiff1 = 113
differentiated type 2 (light blue)	 ldiff2 = 29
cancer cells (red)	 lcancer = 4,

their stationary probabilities being π π πstem diff diff= 1 0 94, . ,1 2
 0 05 0 002. .and cancerπ .

The Chaste tissue is built by displaying 20 × 20 = 400 
hexagonal stem cells at time t = 0 on a 2-D rectangular space 
with left-hand, right-hand, and bottom closed boundaries (ie, 
cell centers cannot move through these boundaries), whereas 
the upper side is left open, allowing cells to be expelled due 
to mitotic pressure. The parameters of the spatial model were 
chosen in line with53 and, in general, the whole morphologi-
cal representation of the crypt is meant to be a simplified 
version of that proposed in Ref. 7, specifically aimed at the 
investigation of cancer emergence in multicellular systems. 
Cells grow and divide according to a cell cycle length that 
is specific for the cell type (see section “The multiscale link” 
and Fig. 2). Given that the average cell cycle length is fixed 
to Λ  =  16  hours, in accordance with experimental data on 
intestinal crypt cell types,54 and that τ = 63 5. , we obtain the 
following relation

1 NRBN step ≈ 0.25 hours

Network topology and functions

Attractor configuration

Attractor transition network Differentiation tree

Stem

0.94
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0.02 0.41
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Figure 4. GRN model in the example crypt simulation. (Upper left) The NRBN generated by CoGNaC has 100 genes, is scale-free, and each regulatory 
interaction depends, on average, from K = 3 other genes. Oriented edges represent regulation paths, the size of each node being proportional to its 
network degree and each color corresponding to the type of regulatory interaction (see the legend in the figure). (Upper right) Three different gene 
activation patterns are predicted (landscape of attractors where each node is a NRBN configuration). (Lower left) Noise-induced transition probabilities 
among attractors and their stationary probabilities. (Lower right) The emerging differentiation tree is displayed. The root of the tree is the TES including 
all attractors (resembling stem cells), and determines a cell cycle length as the average length of the three attractors, weighted by their stationary 
probabilities. The leaves of the tree correspond to two differentiated cell types plus a cancer type that is characterized by a short cell cycle length and a 
very low likelihood of occurrence. Visualizations were performed with the CABERNET tool.60
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yielding the following cell-cycle timings: 27.2 hours for stem 
cells, 28.5 and 7.3 for differentiated type 1 and 2 cells, and 
1  hour for cancer cells. In the initial configuration of the 
tissue, the age of stem cells is uniformly distributed in the 
interval [0: 27] hours. When stem cells asymmetrically divide 
(one daughter keeps the stem type), the differentiation fate 
is probabilistically chosen according to stationary probability 
of the differentiated TESs, whereas differentiated and can-
cer cells give origin to two daughter cells of the same type. 
Thus, we can expect a cancer cell to emerge – on average  

– after 500  stem cell divisions. In Figure  4 we summarize 
these findings.

One-hundred and forty independent stochastic simu-
lations of crypt dynamics were performed, starting from 
equivalent initial configurations and lasting 1000  minutes 
(simulation time). Three behaviors were typically observed:  
(i) tissue homeostasis, (ii) control of cancer expansion via 
mitotic pressure, and (iii) cancer colonization; examples of 
these scenarios are displayed in Figure 5, along with further 
statistical analyses.

Scenario 1- Homeostasis (sim ID: 1)

Scenario 2- Mitotic pressure control (sim ID: 81)

Scenario 3- cancer colonization (sim ID: 132)
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Figure 5. Crypt simulation scenarios: homeostasis, mitotic pressure, control and cancer colonization. (Top panels) Screenshots of the example multiscale 
simulations described in the text (further parameters of the spatial simulation are (a) spring stiffness, β = 3035; growth duration, ø = 0, ie, the time needed for 
the spring rest length of the newborn cells to increase up to the natural length; drag coefficient µ = 1 for any cell type). Three scenarios are shown.  
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In the upper panel of Figure  5, a typical homeostatic 
behavior is shown [Scenario (i)], in which the proportion of 
stem and differentiated cells tends toward a dynamical equi-
librium and no cancer cells originate, as quantified by the 
variation of cellular populations in time. Conversely, in some 
cases, a cancer cell emerges and begins to proliferate, as it 
happens after 60 minutes in the simulation displayed in the 
middle panel of Figure 5. When this happens, the likelihood 
of cancer colonization strongly depends on the overall spatial 
arrangement, being less likely when cancer cells are close to 
the upper (open) boundary of the crypt. In this particular sim-
ulation, for instance, the number of cancer cells remains quite 
stable due to mitotic pressure [Scenario (ii)]. Furthermore, as 
it is observed in a certain number of simulations (see below), it 
is reasonable to expect that such cancer cells will be eventually 
expelled from the crypt, leading to a complete tumor eradica-
tion. In other words, the rapid turnover of intestinal crypts 
might act as a defense mechanism ensuring, sometimes, the 
maintenance of homeostasis by mitotic pressure, as cancer 
cells are expelled despite their fast replication pace. In some 
other cases, however, the outcome of these dynamics might be 
the opposite, as cancer cells indeed colonize the tissue and an 
increasingly larger number of differentiated cells are expelled 
out of the crypt. In that case, the fast-replicating cancer colony 
would tend to cluster in a spheroid resembling the early stages 
of a colorectal adenoma, as shown in the bottom panel of  
Figure 5 [Scenario (iii)].

