UNIVERSITA DEGLI STUDI DI MILANO - BICOCCA

Scuola di Dottorato di Scienze

2
=
Z
(@)
S

UNIVERSITA’
ONVIINIA

Dottorato in Fisica e Astronomia, Ciclo XXII
Coordinatore: Prof. Claudio Destri

DISPLACEMENT DAMAGE INDUCED BY COSMIC
RAYS IN SILICON DEVICES USING GEANT4
TOOLKIT FOR SPACE APPLICATIONS

Tutore: Prof. Massimo Gervasi
Correlatore: Dott. Pier Giorgio Rancoita

Tesi di: Cristina Consolandi
Matricola n. 708229

Anno Accademico 2008-2009






Contents

Introduction 1
1 Space Radiation Environment 6
1.1 Galactic Cosmic Rays. . . . . . ... .. .. ... ... .... 6
1.1.1 The Directional Spectrum . . . . . ... .. ... ... 7

1.1.2  The Energy Spectrum . . . . .. .. ... ... .... 8

1.1.3 The Mass Spectrum . . . . . .. ... ... ... ... 10

1.2 Solar Wind and Heliospheric Magnetic Field . . . . . .. . .. 14
1.2.1 The Modulation Effect . . . . . . ... ... ... ... 19

1.2.2  ISO 15390 Model for Galactic Cosmic Rays . . . . .. 22

1.3 The Earth’s Magnetosphere and Trapped Particles. . . . . . . 23

2 Electromagnetic Energy Loss 28
2.1 Coulomb Scattering Process . . . . .. .. ... .. ... ... 28
2.1.1 Non-Relativistic Scattering . . . . . . .. ... .. ... 28

2.1.2  Relativistic Treatment of Scattering . . . . . . . . . .. 34

2.2 Limits of Non-Relativistic and Relativistic Coulomb Scattering 41
2.3 Non-Relativistic Differential Scattering Cross Section . . . . . 42
2.3.1 Unscreened Coulomb Potential . . . . ... ... ... 43

2.3.2  Universal Screening Potential . . . . .. .. ... ... 45

2.4 Relativistic Differential Cross Sections . . . . . .. ... ... 46
2.5 Stopping Power . . . . . . ... ..o 49
2.5.1 Nuclear Collision Energy-Loss . . . . .. .. ... ... 49

2.5.2  Electronic Collision Energy-Loss . . . . . .. ... ... o1

2.5.3 Electronic Energy-Loss Fluctuations . . . . .. .. .. 52

3 Displacement Damage 57
3.1 The Displacement Cascade . . . . . . .. ... ... ...... 57
3.1.1 Displacement Damage Function . . . .. ... ... .. o8

3.1.2 Damage Energy . . . .. ... ... ... ... 60

3.2 Non-lonizing Energy Loss . . . . . ... ... ... ... ... 62



3.2.1 Neutrons NIEL . . . .. . .. ... .. ... ... ... 64

3.22 Protons NIEL . . . . .. ... ... .. ... ...... 68
3.23 Heavy Nuclei NIEL . . . . .. ... ... .. ... ... 69
3.2.4 Alpha Particles NIEL . . . . . . ... ... ... .... 72
3.3 Defect Complexes . . . . . . . . ... 73
3.4 Reduction of the Minority Carrier Lifetime After Irradiation . 76
3.5 Bipolar Junction Transistor (BJT) . ... ... ... ... .. 78
GEANT4-Based Development for NIEL and NIEL-Dose Cal-
culation 85
4.1 Non-Relativistic ZBL NIEL Calculation . . .. .. ... ... 85
4.2 Relativistic NIEL Calculation . . . . ... ... ... ..... 88
4.3 Total NIEL for Protons and Alpha Particles . . . . . .. . .. 91
4.4 GEANT4 Simulation Toolkit . . . . . . . ... ... ... ... 92
4.4.1 GEANT4 Single Scattering Process . . . . . . .. ... 93
4.4.2  Simulation Test of the GEANT4 Single Scattering Pro-
CESS  © v i e e e e e e e e 94
4.4.3 TImproved Implementation of the GEANT4 Single Scat-
tering Process . . . . . . . ... Lo 97
4.4.4  Simulation Results of the Upgraded GEANT4
Coulomb NIEL Fraction . . ... ... .. ... .... 99
4.4.5 TheISO 15390 Model as a Primary Generator in GEANT4101
4.5 NIEL-Dose Calculation . . . . . ... ... ... ........ 102
The Carriers Transport Phenomena in Silicon 109
5.1 Equilibrium Carriers Statistics . . . . . . . .. ... ... ... 109
5.1.1 Carriers Concentration . . . . . . ... ... ... ... 111
5.1.2 Intrinsic Material . . . . . .. . ... ... 112
5.1.3 n-type and p-type Silicon . . . . . ... ... ... .. 113
5.1.4 Compensated Semiconductor . . . . . .. ... .. ... 118
5.1.5 Degenerate Semiconductors . . . . .. ... ... ... 119
5.2 Generation and Recombination Processes . . . . . . . . . . .. 120
5.3 Carriers Transport-Phenomena . . . . . . . . ... ... ... 122
5.3.1 Resistivity and Mobility . . . .. ... ... ... ... 125
5.4 Scattering and Mobility . . . . .. ... 129
5.4.1 Acoustic Phonon Scattering . . . ... ... ... ... 130
5.4.2 lonized Impurity Scattering . . . . . .. ... .. ... 131
5.4.3 Neutral Impurity Scattering . . . . . ... ... .. .. 131
5.4.4  Semi-Empirical Relations for Carriers Mobility . . . . . 132
5.5 The Hall Effect . . . . . ... ... .. .. ... ... ..... 134
5.5.1 The Hall Scattering Factor . . . . . . .. .. ... ... 136

II



5.5.2  Hall Coefficient in Compensated Semiconductors . . .

6 Experimental Results of the Hall Effect Measurements
6.1 Samples Characteristics and

Irradiation Fluences . . . . . . . .. ... ... ... ...
6.2 Experimental Setup and Method . . . . .. .. ... ...
6.3 Experimental Results of Non-Irradiated Samples . . . . . .
6.4 Temperature Scan of Irradiated Samples . . . . . . . . ..

Conclusions

A GEANT4 Coulomb NIEL

B The Silicon Structure

B.1 Covalent Bound and Crystal Structure . . . . . . . .. ..
B.2 The Reciprocal Lattice and the Energy-Band Structure . . . .
B.3 The Effective Mass Approximation . . .. ... ... ...
B.4 Constant Energy Surfaces . . . .. .. .. ... ... ...
B.5 Density of States . . . . ... ...

I1I

. 142

143

143
146
149
151

156

158



Introduction

In the space environment there are many kind of energetic particles of
different origin. Protons are the most abundant but alpha particles, heavier
nuclei, and electrons are also present. Abundances and energy spectra de-
pend on the position inside the solar cavity and are strongly affected by the
solar activity. The dominant radiation at energies above 30-50 MeV /nucleon
is constituted by the Galactic Cosmic Rays (GCRs). They are composed
mainly of protons and alpha particles (/= 98%), of a lesser amount of nuclei
up to nickel and of an even lesser of heavier nuclei (atomic mass number
A> 60). These particles continuously enter the solar cavity and are isotrop-
ically distributed. At low energies from 1 MeV /nucleon up to about 30
MeV /nucleon, we find the so-called Anomalous Cosmic Rays (ACRs). They
are ionized atoms of hydrogen, helium, nitrogen, oxygen, neon and carbon,
coming from the interstellar medium. Neutral atoms penetrate inside the
heliosphere and become ionized by the ultraviolet radiation coming from the
Sun. As ionized particles, they follow the heliospheric magnetic field lines
and may be accelerated by stochastic process or by shock waves [2].

Along their travel through the interplanetary space, GCRs can reach
the Earth’s magnetosphere, interact with the upper layers of the atmosphere
and, finally, produce secondary particles like for example neutrons. Neutrons
decay into protons (10 -100 MeV) and electrons (up to 10 MeV) which may
became trapped particle in the Earth’s radiation belts. Other phenomena
like geomagnetic storms - i.e. large variations of the Earth’s magnetosphere
caused by the solar wind- may increase the electron population of the outer
radiation belt. The expanding solar wind transports, with the heliospheric
magnetic field, a constant flux of particles mostly composed by protons and
electrons. In addition -during transient phenomena like solar flares which are
explosive releases of energy, and coronal mass ejections, which are ejection of
plasma material form the Sun- solar energetic particles (SEP) are produced
in the energy range from few keV to several GeV [2].

The space radiation environment will be described in chapter 1 where
particular attention will paid to GCRs because their fluxes constantly invest
spacecrafts, satellite and all other materials present in the Space, and consti-
tute an hazard for electronic components of the space missions. Due to their
high energies, GCRs are capable of passing through the shielding material
and to inflict permanent damage to electronic devices. In the same chapter,



a simplified description of the solar wind and of the solar cycles will be re-
ported. The solar cycles modify the heliospheric magnetic field causing the
modulation effect on the low energy part of the GCRs spectrum. In section
1.2.2 the ISO 15390 model will be described. This model is the reference
one to estimate the radiation impact of GCRs on hardware and biological
tissues. It is able to reproduce the modulation effect due to the 11 and the
22-years solar cycles. In addition, a brief description of the magnetosphere
environment and of the trapped particles of the radiation belts will be given
for completeness.

Charged energetic particles, like GCRs, lose energy while passing through
matter by Coulomb interactions with electrons and atoms of the material.
The scattering mechanism with electrons determines the electronic collision
energy loss (see section 2.5.3). Electrons may be excited to an higher energy
level or, if the transferred energy is enough, they may be emitted as d-rays
from the atom. The ionizing energy loss of the incident particle, is responsi-
ble of the absorbed dose D™ due to ionization processes.

In nuclear collisions, instead, the energy is released by the interactions with
the target nuclei of the material. Part of this transferred energy can be dis-
sipated inside the material by phonon vibrations but it can also be sufficient
to displace the whole atom from its lattice position. This energy deposition
is called Non-Ionizing-Energy-Loss (NIEL). The displaced atom is called pri-
mary knock-on atom (PKA). The PKA in turn may have sufficient energy to
migrate inside the lattice and, by nuclear collisions, can displace other atoms
which may create further displacements. The whole process is a cascade of
atomic collisions which modify the bulk structure of the device. The NIEL,
which is the fraction of energy lost by the incident particle that goes into
displacement processes, is related to the absorbed NIEL-Dose DNFL,

The relative importance, of these two scattering mechanisms, depends on the
energy of the incoming particle. Nuclear energy loss dominates for low ener-
getic particles, while high energetic particles mostly lose energy by electronic
collisions. For example, for protons of 1 GeV, D™ is three orders of magni-
tude greater than DNEL| while for heavy nuclei of tens MeV /nucleon, D™®
exceeds DMEL by four orders of magnitudes [1]. Nevertheless the nuclear
energy loss is important for the formation of defects inside the material. In
facts, it is responsible of the displacement damage which is the typical cause
of degradation for silicon devices and so it will be treated in detail in chapter
2.

The displacement damage is a cumulative process which creates disorder
in the lattice structure of the material and can be quantified by the amount of
NIEL as it will be explained in chapter 3. For the low part of the albedo par-
ticles that populate the space radiation environment, many simulation pro-



grams already perform the NIEL calculation in the non-relativistic regime.
One example is the TRIM program (Transport of Radiation In Matter) which
is able to simulate, in a two-dimensional approximation, the interaction of
all type of incident ions in any kind of target material. This program repro-
duces the Coulomb scattering process in the non-relativistic regime up to 1
GeV /nucleon and it is able to simulate the nucleus screening effect, caused
by electrons, which is relevant at low energies.

For high energetic protons and alpha particles, we know the NIEL value

from literature which includes the nuclear NIEL contribution due to hadronic
interactions, at energies up to 24 GeV and 1 GeV /nucleon respectively. For
heavier nuclei there is a lack of information about the NIEL value at high
energies. The knowledge of the displacement damage induced by heavy nuclei
is of fundamental importance for the computation of the NIEL-Dose due to
GCRs. In fact, even if heavy nuclei constitute the minority fraction of the
GCRs spectrum, the displacement damage induced by a single heavy nucleus
is much larger than the one induced by a proton with the same energy. As
a consequence, the computation of the absorbed NIEL-Dose during space
missions must include the heavy nuclei contribution.
From literature, it is possible to know the analytical Coulomb NIEL value
for heavy nuclei only in the non-relativistic limit and at energies up to 1
GeV. As it will be explained in section 4.1 we performed a computational
integration of the NIEL value which is based on the same screening theory
and it is in agreement with the literature values in the same energy range (1
keV up to 1 GeV).

In addition we were able to extend the energy range for the NIEL com-
putation. To calculate the NIEL, it is necessary to give an expression for
the differential scattering cross section for energy transfer which depends on
the specific interaction process. For heavy nuclei the displacement damage
induced by Coulomb interactions is expected to be the relevant fraction for
the NIEL computation (see sections 3.2.3 and 4.5). Therefore the Coulomb
scattering process will be analyzed in details in section 2.1. First it will
be treated in the non-relativistic limit (section 2.1.1) and then it will be
described in the relativistic regime (section 2.1.2).

To get the Coulomb NIEL fraction for heavy nuclei we improved the
already existing GEANT4 single scattering process. The original code was
developed by the CERN GEANT4 team group for muons and hadrons sim-
ulations only. In section 4.4.3 we present a modification of the differential
scattering cross section to extend the use of this code to heavier particles.
The modified code allows one to compute the scattering probabilities in the
high energy regime also for heavy nuclei. The results of the NIEL calculated
by the GEANT4 improved simulation program are in good agreement with



the literature protons values. Thanks to the collaboration with the GEANT4
team, this modification of the source code was accepted and will be included
in the GEANT4 release available from December 2009 [64].

In section 4.4.5, in addition, we present our work aimed to simulate the
GCR fluxes by the use of GEANT4. We developed a code written in C++
language based the ISO 15390 model which was interfaced to the GEANT4
Particle Generator. This gives the possibility to have a particle generator in
the GEANT4 framework which is able to reproduce the solar modulation effect
on the GCRs spectrum. Fluxes of particles of this generator are presented for
different periods of the solar activity. The knowledge of the GCRs fluxes, by
the use of the ISO model, and of the NIEL values, obtained by the modified
GEANT4 program, enables us to estimate the expected NIEL-Dose absorbed
by a silicon sample during one year mission. As it will be explained in
chapter 4, the calculation was performed considering two different periods of
the Sun activity for particles in the energy range from 50 MeV /nucleon up
to 10 GeV /nucleon. For proton and alpha particles we used the tabulated
NIEL values taken from literature which include both Coulomb and Nuclear
interactions. For all the other nuclei, we used the Coulomb NIEL fraction
obtained from our computation.

During space missions, electronic devices undergo to constant fluxes of
energetic particles which will enhance the absorbed NIEL-Dose. From a
microscopic point of view, the crystal structure of the material results to be
modified after irradiation. These modifications will cause the degradation
of the electrical characteristics of the device. Point defects created during
irradiation such as vacancies and interstitial atoms (called Frenkel pairs (FP))
may migrate inside the material and evolve into more stable defects in a
relative small region of space. Vacancies can interact with impurity atoms,
already present in the material, and form defect complexes. As it will be
explained in section 3.3, defects complexes introduce discrete energy levels in
the forbidden energy gap of the semiconductor. These levels act as trapping
centers for conducting carriers which are removed from the conduction or
the valance band according to the trapping center energy level. The carrier
removal will lead to the increase of the resistivity of the semiconductor. In
addition, deep energy levels are responsible for the reduction of carriers life-
time (see 3.4) because electrons and holes are captured and re-emitted with
a delay time. This mechanism is one of the main causes of degradation for all
those devices which operate with a depleted region as solar cells, detectors
and bipolar transistors. As it will be discussed in section 3.5, it is well known
that the bipolar transistors gain is lowered after irradiation. The difference of
the inverse of the gain, before and after irradiation, was found to have a linear
dependence on the concentration of FPs. However, the radiation damage
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is a complex phenomena which involves both ionization and non-ionization
processes. Different parts of a device may be degraded by both mechanisms.
For example, silicon devices which operate with an oxide layer are more
subjected to ionization damage respect to the displacement one. It is then
necessary to perform a separate investigation on the various components
of a device by testing the radiation hardness of the bulk material which is
typically employed as a substrate for the fabrication of all those devices used
during space missions. For example, the base region of a bipolar transistor
has a low resistivity (0.01 € c¢m) of both n and p-type, solar cells employ
substrate semiconductors of resistivities in the range 10-1500 2 cm, while
detectors have high and very high silicon doped material (>1000 2 cm).

For instance, in our laboratory, we performed Hall effect measurements on
silicon bulk samples of different resistivities, irradiated with fast neutrons and
high energy carbon ions [102]. In chapter 5 an introduction to the electronic
characteristic of a non-irradiated semiconductor will be given. Subsequently
the macroscopic variables such as the mobility and the resistivity of carriers
will be derived (the fundamental structure of the non-irradiate silicon lattice
crystal will be given in appendix B). In chapter 6 experimental results of
temperature scans of the Hall coefficient, the resistivity and the Hall mobil-
ity from 300 K down to 11 K will be reported for both non-irradiated and
irradiated silicon samples.



Chapter 1

Space Radiation Environment

In this chapter an introduction to the Space radiation environment will be
given. Particular attention will be set to the most energetic particles which
are the Galactic Cosmic Rays (GCRs). GCRs constitute an hazard for elec-
tronic components of the space missions, because they are capable of passing
through the shielding material of spacecrafts and they are able to inflict per-
manent damage to the electronic devices. After that the attention will placed
on the solar wind and on the solar cycles which modify the heliospheric mag-
netic field causing the modulation effect on the GCRs spectrum. In addition
the ISO model which includes modulation effects, will be described. Since
most of the space missions operate in the Earth’s magnetosphere, a brief
description of the magnetosphere environment and of the trapped particles
in the radiation belts are also given for completeness.

1.1 Galactic Cosmic Rays

Galactic Cosmic Rays (GCRs) are high energetic charged particles that pen-
etrate the heliosphere from the local interstellar space. They are fully ionized
nuclei composed most of all by protons, a little part of alpha particles and
a minimal fraction is made up with heavier nuclei and electrons. Most of
them are relativistic and a few have ultra-relativistic energies extended up
to 10%° eV. Their origin is not still well understood. Supernova explosion are
the major acceleration sources of GCRs up to energies of the order of 10
eV. Higher energetic particles (> 10 eV) may have Extragalactic origin.
The three fundamental GCRs observable variables are the directional spec-
trum which gives information about the arrival direction, the energy spectrum
which defines the energy differential flux and the mass spectrum which gives
the composition.



1.1.1 The Directional Spectrum

Excluding the geomagnetic field effects, the GCRs angular distribution is
isotropic. The number of particles AN, incident on a unit surface AS, per
unit time At, within a unit solid angle AQ2 perpendicular to the surface is

defined as the intensity:

AN
b= ASALAQ (1.1)

and it is uniform in all directions. This happens because the propagation of
GCRs in our Galaxy is not rectilinear. GCRs continuously interact with the
Galactic magnetic field irregularities which have the same dimensions of the
particles gyroradius. As a consequence GCRs diffuse in all directions as in a
scattering process.
A particle of charge Ze which moves in a magnetic field B is subjected
to the Lorenz’s force which, in Gaussian units, is equal to:
F = %V x B (1.2)
If the particle moves with velocity v perpendicularly to the magnetic field
line, the balance between the Lorenz’s force and the centrifugal force can be
simply written as:

mu? Ze

— = —uB 1.3
r ' (1.3)
where m is the mass of the particle and r is the bending radius or gyroradius

of the circular trajectory. From the (1.3) it possible to derive:

pc
Br=-—. 1.4

r=_ (1.4)
where p is the momentum of the particle. The second term of this last

equation is defined as the particle magnetic rigidity:

5

A\ (1.5)

which is a measure of the resistance that the particle opposes to B when the
magnetic field bends its trajectory. For a relativistic particle the magnetic
rigidity is the ratio between the particle kinetic energy and its charge. A
useful relation to have an idea of the cosmic rays gyroradius is given by [3]:

R [V] = 300B [Gauss| r [cm] (1.6)

The Galactic magnetic field of our Galaxy, is estimated to be ~ 3 x 107¢
Gauss. If the particle rigidity is < 10" V then r is less than 1 pc (1 pc
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=3.08x10'® c¢m) which is the typical dimension of a Supernova remnant; if
R ~ 10 V then 7 ~ 1 kpc which is the dimension of the Galaxy Disk plus
the Galactic Halo; if R ~ 102! V then r ~ 1 Mpc which is much larger than
the Galaxy dimension. Particles of this limit kinetic energy are not affected
by the Galactic magnetic field and so may leak out from the Galaxy. In
principle for these particles it could be possible to directly know the source
of production. Unfortunately particle of this energy are rare and so a detail
study of their sources is difficult.

1.1.2 The Energy Spectrum

The energy spectrum of GCRs is described by the differential intensity or
differential flur ®(E) which gives the number of particles with energy be-
tween F and F + dFE, observed per unit surface, time, solid angle and energy
ie.

dN
PF)= ————
(E) dSdtdQdE
Neglecting the modulation effects, it is well described by a power low spec-
trum [7]:

(1.7)

O(E) o E7° (1.8)

where « is the differential spectral index. The integration of ®(FE), from a
defined energy value, over the whole solid angle, gives the integral intensity :

O(> Ey) :/ O(E)dEdS (1.9)
Eo

that is the number of particles incident on a unit surface per unit time with

energies greater than Fy. Typical values are ®(> 10''eV) = 1 particle m—2

per-second; ®(> 10'eV) = 1 particle m~2 per-year; ®(> 10%eV) = 1 particle

m~2 per-century.

The units of measurement for the flux depend on the units used for F
which may be given in energy-per-nucleon or in energy-per-nucleus. Some-
times instead of the number of particles it is used the number of nucleons.
Fluxes can also be given in particles per unit rigidity.

In this work the differential flux will be given in particle per energy-per-
nucleon and the units of measurement will be:

o(E)

(1.10)

N¢ of particles
m? s sr MeV /nucl

The overall GCRs energy spectrum is reported in figure 1.1. The flux pro-
gressively diminishes with increasing particle energy with a spectral index

8
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Figure 1.1: Overall Galactic Cosmic Ray Energy Spectrum [21] [20]

a = 2.7 up to energies of the order of 10'® eV where the spectrum exhibits
a change of slope ("knee”) becoming steeper with a spectral index equal to
a = 3.1. This change of slope may be caused by the loss of efficiency of the
acceleration mechanisms or even because of the leak out of particles from the
Galaxy [4].

At energy of the order of 10 eV the spectrum seems to recover the initial
slope ("ankle”) for a short energy range up to the GZK (Greisen-Zatsepin-
Kuzmin [8]) cutoff at about 6 x 10 eV where the interaction of cosmic rays
with the photons of the Cosmic Microwave Background [3] is expected to be
evident.



The power low spectrum, observed up to the knee region, may be well
explain by the Fermi’s acceleration mechanism [4]. This mechanism provides
the acceleration of GCRs by shock waves that may follow supernova explo-
sions. Qualitatively, every time that a particle crosses the shock wave front,
it increases its energy for an amount proportional to the velocity of the wave
front. It is possible to prove that this process ends with the production of
accelerated particles which are distributed according to a power low distri-
bution. The spectral index, obtained with the typical values of shock waves
produced by a supernova explosion, is in agreement with the experimental
value. Also the acceleration time, of the order of one month, is reasonable.
The maximum kinetic energy achieved by this acceleration process is of the
order of 10* eV which may explain the change of slope at these energies.

At energies greater than 10 eV the GCRs flux reaches so low values
that an hypothetical Extragalactic component may become visible. Unfortu-
nately particles of these energies are very rare and lose rapidly their energy
by the interaction with the photons of the Cosmic Microwave Background
(CMB). Primary protons produce pions on the blackbody photons and they
lose energy via the A resonance [3]:

p+y — p+n° (1.11)
p+y — n+7t (1.12)

This effect, GZK, has been proposed by Greisen [8] in the 1966. The thresh-
old proton energy for the photoproduction of pions with the CMB photons
(Ecmp ~ 1.1 mV) is about 6 x 10! eV. This is the estimation for the GZK
cutoff of the GCR Energy spectrum.

