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Abstract Patient monitoring is routinely performed in all

patients who receive neurocritical care. The combined use

of monitors, including the neurologic examination,

laboratory analysis, imaging studies, and physiological

parameters, is common in a platform called multi-modality

monitoring (MMM). However, the full potential of MMM

is only beginning to be realized since for the most part,

decision making historically has focused on individual

aspects of physiology in a largely threshold-based manner.

The use of MMM now is being facilitated by the evolution

of bio-informatics in critical care including developing

techniques to acquire, store, retrieve, and display integrated

data and new analytic techniques for optimal clinical de-

cision making. In this review, we will discuss the crucial

initial steps toward data and information management,

which in this emerging era of data-intensive science is al-

ready shifting concepts of care for acute brain injury and

has the potential to both reshape how we do research and

enhance cost-effective clinical care.
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Introduction

Prevention, detection, and management of secondary brain

injury (SBI) are fundamental to patient care in the neuro-

critical care unit (NCCU). Consequently, neurocritical care

depends in large part on careful and repeated assessment of

clinical and laboratory findings, imaging studies, and bed-

side physiological data. This information comes in many

forms e.g., written observation, ordinal data, images, point-

in-time numeric laboratory values, or continuous data that

also include waveforms. The NCCU therefore is a very data

intense environment. However, the ability to record and in-

terpret all this data often exceeds our ability to fully integrate

it into patient care. Furthermore, treatment decisions gen-

erally are made in a reactive univariate fashion when a single

threshold value is reached, e.g., treat a temperature

>38.5 �C or an ICP > 20 mmHg, in large part because the

human brain has difficulty judging the interaction between

more than six variables at any when time. By contrast a

physician may be faced with more than 200 variables when

making management decisions about the average critical

care patient. The interaction, rank order, trends over time,

and relationship of these variables are only now beginning to

be incorporated into patient care and given the complexity of
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the human brain and pathophysiology, likely are more im-

portant than a single variable alone.

An emerging concept in neurocritical care is use of

multi-modality monitoring (MMM) defined as the simul-

taneous collection of data from multiple diverse sources

associated with a single patient coupled with the ability to

view the data in an integrated and time synchronized

manner [1]. This concept is still in its infancy but rapidly

evolving in parallel with advances in clinical informatics.

Clinical- or bio-informatics deals with biomedical data,

information, and knowledge including their acquisition,

storage, retrieval, integration, display, analysis, and opti-

mal use for clinical decision making. This is a dynamic and

rapidly evolving field and with MMM is reshaping how we

think about and care for patients in the NCCU. In this

review, we will discuss the informatics infrastructure

necessary for clinical MMM and for translational research.

There are several interdependent components: (1) data

acquisition, synchronization, integration, and storage, in-

cluding data standardization of all relevant patient data into

a single, searchable database, or data repository; (2) data

display and visualization; (3) integrating multiple monitors

and clinical information into clinical practice and workflow

in a user-friendly and useful format; and (4) data pro-

cessing, analysis, and interpretation to extract clinically

relevant information from raw data and translate it into

actionable clinical information [2].

Data Acquisition and Standardization

Data collection and archiving is the critical first step toward

information management in the NCCU. In addition, to re-

alize the full potential of data collected for clinical care and

more importantly to drive research, it must be collected in a

consistent manner at multiple sites around the world. At

present, there are two basic approaches to acquire and store

high-resolution data: (1) kiosk-type portable cart-based

systems or (2) enterprise-level central (i.e., remote) servers

[3]. Kiosk systems can be moved from room to room and

tend to be easy to use by clinical staff for patient-specific

clinical analyses, i.e., one patient at a time. However, data

may not be stored in an open database format so limiting

research efforts. With remote or central servers, all data

from bedside monitors and devices are simultaneously

collected and stored on a central server that has large

computational and storage capacities. Such a system re-

quires information technology support staff and security

concerns can be a barrier to use. However, enterprise-level

central servers facilitate research.