In Figure 6, we quantitatively assess these observations 
by plotting the average density of cancer cells over time. One 
can notice that in some simulations, such a density reaches 
around 90% (complete colonization of the tissue), whereas in 
other simulations, the colonization fails, either because no 

cancer cells emerge or because of the mitotic pressure con-
trol. Summarizing these findings, homeostasis with no cancer 
cells is observed in 102  simulations of 140 (ie, around 73%) 
[Scenario (i)]; in 38 simulations (27%) at least one cancer cell 
originates, and this leads to a colonization in 27 cases (19%) 
[Scenario (iii)]; whereas in 11 cases (8%) mitotic control pre-
vents the colonization [simulations in which less than 10 can-
cer cells are present were grouped in this category, Scenario 
(ii)]. We remark that the complete eradication of the tumor 
was observed in only three simulations of the latter cases. In 
the last panel of Figure 6, the probability distribution of can-
cer cell densities, computed in the simulations in which at least 
one cancer cell emerges, is shown (as a heatmap), highlighting 
the progressive appearance of very aggressive cancer colonies.

Notice that in Ref. 40  similar results are obtained in a 
center-based model of intestinal crypt (via Chaste), by mod-
ifying the drag coefficient µ (Equation  1) of a small set of 
mutant cells in an initially healthy crypt. The underlying 
rationale is that mutant cells showing an alteration of the Wnt 
pathway are characterized by a stronger cell–stroma adhesion 
(ie, increased drag) with respect to normal cells. Hence, given 
that mutant cells are more likely to persist in the crypt because 
of the greater resistance to the mitotic pressure, a coloniza-
tion of the crypt may follow. Conversely, in our approach µ in 
normal and cancer cells is identical, and the crypt colonization 
is mainly due to the difference in the replication paces, thus 
hinting at the complementary relevance of both these biologi-
cal phenomena in cancer development.

Conclusions and Future Work
The goal of this article was to introduce and describe CoGNaC,  
a Chaste plugin for the multiscale modeling and simulation of 
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multicellular systems, that uses a GRN-based dynamical model of 
cell differentiation, and to show some of its potential applications.

In the two selected examples, we showed some of the 
utilities of CoGNaC within the modular Chaste library. 
CoGNaC can provide a fine instrument to investigate the 
complex interplay characterizing the behavior of multicellu-
lar systems, with particular focus on the possible emergence 
of dysfunctional dynamical structures such as tumors. For 
instance, CoGNaC was used in a multiscale simulation of a 
simplified intestinal crypt to assess the influence of emergent 
gene activation patterns on the homeostasis of the tissue. 
Interestingly, in certain cases, the activation of particular, and 
usually, unlikely patterns, due to random gene perturbations, 
was observed to lead to the emergence of fast replicating 
clones that quickly colonized the tissue, yielding spheroid-
like structures resembling the first stages of colorectal ade-
nomas. CoGNaC was also applied to experimental data on 
real GRNs, allowing, for instance, the formulation of hypoth-
eses on the relation between genotype and phenotype and on 
the complex differentiation process of T-helper cells.

Many important refinements and developments of 
CoGNaC are under way, especially related to different GRN 
modeling approaches, which could be more suitable and effec-
tive when detailed quantitative data on real architectures will 
become available. To this end, for example, reliable and com-
prehensive models of tumor progression (see, eg, Ref. 55,56) 
could be sensibly integrated in the GRN model, in order to 
investigate the complex phenomenon of tumor origin and 
development with a multiscale framework.

Availability
Instructions on obtaining and using the code used in the paper 
are available at https://chaste.cs.ox.ac.uk/trac/wiki/Paper 
Tutorials/CoGNaC. Instructions for installing and build-
ing Chaste are available from the same location. The tutori-
als included in this package will reproduce both the example 
applications discussed in the paper.
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Appendix
Implementation details. Finding attractors in a RBN is 

a known NP-complete problem57 and, accordingly, the choice 
of a data structure to store and use Boolean functions with 
optimal efficiency is fundamental. To this end, an important 
data structure is the binary decision diagram (BDD)58; these 
represent a Boolean function in a very efficient way – drop-
ping exponential to linear complexity in many cases, accord-
ing to variable ordering. Finding the best variable ordering for 
a BDD is NP-hard, yet there are heuristics that can tackle the 
problem even if they can be computationally expensive.

In order to store NRBN functions and compute attrac-
tors efficiently, we use the ROBDD data structures – an 
ordered and compact BDD – combined with the algorithm 
proposed by Zheng et  al.59 It has been shown that in syn-
chronous Boolean networks there are three types of attractors: 

self loop, simple loop, and syn-complex loop. The Zheng et al 
algorithm, using this information and making use of iterative 
computing methods, exploits the recurrent nature of attrac-
tors and identifies all attractors without computing the entire 
state space.

Another computational problem is given by the random 
choice of the 22k k, ∈ { , ,  , N}0 1 …  functions associated to every 
node, avoiding the complete enumeration; in case of canalyz-
ing functions, we use nested canalyzing functions (NCFs), 
whereas the associated problem of representing purely random 
functions has been solved using functions, which represent 
the interaction of randomly selected activator and inhibitor 
genes, as in Ref. 45. Simulations were performed using cell-
based Chaste and CoGNaC. The visualization of the network 
properties is provided by CABERNET,60 whereas the spatial 
model is visualized via Paraview.61
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