At low energies (< 10 GeV), instead, the spectrum shows a prominent
attenuation caused by the interaction of the GCRs with the magnetic field
irregularities carried by the solar wind (Solar Wind Modulation). The solar
modulation is an effect that causes the reduction of the GCRs flux at low
energies. When the Solar activity reaches a maximum there is an increase
of the solar wind which prevents less energetic particles to penetrate inside
the eliosphere. This effect disappears above a few tens of GeV /nucleon that
is when the gyroradius of the particle has the same order of magnitude of
the heliosphere dimension 100 AU (1 Astronomical Unit =1.5 x 10® km)
assuming an average field of 0.1 nT.

1.1.3 The Mass Spectrum

The mass spectrum gives information about the GCRs composition. The
nucleus fraction constitutes 99% of the total composition and the rest 1%

10
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Figure 1.2: Relative abundance of elements in Galactic Cosmic Rays (GCRs) and in the
Solar System (SS). The abundance of silicon is defined as 100 [19].

is made of electrons. Protons (H) are the 89% of the nucleus part, alpha
particles (He) are the 10% the rest are heavier nuclei up to nickel (Z=92)
while for Z > 92 the nuclei percentage is negligible. In figure 1.2 are reported
the GCRs relative abundances which, in general, are compatible with a Solar-
like source. Differences between the Solar System and the GCR relative
abundances are visible for some nuclei. The GCRs deficit of H and He nuclei
is probably caused by the difficulty to ionize very light atoms.

In the GCR mass spectrum there is also an excess of the light nuclei
before carbon as lithium (Li), beryllium (Be), boron (B), and of the nuclei
before iron as scandium (Sc), titanium (Ti), vanadium (V), chrome (Cr),
manganese (Mn). These abundances are compatible with the production of
secondary GCRs by spallation process. When the particles energies are of
the order of GeV, an energetic "primary” light particle (H, He) may interact
with a heavier atom of the interstellar gas (C, N,O ...Fe), and during the
fragmentation process, lighter nuclei may be created as ”secondary” GCR.
The higher the secondary abundances are, the greater is the number of inter-
actions. This can give important information about the interstellar medium

11



T 7 T 1T

B/C Data: (Sc+Ti+V)/Fe Data:
038 I % Voyager | 035 - % ACE T
03 L 8 Ulysses _ 0a | 1 HEAO3
% ACE % HEAO-3
0.25 £ HEAO-3 0.25 % Sanriku E
02 fF .7 02
0.15 0.15
0.1 0.1
Phi = 450 MV
0.05 0.05
0 1 1 1 1 0 1 1 1
10 100 1000 10000 100000 1e+06 10 100 1000 10000 100000 1e+06
Kinetic energy, MeV/nucleon Kinetic energy, MeV/nucleon

Figure 1.3: Ratio of "secondary” over "primary” GCRs. Left: B/C ratio; right:
(Sc+Ti+V)/Fe ratio. Details are available at [5]

and, if the particle is unstable, can also give information about the lifetime
of Cosmic Rays.

The ratio of "secondary” over "primary” Niec/Nprim, for example, gives
information about the quantity of matter traversed by cosmic rays. The mean
free path of cosmic rays may be expressed by the mass thickness defined as:

v =(p)l [g/cm’] (1.13)

where (p) is the mean density of the interstellar medium, and [ is the dis-
tance traveled by the cosmic rays. The density number of particles in the
interstellar medium is simply given by:

(p)

n=-"% [cm™’ (1.14)

(m)

where (m) is the mean mass of the interstellar medium. Qualitatively the
Nisee/Nprim value is proportional to the cross section for secondary production
Osec, and to the density number n, times the traveling distance:

N, T
X Ogeenl X Ogpp—r (1.15)
Nprim < >

This quantity is directly measured in experiments from which the mass
thickness is estimated to be in the range z = 6 — 10 g/cm?. Strong and
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Figure 1.4: AMS-02 expected sensitivity on Bel0/Be9 ratio [6]

Moscalenko [5] developed a code for the cosmic rays propagation using ”sec-
ondary” over "primary” ratio. Their results of B/C and (Sc+Ti+V)/Fe
ratios is compared with experimental data in figure 1.3.

The information about the lifetime of cosmic rays, may be obtained from
"unstable” /”stable” isotopes ratio. By the equation (1.14), the mass thick-
ness can also be rewritten as:

r =n(m)l =n{m) Bc 1. (1.16)

where (c is the velocity of the cosmic ray and 7y is its the lifetime. In
figure 1.4 is reported the °Be/Be ratio for experimental data and the cor-
responding excepted value for one year of observation with AMS-02 experi-
ment [6]. From the fitting curves it is possible to estimate the density num-
ber as n = 0.2 cm~3. By this result it is possible to deduce that cosmic
rays spend much of their life in a medium of less density than the interstellar
space, which may be, for example, the Halo of the Galaxy. The value of the
number density n together with the mass thickness x, enables one to estimate
the GCR mean lifetime as 7 ~ 2 X 107 years.

In figure 1.5 are plotted the mayor components of primary cosmic rays
nuclei of energies greater than 2 GeV /nucleon.
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Figure 1.5: Mayor components of the primary cosmic rays [7]

1.2 Solar Wind and Heliospheric Magnetic
Field

The solar wind is the extension into the interplanetary space of the solar
corona, the outer region of the Sun’s atmosphere. It is characterized by very
high temperature ( 2 x 10° K) and low density (10*-10® cm™?) plasma made
most of all by protons and electrons in equal measure.

The corona plasma is well described by the Magneto-Hydro-Dynamic the-
ory (MHD) which enables one to obtain the hydrostatic solution of the coro-
nal expansion in the interplanetary medium. The solar wind expands sub-
sonically up to a distance of about 0.3 AU and then the expansion becames
supersonic. The velocity of the solar wind was measured by the solar orbiter
spacecraft Ulysses during different periods of the solar activity. Data were
taken up to polar latitudes (80°). At solar minimum, (see left side of figure
1.6) the solar wind fans out from the poles at an average speed of 750 km/s,
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Ulysses First Orbit Ulysses Second Orbit

Figure 1.6: Solar wind speed as a function of latitude for Ulysses’ first two orbits.
Bottom: sunspot number over the period 1992-2003, declining phase of the solar minimum
to the solar maximum [22].

much faster than the wind that emerges from the Sun’s equatorial zone equal
to 350 km/s. At solar maximum the solar wind is more irregular as shown
in the right side of the same figure.

During the solar minimum the configuration of the Sun’s magnetic field is
well approximated by a dipole. The dipole configuration enables one to define
the overall polarity of the Sun which is usually referred with the number A. If
the northern hemisphere lines point outward the Sun, the polarity is defined
positive (A > 0). In the opposite configuration the polarity is negative
(A <0).

The high corona temperature makes the plasma a very good conductor
and, as a consequence, the Sun’s magnetic file lines result to be frozen with
the solar wind while it expands into the interplanetary space. Because of
the solar rotation the geometry of the heliosphere magnetic file (HMF) lines
basically follow an archimedean spiral (see left side of figure 1.7) but strongly
depend on the solar activity. One of the consequences of the solar activity is
the formation of spots over it surface at latitudes between 20°-30°. Sunspots
are dark regions of relative low temperature plasma (7' ~ 4000 K) with
very strong local magnetic fields (up to 30 kG). Each sunspot is associated
with another one of different polarity (inward-outward magnetic field) and
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Figure 1.7: Left: interplanetary magnetic field lines. [27]. Right: Coronal Magnetic field
line configuration during solar minimum; dashed lines refers to a pure dipole magnetic
field [25].

together form a bipolar sunspot. The leading spot of the bipolar field has the
same polarity as the solar hemisphere, while the trailing spot is of opposite
polarity. Bipolar sunspots may form groups. The number of spots exhibit
alternating periods of minimum and maximum which last about 11-years
defining a solar cycle.

Sunspots have been monitored since the XVII century but the first solar
cycle has been fixed in the period from 1755 to 1766 (see figure 1.8). At
present (2009-2010) we are at the end of the 23" solar cycle. A useful
quantity which enables one to control the solar activity is the sunspot index
or Wolf number defined by [2]:

W = k(10g + f) (1.17)

where f is the number of individual spots while ¢ is the number of recog-
nizable groups of sunspots and k is a correction factor accounting for the
technological evolution of instruments. After each 11-year cycle the polarity
of the Sun results to be reversed.

The reversal of the magnetic field lines follows a 22-years cycle which can
be described by the Babcock’s model [9] as a progression of distinct stages
as shown in figure 1.9. The first stage starts with a solar minimum when
the solar magnetic field can be described by an axis-symmetric dipole with
a major poloidal component and a negligible toroidal one. This configura-
tion is not stable because the Sun doesn’t rotate as a rigid body but has a
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Figure 1.8: Monthly averages (updated 2009/07/01) of the sunspot numbers [23].

differential rotation: elements of fluid near the equator spin faster than the
As a consequence, the differential rotation makes the
poloidal component progressively less important than the toroidal compo-
nent which becomes the dominant one. The progressive intensification of the
toroidal magnetic field causes the eruption of magnetic filed lines from the
photosphere which appear as sunspots.

Sunspots of different polarity migrate towards opposite directions. The
leading spots tend to migrate towards the equator, while the trailing spots

17



Figure 1.9: Schematic representation of the reversal magnetic field by the Babcock
model. (a) Axis-symmetric poloidal magnetic field; (b) progressive growing of the toroidal
magnetic field component due to the solar differential rotation; (c¢) formation of sunspots
with closed magnetic field lines; (d) end of the cycle: the poloidal magnetic field is re-
established with opposite polarity [24].

migrate towards the solar pole. At the equator the leading spots of each
hemisphere cancel each other while at the poles the trailing spots neutralize
the existing toroidal magnetic filed in favor of the poloidal component. The
progressive formation and migration of sunspots continues until the solar
dipole field results to be reversed.

The configuration of the Coronal magnetic field lines, during a solar mini-
mum, is shown on the right side of figure 1.7. The pure dipole configuration is
distorted because of the out going solar plasma. Magnetic field lines become
open at relative low latitudes. Near the dipole equator the first open lines of
each hemisphere can come quite close: since they have opposite direction the
magnetic field must change sign rather suddenly. This implies the presence
of a very high current density called heliospheric current sheet.

In addition, since the Sun’s magnetic axis is tilted with respect to the solar
rotation axes, the current sheet assumes a wavy form, similar to a ballerina’s
twirling skirt, while it expands into the interplanetary medium. The current
sheet configuration varies according to the solar activity. The tilt angle
increases progressively from a value of about 4°-10° during solar minimum
to values which can exceed 75° during solar maximum periods. Figure 1.10
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Figure 1.10: Evolution of the current sheet during the solar cycle 22. Upper central
part: synoptic maps of the magnetic field lines; red and blue points indicate outward and
inward polarity respectively. Lower central part: red and blue lines are monthly and yearly
averaged values of sunspot number respectively [26].

represents a three-dimensional MHD model based on experimental data of
the current sheet progressive evolution during the 22" solar cycle [26]. In
the same figure, in the lower central part, it is reported the averaged value of
the sunspot number and in the upper one it is shown the radial component
of the magnetic field between +60° Sun’s latitudes. The current sheet brings
an additive effect in the modulation of GCRs as it will be explained in next
section.

1.2.1 The Modulation Effect

The modulation effect is the variation of the GCRs spectrum in relation to the
solar activity. During solar maximum periods fluxes of low energetic particles
are less abundant compare to the ones measured during solar minimum. The
anti-correlation between solar minimum and maximum activity and particles
fluxes is evident in the long record of the Climax neutron monitor! shown

!'Neutrons are produced as secondary particles by the interaction of cosmic rays with
the atoms of the earth atmosphere. Measures of neutron monitor enable to supervise the
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Figure 1.11: Continuous line: long term Climax neutron monitor observation; dashed
line: smoothed sunspot number. Under the abscissa axis the reversal magnetic field po-
larity is reported [14].

in figure 1.11. The modulation effect can be explain by considering the
propagation of GCRs in the heliosphere.

The basic theory of the cosmic rays propagation was developed in the six-
teen’s by Parker [10]. Cosmic rays that enter the heliosphere are subjected to
a diffusion process caused by the small scale HMF irregularities, a convection
plus a cooling process caused by the solar wind expansion and a drift process
caused by curvatures and gradients of the HMF. The number density of par-
ticles having kinetic energy equal to 7" at time ¢ in the position r inside the
solar cavity, can be expressed by the quantity U(r,7T,t). Its time variation
is calculated by the Parker’s transport equation which may be written, in a
general form, as:

oU

> - —v-(vswU)+%<v.vsw)3<aTU>+v-(g.vw—v.((vdw) (1.18)

oT

where v, is the solar wind velocity, a is an energy dependent term which is
a = 2 for non-relativistic particles and o = 1 for ultra-relativistic particles;
the tensor k” is the symmetric part of the diffusion tensor k which, in general,
has the form:

ki —ka 0O
k= | ka ki O (1.19)
0 0 Kk

where &, and k| are the perpendicular and parallel components respect to
the magnetic field direction; k4 is the antisymmetric tensor component which

cosmic ray fluxes. Data available at http://ulysses.sr.unh.edu/NeutronMonitor/
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Figure 1.12: Drift direction of a positive charge particle according to the solar polarity
magnetic field [14].

is responsible of the drift velocity whose mean value (v,) is present in the
transport equation (5.40).

The first and the second terms of the (5.40) describe the convection of
cosmic rays caused by the solar wind and the adiabatic energy loss of the
particles because of the solar wind expansion, respectively; the third term
represents the diffusion of particles along parallel and perpendicular direc-
tions of the HMF. The diffusion process is caused by the small-scale HMF
irregularities which have typical dimensions of 10°—107 km. Assuming a mag-
netic field of few nT [1], these values correspond to the gyroradius dimension
of a proton of about 100 MeV —10 GeV of kinetic energy, and so protons of
this energies will be more affected by the diffusion process. The last term of
equation (5.40) describes drift effects caused by HMF large-structures and
dominates during solar minimum periods while can be neglected during max-
imum solar periods.

Convection and diffusion terms depend on the solar activity but are in-
dependent of the solar polarity. The drift term instead depends also on the
solar polarity. Its direction is shown in figure 1.12 for a positive particle.
When the Sun’s polarity is positive A > 0, positive charged particles will
propagate inside the heliosphere coming from the pole directions and will
drift outward the heliosphere along the equator latitudes. In the opposite
A < 0 configuration, cosmic rays will enter the heliosphere from the equato-
rial regions and will flow outside at polar latitudes. An additional drift effect,
which is caused by the interaction of cosmic rays with the neutral sheet, is
evident from the shape of the neutron monitor peaks recorded during solar
minimum periods of opposite solar polarity. In positive periods (A > 0) par-
ticles come from the polar regions and the neutron monitor records almost
flat peaks. In the reverse configuration (A < 0) sharply peaks are evident.
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During negative periods, in facts, positive particles diffuse inward along equa-
torial regions where they encounter the neutral current sheet. Particles that
cross the neutral sheet will experience magnetic fields of opposite polarity
and this results to be a quite slow process compared with the one of inward
propagation along the pole directions.

The net effect is visible on the cosmic ray density fluxes which are modu-
lated during the 11-year cycle because of the minimum and maximum solar
activity alternation and they show a further attenuation when the polarity
is negative (22-years cycle).

1.2.2 1ISO 15390 Model for Galactic Cosmic Rays

The ISO (International Organization of Standardization) 15390 model [15] is
the standard for estimating the radiation impact of GCRs on hardware, bio-
logical and other materials in the space environment. It is based on the model
of GCRs fluxes proposed by Nymmik [16]. It establishes the expected rigidity
or energy spectra of GCRs in the near-Earth space, beyond the Earth’s Mag-
netosphere. This model predicts fluxes of protons, electrons and nuclei up to
Z = 92 in the energy range from 10 MeV /nucl to 100 GeV /nucl. It includes
the modulation effect induced by the 11-year cycle of the solar activity and
the 22-year reversal magnetic field cycle of the heliospheric magnetic field.
The rigidity spectrum, for the i-th nucleus, is obtained by a semi-empirical
relation calculated as:

A(R,1)
R

R+ Ro(R, 1)

cp

]

R

Di(R,t) = (1.20)

(3 is the particle velocity in units of ¢, R is the rigidity of the particle expressed
in GV; A;(R,t), whose expression can be found in [15], is a dimensionless
parameter which contains the dependence of the particle flux on the large-
scale magnetic field polarity at time ¢; Ro(R,t) is the modulation potential
given by:

Ro(R,t) = 0.375+ 3 x 10747, (1.21)
where W,_s, is the smoothed monthly Wolf number averaged over 12-months
a sort of mean of the sunspots number calculated at time t — t; the Wolf
number is the only parameter of the model and it is calculated at the time 0t
before the measure. The lag time dt takes in to account the polarity of the
solar cycle and depends also on the particle rigidity. The terms Cj, «; and 75;
are the fitting coefficients of the experimental data for the i-th nucleus, cal-
culated by the Monte Carlo method using the last-squares technique. Their
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Figure 1.13: Artistic view of the Earth’s magnetosphere.

values can be found in [15], [16] and their standard deviations determinate
the error bars of the fluxes.

The energy spectra, derived from the (1.20), is given in units of [s m? sr
MeV /nucl] ™! and it is calculated by:

A
D,(E,t) = Oy(R, t)w x 107° (1.22)

where A; and Z; are the mass and the atomic numbers of the particle.

1.3 The Earth’s Magnetosphere and Trapped
Particles

The magnetosphere is the region of space around the Earth where the dipolar
Earth’s magnetic field extends its effects. Its shape is influenced by the solar
wind which constantly blows and transports the heliospheric magnetic field.
The interaction between the high speed solar wind plasma and the Earth’s
magnetic field make it assumes a compressed form on the day-side and a
stretched shape on the night-side. The day-side of the magnetosphere may
vary with the solar activity changing its extension from 6 Re up to 10 Re
while the night-side may extend to thousands of Re (Earth’s radius, Re=
6371 km) [1].

In figure 1.13 it is reported an artistic view of the Earth’s magnetosphere.
A standing shock wave is expected to be formed in the boundary between
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Figure 1.14: Decomposition of the motion of a trapped particle in the Earth’s magne-
tosphere.

the supersonic solar wind and the magnetosphere [2]. The solar wind is
decelerated in this blow shock and flows tangentially along the magnetopause
forming a region called the magnetosheath. The magnetopause, which is the
outmost boundary of the magnetosphere, partially prevents the solar plasma
to penetrate the inner regions of the magnetosphere. Anyway the presence of
a flowing plasma in the low latitude boundary layer (a thin region just under
the magnetopause) indicates that the magnetopause doesn’t act as a perfect
shield. In the interface between the day and night -sides there are also two
polar cups regions where the magnetosheath plasma extends deeper in the
dense region of the atmosphere.

Along the night-side of the magnetosphere the magnetic field lines are highly
stretched and become open forming the magnetotail. In this region there is
the plasma mantle which comes from the plasma magnetosheath and extends
almost parallel to the magnetic field lines. The division between north and
south hemispheres is characterized by magnetic field lines of opposite polarity
which come quite near each other in the magnetotail and they cause the
formation of a neutral current sheet layer.

The inner regions of the magnetosphere are characterized by a bipolar
magnetic field with closed field lines. In these regions there are the two
Van Allen radiation belts divided by the slot region. The inner radiation
belt extends in the range 1.5 — 2.4 Re, while the outer radiation belt lies
between 4.5 — 5 Re. In these regions charged particles with rigidity lower
than the geomagnetic cut off value R, which depends on the geomagnetic
latitude, result to be trapped by the magnetic field lines. The cut off value
sets also the minimum value under which a particle can’t penetrate inside
the magnetosphere. This leads to an additional modulation effect in the low
part of the cosmic ray spectrum observed inside the magnetosphere. The
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Figure 1.15: South Atlantic Anomaly. From AP-8 MAX (SPENVIS)!. Proton integral
flux (E > 10 MeV) at 500 km goes from 1 to ~ 2x10% cm~2 s~ [28].

transport of GCRs through the magnetosphere may be done by the use of
a transmission function which depends on the particle rigidity, latitude and
declination of the observation point [1].

The motion of a trapped particle in the geomagnetic field can be decom-
posed in three components as represented in figure 1.14. The first component
is the gyration of the particle around the magnetic field line following a he-
lical orbit. While it gyrates, the particle reaches regions where the magnetic
field is more intens. This causes a reflection of the particle which experiences
the magnetic mirror force that makes it bouncing back-and-forth. In addi-
tion the geomagnetic field has a gradient in the perpendicular direction of
the magnetic field lines that make the particles drift around the Earth. The
drift motion usually takes from minutes to hours; the bounce motion seconds
to minutes and the gyro motion milliseconds to seconds.

In the Low Earth’s Orbits (LEO altitudes 100-1000 km [18]) where many
space missions are present, there is the AMS-radiation belt. In this region
quasi-trapped particles of energy up to few GeV/nucleon were observed by
the AMS mission in the 1998. These particles are Secondary Cosmic Rays
produced by the interaction of the primary GCRs with the upper layers of
the atmosphere. In addition the LEO intersect the South Atlantic Anomaly
(SAA) a region of space where the geomagnetic field is particularly week and
so energetic particle may reach the altitude of about 500 km (see figure 1.15).

At higher altitudes (1000-36000 km) there are the Medium Earth Orbits
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Figure 1.17: Trapped electron belt. From AE-8 MAX (SPENVIS)!. Electron integral
fluxes (E > 1 MeV) go from 1 to ~ 3x 10° em~2 s~1 [28].

which intersect the inner radiation belt populated most of all by protons
in the energy range 10 - 100 MeV (see figure 1.16) but there are also less
energetic electrons. The population of this region is quite stable even if it
can vary with the solar activity. These particles come most of all from the
Cosmic Ray Albedo Decay. Neutrons are generated by the collision of cosmic
rays with the atoms of the atmosphere. For example a proton with energy
of 5 GeV produces about seven neutrons a fraction of which diffuses in the
out direction of the magnetosphere where it decays in protons and electrons
which become trapped particles [17].

!The AP-8 and AE-8 models consist of maps that contain omnidirectional, integral
electron and proton fluxes in the energy range 0.04 MeV to 7 MeV for electrons and 0.1
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At the altitude of 36000 km there is the geostationary orbit which is used
for space communication satellites. This orbit intersects the outer radiation
belt which contains most of all electrons of energies up to 10 MeV (see figure
1.17). These electrons are most of all the result of geomagnetic storms and
so their density population fluctuates very often.

MeV to 400 MeV for protons in the Earth’s radiation belts. The maps are based on data
from more than 20 satellites [29].
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Chapter 2

Electromagnetic Energy Loss

Charged energetic particles, like cosmic rays, lose energy while passing through
matter by Coulomb interactions with the electrons and with the nuclei of the
material. To calculate the energy loss it is necessary to determinate the dif-
ferential scattering cross section for energy transfer which depends on the
specific interaction potential V(7). For charged particles, as cosmic rays, the
Coulomb scattering process will be analyzed in details. Particular attention
will be paid on the nuclear collisions mechanism which is responsible for the
formation of defects inside the material. The electronic energy loss and its
fluctuations will be also reported for completeness.

2.1 Coulomb Scattering Process

In this section elastic collisions between two particles will be considered. The
collision is elastic if the total kinetic energy of the two particles remains the
same before and after collision. The problem can be analyzed in three systems
of reference: relative, center of mass and laboratory system. In the relative
one the interaction is viewed by an observer fixed at the target position while
the mass of the collision partner is equal to the reduced mass. The advantage
of using this system consists in reducing the two particles problem into the
interaction between a fixed scattering center and an effective particle of mass
equal to the reduced mass.

2.1.1 Non-Relativistic Scattering

The scattering problem may be solved by introducing the position of the
center of mass R and the relative position r of the two particles defined
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as [30]:

R — miry + Meolg _ (TTL11'1 + m2r2) (21)
my + Mo M

r = r;—7ry (2.2)

where m; and my are the projectile and target particle masses respectively
and M = mj; + msy. The two-body problem is separated into the motion
of the center of mass R, viewed from the laboratory system, and into the
relative motion r which is the trajectory, viewed from the target particle,
described by an effective particle with mass equal to the reduced mass u
whose non-relativistic expression is given by:

~1
1 1 mim
= (— + —) =—2 (2.3)
mp Mo my + Mma
The total energy of the system is equal to:
1 . 9 1 .9 1 - 2 1 .9
FEior = 3 + 572l +V(r)= §MR + SHE + V(r) (2.4)

where the first term on the right side of the equation is the kinetic energy of
the center of mass and the sum of the other two terms defines the relative
energy:

1
E, = §/ﬂ‘2 + V(r) (2.5)

The motion of the center of mass, viewed from the laboratory system, is
rectilinear uniform along a straight line. The relative motion instead may be
described by the motion of the effective particle of mass g which moves along
a curved trajectory described by r, in a fix plain as shown in figure 2.1. At
large distances the relative energy is simply given by:

1
E, = 5’“U2:E

ma
! my + Mo (26)
where v is the relative velocity which is equal to projectile particle velocity
vy if the target is at rest before scattering, and E; = myv?/2 is the kinetic
energy of the projectile particle.