There are a variety of questions about data acquisition

that still need to be answered. For example, what type of

data should be collected and at what frequency? There are

no specific guidelines for this but to be meaningful ac-

quired data need to be comprehensive, i.e., all of the

necessary data for a particular monitoring goal need to be

collected and at a frequency higher than the duration of the

events to be detected so as not to miss clinically significant

events. Hence data collection at the highest possible sam-

pling frequency is recommended but this depends on the

application and its intended use. For some applications,

data collected every 10 min are sufficient whereas for

others, including many sophisticated computational algo-

rithms, more frequent sampling may be required (e.g.,

every 5 s, every second, every millisecond). The data,

however, are meaningless unless also collected simulta-

neously, time synchronized, and displayed in an integrated

fashion. Data also need to be annotated so that nurse,

physicians, or researchers can search epochs of interest [4,

5]. How data are collected can have significant clinical and

research implications. For example, much of our under-

standing about intracranial pressure (ICP) is derived from

end-hour values recorded by a nurse. While manually

recorded end-hour values have a good relationship with

data recorded every 15 min [6] and reflect the computer-

ized end-hour and mean hour values reasonably accurately,

there can be significant differences between the manually

recorded and continuous data [7]. Furthermore, between 20

and 40 % of episodes (depending on their duration) of

elevated ICP (>20 mmHg) may be missed when recorded

manually and this error is more likely in unstable patients

with a fluctuating ICP. This can have significant clinical

and research implications [8] since the total dose of ICP [9]

and even brief episodes of elevated ICP can adversely af-

fect outcome [10].

Collection of continuous or near continuous data has a

cost; for example, the necessity to review and edit the data

so that artifact can be removed (data cleaning) and missing

data dealt with e.g., device disconnection. In addition, the

data from various sources need to be integrated and pre-

cisely time stamped. Once this is accomplished it then

needs to be complemented by relevant clinical observa-

tions, laboratory results, and imaging data. To facilitate

research, a modular approach may be envisaged with more

detailed data collected according to the research (Fig. 1).

This should include common terminologies, data models,

and annotation standards so that the same tools are used

and the same information collected across healthcare and

research centers that can be based on the NINDS Common

Data Elements (http://www.ninds.nih.gov/research/

clinical_research/toolkit/CDE_flyer_tbi.pdf). Several de-

vices that can integrate ICU data are available now e.g.,

ICM+, ICU Pilot, Bedmaster XA, Axon Systems Eclipse

Neurological Workstation, and the CNS Monitor. Col-

laborative projects such as BrainIt (Table 1) demonstrate

that the recording of many physiological variables across
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multiple patients and across multiple centers is feasible and

leads to new clinical insights and predictive tools [11–13].

Data Display and Visualization

The full potential of multimodal monitoring in the NCCU

is under-realized but often this is not an issue of device

design. A lot of sophisticated data are available but we tend

to interpret information by looking at snapshots of indi-

vidual aspects of physiology and react to it using

thresholds. While meaningful integration of multiple vari-

ables at the bedside is beyond normal cognitive ability,

some of this have to do with the time-pressured environ-

ment of critical care, an environment that is complex and

can be cognitively disruptive and detract from direct care.

Indeed, time motion studies show that very little time is

actually spent in direct patient care [14, 15]. Physical and

mundane reasons in the clinical environment, e.g., different

monitors are in different locations and only some are

visible from a central spot, contribute to this. In addition,

patient care is driven by ‘‘interruptions’’ e.g., a nurse has

two patients to look after or responses are driven by alarms

[16]. There are also a lot of data that come in different

forms e.g., text, ordinal, or image and from different

sources e.g., a person, paper, or a computer that can make it

a challenge to get information for one patient. Experienced

clinicians often can sift through and disregard information

to find meaning in data [17]. However, our ability to ac-

quire data has outstripped our ability to understand it [18]

which can contribute to ‘‘information overload’’ and pre-

ventable medical errors by providing too much data and not

enough actionable information. A solution to this is effi-

cient data display and visualization.