The relative motion may be obtained from the equation of motion written
in polar coordinates (r,y). Eliminating the ¢ coordinate it is possible to
obtain the radial component of the relative velocity as [30]:

'r'*::Fv{l— VE(? —i—Z} (2.7)
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Figure 2.1: Scattering process in the relative frame of reference. v = v’ initial and final
velocities; b = b’ initial and final impact parameters; 7, ¢ polar coordinates; r,, distance
of closest approach; 6 scattering angle; u reduced mass; O origin of the scattering center.

where b is the impact parameter. This expression enables one to obtain the
distance of closest approach r,, by the equation:

Vr, b?

that is when the radial velocity vanishes. The distance of closest approach
depends on the impact parameter b and on the interaction potential V' (r).

The angle of deflection or scattering angle can be obtained from the equa-
tion of the trajectory and it is equal to [30]:

< b vi) ) ¢

It is important to say that for a given interaction potential the scattering
angle depends only on the impact parameter b and on the relative energy E.,.

The scattering problem may be also solved in the center of mass (CM)
system where the origin of the coordinate axis is fixed at the center of mass
position:

mir + mar
Rey — 24 1CM 2facM _ (2.10)
M
where the CM index refers to the center of mass coordinate system.
The positions of the two particles in the CM system are related to the

laboratory system ry,ry coordinates, to the CM’s position R (2.1), and to
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b,’

Figure 2.2: Scattering process in the center of mass frame; r trajectory of the relative
motion; r1car, Tacn trajectories of the projectile and target; b; = b/ initial and final impact
parameter (¢ = 1,2); b = by + by impact parameter in the relative frame of reference; 6
scattering angle in the relative system; 8¢ scattering angle in the CM system.

the relative position r (2.2), by:

m
ricy = Ty — R = ﬁr (211)
rocy = T'o—R= —%r (2.12)

An observer in the origin will see the two particles approaching each other
before the collision and after the collision he will see them moving far away in
opposite directions. The trajectories of the two particles will remain parallel
before and after the collision, and since the relative velocity can also be
written as r = rycy — I'oou, the two trajectories will also be parallel to the
relative one as shown in figure 2.2. This has the important consequence that
the scattering angle of both particles in the center of mass system, is equal
to the one of the effective particle in the relative frame of reference:

Orom = boom =0 (2.13)

which is given by the equation (2.9).

In the center of mass system the momentum and the energy are conserved
and since the position of the CM is fixed (2.10) the total momentum is equal
to zero: '

MRey = mation + maTacy = 0 (2.14)
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Figure 2.3: Scattering in the laboratory frame. ry, ry projectile and target trajectories,
b impact parameter; 6;, 65 deflecting angles.

which implies that the momenta of the two particles are equal and opposite:
mition = —Malacm (2-15)

By the use of the (2.11) with the reduced mass definition (2.3), it is possible
to obtain:
mli‘ch = /LI‘ (216)

i.e. the momentum of the effective particle is equal to the momentum of the
projectile particle in the CM system.

Once that the problem is solved in the center of mass system, all the
quantities can be obtained in the laboratory system. The initial momenta of
the two particles before collision can be obtained from the (2.11) and (2.12):

p, = ur+mR (2.17)
p;, = —ur+meR (2.18)
The final momenta after collision p}, p, can be obtained from the initial ones

by eliminating the center of mass velocity and considering that the relative
velocity remains unchanged after collision:

. m

py = pr'+ Ml(pl +py) (2.19)
. m

p, = —pur' + ﬁ(pl + py)- (2.20)
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where 1’ is the relative velocity after scattering whose absolute value is equal
to the one before scattering (/' = 7). If the target is at rest before scattering
(p, = 0), then the z and y components of the momentum projectile particle
after scattering are given by:

r) ppcosty = m'“cos@%—%pl (2.21)
y) pysind; = prsinf (2.22)

where 6 is the scattering angle of the projectile particle (in the laboratory
system of reference). The ratio of the y component over the x one, together
with the definition of the reduced mass and of the relative velocity (which
in this case is I = r), enables one to obtain the scattering angle of the
projectile particle in the laboratory system 6, as a function of the relative

scattering angle 6 i.e.:
sin
m
—L 4 cos
mo

tan ) = (2.23)

The same can be done for the scattering angle of the target particle. The
(2.20) can be decomposed as:

x) Py cos by = —urcosf + %pl = ur(1 — cosf) (2.24)
) —pysinfy = —pr-sin 6 (2.25)

where it has been considered that p; = myry = m 7. From the ratio of these
last two equations it is possible to obtain:
sin 6
tanfy = ——— 2.26
a2 1 —cosf ( )
or equivalently that 6, = (7 — 6)/2.

The final kinetic energies of the projectile and of the target are simply
given by B} = p2/(2my), EY = p/(2ms). If the target is initially at rest,
then its kinetic energy after collision, denoted by 7', can be calculated by
squaring and summing the two equations (2.24), (2.25):

mims
M?

_ py _ (ui)? :
T=EFE,= 277212 = g [(1 — cosf)? +sin#?] =

Ey2(1 —cosf) (2.27)

and remembering that 2(1 — cosf) = 4SiHQg the energy transferred by the
projectile particle to the target one is equal to:

6
T = T}pyaz sin® 3 (2.28)
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where T,,,, is the maximum energy that can be transferred during a single

collision i.e.:
4m1m2

M2
The scattering process in the laboratory system is schematized in figure 2.3.

Traw = E (2.29)

2.1.2 Relativistic Treatment of Scattering

Cosmic rays are high energy particles thus the treatment described so far has
to be generalized to a relativistic treatment of scattering. In any frame of
reference a particle of rest mass m and velocity v has momentum equal to:

p = mvy (2.30)

where 7 is:
1
V= (2.31)

N
and 3 = |v|/c. The relativistic total energy is given by:
& = mcy (2.32)
that can be also written as:
E=mc*+E (2.33)
where F is the kinetic energy of the particle which can be expressed by:
E=mc(y-1) (2.34)
Another useful relation between total energy and momentum is:
&* = (pc)* + (mc?)? (2.35)

which together with the (2.32) and the (2.31) enables one to write:

1 me?\ 2

— =1 <—) 2.36

7 e (2:36)
The total energy & and the three components of the momentum p form the
four-vector:

2
(alaa2)a37a4) = (p.t)py)png) (237)
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with 2 = (—=1)%/2. The Lorentz’e transformations between the laboratory
frame of reference to another inertial frame, which moves with velocity V'
parallel to the x axis, are:

61 — Z(V/C)a4

a; =
V1-=V2/c?
Ay = 62
as = 63
o = atdVidm (2.38)

V1=V2/c?
where the @; components refer to the moving frame of reference. If the center
of mass moves with velocity V' along the x axis, the transformations (2.38)

enable one to pass from the center of mass system to the laboratory system
and to obtain the energy-momentum components:

peom + (V/A)écm

Y VIR

by = Dycm
P = DP.cMm
& V ps
£ — cM TV Pzom (2.39)

V 1— gm
where (., = V/c is the velocity of the center of mass viewed from the labo-
ratory system. These latter relations can be used to deduce the coordinates

of the four-vector in the center of mass system as a function of the laboratory
system coordinates i.e.:

pe — (V/AE
Pzom = ﬁ
Pycm = Dy
Pcm = Pz
o = M (2.40)

V 1 - gm
During a scattering process of a projectile particle of rest mass m; which
moves with velocity vy, and a target particle of rest mass msy initially at rest
in the laboratory system (p, = 0), the conservation of momentum and total
energy are equal to:

P, = P;+p) (2.41)
E+E = E+E (2.42)
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where & = myc? and the primed quantities are momenta and total energies
after scattering. If both particles before scattering are considered as a unique
system of total energy (&1 + &) then from the relations (2.30) and (2.32) the
total momentum is equal to:

E + &

c2

P \% (2.43)
where V is the velocity of the center of mass seen from the laboratory system.
The equation (2.43) is useful to deduce a relation between (., the total
energy of the system & and the momentum of the projectile particle p;:

2 (p10)2 512 - (m102)2

= = 2.44
em ((ggl + m202)2 (éal + m262)2 ( )

In the center of mass system, the conservation of total momentum and total
energy are:

Pica +Pocr = Plom + Paour (2.45)
Siom +Exom = Elon + Eaon (2.46)

With the use of the transformations (2.40) and of the relation (2.43) it is
possible to demonstrate that in the CM system the total momentum before
and after scattering (2.45) is zero and, as a consequence, the two particles
have equal momenta with opposite directions before and after scattering:

Picv = —Pocom (2-47)
P/10M = _p/QCM (2-48)

which is equivalent to say that their trajectories remain parallel during the
scattering process as in the non-relativistic case. The use of the relation
between total energy and momentum (2.35) for both particles before and
after scattering together with the (2.46) leads to:

or equivalently to:
p%CM = p/12CM; ngM = P/220M (2.50)

that is the modulus of the momentum is the same before and after scattering
for both particles. This last observation together with the (2.47) and (2.48)
enable one to say that the scattering angle 6 in the center of mass system
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is the same for both particles as in the non-relativistic case. In addition the
total energy of both particle is the same before and after scattering (2.49).

Before scattering the total energy and momentum of the target particle
in the CM system can be obtain from the transformations (2.40) together
with & = mayc? and py = 0:

2
moC
Ecnm = \/ﬁ (2.51)
mQV
- ch
This latter relation implies that voons = —V. After scattering the corre-

spondent quantities can be deduced considering that the energy is the same
before and after scattering (equation (2.49)) and that the momentum remains
invariant in modulus (equation 2.50) while its components depends only on
the scattering angle 6:

mo C2

om = \/ﬁ (2.53)
V
Phoy = _L(COS 6,sind,0) (2.54)

V 1— 602771
For the projectile particle the momentum before and after scattering are

simply achieved considering the equations (2.47) and (2.48) ploy = —Phor-
The total energy before and after scattering are:

Eiem = Eloy = \/ (Plea€)? + (myc?)? (2.55)
Vv 2
\/% + (myc?)? (2.56)

where it has been considered the relation (2.35) and the transformations
(2.40).

Once that the problem is solved in the center of mass system, the final
quantities in the laboratory system can be obtained from the transformations
(2.39). The total energy of the target particle after scattering is equal to:

,1— 32 cos®
11— 32

cm

(2.57)

&y = mac
where the  component of the momentum (2.54) has been used. The (2.57)
can be rewritten substituting the 32 given by (2.44):
mac? [&F — (mic?)?]

(m1c?)? + (mac?)? 4+ 28 mac?

&y = maoc® + (1 — cosb) (2.58)
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which, by the use of (1 — cos#) = 2sin*(6/2), becomes:

2moc® [6F — (myc?)?] 0
&y = mayc® : in — 2.59
2 = M (m1c2)? + (moc?)? + 28 mayc? Y (2.59)

Since & = myc® + Eb where E} is the kinetic energy of the target after
scattering which is equal to the second term on the right side of the (2.59) it
is possible to write the kinetic energy transferred to the target particle after
scattering as T' = Fi:

0
T = T)pae sin® 3 (2.60)

where T}, is the relativistic maximum kinetic energy that can be transferred
during the single collision:

(2.61)

The denominator of the (2.61) is equal to the square of the total center of
mass energy &.,, when the target particle is at rest:

Eom =/ (M12)2 + (Mac?)? + 286 mac? (2.62)

The maximum energy 7T,,.,, can be written in a more compact form as a
function of the initial kinetic energy of the projectile particle E;. The second
term at numerator of the (2.61), which is equal to (p;c)? can be rewritten as:

&2 — (mic?)? = E? +2m B, = E(Ey + 2myc?) (2.63)
The denominator of the (2.61) assumes the form:

(m1c®)? + (mac®)? + 28mac® = (mic? + mac?)? + 2mac? (& — mic?)

= (mic® 4+ mac®)? + 2myc® By
With these two last equations the (2.61) becomes:

2E1 (El + 2m102)

Toas = (2.64)

2

(1 + ﬁ) moc? + 2F,
mgy

The final total energy of the projectile particle can by obtained from the

conservation of total energy (2.42) together with the expression of &, given

by (2.58):

mac? [EF — (mic?)?]

(m1c?)? + (mac?)? 4+ 28 mac?

El=8E+E—E =86 — (1 —cosf) (2.65)
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The three coordinates of the final momentum of the target particle are ob-
tained from the transformations (2.39) together with (2.54) where &;,, is
given by the (2.53):

m2V

P = T (1—cosf)
’ . TTLQV . 0
Py = —\/ﬁsm

Po. = 0

The correspondent quantities for the projectile particle are obtained consid-
ering that plcy, = —Pheass together with &7, given by (2.56):

Vv
B = o (macosd i, i = 22 )
’ . m2V ino
Py = \/ﬁsm
Pr. = 0

All these quantities solve the kinematic scattering problem considering only
the conservation laws of total energy and total momentum.

The Coulomb scattering problem may be also solved in the relative frame
of reference whit the introduction of an effective particle of mass equal to the
reduced mass of the system. The relative momentum p,., which is associated
to the effective particle, is equal to:

Pr = [ Ve Ty (2.66)

where v, is the relative velocity and p, is the relativistic reduced mass which
can be written by the Todorov’s definition as [41] [39]:

_ mymac?

= 2.67
Ju & (2.67)

where &, is the total center of mass energy defined as:

gcm = \/(@@1 + éBQ)Q - (pl + p2)2 (268>

If, before scattering, the target particle is at rest in the laboratory system
then &, is given by equation (2.62) The effective particle total energy &, =
prc?, can also be written as [41]:

&2 — (mi?)? — (mac?)?
- Qgcm

&, (2.69)
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As in the non-relativistic case, the relative momentum is equal to the mo-
mentum of the incoming particle calculated in the CM system i.e.:

P, = Picm = —Pocm (2-70)

which implies that the scattering angle of the effective particle is equal to
the one of the two colliding partners calculated in the CM system, as in the
non-relativistic treatment, i.e.:

0= 910]\/] = 020M (271)
The total center of mass energy can be written equivalently as [39]:
En = Mc* + E, (2.72)

where Ej, is the total kinetic energy of the system. If £, < Mc?, the rela-
tivistic reduced mass approaches the non-relativistic one p whose expression
was given in equation (2.3), i.e.

2
_ MimaC Mg (f Sem

/lr——@@cm Iy 2
In addition when the rest mass of the incoming particle m; is much smaller
than the target rest mass msy, the reduced mass u, approaches m;. This
can be seen considering the equations (2.67) and (2.62) together with the

condition m; < meg, i.e.:

—>M>

L &z, _(mac®)? + (mac?)? + 26 mac? N
p2 (mymac?)? (mymayc?)? -
&1
(mac®)? 4+ 261mac® 1+ 2m262
(mimac?)? N m?2 B

m
2
_ ~ 2.73
As a consequence, also the effective particle velocity [, approaches the ve-
locity of the incoming particle calculated in the CM system [(icp;. This
can be demonstrated remembering that p, = pyoy (equation (2.70)) and
considering the equation (2.36) with m; < mq (i.e. g, ~my ):

1 T2 2 r2 2
B () e ('
ﬁr brC bPicmcC
2 2 1
~ 14 () = (2.74)
PicmC 51()]\4

The reduced mass treatment is necessary when the mass of the incoming
particle is not negligible compared to the target one.
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Figure 2.4: Schematic representation of the wave packet during a scattering process in
the relative frame of reference. As width of the wave packet; Af uncertainty in the direc-
tion; p wave packet momentum; Ap uncertainty in the momentum; b impact parameter;
rm (b, E,) distance of closest approach; 6 scattering angle.

2.2 Limits of Non-Relativistic and Relativis-
tic Coulomb Scattering

The non-relativistic and the relativistic scattering processes described so far
employ particles, scattering angles and trajectories. These classical concepts
however are no longer appropriate when the Heisenberg’s uncertainty prin-
ciple becomes important [30].

In the quantal description a particle is represented by a wave packet of
width equal to As and of group velocity equal to the incident particle velocity
v. The spread of the momentum Ap may be estimated by the uncertainty
principle:

ApAs ~ h (2.75)

where h is Planck’s constant. Figure 2.4 gives an idea of this wave packet.
A non-quantal description is possible when As is negligible compared to the
distance of closest approach r,,:

As L (b, Ey) (2.76)

where r,,, in general, is a function of the impact parameter b and of the
relative energy F,. The (2.76) condition is equivalent to give a condition to
the momentum uncertainty:

Ap > (2.77)

Tm(b, Ey)
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In addition the uncertainty of the momentum leads to the uncertainty of the
angular spread of the wave packet Af which has to be negligible compared
to the scattering angle 6:
A
A~ < (2.78)
p
Combining the (2.77) with the (2.78) it is possible to obtain a condition for

the scattering angle:

h
S 2.
e p rm(b, Ey) 279)

For too small scattering angles, which correspond to large impact parame-
ters, a quantal description of the scattering process is necessary [30]. This
condition gives also a lower limit in the energy transferred 7,,;, which has to
be used in the computation of the stopping power:

emin
Tmin = dmax Sin2 9 (280)

One example is the unscreened Coulomb potential which goes to zero for
b — oo. In fact, the differential scattering cross section, obtained from the
unscreened Coulomb potential, diverges for very small scattering angles, as a
consequence the stopping power doesn’t have a finite value. On the contrary,
if the Coulomb potential is screened, the lower energy limit 7,,,;, may be set
to zero without problems because the scattering cross section doesn’t diverge.

2.3 Non-Relativistic Differential Scattering Cross
Section

During irradiation experiments or in the space environment, the problem of
scattering becomes more complex because all the target atoms of the material
are subjected to fluxes of many projectile particles. As a consequence there
will be many scattering angles and impact parameters which depend on the
interaction potential (see equation (2.9)). In this case the problem may be
described introducing the differential cross section do(6)/dS2 in the relative
frame of reference. Inside the material all the target atoms may be considered
fixed and, for simplicity, the projectile particles have homogeneous flux given
by ¢ = nv where n is the number density of projectile particles and v is their
velocity. The number of particle incident per unit time within the interval
[b; b+ db| of the impact parameter b, must be equal to the number of particles
emerging after collision within the solid angle df2 i.e.:

do(0)

2mb db = ¢ —

a0 (2.81)
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Considering that df) = 27 sin 6d6 it is possible to obtain the relation between
differential the cross section and the impact parameter:

do(6) b

dQ  sind

db
do

(2.82)

where the absolute value is taken because db/df is often negative while
do(0)/dS is define positive.

2.3.1 Unscreened Coulomb Potential

The differential scattering cross section can be easily obtained for the un-
screened Coulomb potential, where the effect of the electrons on the term
Z175€? is not considered:
7\ Zye?
r
With this potential the integration of the scattering angle (2.9) gives the
result [30]:

V(r) = (2.83)

212262

6
sin o 2bE, (2.84)

212262 2 2
1+ ( )
20F,
from which it is possible to obtain a simple relation between the scattering
angle and the impact parameter:

1 21Z2€ 1
—_— 2.85
2 E tang ( )
so that: 1 P .
L142€” 26

2
The differential cross section (2. 82) is given by:

2
da(@) Z1Z2€2 1
2 :( ) = (2.87)

S 5

[\

or, by substituting the F, expression (2.6), it can be written as:

2
dO’(‘g) Z122€2 1
= 2.
dQ) ( 2uc? sin4§ (2.88)
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The differential cross section may be also given as a function of the kinetic
energies. Since the energy transferred to the target particle is a unique
function of the scattering angle (see (2.28)), the number of particles that
have transferred a kinetic energy 7T to the target atoms must be equal to:

do(T,Ey) ., do(0)
dr a1 = s

0 (2.89)

where do (T, Ey)/dT is the differential cross section for energy transfer. Dif-
ferentiating the (2.28) leads to:

Tmaac

0 0
dTl =T,,.. Sin 3 cos 3 df = sin 6 df (2.90)

where T4, is given by (2.29). Substituting the (2.90) in the (2.89) and
remembering that d{) = 27 sin #df, leads to:

do(T,Ey) do(f) 4n
dr — dQ Thes

(2.91)

Substituting the do(6)/dS2 given by (2.87) and considering that:

0 T\’
sin4§:(T ) (2.92)

gives an expression for the (2.91) which becomes:

2
dO’(T’ El) _ 47T<ZlZQ€Z> Tmax (2 93)

dr 4FE, T2

Substituting in the (2.93) the E,. expression given by the first equation of the
(2.6) it is possible to obtain:

o 7| T (2.94)

2

do (T, Ey) (legé) T

—_— =T

The do (T, Ey)/dT may by also written as a function of the incoming particle

kinetic energy E; by substituting in the (2.93) the T, expression given by

(2.29) and the E, one given by the second equation of (2.6):
dO'(T, El) maq (212262)2 1

=T—

— 2.95
dT mo El T2 ( )

which is the classical Rutherford differential cross section.
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2.3.2 Universal Screening Potential

Inside the material, however, the interaction potential is not simply given by
the Coulomb potential (2.83) because the atomic electrons screen the nucleus
charge. The screened Coulomb potential may by expressed as:

_4he (2.96)

r
where x(7) is the screening function which depends on the atom model, that
is on the electrons charge distribution. Many analytical forms of the screening
function can be found in literature which are based on the Thomas-Fermi
model. The Thomas-Fermi model assumes that electrons can be treated like
an ideal gas uniformly distributed inside the potential well of the positive
charge nucleus. These models, however, simplify the problem because they
don’t consider the shell structure of the atom.

Zeigler, Biersack and Littmark (ZBL), instead, used a model in which
electrons are spherically symmetric distributed around the nucleus. ZBL
performed the screening function calculation for a large set of target and
projectile particles. Their numerical result leads to the universal screening
function given by [1]:

X(x)y =~ 0.01818 exp(—3.2x)
+0.5099 exp(—0.9423z)
+0.2802 exp(—0.4028z)
+0.02817 exp(—0.20162) (2.97)

V(r)

where = r/ay is the reduced radius and ay is the universal screening length

given by:
1/3
- 971'2 ao ~ 0.88534 Qo (2 98)
Uo\128 ) (297 Z9B) T (297 + 297 '

and ag = h*/m.e? = 5.29 x 10~cm is the Bhor radius.

The differential scattering cross section for the universal screened potential
doesn’t have an analytical expression but must be solved numerically. Lind-
hard Nielsen and Scharff (1968) introduced the one parameter differential
scattering cross section which, in reduce notations, can be written as [31]:

do(T, E;) ra® f(t2)
—————dT = ——=—=dt 2.99
dT 2 43 (2:99)
where ¢ is a dimensionless parameter given by:
T
t=e2—— 2.100
‘ Tmaa: ( )



and € is the ZBL reduce energy:

ay meo
= FE 2.101
¢ Z12262 (ml —+ m2> ! ( )

the term f (t%) is referred to as the Thomas-Fermi scattering function.
Littmark and Ziegler (1981), by mans of a spline fit, gave a quite complex

expression for the f(¢2) function [32]. A simplified analytical form was given
by Nastasi et al. (1996) i.e.:

F(E2) = M2M[1 + (202 ™)9] e, (2.102)

For the universal ZBL potential Nastasi et al. [33] gave the following values
of the fitting parameters: A = 5.012, m = 0.203, ¢ = 0.413, in the range
1076 < ¢1/2 < 10*. This expression of the Thomas-Fermi scattering function
was also used by Messenger et al. (2003) [50] to compute the Non-Ionizing-
Energy-Loss for heavy nuclei, as it will be explained in sections 3.2.3 and
4.1.

2.4 Relativistic Differential Cross Sections

To determine the scattering angle and, as a consequence, the differential
cross section, it is necessary to solve the equation of motion inside which
the proper interaction potential must be inserted. For a detail calculation
in the relativistic regime the delay time interaction between the two parti-
cles must be taken into account because of the finite propagation velocity
of the electromagnetic signal. The definition of the differential cross section,
instead, remains the same as in the non-relativistic limit because of its sta-
tistical nature. The value of the differential cross section which was used
(Jun et al. [34]) for the calculation of the displacement damage caused by
protons in the space environment, was derived from the well known electron
differential cross section. The relativistic differential scattering cross section
for electrons (mass m,. and velocity v.), with a target atom of mass msy, was
calculated by Darwin (reference in [30]):

T, = o=,
S (2.104)

Ve

(2.103)
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where do(6)g/dS2 is the non-relativistic Rutherford cross section given by the

(2.88):
2
do(0) Zye? 1
~ 2.105
dQ ‘R <2meU§ sin* ( )
where it has been considered that p ~ m,, since m, < my. The (2.103) is
then equal to:
2
do (6 Zye? 1
o )‘ - 2¢ _—_ (2.106)
dQ) bR 2mec® 327, | sin® §

By the use of the transformation (2.91) and of the (2.92), the DR differential
cross section (2.106) can be written as:

2
2262 Tma:v

= 2.107

DR 7T<mecQ ﬁg%> T2 ( )

The maximum energy transferred by an electron can be calculated by the
(2.64):

dO'(T, El)
dT

E.(E. + 2m.c?)

moc? + 2F,
where E, = E is the kinetic energy of the incoming electron, and it has been
considered that m; = m, < mo.

This result was extended in the quantal case by Mott (reference in [30])
who calculated the quantal cross section for electrons scattering with a target
nucleus of charge Zse. The resulting infinite series was fitted by McKinley
and Feshbach (reference in [30]) who gave the following analytical function
which is valid for elements of Zy < 30:

do(0) B da(@)‘
dQ \mer  dQ) IR

where do(0)pr/dS) is given by the (2.103) and a = e?/(hc) is the finite
structure constant. The same approximated function can be used to obtained
the differential scattering cross section for energy transferred by incident
electrons [30]:

Tmax =

[1 — (32 sin® g + ZyofBemsin g (1 — sin® g)} (2.108)

dO’(]j7 E1> dO'(T, EI)DR 2 T T T
go\l, b)) _ 29\, BpRr g Zsa3, 1—
dT McF dT ﬁe Tmam + 2a/6 T Tmam Tmam
(2.109)

This expression of the differential cross section was derived without consid-
ering the radiative energy loss of electrons and considering the nucleus as a
point like particle during scattering.
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Seitz [38] proposed to use this last expression to calculate the differential
cross section for incident protons and light incident nuclei of charge Z;e, pro-
viding that the incident particle has mass m; < my. The general differential
cross section for energy transfer, for light incoming particles, is then equal

to [38], [35]:

2
Zl Z2 62 Tmaa: 2 T T T
Seitz W(ml 2 ﬂ2’7) T2 |: ﬁ Tmag; * QO[ﬁﬂ- Tmax Tma:c

(2.110)

This is also the expression that was used by Jun et al. [34], [35] to calculate

the Coulomb fraction of the displacement damage induced by protons on
silicon materials for space applications.

Another relativistic differential cross section is given by Starusziewicz and

Zalewski (SZ) who solved the relativistic Coulomb scattering problem in the

relative frame of reference. Their relativistic differential cross section is equal

to [40]: 9
da(&)‘ _(&Z@e?) L (2.111)

dU(T7 El)
dTl’

dQ lsz 2(prc)? sin” §

where the term &, is the effective particle total energy. This differential cross
section may be also written as:

2
do(0 YAVAY 1
o )‘ _ 12 226 _ (2.112)
dQ) sz 2By, | sin® §
where it has been considered that the total energy of the effective particle is

&, = pu,.c*y, and that the quantity (p.c)? may by written as:

(prc)® = (1 Byyr)’ (2.113)
Since sin*(6/2) = (1 — cos)?/4, another form for the (2.112) is:

2
dO'(Q) 212262 1
= 2.114
dQ ‘SZ (prc Br ] (1 —cosf)? ( )

The differential cross section (2.112) can also be written as a function of the
kinetic energy of the recoil target T" and of the incident particle E; as:

2
Z172€* \ Thnas
_ W( L2 ) ‘ (2.115)
sz Wi C? B2, T
which has the same form of the relativistic differential scattering cross section

for electrons given by Darwin, i.e. equation (2.107), and of the one given by
Seitz, i.e. equation (2.110), except for the terms in parenthesis.

dO'(T, El)
dT
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2.5 Stopping Power

A projectile particle of initial kinetic energy F; losses energy while traversing
a target material by collision processes with electrons and atoms. The total
energy loss per unit path length is given by the sum of these two scattering
mechanisms:

dFE dE

Cdr e dr

where the indexes e and n refers to electron and nuclear collision respectively.
The average energy loss for each process ¢ = e, n is calculated by the integral

[33]:
Tmaz  do(T, Ey)
=N T———2dT 2.117

_dE

tot dx

(2.116)

n

_daE
dx

where N is the density number of targets which can be equal to the electron
density ZoNap/As, or to the atom density Nap/A; of the material according
to the scattering mechanism; do (T, E7)/dT is the differential scattering cross
section for energy transfer; T is the kinetic energy transferred to the target
particle. The integral has to be performed from a minimum kinetic energy
Trin to the maximum energy that can be transferred by a single collision
Trnaz-

2.5.1 Nuclear Collision Energy-Loss

The evaluation of the nuclear collision energy loss is usually performed by
the use of the stopping cross section defined as [33]:

Tmaz  do (T, Ey)
= T———2dT 2.118

where N = Nyp/As. The nuclear stopping cross section S,(E;) can be
written in the reduce notation as S,(€) [33]. i.e.:

Soe) = — <M2 >Sn(E1) (2.119)

7ra2UE1 4m1m2

where € is the ZBL reduce energy given by (2.101) and ay is the universal
screening length given by (2.98). Substituting the (2.118) in the (2.119) leads

to:
2 Tmaz
Sn(€) = ¢ ( M >/ TMdT (2.120)
0 dT

7T(1,2UE1 4m1m2
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where the minimum kinetic energy was set to zero (I, = 0) [33]. The
kinetic energy transferred to the target is given by (2.28) and the differential
cross section may be given as a function of the scattering angle do (T, ) =
do(#). In addition, since the scattering angle is a function of the impact
parameter b (2.82), it is convenient to use do(d) = 2mb db, so that the
equation (2.120) can be written as:

Su(e) = a%/() sin’ (g) 2 db (2.121)
U

where the integration is performed over all possible impact parameters.
Zeigler, Biersack and Littmark deduced the nuclear universal stopping power
by performing the integral (2.121). They first numerically evaluated the scat-
tering angles by the integration of the (2.9) inside which the potential expres-
sion V/(r) is given by the screened Coulomb potential (2.96) with screening
function x(z)y equal to (2.97). They also gave the curve that fits the nu-
merical results which is equal to [1]:

In(1 + 1.1383¢)

if € <30; S,(e) = 2.122
es30 Sule) = Sy Gomsieas 1 0.1050805) (212
l
if € >30; Sp(e) = "2(6) (2.123)
€

The first fitting function (2.122) gives the stopping cross section for low
energy particles for which the collisions become less penetrating and the
interaction potential must be screened by electrons. The second equation,
instead, (2.123) gives results in the high energy range where the screening
effects are less important. In this case the interaction involves the inner
parts of the atom and so the differential cross section tend to the unscreened
Rutherford one (2.93).
The universal nuclear stopping power can then be written as [1]:

dE 3 JAVA) mo
T . = 5.1053 x 10 (20 + 205) (W) Sn(€) (2.124)
where the numerical constant is given in order to express the stopping power
in MeV ecm™!. In figure 2.5 the universal S, (¢) stopping cross section is
reported with four other screening functions. All curves overlap for ¢ > 10
which means that the screening effects can be neglected at high energies.
Deviations arise in the low energy part of the plot where differences in the
screening functions become evident.
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Figure 2.5: Universal stopping cross section in reduced notation compared with four
other non-relativistic calculations [33].

It has to be remarked however that the universal stopping power was cal-
culated in the non-relativistic limit. To evaluate the nuclear collision energy
loss by the integral (2.117) in the relativistic regime, it is necessary to use one
of the differential scattering cross sections given in section 2.4 which however
don’t consider screening effects.

2.5.2 Electronic Collision Energy-Loss

The electronic energy loss formula for an incoming relativistic particle of
velocity v = B¢ and charge Z;e is given by [1]:

dE| _ 27Nt zngp{l {2mec2ﬁszax} g U} (2125)
dr |, mec? A 52 ’(1 - 3?)

where T4, is the maximum kinetic energy that can be transferred by a

single collision, I ~ 11.5Z5 €V is the mean excitation energy of the medium,

0 is the density effect correction term which becomes important for high

velocities, and U is the shell correction term which is important for low

velocity incoming particles.

The first two terms in parenthesis are the result of the mean energy loss
during the scattering process with free electrons (Bethe-Bloch formula) which
is a good approximation when the velocity of the incoming particle is greater
than the velocity of atomic electrons. As the velocity of the incident particle
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decreases the contribution to energy loss caused by the inner shell electrons
decreases progressively. The non participation of the inner shell electrons
to the collision process is considered by adding the shell correction term U
whose expression can be found in ICRU! Report 49 [42].

When the velocity of the incident particle approaches the relativistic
regime its passage through matter influences the atoms of the medium which
tend to become polarized. The density effect correction term takes into
account this effect with the reduction of the stopping power due to the po-
larization of the medium; its expression can be found in [1].

High order correction terms may be added inside the brackets of the
stopping power formula [43]:

F=G-S+22ZL+ ZLy) (2.126)

where G is the Mott correction term which describes the close-collisions and
become important at large velocities and for high Z;; S is the finite size
correction term which takes into account the space distribution of charge of
the projectile particle which becomes visible at energies above few hundred
GeV; Ly is the Barkas correction term which describes distant collisions
where the stopping power of a negative particle is larger than the one of a
positive particle of same velocity and mass. Ls is the Bloch correction term
which becomes important for low velocities. In this case the electrons can’t
be considered free and so the interaction with the nuclei of the material must
be included.

2.5.3 Electronic Energy-Loss Fluctuations

The stopping power formula (2.125) gives the mean value of the energy lost
by electronic collision of a charged particle when it passes through a medium.
Anyway the stopping power has a statistical nature because for each scat-
tering process different amount of energy may be transferred to the atomic
electrons. This effect may be taken into account by calculating the distribu-
tion function for the energy loss.

The probability that a particle of a given energy E loses a total amount
of energy in the range A and A 4 dA traversing a material of thickness z is
defined as the energy loss fluctuation function or straggling function f(z, A).
The first computation of this distribution function was done by Landau [44].
He considered that an incoming particle of energy E has a given probability
per unit length denoted as w, to loss an amount of energy T by a single
collision. He supposed that the total energy lost by the incoming particle is

Hnternational Commission on Radiation Units and Measurements
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smaller than the incoming particle energy (A < Ej) and so the probability
w depends only on T. By means of the transport equation he considered
that the variation of the distribution function on a length dz is equal to the
collision integral:

Of (z,A)
ox

which gives the difference between the number of particles that enter and
those that live the energy interval [A; A + dA]. By means of the Laplace’s
transformation he gave the solution:

flx,A)p = 2%” o e(pA - x/o w(T)[1 - e_pT]dT)

_ /Ooo W) [f(x,A—T) - fx, A))dT  (2.127)

dp  (2.128)
where p is the conjugate variable of the transferred energy for the Laplace’s
transformation, and o is a positive quantity fixed for the integral computa-
tion. This is a general expression which depends on the differential collision
probability function w(7T'). The computation of the integral in the exponen-
tial term of (2.128) was done by Landau which used the expression:

(T) 21 N 4e* Zngzp 1

w = JE—
mec2 A (%2 T2

which is valid when the energy loss is much smaller than the maximum energy

(T' < Thnaz)- This is a good approximation for thin absorbers. The collision
probability per unit path length may be rewritten as:

_&1

(2.129)

T)==> 2.130
W) =2 (2130)
where ¢ is the Landau’s width quantity which is defining as:
27N 4e* ZgZIQp ZQZIQp
§= ( . > A x = 0.1535 A5 r [MeV] (2.131)

After the change of variable {p = u, Landau gave the solution for the distri-
bution function:

flz,A), = @ (2.132)
e(A) = % o etlnu — g, (2.133)
A = %—(1](1%“—%) (2.134)



where Cr = 0.577215 is the Euler’s constant, and the energy 7" is defined so
that: o2
MeC
7T =-In |- —ps 2, 2.135
a7 = —tu | 20 (2135)
Vavilov [45] gave a more general solution to the distribution function and
performed the integral calculation up to the maximum energy 7,,... He used

the Rutherford macroscopic differential collision probability:

w(T) = ¢ L (1 — 3 ! ) (2.136)

Tmaz

which is valid for particles of spin equal to zero [1]. Vavilov used the following
expression for the mean transferred energy:

(A) = g(ln [%} - 2ﬁ2) (2.137)

in which all the correction terms were neglected, and he obtained the expres-
sion for the universal parameter A:

A = %_<1Dﬁ+<éﬁ—52+1—c,3) (2.138)
_ A_Tw_[lnTjam_ﬁ%rl_cE} (2.139)

The Vavilov’s solution is equal to the Landau’s one when ¢ < T,,,.. The
Landau-Vavilov solution has a maximum when the A parameter is equal to:

Ao = —0.229 (2.140)
and the Full Width Half Maximum is about:
FWHM ~ 4.02 €. (2.141)

The )y value enables one to obtain the more probable value for the total
energy loss:

Apmp = (A) + € 1nTi—52+1—Ce+AO (2.142)
Since the terms in parenthesis of the above relation are negative, the more
probable value is shifted towards lower energies respect to the mean energy
loss value. As a consequence the Landau-Vavilov distribution function has
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Figure 2.6: Energy loss spectra of (a) 0.736 GeV/c and (b) 115 GeV/c protons. Con-
tinuous lines are the fitting curves of the experimental data. In figure (b) a magnification
of the tail is reported [46].

an asymmetric shape with a long tail that extends towards high energies.
This tail is due most of all to fast J-rays.

In thick absorbers the Landau solution is no longer valid and when & >
T'naz, the Landau-Vavilov’s distribution function becomes almost a gaussian
function: )

Lo (A=)
\/% oy

where the standard deviation is equal to:

oy = \/ngm<1 - %2) (2.144)

Anyway the Landau-Vavilov solution obtained above for thin absorbers (£ <
Tnaz) deviates from experimental results [46]. This happens because the

flz, A)y ~ (2.143)
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differential collision probability used for the calculation doesn’t consider shell
order corrections and all the computation is done considering the electrons
as free particles. This is true in the limit of close collision when the kinetic
energy transferred to the electron is greater than their binding energy. But
for distant collisions the differential collision probability must be modified
in order to take into account the electrons binding energy. Making this
considerations the modified energy loss distribution may be expressed as the
convolution of a Gaussian function with a Landau-Vavilov solution [1]:

+oo
f@A) = — / Fa, Az x exp

oV 2T
8 Z; 2m.c2 (32
= — i—In| — 2.14
0 \/352 RZ n( I; ) (2.146)

where Z; is the effective number of electrons in the i-th shell, I; is the ion-
ization potential of the i-th shell. The sum is performed over the shells that
satisfy the condition I; < 2m.c?3%. The modified solution (2.145) was com-
pared with experimental results by Hancock and collaborators [46]. They
used a thin silicon detector (~ 300 pum) and they measured the energy loss
of protons and pions in the momentum range 0.7 to 115 GeV/c. Deviation
from the theoretical distribution function are expected to be observed in the
tail because of the lack of d-rays. In figure 2.6 are reported the experimental
results with the fitting function (2.145) for protons of two different energies.
The fitting parameters £ (2.131), A,,, (2.142) and o (2.146) are in good
agreement with the expected ones. The effective most-probable energy loss
of the overall distribution results to be shifted towards higher energy values
of about 3% respect to the Landau-Vavilov parameter A,,, because of the
Gaussian function contribution.

—(A— A

202

dA' (2.145)
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Chapter 3

Displacement Damage

In this chapter the displacement process and the consequent collision cascade
will be described. Afterward the Non-lonizing Energy Loss will be defined
and its tabulated values for different particles will be given. In addition an
overview of the crystal defects induced after irradiation and an example of
device degradation will be given.

3.1 The Displacement Cascade

When a cosmic ray passes through a silicon device, it can transfer to the
target nuclei of the material an amount of energy sufficient to displace the
whole atoms from their lattice positions. The atoms directly displaced by the
incident particle are called primary knock-on atoms (PKAs). A target atom
is displaced form its lattice position only if the incident particle transfers
an amount of energy greater than a threshold value Tj. If the transferred
energy is less than T}y the target atom will not move from its lattice position
but will lose the additional kinetic energy by phonon vibrations sharing its
energy with the crystal lattice. When, instead, the transferred kinetic energy
is greater than T, a vacancy-interstitial defect called Frenkel-pair is formed.

The minimum energy that the recoiling target must have in order to
live its lattice position, is not uniform in all directions but depends on the
direction of the recoiling target particle that is on the scattering angle [33].
Different orientations in the crystal lattice have different energies of displace-
ment barrier and so the threshold energy is distributed in an interval from a
minimum to a maximum energy value. For the silicon material this interval
ranges from 13 eV to 33 eV [1]. To simplify the problem, the different orien-
tations of the lattice crystal are usually not considered and a displacement
energy Ty is fixed. For silicon this value is generally taken equal to 20 eV, 21
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Figure 3.1: Schematic representation of the collision cascade caused by a PKA which
was displaced by an incident particle [33].

eV or 25 eV.

When a Frenkel-pair is formed the PKA leaves behind a vacancy, and
migrates inside the material. According to its initial kinetic energy 7', it will
travel a certain distance as a projectile particle before coming at rest as an
interstitial. If T > T, the PKA will lose its energy by electronic and nuclear
collisions and will be able to produce secondary displacements which in turn
may produce furthers displacements in a collision cascade. This process may
be described by the binary-collision approximation in which the interaction
involves only two atoms. For mono-atomic materials, as silicon, the collision
process, started by the PKA, involves identical atoms and so atomic and
mass number of the projectile and the target are equal.

3.1.1 Displacement Damage Function

In a collision cascade starting from a PKA of kinetic energy T the mean num-
ber of displacements (Ny(T')) is called displacement damage function which
is a measure of the Frenkel-pairs number. The displacement damage function
was firstly calculated by Kinchin and Pease (1955) [47]. In their model the
interaction potential between the PKAs and the target atoms of the mate-
rial is assumed to be equal to the hard-sphere potential. The hard-sphere
potential is a useful approximation for nearly head-on collision in which the
scattering angle approaches m and the impact parameter b approaches zero.

The hard-sphere potential is equal to zero when the two particles are far
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apart and rises to infinity for a distance less than the one of closest approach
so that the two particles are considered impenetrable. At the distance of
closed approach r,, the hard-sphere potential is equal to the relative energy
of the two particles (2.6) with identical masses [33]:

Viry)=E, = = (3.1)

where T is the kinetic energy of the PKA and r,, is simply given by the
sum of the two atoms radii. The impact parameter may be obtained by the
integration of the scattering angle relation (2.9) from 7, to infinity in which
the interaction potential is zero. The result is [30]:

b= ry,cos g (3.2)

which enables one to calculate the hard-sphere differential cross section to-
gether with the equation (2.82):

do(0) b |db| 12
dQY  sinf|do| 4

By the use of the (2.91) the hard-sphere differential cross section for energy
transfer may be obtained:
do(T". T 2
oI T) _ 7y, (3.3)
ar” Tonax
where T" is the kinetic energy transferred to the secondary target atom and
Tnae 18 given by the (2.29) which, for identical particles, is equal to the
projectile PKA kinetic energy (7,4 = T'). The total scattering cross section
may be computed by the integral:

T do(T",T) T rp2
T = S R T// _ Tm T// — 2 4
o(T) /0 T d /0 T d s, (3.4)

This enables one to calculate the probability for a PKA of energy T to
produce a secondary recoiling atom of energy between T” and T" + dT" for
the hard-sphere potential [33]:

1 do(T",T) 7"

ar — 4 |
o) T T (3:5)

P(T", T)dT" =

In a collision cascade starting from a projectile particle of kinetic energy
T > 2T, the mean number of displacements (Ny(7")) may be calculated by:

dT//
T

A1) = [ NPT T = [ V) (3.6)
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In addition Kinchin and Pease considered that particles lose energy only
by nuclear collisions while electronic collisions are not taken into account.
When a secondary target atom receives a kinetic energy less than T} it is not
displaced from its lattice site. Atoms that receive an amount of energy in
the range between T, and 27Ty are displaced but do not contribute in further
displacements. With this simplified model Kinchin and Pease were able to
give a linear relation between the displacement damage function and the
initial kinetic energy of the PKA [47]:

T

(V) = 5=

(3.7)
This calculation, however, overestimates the number of displaced atoms be-
cause atoms slow down only by the hard-sphere interaction potential and the
electronic energy loss is not considered.

3.1.2 Damage Energy

Robinson and Torrens [48] improved the collision cascade model of Kinchin
and Pease by introducing the electronic energy loss process and by the use
of a more realistic interatomic potential. The interatomic potential used
by Robinson and Torrens is the screened Coulomb potential (2.96) with
screening function given by the Moliere’s approximation of the Thomas-Fermi
model, given by:

x(z) = 0.35exp(—0.3x) 4+ 0.55 exp(—1.2z) + 0.10 exp(—6x) (3.8)

where = = r/ap and ap is the screening length proposed by Firsov:

J\ 1/3
L %o (3.9)
128 (21 + 73213

where aq is the Bohr radius. To perform a more realistic calculation of
the displacement damage function, Robinson and Torrens introduced the
inelastic energy loss due to electronic collisions. The inelastic collision occurs
when a certain amount of energy ) is spent for electronic transitions. In this
case the total kinetic energy of the two interacting atoms after collision is
less than the initial kinetic energy of the incoming atom. The conservation
of energy implies that [30]:

T=T+T"+Q (3.10)
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where T and T" are the kinetic energies of the PKA atom before and after
collision respectively, 7" is the kinetic energy of the target atom after collision
and () is the energy spent in electronic excitation which may also be sufficient
to ionize the target atom. The energy () may also be spent into the exchange
of atomic electrons between the two interacting atoms. Since the PKA will
lose all its energy during the cascade process and it will come at rest inside
the material, the energy lost only in elastic collisions is given by:

v(T)=T-Q (3.11)

which is called damage energy. Since the cross section for PKA produc-
tion is inversely proportional to the square of the transferred kinetic energy
(do(T, E)/dT o T~?) low energy recoils are favorite also for relativistic in-
coming projectile as cosmic rays. As a consequence the PKAs can be de-
scribed non-relativistically. For low energy particles the electronic energy
loss for the calculation of @ in the (3.11) is no longer given by the Bethe-
Bloch formula (2.125). In fact, when the velocity of the moving particle is
less than the Bohr electron velocity, electrons of the target atom can’t receive
energy by direct collision with the slow incoming particle [33].

Firsov proposed a model for the calculation of electronic energy loss at
low energies. In his model, Firsov represented the interaction between two
atoms as an exchange of momentum which involves electron capture. During
the scattering process the two atoms are considered to be fused in a quasi-
molecule compound [33]. In this approximation electrons can pass from the
target to the incoming atom which results to be slow down.

Other authors like Lindhard and Sharff proposed another model for the
electronic energy loss in the low energy range. The main difference between
the Firsov’s and Lindhard-Sharff model is the form of the screening inter-
atomic potential. The inelastic energy loss () of a single collision proposed
by Robinson and Torrens is a modification of the Firsov’s model. Anyway
Norgett et al. [49] pointed out that the amount of displacement damage cal-
culated with the Firsov’s model is similar in magnitude to the prediction
obtained by the use of the Lindhard-Sharff model.

At present the damage function commonly used for the displacement dam-
age calculation is obtained by the Robinson’s analytical approximation of the
Lindhard-Sharff model which, for mono-atomic material, may be expressed
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as [50] [1]:
T

T) = ——— 3.12
v(T) 1+ kag(ea) (3.12)
ke = 0.13342%3m~1/? (3.13)
gled) = eq+0.40244¢%" + 3.4008¢° (3.14)
eq = 0.01014Z277*T (3.15)

where kg is the electronic energy-loss factor of Lindhard-Sharff model in
reduced notation, €, is the reduced energy, m and Z are mass and atomic
number of the material and T is the kinetic energy of the PKA.