The goal of data visualization is to provide clinical de-

cision support that improves situational awareness about

the patient state. The way information is represented,

however, can influence problem solving and what conclu-

sions are drawn from the display [19]. In the NCCU,

patient records usually are presented as text but a text

display alone can increase the probability of error because

users must collect, maintain, and integrate all the data

mentally [20]. By contrast, graphical displays and inte-

grated patient summaries that display all the information on

a single screen can enhance speed and quality of clinical

decision making [21]. Graphical displays also can improve

recall and user satisfaction, whereas use of timeline dis-

plays helps find connections between events [22, 23].

There are several challenges to NCCU data display since

multivariate patient data need to be presented in a single

visual display. Furthermore, physiological data are dense

because of its volume and high dimensionality. Combining

too many elements in a single display can reduce critical

event detection [23] and where there are multiple data

streams computational algorithms can outperform clin-

icians [24]. Hence data visualization development needs to

follow an iterative, human-centered design methodology to

arrange information to support clinicians’ the cognitive

process but not aggravate clinical decision making [25].

Factors to consider in designing optimal data display and

visualization are listed in Table 2. These factors can drive

‘‘decision support’’. For example, a bedside alarm (online

analytic capability) is a ‘‘push’’ to the clinician. What is

required, however, is a ‘‘pull’’ or early warning system i.e.,

‘‘smart alarm.’’ This may come in different forms and if

effective can avoid alarm fatigue. First is a rule-based

approach to data display and analysis that provides best

practice and is based on hospital protocols and guidelines.

The second approach is based on clinician surveys and

provides expert opinion by combining a series of rules

additively or multiplicatively depending on survey con-

sensus. Finally there is an automatic (or unsupervised)

Fig. 1 Monitoring Common Data Elements. Taken from http://www.

commondataelements.ninds.nih.gov/ProjReview.aspx#tab=Introduction

Table 1 BrainIT goals

To develop and disseminate standards for collection, analysis, and reporting of ICU monitoring and management data collected from brain

injured patients

To develop and use a standardized database as a tool for hypothesis generation and development testing and validation of new data analysis

methodologies

To provide an efficient multi-center infrastructure for generating evidence on the utility on new invasive and non-invasive intensive care

monitoring and management methods
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approach that provides a data-driven approach using Bay-

nesian networks to integrate patient-specific information.

Connectivity and Integration

The biggest challenge to translational research in neuro-

critical care complexity science is capturing granular data

in a usable fashion from medical devices. In part, this is

influenced by the data sources that vary greatly in type,

e.g., baseline risk, periodic clinical data, laboratory find-

ings and biomarkers, neuroimaging, and continuous data,

and in frequency or regularity. In addition, device-associ-

ated factors including acquisition, time, and storage can

affect data display. Often digital output from a device is in

a proprietary or unique format and real-time data output is

not a universal feature. However, interoperability is a

marketable feature and standardization is likely to evolve.

Multi-modality monitoring (through clinical informat-

ics) by definition requires integration of multiple monitors

in a user-friendly format. There are three broad themes to

be considered: (1) connectivity, (2) consistency by adopt-

ing standards so that everyone can seamlessly collect

comprehensive patient data, and (3) creativity once there is

connectivity and consistency. Creativity comes in many

formats e.g., (1) an integrated clinical environment; (2)

automated, exportable protocols, and guidelines to guide

care; (3) the ICU as a learning environment (simulation);

and (4) automating data collection in clinical trials.