With the use of this damage energy it is possible to calculate the modified
Kinchin and Pease displacement damage function:

0 ifv(T) < Ty
1 if Ty < w(T) < 2T,/¢€
T
% if U(T) > 2Ty /¢

(Na(T)) = (3.16)

where v(T) is equal to the amount of energy that goes in elastic nuclear
collisions given by the (3.12) and the coefficient £ is the displacement effi-
ciency which depends on the interaction potential and it does not depend on
the initial kinetic energy T'. Analytical calculation and computer simulation
suggest a value of £ = 0.8.

3.2 Non-Ionizing Energy Loss

The Non-Tonizing Energy Loss (NIEL) is the energy deposited inside the
material which goes into displacement process or into phonon vibrations. If
it is calculated from the threshold displacement energy value T it is a useful
tool to quantify the cumulative displacement damage induced by an incident
particle inside the material. It is the equivalent quantity of the displacement
damage as the stopping power is for the total ionizing dose (TID). In analogy
with the stopping power given by:

dE Tz do(T, E)
_—~ N T——"—2dT
dx /Tmm dr

where FE is the kinetic energy of the incident particle, N is the density number
of targets, the NIEL is given by the fraction of the deposited energy that goes
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only into displacement processes:

Tmaz
=N TL(T)—dU(dZ;E )

displacement Ty

dar  (3.17)

where in this case N = Nyp/As (with p and Ay density and atomic mass
number of the target respectively) and L(T') is the fraction of the recoil energy
T that goes into displacement processes, which accounts for the collision
cascade and it is called damage efficiency or Lindhard correction:

(3.18)

where v(T') is given by the equation (3.12). The NIEL is expressed in energy
per unit path length, usually in MeV /cm or in MeV cm?/g if it is divided by
the mass density p of the material.

According to the type and energy of the incident particle the total NIEL
is given by the sum of different contributes which depend on the differential
cross section of the specific process. The cumulative cross section may be
written as [53]:

do(T,E) _ do(T,E) do(T, E) do(T, E)
dT N dT Coul dT Hadr el dT Hadr inel

(3.19)

where the term on the right side, denoted with Coul, gives the Coulomb
scattering contribution to NIEL; the second and the third terms, indexed
by Hadr el and Hadr inel, are the differential cross sections for energy
transferred due to hadronic interactions of the incident particle with the
target nucleus. They are nuclear elastic and inelastic collision processes and
they are relevant at high energies (see section 3.2.3).

In nuclear elastic collision processes the charge and the number of nu-
cleons remains unchanged after collision [54]. In nuclear inelastic collisions,
instead, the incident nucleus may be absorbed by the target nucleus which
can have sufficient energy to start an intranuclear cascade followed by the
evaporation process. In this case there is a change in the atomic number
of the target nucleus after collision. In the intranuclear cascade the target
nucleus may eject particles of energy up to the incident one. After that
the residual nucleus is left in an exited state and evaporates by emitting
nucleons of energy from 10 MeV to 15 MeV [54]. The damage induced by
secondary particles coming from this nuclear cascade and from the evapo-
ration processes are generally not included in the NIEL calculation because
they account only for the one per cent of the total damage [54].
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If the incident particles are distributed according to a spectral fluence
function ®(FE) expressed in MeV~! ecm™2, then each particle of energy F
will lose a non-ionizing energy NIFEL(F) so that the total damage energy
deposited per unit volume of material can be calculated as:

MeV}

—s (3.20)

Emax
Egis —/ NIEL(E) ®(E)dE [
Emin
where NIEL is expressed in MeV/cm and E,;, and E,,,, are the minimum

and maximum kinetic energies of the incident particles distribution.

By the energy density Fy;s and the modified Kinchin-Pease relation (3.16)
it is possible to estimate the number of Frenkel-pairs generated by a generic
distribution of incident particles soon after irradiation:

§ Eis

2T,
which is a measure of the damage induced inside the lattice crystal. Once
that the number of Frenkel-pairs is calculated by the (3.21), it is possible
to compare the effects of the displacement damage on the electronic devices
induced by different kind of particles. In addition the NIEL absorbed Dose
is simply given by:

FP = (3.21)

E .
pNIEL = e 22
621 x 107, | (3:22)

where the numerical constant is the conversion factor from MeV/g to J/kg
which is equal to a Gray (Gy). The NIEL induced by neutrons, protons and
heavy nuclei are given in the following sub-sections.

3.2.1 Neutrons NIEL

Neutrons are an important tool to understand the displacement damage be-
cause they interact only by nuclear elastic and inelastic processes. In ad-
dition our experimental measurements, which will be examined in chapter
6, are performed on silicon bulk samples irradiated with neutrons. Thermal
(~ 0.025 eV) and fast (> 10 keV) neutrons are produced in the nuclear fis-
sion reactors according to a spectral fluence distribution ®(F) obtained by
the time intrgal [1]:

d(E) = / ®(E,t)dt [MeV ™' em™?] (3.23)

where ®(E,t) is the neutron spectral flux given in MeV~' ecm™2 s7!. The

total neutron fluence is computed by the energy integral:

d, = / Emcp(E)dE [cm™?] (3.24)
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Figure 3.2: Total and elastic neutron cross section in silicon material [1].

Only neutrons exceeding 10 keV are relevant in the displacement damage
computation, so that, in general, F,,;, = 10 keV. Usually the E,,,, value for
a fission reactor does not exceed 15 MeV [1].

For neutrons up to 1 MeV [30], the elastic collision is the most likely
process to produce displacement [1]. Since the elastic differential cross sec-
tion for energy transfer results to be independent on the kinetic energy T
transferred to the target atom, the scattering process may be described by
the use of the hard-sphere potential. All transferred kinetic energies from
zero to the maximum value T),.., given by (2.64) with E; = FE, are equally
probable and the mean value is equal to T},4. /2.

For neutrons with energies above the resonance peaks the elastic cross
section decrease and the inelastic process which leads to nuclear interactions
such as (n,2n), (n,p), (n,a), (n,d), becomes dominant. The total cross
section, in the energy range from 1.75 MeV up to 20 MeV is reported in
figure 3.2 together with the elastic component [1].

The displacement damage induced by both elastic and inelastic processes
may be calculated by the use of the displacement kerma function or damage
function D(F) expressed in MeV cm™2 and defined as [52] [1]:

D(E) =Y _ou(E) / o v (T)Py(T, E)dT (3.25)
k Tq
where:
o) = [ LB 320

is the integral cross section for the k-th reaction; v, (7T) is the damage energy
which is given by the Robinson’s analytical approximation given in equation
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(3.12), and Pi(T, F)dT is the probability for a particle of kinetic energy E
to produce a recoil of kinetic energy between T and T + dT for the k-th
reaction:

1 dop(T,FE)
where doy (T, E)/dT is the differential cross section for energy transfer of the
k-th reaction. It is possible to demonstrate that the displacement kerma
function D(FE) is proportional to the NIEL. By the use of the (3.27) the
displacement kerma function, given by equation (3.25), can be also written

as:
Tonas 1 dou(T. )
T 2
E / — ¢ (3.28)

and since v (1) = TL(T) (see equation (3.18)), D(E) is given by:

Py(T, E)dT = dT (3.27)

b
ma dop(T, E)
D(FE) = TLy(T)————=dT 3.29
D=3 [T (3.29)
By these manipulations, the D(F) has the same form of the total NIEL given
by equation (3.17) inside which do(T, E)/dT is given by the sum (3.19)
where, in this case, the Coulomb differential cross section is not included.
The relation between D(FE) and NIEL is then simply given by:

NIEL(E) = ND(E) (3.30)

Values of neutrons D(FE), and the corresponding NIEL, in silicon material
are reported in figure 3.3 which may be found in literature [1] from 0.001 eV
to 10 TeV.

The neutrons displacement energy density is calculated by:

FEmaz M
Fun =N [ .mm¢wwE{ f}

(3.31)

c1m

where F,,., and E,,;, are the maximum and minimum energies of the spectral
fluence. The displacement damage induced by neutrons distributed according
to a generical spectral fluence ®(FE) may be normalized with the one induced
by mono-energetic neutrons of 1 MeV with fluence ®MeV by the use of a
proportional constant x called hardness factor:

OIMV — 1, (3.32)

where ®,, is computed by the (3.24). The hardness factor may be calculated
equating the quantity Eys induced by a generic fluence ®,,, to the equivalent
value Egs|1mev produced by the 1 MeV neutrons fluence @;Mev , that is:

Eislivmev = Eais (3.33)
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Figure 3.3: Damage function and corresponding NIEL values for neutrons in silicon
material [1]. The HGK compilation is available on-line at [56] with Ty = 25 eV. Van
Ginneken Ty = 25 eV [59]. Huhtinen 7,; = 20 eV [57]

where Egis|iney = ND(1MeV)®MeV and Ey, is calculated by the expression
(3.31). The (3.33) is then equal to:

Emaz
D(1MeV) oMY = / D(E) ®(E)dE (3.34)
Emin
where D(1MeV) = 95 MeV mb is the ASTM standard!. From the (3.34) it
is possible to write:

1MV _ / o % O(E)dE (3.35)

Emin

By the use of the (3.32) it is possible to obtain the hardness factor where ®,,
is given by (3.24):

/Emaz M O(E)dE

P1MeV ~ D(1MeV
P _ I Bmin Ei ev) (3.36)
/ O(E)dE / O(E)dE
Emin Emin

which enables one to compare the total displacement damage induced by
different fission reactors facilities each characterized by a specific k.

!Standard practice of characterizing neutron energy fluence spectra in terms of equiv-
alence mono-energetic fluence for radiation hardness testing electronics [1]
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Figure 3.4: Jun et al. [34] proton NIEL in silicon. Energy range lkeV-1 GeV, The
Coulomb contribution is calculated by the use of the ZBL screened potential for E < 50
MeV and by the relativistic differential cross section (2.110) for £ > 50 MeV. Nuclear
elastic and inelastic contributions are included. Summers et al. [60]

3.2.2 Protons NIEL

Protons, as all charged particles, cause displacement damage by Coulomb
interactions with the target nuclei. In addition, at high energy, nuclear elastic
and inelastic collisions may occur and increase the total NIEL.

In literature the total proton NIEL in silicon was tabulated by Jun et
al. [35], [34] in the energy range from 200 eV to 1 GeV, calculated with a
threshold displacement energy 7; = 21 eV. Their results are reported in 3.4
together with the Summers et al. [60] values, in the energy range from 1 keV
to 1 GeV. It is possible to see deviations form the non-relativistic unscreened
Coulomb potential both at low and high energies. At low energies Jun et
al. assumed a screened Coulomb potential with the ZBL universal screening
function which is given by (2.97). At higher energies they used the unscreened
Coulomb differential cross section given by the equation (2.110). Nuclear
elastic collisions are relevant above 20 MeV (50% of the total NIEL) while
the inelastic processes are expected to be relevant at energies greater than
100 MeV [54]. To compute the nuclear elastic and inelastic cross section,
the same authors developed a transport code (MCNPX) which uses the cross
section of Barashenkov and Polanski [24] for the calculation of the PKAs
kinetic energies.

Huhtinen [57] extended the proton NIEL calculation in a silicon material
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Figure 3.5: Damage function and corresponding NIEL values for protons in the energy
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Huhtinen values are calculated with Ty = 20 eV [57].

up to 24 GeV. In his work a displacement threshold energy equal to 20 eV
was assumed.

In fig 3.5 are reported the values tabulated by these authors for the proton
NIEL in silicon material and the related damage function D(E), in the energy
range from 2 eV up to 24 GeV [1]. In the same figure are also reported the
HGK compilation values for proton kinetic energies in the range from 15
MeV to 9 GeV available on line at [56].

3.2.3 Heavy Nuclei NIEL

The Coulomb NIEL fraction was calculated in the non-relativistic regime
by Messenger et al. [50] for protons, alpha particles and heavy ions in the
energy range from 0.1 keV to 1 GeV. In their work the analytical computation
of NIEL was obtained by means of the integral (3.17) with the use of the
one parameter differential scattering cross section reported in section 2.3.2
(equation (2.99)). The integral was performed from the threshold energy of
displacement, fixed at Ty = 21 eV, up to the maximum energy that can be
transferred during a single collision 7,,,, which in this case is equal to the
non-relativistic value ( equation (2.29)).

In figure 3.6 are reported the Messenger et al. [50] results of the NIEL
computation for different particles incident on a silicon material. In this work
however the relativistic corrections, which in this energy range are necessary
at least for protons and alpha particles, were not considered.
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Figure 3.6: Results taken from Messenger et al. [50], of NIEL calculation for different
incoming ions in the energy range 100 eV- 1 GeV in silicon material.

Unfortunately in literature there is a lack of the NIEL calculation for
heavy nuclei at higher energies which is important for the calculation of the
displacement damage induced by cosmic rays. In addition, since cosmic rays
are relativistic particles, nuclear interactions may become relevant after a
certain energy. An estimation of the energy at which the Coulomb and the
nuclear processes have the same NIEL value may be found in [1]. In this
estimation the total cross section for nuclear interactions is considered, to
a first approximation, to be proportional to the square of the sum of the
geometrical radii of the interacting nuclei:

O Nycel X (Rg + R1)2 X (A;B + A1/3>2 (337)
where the indexes 2 and 1 refers to the target and the incident nucleus re-
spectively. The total Coulomb cross section is considered to be proportional
to (Z17,)? where Z; is the atomic number of the incident nucleus and Z,
is the one of the target. To take into account the relativistic contraction of
the region of space in which the electric field is maximum, (7, Z)? is divided
by the velocity of the incoming nucleus multiplied by the particle Lorentz’s
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factor?:
(Z221)*  (Zy7,)?

OCoul X x (3.38)
Bim V-1
The ratio of these two cross sections may be written as:
2
OCoul Zy 7y 1 52,1 (3 39)

XX —=
O Nucl Aé/s + A}/g \/’Y% -1 \/’712 —1

As already said in section 3.2.2; for protons of kinetic energy above 20 MeV
nuclear interactions are relevant in the total computation of NIEL. For pro-
tons of 20 MeV the ratio of the two cross sections written above is approx-
imatively one. For heavier nuclei the equivalent kinetic energy at which the
ratio (3.39) is approximatively one, may be calculated by:

52,1 ~ SQ,p
2
Vi -1 \/ V2 ooarev — 1

where the term on the left side is calculated for a generic nucleus (index 1)
and the one on the right side is obtained for protons of kinetic energy equal
to 20 MeV (index p). From the relation (3.40) it is possible to obtain the

(3.40)

2The collision time is proportional to 1/(v7y) where v is the velocity of the incident
particle and -y is its Lorentz factor.
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equivalent nucleus Lorentz’s factor:

S 2
"= \/ Caomer = D( ) +1 (3.1
7p

where 7, 20nev 1S the proton Lorentz’s factor calculated for a kinetic energy
of 20 MeV, Sy 1 and S, , are the proportional constants given in the (3.39) for
a generic incident nucleus and a proton respectively. The result of this com-
putation is reported in figure 3.7 for a silicon target material as a function
of the atomic mass number of the incident nucleus. The two curves corre-
spond to 10 MeV and 20 MeV equivalent proton kinetic energies for which
nuclear interactions account for 15% and 50% of the total NIEL respectively.
The kinetic energy is expressed in GeV/amu (atomic mass unit). For alpha
particles the equivalent kinetic energy is about 120 MeV /amu, for lithium it
is about 420 MeV /amu and for beryllium it is about 940 MeV /amu [1]. For
heavier nuclei the equivalent kinetic energy exceeds 1 GeV /amu.

3.2.4 Alpha Particles NIEL

The same authors who performed the proton NIEL calculation, Jun et al. [34]
extended their work also for alpha particles [36]. The total alpha NIEL values
are tabulated from 10 eV /nucl up to 1 GeV/nucl by Jun et al. [36]. In their
study authors used the Coulomb NIEL component in the non-relativistic
regime calculated by Messenger et al. [50] whose values were already reported
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in figure 3.6. The nuclear contribution to the NIEL value for alpha particles
was calculated with the same transport code (MCNPX) which was used
for protons. The total NIEL accounting for Coulomb process plus nuclear
interactions is reported on the left side of figure 3.8. On the right side of the
same figure, the nuclear interaction contribution to NIEL is reported alone.

3.3 Defect Complexes

From a microscopic point of view the crystal lattice of the material results to
be modified in the region of space where the incident cosmic ray has passed.
Vacancies and interstitial atoms created during irradiation may migrate in-
side the material and form cluster of defects in a relative small region of
space or can interact with impurity atoms already present in the material
and form defect complexes.

Defect complexes, in fact, are the result of the rearrangement of the
primary point defects generated after irradiation. Because of the thermal
agitation the primary point defects, which are vacancies (V') and interstitial
atoms ([), are free to migrate inside the material. Their activation energies
range between 18-45 meV [1] and depend on the type and on the resistivity
of the semiconductor. Inside the cluster most of these primary defects will
spontaneously anneal by the filling process of a vacancy with an interstitial
(V +1). It was calculated that the filling process occurs with a probability
of more than 90% inside the cluster [57]. This spontaneous anneal reduces
the initial Frenkel-pairs number calculated by the equation (3.21) which is
the estimated value soon after irradiation.

The remaining vacancies will interact with already present impurity atoms
of the material or with other vacancies by forming new types of defect com-
plexes which are more stable defects.

Stable defects will introduce in the forbidden energy gap of the semiconduc-
tor discrete energy levels which may act as trapping centers for conducting
carriers. This mechanism is called carrier removal and will lead to the in-
crease of the resistivity of the bulk material. In addition electrons and holes
are captured and re-emitted with a delay time causing the reduction of the
carriers life time. For example this mechanism is one of the main causes of
degradation of bipolar transistors for which the gain results to be lowered
after irradiation (see section 3.5).

If the energy levels introduced by defect complexes lie close to the mid-gap
energy level, then they will act as generation-recombination centers. The en-
hancement of the recombination-generation process, for example, will cause
an increase of the reverse bias current of silicon detectors which will increase
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the noise level of the detector signal (for generation-recombination process
see 5.2).
One stable defect is the divacancy center called G7-center, which is formed
by the reaction:
V4+V =1, (3.42)

The divacancy may have four charge states ranging from double negative to
positive which introduce discrete levels £, —0.23, E.—0.39 and E,+0.21 [58].
Another stable defect is the vacancy-dopant complex called E-center, in
which the vacancy atom interacts with a dopant atom removing its dopant
function. For example in a n-type material, doped with phosphorus atoms

(P), the reaction:
V+P—-VP (3.43)

will cause the formation of an F-center which introduces a level of energy
E. —0.44. The direct consequence is the reduction of the effective doping
concentration (Neyy).

Another candidate for the reduction of the effective doping concentration
is the divacancy-oxygen complex [57]. The divacancy complex may interact
with an impurity Oxygen atom and form the V5,0 complex by:

Va+ 0 — V50 (3.44)

Other defect complexes like V5 and Vi are suppose to decrease the N.s¢
value. The effective doping concentration is given by the difference between
the donor and the acceptor concentrations. A simple relation which may
explain the donor removal is [57]

Nepp = |[P] — f1[V2O] — fa[Va] — f3[V3]| (3.45)

where the brackets | | indicate the concentration of the corresponding quan-
tity, and f; are coefficients which express the electron occupancies of the
acceptor states.

To prevent the donor removal process it has been proposed to add Oxygen
impurity atoms during the growing process of the semiconductor bulk. This
will enhance the formation of the defect vacancy-oxygen by:

V+0—VO0 (3.46)

which has no important influences on the electrical properties of the silicon
material. The VO formation should diminish the (3.42) reaction and as a
consequence also the (3.44) one. This should strongly suppress the N.;¢
reduction as can be seen from experimental results [62] reported in figure
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Figure 3.9: N.ss dependence on the accumulated 1 MeV neutron equivalent fluence for
standard and oxygen enriched FZ silicon irradiated with reactor neutrons, 23 GeV protons
and 192 MeV pions [62].

3.9 where the N.¢; concentration, as a function of 1 MeV neutron equivalent
fluence, is reported for standard and oxygen enriched silicon diodes. At low
fluences the decrease of N,s is dominated by the donor removal process which
causes a decrease in the full depletion voltage?, as can be seen from the right-
side axis of figure 3.9. The N,ss value reaches its minimum when the donor
concentration is exhausted or compensated by irradiation-induced acceptors.
At this irradiation level the conduction type of the material changes from n-
to p-type. The slope of a linear line fit beyond the inversion point is called
[ value and represents the introduction rate of deep acceptors. The oxygen
enriched material presents a much lower 3 value compare to the standard
silicon one.

The effective doping concentration decreases with increasing irradiation
fluence until it reaches the level of complete compensation. At this stage
the semiconductor acts almost like an insulator. With further increasing of
the irradiation fluence the effective doping concentration become of opposite
type. This effect was observed both for n-type and p-type materials irradiated
with different kind of particles [61], [1].

The change of the effective conductivity type may be analyzed by the Hall
effect which enables one to define the type and concentration of the majority

3The voltage which is necessary apply in order to deplete the device for the normal
diode operation.
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carriers. Experimental results of the Hall effect performed on silicon bulk
samples irradiated with neutrons and carbon ions will be given in chapter 6

It has to be remark, however, that for heavily irradiated samples the con-
duction type is not well defined as in the case of a non-irradiated sample.
This happens because even if an heavily irradiated sample approaches the
intrinsic concentration level it is very different from an intrinsic semiconduc-
tor. An intrinsic semiconductor is suppose to have an almost perfect crystal
lattice with very few impurity atoms. A heavily defected material, instead
has a lot of impurities rearranged as defect complexes and in addition the
crystal lattice doesn’t have a perfect structure.

3.4 Reduction of the Minority Carrier Life-
time After Irradiation

One important quantity, which varies after irradiation, is the minority carrier
lifetime. The carrier lifetime is reduced by the irradiation process which
causes the formation of recombination centers within the forbidden band
gap of the semiconductor. The recombination carrier lifetime, or minority
carrier lifetime, is defined as:

T ! (3.47)

" o N '

where the index m refers to minority carriers which can be electrons or holes
according to the semiconductor type, N; is the concentration of recombina-
tion centers before irradiation, o, is the relative capture cross section and
vy, is the thermal velocity of carriers. After irradiation the minority carrier
lifetime varies because of the increase of the concentration of recombination
centers in the forbidden energy gap of the semiconductor. The recombination
rate of minority carriers after irradiation, 1/7/ | is given by the non-irradiated
one, 1/7,,, plus a rate introduced after irradiation:

1 1

where N/ is the concentration of recombination centers which are created
after irradiation. The V] value is related to the energy deposited by dis-
placement process and it can be estimated to be:

Emax
M:N/ o(E)o(E)dE (3.49)
Emin
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where N is the target density number, ¢(F) is the incident spectral fluence

and . ( )
maz do (T, B

o(E :/ —— 24T 3.50

=] T (3:50)

is the integral of the differential cross section for energy transfer for an in-
cident particle of energy F. The averaged value of ¢(F) may be computed
by:

/ " (B)H(E)E / " o(BE)$(E)E
(o) = =Hmn = 2 Emin (3.51)

/ T E)E ¢

Emin

where ¢ is the irradiation fluence. From this last expression it is possible to
write the equation (3.49) as:

N/ = N{o)¢ (3.52)
Inserting this last expression of N; in the (3.48) leads to:
1 1
- = + O_mUthN<O'>¢. (353)
T Tm

The multiplicative term of the irradiation fluence is define as the inverse of
the lifetime damage coefficient K (sec cm™2):

1
%= omUin N (o) (3.54)

which leads to an important relation between the variation of the reciprocal
minority carrier lifetime and the irradiation fluence:

A(L) _1_1_2 (3.55)

The concentration of recombination centers N/ is proportional to the density
energy deposited by displacement processes Fy;s which is computed by the
equation (3.20) and it is related to the Frenkel-pairs concentration F'P by
the equation (3.21). This consideration enables one to write:

Egis o Nt/ - IYdisFP (356)

where the 74 coefficient is the proportionality constant. By the use of the
(3.56), the right side of the equation (3.55) can be written as

% = 0N} = omvinYais F'P = \F'P (3.57)
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where it has been introduced the parameter A = 7,,v,74is Which does not
depend on the incident particle type. The (3.55) can then be rewritten as:

A (i) —AFP (3.58)

Tm

which gives a relation between the difference of the recombination rates before
and after irradiation as a function of the FP concentration.

3.5 Bipolar Junction Transistor (BJT)

A bipolar junction transistor is a device which acts as a current or as a volt-
age amplifier according to the configuration mode, in which both charges,
electrons and holes, participate to conduction. It is made up of two semi-
conductor junctions and it can be of npn or of pnp type. The three semi-
conductors regions are called emitter (E), base (B) and collector (C). In the
active mode operation, the E-B junction is forward biased while the B-C one
is reversed. The E region of the device is heavily doped with a concentration
that may exceed 10%° cm™3 and so it has a very low resistance. The B region
has a low resistance too, but not less then 0.01 2 ¢cm which corresponds to
a doping concentration of 10'® cm™3. The C region, instead, has a lower
doping concentration of about 10'® cm™3.

The pnp type! transistor currents are schematically reported in figure
3.10. The emitter current, Ig, is set up by the hole current Iy, which flows
form E to B and by the electron current Iy, given by electrons flowing form
B to E. Since E is heavily doped and the E-B junction is forward biased,
there will be a great injection of holes form E to B. Inside the base, which is
a n-type semiconductor, holes become of minority type. The base width is
usually very narrow so that the major fraction of holes are able to reach the
C region. This is true if the recombination rate inside the base is low. The
B-C junction instead is reversed biased and, as a consequence, the C current
I¢ is given by the holes coming form the emitter which didn’t recombine
inside the base (denoted as the hole current I¢,) plus an electron current
I, which is given by the electrons flowing from C to B. The I, current is
also known as leakage current and it is made up by the electrons thermally
generated inside the collector region. The base current Iy is set up of three
components: Ig,, Ic, and the Ipg(= Ig, — Icp) current which is the current
that is generated from the base contact in order to supply the electrons inside

4For a npn type the issue is analogous but with opposite charge.
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Figure 3.10: Various current components in a pnp transistor under active mode of
operation [76].

the base which had recombined with the holes. In summary it is possible to
write [76]:

Iy = Igp+ Ipn (3.59)
Ic = Icp+Icn (3.60)
Ig = Ig—Ic=Ig,+ (IEp - ]Cp) —Iop (361)

= Ig, + I — Icn

In many applications, a bipolar transistor is set in the common emitter
configuration where B acts as input, C as output and E is common to both
base and collector. The emitter is usually tied to the ground reference as
reported in figure 3.11. In this configuration the current gain is define as [75]:

_ 0lc

= —— .62
TR (3.62)

Since the total collector current is given by I¢ = Ig — Ig, the current gain
can be written as:

=55 E@_1255—1:1_(% (3.63)

g

where « is the amplification gain in the common emitter configuration defined
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Figure 3.11: (Left) Common emitter and (right) common base configuration of a pnp
bipolar transistor. [76].

as [75]:
dle Ol dl¢, Ol
“ = 0L, 0Ly oIy, 01, T (3.64)
_ aIEp
T = S (3.65)
0,
0lc
M = .
o, (3.67)

where 7 is the emitter efficiency, v is the base transport factor and M is the
collector multiplication factor. Considering the equation (3.59) the efficiency
is equal to:

0lg, 0lg,
")/ = = 1 —
0lg O0lg
i.e. v~ 1, because the I, current is generally very low compared to the total
Iy current because the E region is heavily doped. Considering the (3.60), the
collector multiplication factor is equal to:

o1, dlcyp
c _q, %
0lc, 0lc
i.e. M ~ 1, because the leakage current Ic, is generally very low. By these
considerations it is possible to say that o ~ a7 and the current gain (3.75)

can be rewritten as:

~1 (3.68)

M = ~ 1 (3.69)

ar

06~

3.70
T (3.70)
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As can be seen from equation (3.66), the base transport factor gives a measure
of the minority carriers which are able to reach the collector region. It is
possible to demonstrate [61] that this quantity may be approximated by the

expression:
Tir
ap~1—-2 (3.71)

Tp

where 7, is the minority carriers transit time across the base and 7, is the

minority carrier lifetime in the base (holes if the base is of n-type). If the

depth of the quasi-neutral base region is much smaller than the diffusion

length of the minority carriers inside the base, then the transit time will be

much smaller than the minority carrier life so that 7, /7, < 1. Inserting the

(3.71) expression in the (3.70) relation, the current gain becomes:
Tp

522—1:—
Ttr Ttr

(3.72)

which is valid for a non-irradiated bipolar transistor. The minority carriers
transit time across the base is the major component of the emitter to collector
delay time 74 so that 75 ~ 7,,.. In addition the delay time is related to the
cutoff frequency fr by the relation:

1 1

~

o0rTy  2MTy

fr

(3.73)

The cutoff frequency is the frequency at which the bipolar transistor current
gain is equal to unity. By this last approximation (3.73) the minority carriers
transit time can be quantified by 7, >~ 1/27 fr, and so the current gain can
be written as:

ﬁ >~ 27TfT7'p = WrTp (374)

where wr is the angular cutoff frequency which is supposed not to vary with
irradiation. If, after irradiation, the transistor still retains a significant cur-
rent gain (> 3) it is possible to write the variation of the reciprocal current

gain as:
1 1 1 1 1 1 1
Al=-]==——-=-~ — = —A|— 3.75
(ﬁ) ﬁ/ ﬂ wTTé wTTp wr (Tp> ( )

The variation of the reciprocal minority carrier lifetime was derived in the
relation (3.55) which can be substituted in the equation (3.75) to obtain the

Messenger-Spratt equation:
1 ¢
Al =] = 3.76
(3)- 370
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Figure 3.12: Linear dependence of the quantity A(1/8) as a function of FP concen-
tration for different type of bipolar transistors (a) small emitter area npn type; (b) large
emitter area npn type; (c) vertical pnp type; (d) lateral pnp type. All measurements are
performed with a constant current Ic = 50 pA [76].

where K is the lifetime damage coefficient. To get a relation independent
on the incoming particle type, it is convenient to use the (3.58) relation
between the difference of the reciprocal minority carrier lifetime and the FP
concentration. This leads to the modified Messenger-Spratt equation:

1 A\
Al =) =2FP 3.77
7)o (3.77)

This linear dependence on the FP concentration was experimentally observed
[63] and data are reported in figure 3.12 for different kind of incident particles.
The linearity does not depend on the incident particle type and starts for a
FP concentration of about 10> cm™ which corresponds to a NIEL dose of

~5 Gy.
The proportionality constant is equal to:
A
k(lc) = — (3.78)
wr
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Figure 3.13: Top: Dependence of the parameter k(Ic) on the collector current, I,
for large and small emitter area region npn transistors; same parameter for vertical and
lateral pnp transistors. Bottom: fitting coefficient of equation (3.79) [63].
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Figure 3.14: (Right) Collector current, I and (left) base current, Ig. Dependence on

Veg at 25 °C. The data are for npn transistor with large emitter area region of 50 pm x
50 pm before and after the irradiation with electrons [63].

and it depends on the collector current I, on the emitter area (small or
large) and on the transistor type (npn or pnp). A semi-empirical relation is
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also given [63]:
k(Ic) = a[eXpéff_/f;) — 1 (3.79)
c

which, for low currents I < 100 pA, reduces to:

k(Io) = 21 (3.80)

=)

Fitting curves and coefficient values are reported in figure 3.13 for different
kind of bipolar transistors. In the same work, the behavior of I and Ip
currents were investigated and results are reported in figure 3.14 as a func-
tion of the B-E voltage for transistors of large emitter area irradiated with
electrons. While the I current is only sightly affected by the irradiation,
the Iz one exhibits large variations after irradiation.
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Chapter 4

GEANT4-Based Development
for NIEL and NIEL-Dose

Calculation

In this chapter an improved implementation of the GEANT4 single scattering
process will be described [64]. This modification enables one to correctly
simulate the Coulomb NIEL fraction for all nuclei of the GCRs spectrum.
Simulations were performed in the energy range from 20 MeV /nucleon up
to 10 GeV/nucleon and the results were compared with a computational
integration of the NIEL which makes use of the relativistic differential cross
sections reported in section 2.4. In order to have the NIEL value for the
entire energy range of the space environment, a computational integration
was performed also at low energies where screening effects are important.

In addition, to simulate the GCRs fluxes by the GEANT4 toolkit, the ISO
15390 model was introduced as a particle generator in GEANT4. Knowing
the GCRs ISO fluxes and the NIEL values enables us to calculate the NIEL-
Dose absorbed by a silicon sample during both solar maximum and solar
minimum periods.

4.1 Non-Relativistic ZBL NIEL Calculation

We performed the calculation of the ZBL NIEL by the use of the ROOT
program. The NIEL calculated by the ZBL universal stopping power, as
reported in section 2.3.2, is the reference value in the non-relativistic regime
and when potential screening effects are important. We performed the same
work as Messenger et al. [50] (see section 3.2.3 and figure 3.6). The NIEL is
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obtained by the integration of:

Tmaz
NIEL(E)|,,, = N rrr) 2 E)

—_— dr. 4.1
oy dl' |zBL (4.1)

where E is the kinetic energy of the incoming particle, T is the one of the
recoiling target, N is the target atom density, L(L) is the damage efficiency
or Lindhard correction, given by equation (3.18)

L(T) = (4.2)

where v(T) is given by the equation (3.12):

B T
1+ kag(eaq)

v(T)

and the related coefficients are given by the equations (3.13), (3.14) and
(3.15):

kg = 0.13342%Pm, "

gled) = eq+0.40244¢%* + 3.4008¢)°

g = 0010142, 7T

where Z5 is the atomic number of the target. The lower limit of integration
was set as Ty = 21 eV, while T,,,, is the non-relativistic maximum energy
that can be transferred during a single collision whose expression is given by
equation (2.29)

4m1m2
(ml -+ m2)2

where m; and msy are the projectile and target rest masses respectively. For
the integration of the equation (4.1), the ZBL differential cross section, given
by (2.99), was used, i.e.

Tma:c =

do(T.E)| .. _ _7ap [(t2)
dI' |zBL 2 43

dt (4.3)

which is obtained by the screened Coulomb potential with the universal
screening function x(z)y given by (2.97); ay is the universal screening length
given by (2.98). The function f(¢2) is given by equation (2.102):

) = M1 4 (201

[N

f(t
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Figure 4.1: ZBL NIEL values for different incoming nuclei in a silicon material. The
curves are obtained by the integration of the equation (4.1) while the dots are taken
from [50].

where t is the dimensionless parameter given by equation (2.100):

A

t=c¢€
Tmaz

(4.4)

and e is the ZBL reduce energy given by (2.101)

ay meo
= E 4.5
¢ 21Z262 <m1 + m2> ( )

where Z; and Z5 are the atomic numbers of projectile and target respectively.
The results of the NIEL computation for different incoming nuclei in a silicon
material, are reported in figure 4.1. The energy range of the incident particles
was set from 1 keV up to 1 GeV. The NIEL values obtained by this work are
in good agreement with those performed by Messenger at al. [50] which are
also reported in the same figure.
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4.2 Relativistic NIEL Calculation

We performed the NIEL integral by the use of the two relativistic differential
cross sections given in section 2.4 in order to extend the Coulomb NIEL
fraction to higher energies which are necessary for GCRs. Also in this case
the NIEL is computed by

Tmaa do(T, E)

NIEL(E)| =N TL(T)

——| dT 4.6
T, dT rel ( )

where as already said, N is the target atom density and L(T") is the Lindhard
correction term. The integral was performed from 7, = 21 eV up to the
maximum energy that can be transferred during a single collision 7},,, whose
relativistic expression is given by equation (2.64):

2E(E + 2myc?)

2
<1 + @> moc® + 2F
ma

Tmaw =

where E is the kinetic energy of the incoming particle in the laboratory frame
of reference.

The first differential cross section is the one proposed by Starusziewicz
and Zalewski (SZ), which is equal to the (2.115)

2
do (T, E)’ _ W( 7y Zye? ) Tnas @
SZ

dT B2y, | T2

where 1, is the relativistic reduced mass that was defined in equation (2.67);
the effective particle velocity 5, can be computed by the use of the relation

(2.36) : )
1 [ C7\ 2
g2 L+ ( DrC ) (4.8)

where as already said, the relative momentum p, is equal to the momentum
of the incoming particle calculated in the CM system (see equation (2.70)).
In figure 4.2 are reported the ZBL NIEL values from 1 keV /nucleon up

to 1 GeV/nucl and the ones obtained by the relativistic differential cross
section SZ calculated in the range 20 MeV/nucl-10 GeV/nucl. Different
incoming nuclei are reported. At 20 MeV /nucleon, for light nuclei as protons
and alpha particles, the variation between these two curves is of few %, for
medium nuclei, as 27Al, it is about 19% and it is slightly larger than that
for heavy nuclei. However at 1 GeV /nucelon, which is the upper limit of
the TRIM simulation program [98], for all nuclei the non-relativistic ZBL
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Figure 4.2: ZBL NIEL values from 1 keV/nucl up 1GeV /nucl (dashed lines) and NIEL
values from 20 MeV /nucl to 10 GeV/nucl (solid lines) computed with the relativistic
differential cross section (4.7).

treatment gives a NIEL value which is about a factor of 3 lower than the one
obtained with the relativistic treatment.
Another relativistic differential cross section is given by Seitz (see equa-
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Figure 4.3: Coulomb NIEL value results from the computational integration of equation
4.6. Solid lines are obtained by the use of the relativistic differential cross section of
equation (4.7) while circles are with the equation (4.9) (Jun et al. (2004) [36] and Jun et
al. (2003) [34] ).

tion (2.110)). To extend the use of this cross section for heavy nuclei, it was
re-written with the introduction of the relativistic reduced mass, as:

2
ZlZ262 Tmaa:
= F(T FE 4.9
Seitz W(ur@ ﬁfw) T2 (T, B) (4.9)

do(T,E)
dT

where the F(T, F) term is given by:

F(T,E)=1- 4 TZM + Zraf,m TZM (1 — T:agﬁ) (4.10)
This differential cross section was already used by Jun et al. [35] [34] to
treat the relativistic Coulomb interactions of protons in silicon. In this case
my < My, as a consequence i, reduces to the proton rest mass and [, to
the speed of the incoming proton in the CM reference system (see equations
(2.73) and (2.74)).
The NIEL values obtained with these two relativistic differential cross
sections (SZ and Seits ) are reported in figure 4.3 for some nuclei in a silicon
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material. In this figure £ ranges from 10 MeV /nucleon to 10 GeV /nucleon.
In the same figure the Jun et al. Coulomb NIEL values for protons [34] and
alpha particles [36] are also reported. The agreement with the Jun’s protons
values is good and our results are also analogous to the alpha ones in the
lower energy part of the plot. We remember that the Jun’s et al. alpha
Coulomb NIEL values were obtained by the non-relativistic ZBL treatment.
From this figure it is possible to see that relativistic corrections are necessary
for energies greater than about 70 MeV /nucleon.

In addition form this analysis emerges that the two differential cross sec-
tions, given by (4.7) and (4.9), are almost equal i.e.

do(T,E)|  _ do(T,E)

~ . 4.11
dT Seitz dT SZ ( )

This means that F(T, E) ~ 1 for all energies E and for all incoming nuclei.
Since the tow cross sections give the same results, from here on only the SZ
(4.7) will be considered.

4.3 Total NIEL for Protons and Alpha Par-
ticles

In previous sections only the Coulomb NIEL fraction was considered. How-
ever, for protons and alpha particles it is necessary to include also the nuclear
NIEL fraction due to hadronic interactions.
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For protons, in figure 4.4, are reported the Jun’s el al. [34] values form 10
MeV up to 1 GeV and the Huhtinen’s [57] ones from greater energies. For
alpha particles, in the same figure, the total NIEL is given by the sum of
the nuclear NIEL fraction taken from Jun et al. [36] and the Coulomb NIEL
fraction obtained by our relativistic calculation.

4.4 GEANT4 Simulation Toolkit

GEANT4 is a simulation program which reproduces the interaction of ele-
mentary particles with matter. It was projected to simulate experiments in
particle physics, nuclear physics, for accelerator design and for space appli-
cation, which is the field of our interest.

GEANT4 is an object-oriented program, written in C++ language, which en-
ables the user to chose between a vast set of models for the same physical
process. In addition the user has the possibility to understand all the classes
in the source code, to personalize her/his own program and to suggest new
implementations with a debug working, as we have done [64].

Inside the program it is possible to construct the desired three-dimensional
geometry, to define the material of the device under test and to simulate the
environment of interest. All set of known particles may be generated in the
energy range from eV to TeV. During the simulation, the particles are trans-
ported inside the world' and all physical processes are contemporaneously
active. Each process proposes a step length which depends on the cross sec-
tion of the specific interaction. Each step is continuously updated during
the simulation and the one chosen by the Monte Carlo program is always the
smallest of the proposed ones. In this way, processes of different probabilities
may be simulated all in a time.

Each simulated particle, with all its physical processes, constitutes an
event. A set of events -i.e. a specific number of incident particles of given
energies - is called a run. During the run, primary particles may produce
secondary ones - i.e. d-rays or PKAs - by the interaction with matter. The
user has the possibility to stop-and-kill secondary particles or to generate
them according to a specific threshold energy T,;. The stopping power of a
charged particle is divided in two parts:

dE o do(T, E) Tmas  do(T, E)
—— = T——=2dT T——_=2dT 4.12
ir /0 a7 /Td T (4.12)

'Tn GEANTA4 it is possible to construct the space where all the interactions take place,
i.e. the world, both as a box or as a sphere.
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where the first term is the continuous energy loss which goes form zero to the
T, value and it is considered deposited inside the material while the second
term is the discrete energy loss which goes from Ty to the maximum energy
that can be transferred during a single collision and it is spent for secondary
particles production.

In addition there is the possibility for the user to activate an option
which allows the production of secondary particles even if they have kinetic
energies under threshold. This is very important when secondary particles are
produced near the material boundary and have sufficient energy to escape
from the material. In this way the energy lost by the incident particle is
differentiated from the one deposited inside the material and the secondary
particle may be transported for longer distances if the material is immerse
in a thin medium.

4.4.1 GEANT4 Single Scattering Process

The single elastic scattering process, already existing in the GEANT4 code,
was developed to simulate the Coulomb scattering process of incident muons
and hadrons with target atoms of the material [70]. It is an alternative to
the multiple scattering process which gives information only on the scattering
angular deviation but not on the energy loss of the incident particle. The
single scattering, instead, simulates every single interaction and it has the
advantage to give information about the energy transferred to the target atom
T, which is of fundamental importance for the NIEL calculation. However
this has the disadvantage to significantly increase the number of steps which
corresponds to pure CPU? performances.

The basic theory of this scattering process is based on the Wentzel's
model [71] which is suitable for light particles (m; < mg) of charge Zje
incident on atomic nuclei of charge Zse. The potential of the model is equal

to:
- 212262

Vi(r) exp (—r/arr) (4.13)

which is a simplified version of a screening potential with screening length
arr given by the Thomas-Fermi expression:
0.885a

arp =

where ag is the Bohr radius. By the use of this potential, the differential

2Central Processing Unit
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scattering cross section is given by:

2\ 2
da(é’) _ lege 1 (415)
Q) |y pc B ) (2A5+1—cosh)?

where p and ( are the momentum and the velocity of the incident particle,
calculated in the CM system, while A, is the screening parameter taken from
the Molier’s and Bethe’s work [72]:

. h 2 O./ZQ 2
A, = <2p aTF) [1.13 + 3.767(7) } (4.16)

It has to be observed that at relativistic energies the screening term A, has
negligible effects and this differential cross section reduces to the SZ one as
can be seen when this latter is expressed in the form given by the equation
(2.114). The differential scattering cross section of the GEANT4 code is
obtained by the Wentzel’s cross section (4.15) multiplied by a form factor
taken from Butkevick [73]:

_ do(0) 1 1
G 0 ‘W<<1+<qRN>2/12>2+Z> .

where ¢ is the momentum transferred to the target nucleus and Ry is the
target nucleus size. The first term of the form factor takes into account
nuclear size effects and dominates at high energies while the second term
takes into account the atomic effects of the scattering off electrons and it is
important at lower energies.

This differential cross section gives satisfactory results for muons incident
on a 1.5 mm aluminium foil as can by seen from figure 4.5 where the prob-
ability of the GEANT4 single scattering model is compared to the GEANT4
multiple scattering one and to experimental data.

do(0)
ds?

4.4.2 Simulation Test of the GEANT4 Single Scatter-
ing Process

The single scattering model was tested with different nuclei incident on a
silicon target material®>. The original GENAT4 single scattering process was
programmed to give secondary particles only for transferred kinetic energies
greater than a threshold value (for silicon material it was equal to 2.24 keV).
In origin this threshold value was calculated by the product of the mean

3The geant4.9.1.p03 version was used.
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Figure 4.5: Picture taken from [70]. Scattering of 172 MeV/c muons in 1.5 mm Alu-
minium foil. Data values [74] are black squares. Colored markers corresponds to different
options of multiple scattering (Stand) and single scattering (Single Scat.). The bottom
graphic represents the relative difference between GEANT4 simulation results and data
values in percent; dashed areas are one standard deviation from data.

excitation energy of the material (174 eV for silicon) times the atomic number
Z5. With the GEANT4 team authorization, this part of the code was modified
in order to have secondary particles of a desired threshold energy. For our
present test, this value was set equal to Ty = 0.5 eV in order to check the
lower part of the recoiling spectrum. The device under test was a squared
of silicon (1 x 1) cm?. The thickness of the target was fixed according to
the type and energy of the incident particle in order to have approximatively
20% probability to have one interaction.

The expected probability to have an interaction, as a function of the
kinetic energy transferred to the target atom, was calculated by:

N T d
p(T) == Ap/ d

= ar 4.1
Ay Jy, T (4.18)

Ruth

where x is the target thickness, N4 is the Avogadro’s constant, p is the target
density and A, is the target atomic mass number. To simplify the problem,
the energies of the incident particles were chosen in the non-relativistic range
in order to use the Rutherford’s differential cross section (2.94). By solving
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Figure 4.6: Probability of interaction as a function of the kinetic energy transferred to
the target atom. Comparison of the GEANT4 simulation with the Classical Rutherford
value calculated by equation (4.19).

the integral (4.18), for a silicon target, the following relation is obtained:
p(T) = 48121 ——4/y (4.19)

During the simulation, secondary silicon particles (PKAs) were stored and
their total number, as a function of T', were calculated and compared to the
analytical value (4.19). Different projectiles were considered and the results
for some nuclei (protons 100 MeV , 9Be 1 GeV, #Si 1 GeV, *°Fe 1 GeV)
are plotted in figure 4.6. Protons values were in good agreement with the
expected ones, but the heavier nuclei had probabilities underestimated.

A value of T'= 100 eV was fixed, where the curves are saturated, and the
ratios between theory and simulation were calculated. Result are reported
in the same figure. As can be seen from these results the differential cross
section (4.17) was suitable for light particles but not for heavy nuclei. Since
we are interested in the scattering process involving heavy nuclei, particular
attention was given to solve this problem.
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4.4.3 Improved Implementation of the GEANT4 Sin-
gle Scattering Process

The original GEANT4 differential cross section (4.17) may be written in a
more compacted form as:

2
Z1Z2€2
=———F——| F 4.2
ol ( ) (0.0 (4.20)

PremcBiom

where it has been underlined that the momentum is calculated in the center
of mass system (CM). The velocity of the incident particle in the CM system

Bionr is obtained by

1 2\ 2

=1+ < e ) (4.21)
ﬁloM bPicmcC

The function F'(, q) contains all terms related to the scattering angle, to the
form factor and to the screening effects. Since cpicar = mic?Bicyryicowm, the
GEANT4 cross section (4.20) can be also written as:

:< T Ze” )F(e,q) (4.22)
G4

<2 mic? Bioymem

As previously said, this differential cross section works well when the mass
of the incoming particle, m; is much smaller than the target one msy. This
means that this differential cross section is suitable when the target particle
can be considered at rest during the scattering interaction. If the mass
of the incoming particle is no longer negligible compared to the mass of
target atom, then the introduction of the reduce mass is necessary as already
said in section 2.1.2. The differential cross section has to be calculated in
the relative frame of reference where instead of two particles we have one
effective particle of reduced mass p, given by equation (2.67). The scattering
angle of the effective particle is equal to the one of the incoming particle
calculated in the CM system (see equation (2.71)) and, as a consequence,
the angular part of the differential cross section, contained in the function
F(60,q), doesn’t change. The screening term Ay, given by equation (4.16),
contains the particle momentum and velocity and so it becomes:

AR aZy\’?
A= (QP—&TF> [1.13+3.767( 7 ) 1 (4.23)

where p, is the modulus of the relative momentum and [, is the relative
velocity (see equations (2.66) and (4.8)). In addition the relative momentum
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Figure 4.7: Same as figure 4.6 after the introduction of the reduced mass y,. as explained
in section 4.4.3

is equal to the one of the incoming particle in the CM system as it was
underlined in equation (2.70). By these considerations the differential cross
section for the Coulomb scattering becomes:

do(0)
aQ

Z1 Z2€2
tr? B2y

F(6,q) (4.24)

where [, is calculated by the (4.8).