Connectivity

The computer industry has figured this out, but there are

still obstacles to connecting medical devices in the medical

device industry. There are several reasons for this: (1) vital

signs monitors use one manufacturer that tend to be geo-

graphic or institution based, (2) some monitors have data

outputs, many don’t or if they do they are many different

forms, (3) some devices have no real-time data output (e.g.,

pumps), (4) there are incomplete data (e.g., no units), (5)

incorrect use of communication standards, and (6) data are

sent out into an IT system made up of multiple vendors

among others. ‘‘Health IT and Patient Safety: Building

Safer Systems for Better Care’’ published by the National

Academies Press, in 2012 details the potential for errors in

Health IT associated with the lack of safety standards and

regulation. There is an evolving standard and regulatory

system that remains a moving target that the FDA is

looking at but to integrate multiple monitors several factors

need to be considered (Fig. 2). The goal is that any data

sent from a device get into the medical record (database)

correctly. The first task is to develop interfaces between the

various devices (plug and play). This will create multiple

signals that require time synchronization and validation

before storage and analysis (quality). Displays need to be

integrated, comprehensive and bedside friendly, and allow

for data review, event marking, provide point-of-care in-

struction and tutorials (embedded education). In turn, the

integrated data should further connect to a database such

that data from today’s patients can help manage tomorrows

patients (the Google approach). Several devices exist e.g.,

CNS Monitor ICU Pilot, ICM+ but currently each uses

their own proprietary technology, different file formats,

user interfaces, and types of data. Moving forward research

in the NCCU will need to standardize connectivity. This

will occur through collaboration between industry, federal

agencies, and neurointensivists.

Consistency

To realize the full potential of data collected in the NCCU,

standards need to be adopted so that everyone can seam-

lessly collect comprehensive patient data. The medical

device industry has not yet fully adapted standards but this

is evolving as MMM evolves. While most devices have

data output ports (analog, serial, USB, and Ethernet) for

data acquisition, there is no universally adopted standard

that facilitates multimodal data acquisition and integration

in a clinical setting; each one often uses its own commu-

nication protocol to transfer its data. Even simply linking-

specific device data with a specific patient can be difficult.

In addition, there currently is no adopted standard for

medical device time management and so time-synchro-

nizing data from multiple devices are challenging because

most devices maintain their own internal clocks and do not

support updating clock time from the network. Without a

‘‘master clock’’ ensuring that all the values and waveforms

acquired at the same time ‘‘line up’’ exactly in synch, in-

terpreting the information and understanding the inter-

relationships is difficult, if not impossible.

Table 2 Factors to consider in optimal data display and visualization

design

Integration of disparate types of data (e.g., devices and electronic

medical records)

Storage of granular data in high fidelity and high resolution

Customizable graphical user interface that can be modified in an

intuitive fashion

Accessible user interface to incentivize annotations

Ability to Refer to Time-Synced Annotations

Online analytic capability (locked for clinical safety)

Flexible middleware or a Universal platform

Guideline driven or Experimentally proven analyses

Connection to well-annotated representative database

Clinical context-aware decision support
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There are a variety of needed standards: (1) medical de-

vice communications, (2) naming of data and devices, (3)

time, (4) data characteristics e.g., quality and granularity,

and (5) plug-in protocol standards among others. ISO/IEEE

11073 is a standard for medical device data communica-

tions. There also are names for medical devices including

the Universal Medical Device Nomenclature SystemTM

(UMDNS) through the ECRI Institute (https://www.ecri.org)

and Unique Device Identifiers (UDI) through the FDA.

These various standards can be adopted but to move MMM

and clinical informatics forward requires device manufac-

turers to utilize data communication standards and allow

time synchronization of their devices. Standards also are

required on how much data are collected. This depends on

the intended use, i.e., the frequency of data needs to be

consistent with the application. For research, data mining,

and hypothesis generation, every effort should be made to

collect and store annotated data in a data warehouse,

preferably using a standard open format, for translational

research. In the NCCU, high-frequency data acquisition may

be necessary for more precise evaluation of SBI [4, 8].