To test this cross section, we modified the code and performed the same
simulation as previously done. New results are presented in figure 4.7 for the
same particles of figure 4.6. Scattering probabilities are in good agrement
with the expected values (equation (4.19)) with a ratio theoretical-simulation
of about 1 for all incoming particles. This modification gives us the correct

number of recoiled targets, that is the number of primary knock-on atoms
(PKAS).
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4.4.4 Simulation Results of the Upgraded GEANT4
Coulomb NIEL Fraction

With the GEANT4 modified differential cross section (4.24) it was possible to
perform the simulation of the Coulomb NIEL fraction for all nuclei (numerical
values are listed in appendix A). The mean NIEL value within a run is
computed by:

[MeV cm?/g] (4.25)

NIEL(E)gs = (Zw‘ Tia‘L(Tz‘j)> 1

Ne'uents <A;U> /)

where F is the kinetic energy of the incident particle, Neyenss i the total
number of events (the number of incident particles was usually set equal to
10°), T;; is the kinetic energy of the i-th PKA generated by the j-th primary
particle, L(T;;) is the damage efficiency (as usual computed by the (4.2));
the sum is performed over both the total number of PKAs (index 7) and the
total number of events (index j); p = 2.33 g/cm? is the silicon density; (Az)
is the mean material thickness crossed by the primary particles i.e.:

Zj Az,

A pu—
< x> Nevents

(4.26)

where Az; is the one crossed by the j-th particle. The term in brackets of
the (4.25) is the mean energy loss which goes into displacement processes

ie.:
ZEJ‘L(T;J) Z‘AEj|displ
AE)|aispr = = == 4.27
< >|d v Nevents Nevents ( )
where AEj|4isp is the one lost by the j-th particle i.e.
AEjlaisp = > Ty L(Ty;) (4.28)

By this considerations the equation (4.25) assumes a more familiar form:

L (AE)|gispi
NIEL(E) g = — = /1displ
(Bles p (Ax)

In order to have the NIEL value for a specific kinetic energy E, the thickness
Ax; of the j-event is fixed by the condition:

(4.29)

— L%~ 107 (4.30)
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Figure 4.8: GEANT4 upgraded simulation results of the Coulomb NIEL fraction for
different incoming particles on a silicon target in comparison with the computational
integration performed by the use of the SZ differential cross section (4.7).

where AE;|;y is the total energy lost* by the j-th particle after a thickness
Az; and F is its initial kinetic energy. When the condition (4.30) is fulfilled
the incident particle is stopped-and-killed and the related Az; value is got.

4Most of all by electronic collision processes.
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In this way the incident particle loses only the 0.1% of its kinetic energy® (i.e.
E is almost constant). During the simulation only PKAs of energies greater
than the threshold value for displacement, which was fixed at T, = 21 eV,
were generated.

Results of the simulation, for different incoming nuclei, are reported in
figure 4.8. In the same figure the NIEL values obtained by the computational
integration of the (4.6) by the use of the SZ differential cross section (4.7)
are also reported. The agreement of these two methods is good.

4.4.5 The ISO 15390 Model as a Primary Generator
in GEANT4

We developed a code, written in C++ language, based on the ISO 15390
model which, as already said in section 1.2.2; is the standard for estimating
the radiation damage on electrical devices. It is based on the Nymmik’s
work [16] which is aimed to give the expected fluxes of GCRs in different
periods of the solar activity. The flux ®;(F,t) of the i-th nucleus is calculate
by the equation (1.22) and it is given in units of [s m? sr MeV /nucl] .

An example of the code output is reported in figure 4.9 for some nuclei in
the energy range from 20 MeV /nucleon to 10 GeV /nucleon. For each nucleus
the two curves correspond to the fluxes which are expected in two different
solar periods: in the year 2010 the fluxes will reach their maximum and in
the year 2013 they will be at the minimum values. The next maximum of the
solar activity is expected in the year 2012 but, due to the finite velocity of
propagation of the solar wind, the minimum of the fluxes is expected about
one year later (~ 15 months is the delay time for the Nymmik model during
maximum periods [15]).

This code was interfaced to the GEANT4 particle generator in order to
have particles distributed according to the ISO fluxes. Inside the Primary
Generator Action, which is the GEANT4 class aimed to generate particles,
we wrote a code where it is necessary to fix the energy range of the spectrum,
the type of particle and the year and the month of interest. The total energy
range is divided into intervals, and in each interval AE;, the number of parti-
cles N; which have to be generated is calculated starting from the Nymmik’s
flux ®;(E},t) value calculated at the cental energy E; of the interval as:

5For low kinetic energies and light particles the value was set at 1% in order to increase
the statistics of PKAs while for heavier particles, which produce a grater number of PKAs,
it was decreased at 0.01% to improve the CPU performances.
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where At is the time interval, and AS is the surface element. These quantities
may be varied in order to increase the statistics. The total number of particle
is simply given by the sum of the N;. In order to generate particles of different
energies, for each interval the kinetic energy is chosen randomly between the
maximum F,,,, ; and the minimum value E,,;, ;. The particle direction of
generation is chosen randomly too.

To test this particle generator, we performed a simulation for two different
solar periods and for different nuclei. A 3-D spherical world was constructed
where particle were shotted in random directions as can be seen from figure
4.10. In this plot the (x,y, z) space coordinates of generation are reported.

The energy interval of the primary particles was set from 20 MeV /nucleon
to 10 GeV /nucleon and at the end of the simulation, the initial kinetic en-
ergies were stored. The histogram reconstruction of the distribution of these
energies is reported in figure 4.11 for protons, alpha particles, carbon and
iron nuclei. As wanted the fluxes of the particles generated by GEANT4
overlap to the Nymmik’s ones.

4.5 NIEL-Dose Calculation

With the ISO model and the NIEL values, it was possible to estimate the
expected NIEL-Dose absorbed by a silicon sample during one year mission
due to GCRs. The NIEL-Dose can be calculated by (3.22):

Edis
DM = orx 0, LG (432)

where p is the target density (for silicon p = 2.33 g/cm?) and the numerical
constant is the conversion factor from MeV /g to J/kg which is a Gray (Gy).
Eyis is the energy density deposited by the incident particle in displacement
processes which is obtained by means of (3.20):

— (4.33)

Fuss = / U NTEL(E) 9(E)dE {

Emin

Me\/}

In this case the NIEL is given in units of MeV/cm, ®(FE) is the spectral
fluence given in 1/(MeV ¢m?) with minimum and maximum kinetic energies
ranging form F,,;, t0 Ene.. If the NIEL is given in units of MeV cm?/g,
then the (4.33) becomes:

Emaac
Eis = p / NIEL(E) ®(E)dE (4.34)

Emin
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Figure 4.10: Scatter plot of the (z,y,2) space coordinates of the GEANT4 particle
generator.

Substituting this latter expression of Fy; in the (4.32), the NIEL-Dose may
be written as: .
DNTEL — / DNEL(EYIE (4.35)
Eri03
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Figure 4.11: Histogram reconstruction of the GCRs fluxes generated by GEANT4 in

comparison with the Nymmik’s spectrum performed in two different periods of the solar
activity.

where the term DNTPL(E) is the NIEL spectral dose:
NIEL(E) ®(E)
6.24 x 107

The spectral fluence ®;(E), for the i-th nucleus, is obtained by the integration
of the ISO GCRs flux over time, and over the entire solid angle i.e:

/ / (B, 1)dtdS (4.37)
At J A

where ®;(FE, t) is given by (1.22).
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min

The NIEL-Dose calculation was performed for two periods of the solar
activity. To simplify the problem, the spectral fluence of the i-nucleus was

approximated by:
O,(FE) ~4nd;(E, t)At (4.38)

where At is the time interval which corresponds to one year mission (~ mx 107
s) and ®;(FE,t) to a typical flux which depends on the solar activity. For a
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solar maximum period the ISO flux of the year 2013 was considered, while
for a solar minimum period the one of the year 2010 was taken. By the use
of the (4.38) the spectral dose (4.39) for the i-th nucleus is computed by:

Gy

DNEL(EYy =y NIEL;(E)®;(E. t
s E) = (E)®(E. 1) yr MeV /nucleon

(4.39)

where 7 is the numerical coefficient equal to 6.33 x 1072, The spectral NIEL-
Dose, in the range from 50 MeV /nucleon to 10 GeV /nucleon, is reported
in figure 4.12 for protons and alpha particles where the NIEL;(E) values
correspond to the total NIEL (Coulomb plus nuclear) reported in figure
4.4. For alpha particles the nuclear NIEL values are available only up to
1 GeV/nucleon. For greater energies (> 1 GeV/nucl) the alpha NIEL be-
havior is expected to be similar to the proton one which is almost constant
from 1 GeV/nucleon up to 10 GeV/nucleon. To a first approximation it is
therefore possible to consider the alpha NIEL value almost constant in the
same energy range. This approximation should not affect the NIEL-Dose cal-
culation since the greatest uncertainties of this computation comes from the
fluxes. For each solar period, in facts, the maximum and minimum spectral
NIEL-Dose are calculate by:

DNIEHE) = n NIEL(E)(®:i(E,t) + 0o,5)) (4.40)

DYIPH(E) = n NIEL/(E)(®{(E,t) — 0a,(51) (4.41)

min,i

where 0,z is the ISO flux standard deviation whose expression can be
found in [15]. In figure 4.12 dashed lines correspond to DYIPL(E), the solid
ones are the mean values obtained by the (4.39) while the dotted ones are
the D)IPF(E) values. Thick lines correspond to the solar minimum period
and the thin lines correspond to the solar maximum one.

The spectral NIEL-Dose was obtained also for all the other nuclei of
the GCRs spectrum. Since the GEANT4 NIEL simulation gives the same
results as the analytical computation obtained by means of the differential
cross section SZ (4.7) (see figure 4.8) this latter was used to simplify the
computational integration of the NIEL-Dose. It has to be noted that even if
the nuclear NIEL fraction was not considered in this computation it should
not significantly affect the overall estimation of the NIEL-Dose. In facts, as
it was explained in section 3.2.3, the nuclear contribution to the total NIEL
is expected to be greater than 50% at energies above 440 MeV /amu and
940 MeV /amu for lithium and beryllium respectively. However, these nuclei
have low relative abundances as can be seen from figure 1.2. For all the
other nuclei the nuclear contribution should be important only for energies

greater than 1 GeV /nucleon where the GCRs fluxes decrease. In addition as
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Solar Minimum: Solar Maximum:
Nucleus (A,Z) DNIEL :|:O'DNIEL DNIEL :i:O'DNIEL
He (2,4) |5.97 1.49 4.14 1.04
Li (7,3) | 1.74x1072  0.49x1072 || 1.18x1072 0.34x 1072
Be (9,4) | 1.66x1072 0.46x1072 || 1.14x1072 0.32x1072
B (11,5) | 9.38x1072 1.75x1072 || 6.36x1072 1.22x1072
C (12,6) | 4.77x107! 0.85x107* | 3.15x1071 0.58x107*
N (14,7) | 1.67x107! 0.31x107* | 1.12x107'  0.22x107*
O (16,8) | 7.75x1071 1.27x107! || 5.15x107! 0.87x107!
F (19,9) | 2.20x107% 0.66x1072 || 1.52x1072 0.46x1072
Ne (20,10) | 2.15x107"  0.46x10~* | 1.42x107' 0.31x107*
Na (23,11) | 6.34x1072  1.63x1072 || 4.17x1072  1.09x 1072
Mg (24,12) | 3.15x107!  0.62x107* | 2.15x1071  0.43x107*
Al (27,13) | 7.56x1072  1.78x1072 || 5.13x1072 1.22x1072
Si (28,14) | 3.91x1071  0.78x107! || 2.60x10~" 0.53x107!
P (31,15) | 2.11x1072  0.41x1072 || 1.44x1072 0.28x1072
S (32,16) | 1.00x107! 0.21x107* || 6.71x1072  1.40x 1072
Cl (35,17) | 2.44x1072  0.62x1072 || 1.67x1072 0.43x 1072
Ar (40,18) | 5.00x1072  0.90x1072 || 3.48x1072 0.64x 1072
K (39,19) | 4.11x107% 0.70x1072 || 2.81x1072 0.49x1072
Ca (40,20) | 1.22x1071  0.21x107! || 7.96x1072  1.44x 1072
Sc (45,21) | 2.64x1072  0.45%x1072 || 1.77x1072  0.31x1072
Ti (48,22) | 9.89x1072 1.80x1072 || 6.65x1072 1.24x 1072
\% (51,23) | 5.82x1072 1.09x1072 || 3.89x1072 0.75x1072
Cr (52,24) | 1.27x107"  0.22x107" || 8.42x1072 1.53x1072
Mn (55,25) | 8.28x1072  1.78x1072 || 5.62x1072 1.23x1072
Fe (56,26) | 9.15x107!  1.54x107* || 6.18x1071 1.07x107*
Co (59,27) | 6.92x1072  6.20x1073 || 4.98x107% 4.46x1073
Ni (59,28) | 4.72x1072  0.98x1072 || 3.26x1072  0.69x 1072
Nuclei Total | 10.32 +1.51 | 7.05 +1.05
Protons | 27.27 +7.44 [ 16.76 +4.63

Table 4.1: NIEL-Dose values DV/FL and uncertainties o p~rez, in units of uGy/yr, for
all the nuclei of the GCRs spectrum. Values are obtained for typical solar minimum (3-th
and 4-th columns) and solar maximum periods (5-th and 6-th columns). The integration
was performed from 50 MeV /nucleon up to 10 GeV /nucleon.

107



it can be seen from the spectral NIEL-dose curves, the major contribution of
the NIEL-Dose computation comes from the integration in the energy range
from 50 MeV /nucleon up to about 2 GeV /nucleon.

The integral NIEL-Dose (4.35), for each nucleus, was performed for the
minimum energy F,,;, = 50 MeV /nucleon above which the GCRs are the
dominant radiation of the space environment, up to E,,,, = 10 GeV /nucleon
where fluxes decrease of about two orders of magnitude respect to the max-
imum flux value. The standard deviation of the integral NIEL-Dose for all
the nuclei, from alpha particles to nickel, was computed by:

OpNIEL = \/Z (O'DNIELJ)Q (4.42)

where the standard deviation of the i-th nucleus was obtained as:

DNIEL _ pNIEL

OpNIEL ; = iy 5 Tt (4.43)

The upper D}!ZL, and the lower D)Y!"F NIEL-Dose values are computed

by means of the integration of the maximum (4.40) and the minimum (4.41)
spectral NIEL-Doses i.e.:

Emaz

byt — [ pMENEyE (444
Emin
Emaz

pyer — [ M By (4.49
Emin

Results of the computation are listed in table 4.1 for typical solar minimum
and solar maximum periods. We obtained that the total NIEL-Dose, for all
nuclei from alpha to nickel, is 37.8% and 42% of the protons one during the
minimum and the maximum solar periods respectively. In addition it has to
be noted that the NIEL-Dose strongly depends on the ISO flux model which
brings an uncertainty of about 27.5% for the protons value, while for the
overall nuclei it is about 14.5%.
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Chapter 5

The Carriers Transport
Phenomena in Silicon

In this chapter an introduction to the carriers transport phenomena of a
semiconductor is given. For our interest, and also for simplicity, only silicon
will be considered. Some macroscopic variables such as the mobility and the
resistivity will be derived. In addition the Hall effect theory will be described.
Since radiation damage is a complex phenomena, it is necessary to know the
normal carriers behavior (in a non-irradiated sample) in order to underline
the major differences which arise after irradiation. Some fundamental notions
of the silicon structure are reported in appendix B.

5.1 Equilibrium Carriers Statistics

Silicon is an indirect (see B.1) semiconductor with an energy separation of
the valance from the conduction band - forbidden energy gap E,- of about
1.124 eV at room temperature.

In this section the carriers distribution at thermal equilibrium in the two
bands are given as a function of temperature and doping concentration. The
carriers concentration out of equilibrium! considered in section 5.2. The
presence of electrical external sources, in facts, modify the equilibrium carri-
ers statistics. In addition, defects induced after irradiation may increase the
recombination process.
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Figure 5.1: Carrier distribution in respective bands when the Fermi level is (a) above
(b) near and (c) below mid-gap respectively. In each case there are also shown: the
energy-band diagram, the density of states and the occupancy factor [78].
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5.1.1 Carriers Concentration

The carriers concentration of electrons in the conduction band and of holes?
in the valance band, can be obtained by [78]:

n(T) = / " e E)f(E:T)dE (5.1)
pavz_é” go(E)1 — F(E;T)|dE (5.2)

where T' is the equilibrium temperature, n(7) and p(T) refer to electrons
and holes respectively. The integral (5.1) is computed from the bottom of
the conduction band E, to the top value Ej,,, and the integral (5.2) is com-
puted from the bottom of the valance band Ejpoom to the top value E, (see
figure 5.1). The terms g.(E) and g¢,(F) are the density of states available
in the conduction and in the valance band respectively which are given by
equations (B.24) and (B.25). The term f(E;T) is the Fermi-Dirac proba-
bility distribution function which gives the probability at temperature 7' for
the state of energy F to be occupied by an electron and its expression is:

1
1+ e(E—Er)/kpT

(B T) = (53)
where kp is the Boltzmann’s constant and Ep is the Fermi energy level.

For non-degenerate semiconductors, the Fermi energy level lies in the for-
bidden energy gap and its position varies according to the carriers population.
When the electrons carrier population overcomes the holes one, Er lies in
the upper half of the band gap. When the reverse is true, EF is positioned
below the mid-gap. When both types of carriers have similar concentrations,
the Fermi energy level lies near the mid-gap energy which is called intrinsic
energy level and it is denoted by E;.

If the energy E is far from the Fermi energy, i.e. |E — Eg| > 3kgT,
the Fermi-Dirac distribution function can be approximated by a Maxwell-
Boltzmann type function [78]:

f(E;T) ~ exp[—(F — Er)/kpT] )
L= J(BT) = exp[~(Ep — B)/kpT] (5.5)

which can be used for electrons (F > Ef) and holes (E < Er) respectively.
By this approximation and by the use of the equations (B.24) and (B.25) for

LOut of equilibrium the generation and recombination processes re-establish the equi-
librium condition.
2Holes unoccupied electron states are See section B.3 for the holes concept.
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the density of sates, it is possible integrate the expressions (5.1) and (5.2)
and to obtain the carriers concentrations as:

n(T) = N.exp|—(E.— Er)/kpT)| (5.6)
p(T) = Nyexp[—(Er — Ey)/kpT] (5.7)

where for the integration it was considered that FE,,,, — +0oo and Fyottom —
—00. The numbers N, and N, are the effective density of states for conduc-
tion and valence band respectively, which are equal to [78]:

3/2
2mmy kT /
N.=2 — (5.8)
3/2
2mmy, kT /
N, =2 — 2 (5.9)

where m};, and m}, are the density of state effective masses whose expressions
are given in equations (B.28) and (B.30). For silicon, at room temperature,
the effective density of states are equal to N, = 7.28 x 10 ecm™3, N, =
1.05 x 10" ecm™3 [75].

In figure 5.1 are reported the Energy-band diagrams, the density of states
functions, the occupancy factors - i.e. g.(E)f(E;T) and g,(E)[1 — f(E;T)]-
and the carrier distributions as a function of the Fermi energy level position.
The three represented positions are: Er > F; , Fr = F; and Er < E;. In all
three cases, as the energy increases in the conduction band or diminishes in
the valance band, the carrier distributions are zero at the band edges then
increase rapidly and reach a peak close to E. or F, afterward they decay to
zero In essence the carriers are distributed near the band edges within few
kgT.

5.1.2 Intrinsic Material

A semiconductor with a very low level of impurity atoms concentration is
called intrinsic. Because of thermal agitation, electrons continuously move
from the valance to the conduction band, leaving behind a hole. The reverse
process, called recombination, takes place as well. At a given equilibrium
temperature, for the charge neutrality condition the mean number of elec-
trons in the conduction band is equal to the holes one in the valance band.
This value is defined as the intrinsic concentration n;:

n(T) = p(T) = ni(T). (5.10)



By equating the carriers concentrations given by (5.6) and (5.7) it is possible
to obtain the position of the Fermi energy level, for an intrinsic semiconduc-
tor, i.e.:

Er (5.11)

2 2 N,
where (E. + E,)/2 = E,/2. At room temperature kg1 = 0.026 eV and for
silicon In(N,./N,)) ~ 0.9, then the Fermi energy level is approximatively equal
to the intrinsic energy level E; = E /2.

To get an expression for the intrinsic concentration as a function of temper-
ature, it is convenient to consider the product n(T)p(T) = nZ(T), where the
carriers concentrations are given by the relations (5.6) and (5.7), i.e.:

E.+E, kgT (NC)
= — In

ni(T) = /NNy exp —(Z/ﬁ) (5.12)
x T%?exp —% . (5.13)

This latter expression underlines the dependence of the intrinsic concentra-
tion on temperature (7%/2) and on the energy band gap E,. AtT =300 K
for silicon B, = 1.124 eV and n; = 1.45 x 10! cm™ [75].

5.1.3 n-type and p-type Silicon

The relative population of carriers in bands, can be varied by doping the
semiconductor with a specific concentration and type of impurity atoms. For
silicon (IV group element) it is performed by adding atoms of the V or III
group; phosphorus (P) or boron (B) are generally used. The V group element
is called donor atom because it has one more electron available for conduction
in respect to silicon. The semiconductor becomes a n-type material. The III
group element, instead, is an acceptor atom since it has one less electron
in the conduction band; in this case the semiconductor becomes a p-type
material. Impurity atoms in the crystal structure introduce discrete energy
levels inside the forbidden band gap. Ionization energies, respect to E. and
E, levels, of some impurity atoms are reported in figure 5.2. Donor and
acceptor atoms introduce shallow levels, denoted by E; and E,, which lie
close to the conduction and the valance band respectively. The ionization
energy depends on the dopant atom: it varies form 10’s meV to 100’s meV;
for example it is 0.046 eV for the donor P and it is 0.044 eV for the acceptor
B. These levels are partially or totally ionized according to the equilibrium
temperature.
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Figure 5.2: Tonization energy of various impurities atoms in silicon [76].

A qualitative description of the free carrier concentration as a function of
temperature, is now given for a non-degenerate semiconductor [76].
The donors and acceptors concentration of atoms are denoted by Ny and N,
while ny(T) and p,(T) represent the electrons and the holes concentrations
as a function of temperature, which are yielded by donors and acceptors
respectively. In addition, thermally generated carriers may be present with a
concentration given by the intrinsic one n;(7"). The total electrons and holes
concentration for a n-type and a p-type semiconductor, are given by the sum
of the dopant plus the intrinsic contribution:

n(T) = ng(T)+n(T) (n-type) (5.14)
p(T) = po(T)+n;(T) (p-type) (5.15)

which are valid for a n-type and a p-type respectively.