Creativity

Connectivity and consistency, i.e., once we have consistent

data, are the key to unlocking creative uses of multimodal

patient data. In the ICU of the future, the patient will be at

the center of a vast computer system such that the patient

interfaces with ICU and hospital networks. Three factors

are needed. First is the association of all data sources and

their output with the ICU patient. Second is time syn-

chronization across all bedside devices to achieve a stable

electronic flow sheet and medical record. Third is ‘‘inter-

operability’’ among data sources, middleware, and the

medical record. This process aligns the proprietary medical

device data output with industry standards (www.ihe.net),

i.e., the middleware can recognize the data.

ICU care and research can be advanced through several

creative clinical informatics approaches and use of ICU

middleware. For example, multiparametric alarms or

alarms that capture alerts can convert them into actionable

information by transmitting them to specific personnel.

Similarly, intelligent alarm systems or data sniffers that

monitor ICU data and the EMR can identify patients at risk

and create personalized alarms. In research, data collection

in clinical trials can be automated or protocols can be

specifically adapted to the patient and the environment.

Clinical guidelines also can be adapted to the patient: when

the patient’s context is known a computer-driven guideline

manager can personalize the guideline. Furthermore, ‘‘re-

source links’’ can compensate for variations in the training

of personnel. Hence ‘‘generic’’ protocols can be exported

Fig. 2 Integrating multiple medical monitors: some of the things that need to be considered
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into specific hospital or research sites since the local inte-

grated informatics environment adapts the generic protocol

to the specific site or patient.

Data Analysis and Interpretation

The NCCU is a very data-intensive environment but

paradoxically despite all the data there is often no infor-

mation. There are several reasons for this. In particular,

physicians often need to integrate information in their

heads and few analytical tools are available at the bedside.

For example, many monitors display trends based on 3–5 s

time-averaged parametric data from the monitor (often next

to the waveforms) and for the most part analysis has been

limited to classic linear statistical methods (mean, median,

range, standard deviation). Even these have been difficult

to perform at the bedside in real time. In addition, it is

difficult for data to be indexed, searched, and assembled to

provide accurate information to treat patients, because the

original context of the data is lost.

The promise of clinical informatics lies in the potential

to use a wide array of advanced and novel analytical

techniques on high-resolution, multidimensional, multi-

modal physiological data to develop a better understanding

of the complex relationships among various physiological

parameters and so enhance the ability to predict future

events and improve outcome. The aviation industry has

achieved improved safety and efficiency by enhancing a

pilot’s situational awareness, i.e., taking all the available

information from the multitude of dials and instruments in

the cockpit to improve the pilots understanding of a air-

plane’s situation relative to its environment, a simple

actionable item. In the NCCU what is required is a systems

engineering approach with advanced analytical tools to

transform raw data into actionable information. Standard

biostatistical methods are not sufficient to elucidate the

important information we need in part because physio-

logical relationships are not linear. Physiology also has

high dimensionality. The dimension of a space or object is

informally defined as the minimum number of coordinates

needed to specify any point within it. As the number of

dimensions increases, the number of possible dimensions

increases factorially. For example, if examining a plot of

CPP versus PbtO2, there are many other metrics that in-

fluence this e.g., MAP and ICP, FiO2, cardiac output, and

Hgb to name a few. Processing also is limited conceptually

since clinicians in the ICU may be confronted with 200

related variables, yet human beings can only determine the

relationship between two variables unassisted, i.e., we

think in a univariate fashion in a multivariate world.

Conceptually, analysis has been restricted to linear and

univariate statistical models. Alarm limits are based on

arbitrary thresholds (often extremes of physiologic sys-

tems) without regard for dynamic interactions between

variables. Consequently, order sets have thresholds, so in

the absence of any understanding of what is happening we

are relegated to very simple interventions based on only the

most extreme limits of an organ system.

So where do we go? Simple indices may be calculated

using informatics to add information to patient assessment.

For example, calculating the area under the curve (AUC)

above a specific cut point e.g., temperature >38.5 �C or

ICP > 20 mmHg provides a more robust measure of

pathophysiologic ‘‘dose’’ that then can be used to track

therapy. Another conceptually simple method is use of

correlation coefficients between parameters. For example,

the moving correlation coefficient between MAP and ICP

is used to generate the pressure reactivity index (PRx). This

provides information about cerebral autoregulation and

may be used to identify patient-specific (or optimal) CPP

and ICP thresholds that in turn demonstrate a more robust

relationship with outcome than generic population-based

thresholds [26, 27].

Techniques for nonlinear analysis (complex systems

analysis) can also be borrowed from other disciplines e.g.,

genomics, mathematics, engineering, and complexity sci-

ence. There are a variety of techniques including moving

correlation coefficients, Dynamic Bayesian networks, arti-

ficial neural networks, Kohonen self-organizing maps,

hierarchical cluster analysis, time series analysis (vari-

ability, approximate entropy, and detrended fluctuation

analysis among others). Data infrastructures should be

adopted that allow a wide range of analysis methods to be

applied to data. For example, hierarchical cluster analysis

can identify different clusters composed of different rela-

tionship structures among the data that are not discernable

to the clinician and more accurately predict outcomes and

patient trajectory [28, 29]. Conceptualizing patients then as

existing in physiologic and pathophysiologic ‘‘states’’ has

led to the idea that therapies may need to be redirected

toward facilitating transitions toward favorable physiologic

states rather than ‘‘fixing’’ particular physiologic variables

[30, 31].

Time series analysis that measures variation over time

also has been applied to clinical research. For example, this

has been applied to heart rate analysis by evaluating in-

tervals between consecutive QRS complexes. Decreased

heart rate variability is associated with poor outcome in

cardiac disease and is thought to reflect pathology and a

reduced ability to respond to perturbations [32]. Similarly,

reduced ICP variability may be a better outcome predictor

than other measures of ICP e.g., mean [33]. Approximate

entropy (ApEn) provides a measure of the degree of ran-

domness within a series of data. Less critically ill patients

have higher variance and ApEn (more variable, less
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periodic signals), whereas loss of variability and lower

ApEn is linked with parallel deterioration of organ dys-

function and high mortality [34]. Similarly, ICP ApEn

decreases as elevated ICP develops [35]. Detrended fluc-

tuation analysis describes ‘‘fractal’’ scaling behavior of

variability in physiological signals (similar patterns of

variation across multiple time scales). In neurocritical care,

altered ‘‘fractal scaling’’ of the ICP signal is associated

with poor outcome [36].

Looking ahead there is no universal equation for com-

plex systems. Instead research and clinical care in the

NCCU require high-resolution data acquisition and a suite

of tools for physiologic signal processing and analysis,

using both classical techniques and novel methods based

on statistical physics and nonlinear dynamics. Complex

nonlinear systems are present in biology and so the appli-

cation of complexity science (chaos theory, nonlinear

dynamics, complex adaptive systems, systems theory) that

deals with the behavior and properties of complex non-

linear systems likely will provide new insights into normal

physiologic relationships and the pathobiology of critical

illness [36–39]. This is important since the clinical course

and outcome of individual patients in the NCCU depend on

a large and variable number of components (physiologic

variables) that display marked variability over time, a high

degree of connectivity and interdependence and sensitive

dependence to initial conditions (small initial differences

may cause dramatic effects in long-term dynamics—the

‘‘butterfly effect’’). Currently, we simplify our care to a

single numeric threshold, whereas information about

variability may be more important than information of a

single value, or trend of values. Furthermore, information

about interactions between systems may be more important

than variability within a system and Information about the

emergent order of the entire system may be even more

important than individual interactions. Using new analytic

tools in the NCCU therefore should provide a more accu-

rate model of physiology and new insights into therapy.
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