Low TEMPERATURES.
If the temperature approaches the absolute zero there is no thermal energy to
ionize dopant atoms or to excite electrons from the valance to the conduction
band. As a consequence there are no free carriers for conduction and the
carrier concentration is null, i.e.:

n(l'—0) = 0 (n-type) (5.16)
p(T'—0) = 0 (p-type) (5.17)

For T' # 0 in the low temperatures regime, the intrinsic contribution the to
carriers concentration is still null n,(7") = 0. Only a small fraction of dopant
atoms is ionized and so the relations (5.14) and (5.15) become:

n(T) ~ ng(T)< Ny (n-type) (5.18)
p(T) = pa(T) < No-  (p-type) (5.19)

To find the position of the Fermi energy level for a n-type semiconductor, the
quantity [1 — f(Eq;T)|Ng which is the number of ionized donors atoms, has

114



to be equal to the concentration of electrons in the conduction band given by
equation (5.6). For the p-type semiconductor, the number of acceptor atoms
occupied by electrons, f(E,; T)N,, has to be equal to the holes concentration
given by equation (5.7). Then, assuming the Fermi-Dirac approximations
(5.4) and (5.5), the position of the Fermi energy level is:

E.+E kgT N,
Ep = i 442 <—d> (n-type) (5.20)

9 2 N,

E,+E, kgT. (N,
Ep = — In (=2 t 21
» 5 5 n<Nv) (p-type) (5.21)

For a non-degenerate semiconductor, the dopant concentration is negligible
in comparison to the effective density of states (N < N, or N, < N,) and so
at low temperatures the Fermi energy level is positioned between the bottom
of the conduction band and the donor energy level for a n-type semiconductor
or between the top of the valance band and the acceptor energy level for a
p-type material i.e.:

E.+ E

Er ~ % (n-type) (5.22)
E,+E,

Er ~ —5—  (ptype) (5.23)

To obtain the carrier concentration, at low temperatures, Er given by rela-
tions (5.20) and (5.21) have to be substituted in (5.6) and (5.7) respectively:

n(T) = +/N.Ngexp —(EC;B—ETd)/Q (n-type) (5.24)
pT) = VENeew | - P RIB g (529)

These are the concentrations of carriers in the freeze out region where the
majority of them are bound to dopant atoms.

INTERMEDIATE TEMPERATURES.
As the temperature increases, more and more electrons have thermal energies
greater than the dopant ionization energy and so the number or free carriers
in the bands increases.
At intermediate temperatures, all dopants atoms are ionized (ny(7') = N4 or

Po(T) = N, ). If the thermal energy is less than the band gap energy E,, the
intrinsic concentration is still negligible respect to the dopant concentration
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(n;(T) < N4 or n;(T) < N, ). The carriers concentrations ( (5.14) and
1

(5.15)) are almost equal to the dopants contribution:
n(T) =~ ng(T)= Ny (n-type) (5.26)
p(T) = pa(T)=No  (p-type) (5.27)

The position of the Fermi energy level is obtained by equating the (5.6) and
(5.7) to the corresponding concentration of dopant atoms (equations (5.26)
and (5.27) ). The Fermi energy level relations are then given by:

N,

Er = E.—kgThh (—) (n-type) (5.28)
Ny
N,

Er = E,+kgTIn <F) (p-type) (5.29)

In this temperature interval, called extrinsic region, the carriers concen-
tration remains almost constant and the Fermi energy level lies just under
E. or above E, and it depends on the dopant concentration (N4 or N,) and
on temperature.

HiGH TEMPERATURES

When the thermal energy reaches and, as the temperature increases, over-
comes the band gap energy, the contribution of the intrinsic carriers n;(T") to
the total number of free carriers is no more negligible. In this case is it neces-
sary to distinguish between the majority carriers concentration (electrons n,,
for a n-type or holes p, for a p-type), and the minority carriers concentration
(pn in a n-type or n, in a p-type) induced by thermal excitation of electrons
from the valance to the conduction band. In the high temperature regime the
majority carrier concentrations ( (5.14) and (5.15)) are given by:

no(T) = Nag+ni(T) (n-type) (5.30)
po(T) = No+ni(T)  (p-type) (5.31)

while the minority ones are:

pn = ni(T)  (n-type) (5.32)

n, = ni(T)  (p-type) (5.33)

As the temperature increases further on, the intrinsic regime temper-
ature is reached and n;(T") dominates over the dopant contribution. The
Fermi energy level approaches the intrinsic energy level E; in the mid-gap
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(see equation (5.11)).

An example of the typical behavior of the n(T)/Ny ratio as a function
of temperature is reported in fig 5.3 for a n-type silicon doped with a phos-
phorus concentration Ny = 10°cm™3. Freeze out, extrinsic and intrinsic
regions are distinguishable. The schematic energy band diagram and carriers
population of donor level is also reported in the bottom of the same figure.

In figure 5.4 the positioning of the Fermi energy level, as a function of
temperature, is presented for n-type and p-type silicon. Different curves
refers to different concentrations of dopant atoms. As the temperature in-
creases ' shifts towards the mid-gap energy value; at a fix temperature the
lowest dopant concentration has Er closer to F;.

5.1.4 Compensated Semiconductor

In real materials, both type of carriers are simultaneously present. An ap-
propriate degree of doping atoms may change the relative concentration of
electrons and holes. Semiconductor doped with both donor N, and acceptor
N, atoms, are called compensated.
At thermal equilibrium holes and electrons concentrations satisfy the mass
action law:

pn =n; (5.34)

7

which is valid for all types of semiconductors.
In compensated materials, the dopant with the greatest concentration deter-
mines the conductivity type. For the charge neutrality condition, the total
number of positive charges must be equal to the total number of negative
ones, i.e.:

n+ N, =p+ Ny (5.35)

The total impurity concentration is equal to [Ny — N,| and, in general, it is
greater than n;. At intermediate temperatures, the carriers concentrations
are given by:

2

n o~ Ny—N,: p=_%1 (it Ny>N,) (5.36)
n
n?

p ~ N,—Ng; n=— (if N, > Ny) (5.37)
p
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where the mass action law (5.34) was considered. The position of the Fermi
energy level becomes:

Ne

Er = E.—kgT1 _—
F B H<Nd_Na

) if Ny > N, (5.38)

N, )
EF = Ev + kBTh’l (m) if Na > Nd (539)

When N; = N, the semiconductor is totaly compensated and the Fermi en-
ergy level is no longer given by the (5.38) or (5.39). In this case Ep shifts
to the intrinsic level energy F; in the center of the gap. The majority carri-
ers concentration becomes equal to the minority one and the semiconductor
behaves as an intrinsic material.

5.1.5 Degenerate Semiconductors

When the doping concentration is no longer negligible respect to the effective
density of states concentration, the semiconductor is called degenerate. For
silicon the critical doping concentration is about 1.3 x 10'® ecm™3 for n-type P
doped and 6.2 x 10'® cm™3 for p-type B doped [75]. For non-degenerate semi-
conductors, the dopant atoms can be considered decoupled as a consequence
they form discrete energy levels in the forbidden energy gap. With increasing
doping concentration, the distance between dopant atoms decreases and the
atoms wave functions overlap. If N; is the dopant concentration, the energy
level associated with each dopant atom is Ny-fold degenerate. The over-
lapping of the wave functions causes the splitting of the Ng-fold degenerate
energy levels, and brings to the formation of a impurity band [78].

For a very high doping concentration, the impurity band can intersect
the conduction or the valance band according to the type of dopant. Since
the dopant atoms are randomly distributed the edge of the conduction or
valance band exhibits a tail [78] [75]. The tail is schematically represented
in figure 5.5 where the density of states function for 7" = 0 is reported. It
is possible to see the progressively reduction of the ionization energy with
increasing dopant concentration. This has the important consequence that
the freeze-out region of the carriers concentration disappears [75]. As a
consequence the Fermi energy level progressively approaches the conduction
band (or the valance band in the case of acceptor atoms) with increasing
doping concentration. For very high doping, it can even lie in the conduction
band (on in the valance one). In this case the semiconductor behaves almost
like a metal. In addition the Fermi-Dirac distribution function can’t be
approximated by the Boltzmann one i.e. the relations (5.4) and (5.5) are
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Figure 5.5: Formation of a (donor) impurity band. (a) with a small doping concentra-
tion the dopant energy level (Fp) is well defined, (b) increasing doping and development
of an impurity band (c) the dopant band overlaps to the conduction band for high impu-
rity concentration. The shaded areas indicate populated states at T = 0 K. D(E) is the
density of states [75].

no longer valid. The carriers concentration, as a function of temperature,
are usually obtained by numerical integrations of the relations (5.1) and
(5.2) [78]. However the majority carriers concentration in the extrinsic
temperature region is still given by the doping concentration [78] i.e. n &
Ny for a n-type or p =2 N, for a p-type.

5.2 Generation and Recombination Processes

When the equilibrium concentration of carriers is disturbed by external sources,
generation and recombination processes restore the equilibrium condition
given by the mass action law (5.34).

If np > n?, injection case, electrons tend to recombine with holes by
making a transition from the conduction to the valance band. This is the
band to band transition which is typical of direct semiconductors.

Since silicon is an indirect semiconductor, the band-to-band recombina-
tion is not favorite. Instead the dominant transition mechanism is the in-
direct recombination precess via discrete deep energy levels which act like
traps within the band-gap. This is called single level recombination process.
In this case electrons and holes captured with a rate given by the appropriate
capture cross section (o, and o,). If the traps concentration is equal to Ny
and F is their energy level, then the net transition rate U can be calculated
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by [76]:

0,00 Ny (pn — n?)
E; — E E; — E
Op |P + n; eXp k:B—T + o, |N+n;exp k:B—T

where vy, is the thermal velocity of carriers (~ 107 cm/s), and F; is the
intrinsic energy level. The net transition rate is the difference between the
recombination rate and the injection rate. The proportionality term (pn—n?)
gives a measure of the out-equilibrium level of the material. The maximum
value of U is achieved when FE, = E; that is when the trap level lies in
the middle of the band-gap. Under this latter condition, the (5.40) can be

rewritten as:

U:

(5.40)

i — —pontimNi{pn — ;) (5.41)
op(p + i) + on(n +ny)
In a n-type material, under low-level injection (i.e. the injected carriers
satisfy the condition: Ap = An < Ny), the carriers densities become:

Ny = Npo+ AN~ nyg ~ Ny (5.42)
Dn = DPno+ Ap < ny (5.43)

where n,o and p,o are the majority and minority carriers concentrations at
equilibrium (i.e. npopno = n?), and Ny is the concentration of donor atoms.
Substituting of the (5.42) and (5.43) inside the (5.41) with the condition
Pn K Ny, it is possible to obtain that the recombination carrier lifetime is
equal to the minority carriers lifetime. The net recombination rate, in facts,
is given by:

U 5.44
- (5.44)
where 7, is minority carrier lifetime defined as:
1
o 5.45
p UpvthNt ( )

For a p-type material the issue is analogous and the minority carriers lifetime

is given by: .
Tn = —— (5.46)

On U IV

The recombination carrier lifetime is the time spent by carriers (electrons and
holes) within the bands (conduction and valance) before they being trapped
by discrete deep levels inside the band-gap. The order of magnitude ranges
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from 107 sec up to 107* sec and it depends to the concentration of levels
inside the band-gap N;. The carriers lifetime may be reduced by adding
impurity atoms or by the irradiation process (see 3.3). The displacement
damage, in facts, causes the formation of defects inside the crystal which
introduce deep levels in the forbidden energy gap. It has to be remarked
however, that while in the first case impurity atoms are added during the
semiconductor fabrication in order to change the electrical response of the
material, in the second case the irradiation creates unwished deep levels which
degrades the device performances as it was explained in sections 3.3 and 3.5.
When carriers are below their equilibrium value np < n?, a spontaneous
thermal transition of an electron from the valance to the conduction band
takes place. This thermal generation process restores the carriers equilibrium
condition. The generation rate is equal to:
OpOnUin Nin; n;

= —— (5.47)

U—
opll + p/n;| + 0,1+ n/ny T,

where 7, is the generation carrier lifetime which is given by:

7, = <1 v ﬁ) T+ (1 + £) T (5.48)

n; n;

where 7, and 7,, are the holes and electrons lifetime respectively. According
to the carriers concentration (n and p), the generation lifetime may be much
longer than the recombination lifetime. The minimum value of 7, is approx-
imatively twice the recombination lifetime and it is reach when both p and
n are smaller than n;, that is when the semiconductor is intrinsic or heavily
compensated.

5.3 Carriers Transport-Phenomena

The motion of free carriers under the influence of an external force is now
considered. When an electric field E is applied to a silicon sample, the
force F = +eE accelerates carriers in the same or in the opposite direction
according to their sign and generates the drift current.

Since the motion takes place inside the material, the acceleration process is
always broken by collision mechanisms. The more relevant collision processes
involve scattering of carriers with lattice phonons, ionized impurity atoms
and neutral impurity atoms. Because of scattering, the motion of the single
electron (or hole) is very complex. To describe it, a distribution function
f(k;r;t) is used which gives the probability, at a time ¢, to find the charge
at position r with wave vector k.
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The time evolution of the distribution function under the influence of an
external force F, is given by the Boltzmann transport equation [79]:
of — F = df
—4+v-Vif+—--Vif=1[—- 5.49
8t rf h kf <dt coll ( )
where v is the charge velocity. The distribution function varies during time
because of the particles drift, the momentum variation due to the acceleration
process and because of collisions inside the material.
If after collision the energy variation of the charge is small, a simple
expression to the collision term may be given:

AN
(%) coll o (550)

T

where fy is the thermal equilibrium distribution function (Fermi-Dirac (5.3)),
and 7 is the relazation time of the collision.

The relaxation time depends on the particle energy and on the specific
scattering mechanism and it is different for electrons and holes. The typical
order of magnitude is of 107'* sec. To understand qualitatively its general
meaning for simplicity it is considered not to vary with time. When the
external force F' is removed at time ¢ = 0, a simple integration of (5.50) gives
the shift of the distribution function Af = f — f, at time ¢t > 0:

Af =Afigexp ( - ;) (5.51)

where A f;—q is the shift at time t = 0. The relaxation time 7 represents the
decay constant with which the distribution function f recovers towards the
thermal equilibrium one f.

If the external force is weak and if the distribution function is not far from
equilibrium, the distribution function may by expanded in Taylor’s series
stopped at the first order, i.e.:

f~fo+ i (5.52)

where f; represents the effect of the external force and, since the force is
supposed to weak, f1 < fo.
In a uniform crystal and in the steady state condition, the Boltzmann trans-
port equation can be simplified and solved to give an expression to f. The
uniform condition implies that the term ?r f =0, and in the steady state
condition (0f/0t = 0) the (5.49) reduces to:

%ka_—f foo )t (5.53)

T T
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where 7 is the specific relaxation time which depends on the particular scat-
tering process.
Considering a n-type material the application of an electric field along

the z direction, induces a force F, = —eF, acting on free electrons. In this
case the equation (5.53) becomes:
eEat af fl
== 5.54
h Ok, T ( )

Assuming an isotropic effective mass m* the charges energy is given by:

h2k?
E = ) )
Y (5.55)
This enables to write:
E
of _919E o1, (5.56)

ok, OEOk, OFE
where v, is the velocity of the electrons in the x direction which is equal to:

Bk,

m*

Uy (5.57)
Substituting the partial derivative (5.56) in the (5.54) and remembering that
fo > fi, a simple expression for the f; can be derived:

9fo

- Eac [ p—
fi=eE, v 9E

(5.58)

Since fy is the Fermi-Dirac distribution function (5.3), its partial derivative

is equal to:
Afo — fol = fo)
oF kT (5:59)

The electrons distribution function for a uniform lattice crystal under the
influence of a week electric field acting along the x direction is then given by:

fo(1 —fo).

f = fO - eEmTUm ]{?BT

(5.60)
By means of the distribution function all physical quantities such as the
drift velocity, the current density, the mobility and the resistivity can be
calculated. For a p-type, where holes are majority carriers, the method is
completely analogous.
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5.3.1 Resistivity and Mobility

In a n-type semiconductor the current density, which arises when an electric
field is applied in the x direction, is given by:

Jr = —en{v,) (5.61)

where n is the electrons concentration and (v,) is the mean drift velocity.
The mean drift velocity can be computed by:

/Umfd3k
=4 (5.62)

where the integral is extended over the entire wave vector space. Since f; <
fo the integral at the denominator can be replaced by the integral of the
thermal equilibrium distribution function fj.

For non-degenerate semiconductor the thermal equilibrium function
is fo < 1 then (1 — fy) ~ 1 so that the distribution function becomes:

f = fO - eExTUz fO . (563)
kgT

Substituting this expression of f in term at the numerator of the (5.62) it is
possible to write:

/Uxfodgk eE /T’I)Qfgdgk
() = — . (5.64)
/ FodPk B / Fod’k

The first integral does not contain terms of the external force: it is the mean

velocity in the z direction at thermal equilibrium condition which is zero®.

Considering the change of variable:

d°k = 4rk*dk < EY2dE (5.65)

the second term on the right side of the (5.64) can be rewritten as:

Ry
2€Ex /0 TE fodE
SkpTm” / E'? fod

0

3Positive and negative values are equally probable

(ve) =

(5.66)
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where the E-k relation given by (5.55) and the v-k one (v = hk/m*) were
used.
The fy function for non-degenerate semiconductor can be approximated by
the Boltzmann distribution function (5.4). As a consequence the denomina-
tor term of the (5.66) can be rewritten with the use of the integration by
parts:

/ E3?fydE = ngT / EY?fy,dE (5.67)
0 0

Substituting this last expression in the (5.66), the average velocity of the
electrons is obtained as:

(vz) = ) E,. (5.68)

where (7) is the average over energy of the relaxation time. This average is
computed as:

/ B fydE
(1) = 22 (5.69)

/ E32fodE
0

which is a measure of the scattering rate that is the average time between
collision events (the mean free time).

The proportionality term between the drift velocity and the electric field is
the drift mobility:

p= (5.70)

m*
which depends on the mean free time (7). The effective mass m* that has to
be used to compute the mobility is the conductivity effective mass which is
denoted by m} and for electrons is given by [80]:

1 1( 1 2
= - 5.71
m, 3 (m;k + m;f) ( )

where m; and m; are longitudinal and transversal effective masses of the el-
liptical constant energy surface (see B.4). For holes the conductivity effective

mass is given by:
1 1({ 1 1 1
=5l =t 1t—= (5.72)
Mg, 3\ My, My, M

So

where the subscript h, [ and so refers to heavy hole, light hole and split-off
valance band respectively?.

4The conductivity effective mass, in practise, is a mean value of the charge effective
mass when it moves on the energy surface of the corresponding band.
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By substituting the (v,) expression in the (5.61), the generalized Ohm’s
low is obtained:
J, = ok, (5.73)

where o is the conductivity which is equal to:

B ne?(t)

o= = en. (5.74)

*

The resistivity is simply given by the inverse of the conductivity:

1 1
p=—=—: (5.75)
o enp

Analogous expressions for the holes resistivity and mobility can be derive.
For compensated semiconductors, the expressions of the total density
of current and of the resistivity are given by:

Jy = Je+Jy=0F, (5.76)
p = 1 = _ (5.77)
o e(npe + ppun)
where p. and p, are electrons and holes mobilities which depend on the
scattering mechanisms.

In degenerate semiconductors, the Fermi energy level Er is located
in the conduction band for a n-type material. As a consequence the term
given by the (5.59) assumes a significant value only in vicinity of the Fermi
energy level [79]. This means that the value 0f,/0E can be considered as a
Dirac d-function. In addition the following relations hold [79]:

fo ~ 1 (if E<Ep) (5.78)
fo ~ 0 (fE> Ep) (5.79)

Considering the relations (5.58), (5.59) and (5.60), the electrons distribution
function can be written in the more general form as:

o
OF"
Also in this case f7, which is the second term of this latter expression, satisfies
the condition f; < fp because the electric field E, is supposed to be weak.
The mean value of the velocity in the direction of the electric field, for a
non-degenerate semiconductor, was computed by the relation (5.64). In this

case it assumes the form:
dfo
29J0 53
o / TV 3 Ed k

3 / Fod®k
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f=fo+eE,Tu, (5.80)

(vg) = (5.81)



Making use of the change of variables (5.65) and of the relations F =
R’k?/(2m*) and v = hk/m*, the (5.81) becomes:

3/2¢J0
- 2€Ex/0 TE aEdE

(V2) = o
sm / EV2f,dE
0

(5.82)

By means of the previous considerations, the denominator term can be com-
puted as [79]:

o o 2
/ EV2fydE ~ / EV2dE = gEf;/? (5.83)
0 0
while the numerator can be approximated by [79]:
> 0
/ 2000 0 —7(Ep)EY (5.84)
0 OF
The mean velocity (5.82) becomes:
er(EF)
v) = — E, 5.85
vy =~ (5.85)
The mobility p is then equal to:
E
= er( *F) (5.86)
m

In this case the relaxation time depends only on the energy of the Fermi level.
By means of the (5.85) it is possible to write the current density as [79]:
e*nt(Er)

m*

Jp = E,=0cE, (5.87)

where o is the conductivity which is equal to:

2
FE
> L(*F) —enp (5.88)
m

The resistivity is then simply given by:

- 5.89
P= o (5.89)
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Figure 5.6: The temperature behavior of the electron mobility in a silicon sample for
different donor concentrations

5.4 Scattering and Mobility

The collision mechanism involves different scattering processes. The more
important are acoustic phonon scattering which dominates at high temper-
atures, and scattering with impurity atoms which can be ionized or neutral
according to the temperature. Impurity atoms are always present inside the
material. At low temperatures the scattering of impurity atoms dominates
over the acoustic phonon scattering. The temperature behavior of the elec-
tron mobility for a silicon sample is reported in figure 5.6 for different donor
concentrations. In the same figure the theoretical dependence on tempera-
ture for a pure lattice and a pure phonon scattering process are also reported.

The carriers mobility depends on every scattering process. Its total ex-
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pression is given by:

- (5.90)
m

C

where the total relaxation time 7, is computed as:
1 1
= — 591

and the sum is extended to the all possible scattering mechanisms.

5.4.1 Acoustic Phonon Scattering

Carriers, moving inside the material, are scattered by phonons induced by
lattice vibrations. This mechanism can be described by the deformation
potential theory which quantifies the energy change of an electron due to
the crystal lattice deformation. The variation of the energy band, dF, is
supposed to be proportional to the variation of the crystal volume 6V which
is induced by the acoustic deformation [79]:

5V
6E = Dy 5.92
% (5.92)

where D,, is the deformation potential. The relaxation time for acoustic
phonon scattering is given by [79]:

2mh* vy -1/2
(2m3)2P D2, kT

(5.93)

Tac =

where p. is the crystal density and v, is the velocity of sound, m}; is the
density of state effective mass (see equations (B.28) and (B.30)). Making
use of this expression for the relaxation time and of the relation (5.69), it is
possible to compute the mean free time for acoustic scattering, (7,.). The
mobility definition is then given by [79]:

23271 2eb pouvg
Hac = "
‘ Smd3/2mz D?zc

(kpT)~3/* (5.94)

where the temperature dependence indicates that the mobility decreases with
increasing temperature (7-3/2 see figure 5.6). Relations (5.93) and (5.94) are
valid for both type of carriers with m}; = mj, and m; = m}, for electrons or
m} = my, and m} = m}, for holes.
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5.4.2 Ionized Impurity Scattering

Semiconductors contain may impurity atoms which can be donors, acceptors
or unwished atoms. At ordinary temperatures, the impurity atoms result to
be ionized. The ionized atoms produce a Coulomb potential which deviated
the electrons and holes trajectories. The relaxation time for the Coulomb
scattering of electrons was deriver by Conwell and Wiesskopf [81] and subse-
quently it was redefined by Brooks and Herring [82] which took into account
the screening effect of the Coulomb potential by inner electrons. The Brooks-
Herring formula is [80], [79]:

16me2(2m*)Y? _, 3
—— 1 FE3?|log(1 - —— 5.95
TBH 22N, og(1+¢) 1+¢ (5.95)
Sem*kgT
= ———F 5.96

where ¢ is the dielectric constant of the semiconductor, Z is the charge of
the impurity atom and Nj is the impurity atom concentration. The electron
mobility for the Brooks-Herring formula is derived by computing the integral
(5.69) which was simplified by setting the F term in the logarithmic expres-
sion equal to 3kgT (when E = 3kpgT the relaxation time (5.95) assumes its
maximum value). The expression for the mobility is then given by [79]:

-1

64 ()22 5 &
ot (2kpT)*? | log(1 - ,
KBH 2263ij*1/2( sT) og(1 + &) 1+& (5.97)
24em* (kpT)?
- 5.98
o h?e2n (5.98)

where the temperature dependence indicates that the mobility increases with
increasing temperature (T2 see figure 5.6).

5.4.3 Neutral Impurity Scattering

At low temperatures, donor and acceptor atoms are no longer ionized and
behave as neutral impurity atoms. As a consequence the contribution to the
Coulomb scattering is null.
The wave function of the electron captured by the impurity atom extends
over a distance which is grater than the lattice constant. This distance is the
Bohr effective radius a; and it is equal to [83]:

€/€o

= — 5.99
ar m*/mao ( )
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where ag is the Bohr radius. The scattering cross section for electron-neutral
atom interaction has been derived by Erginsoy [84] who gave an approximated
expression for the total scattering cross section i.e.:

20
o= =4 (5.100)
k
which is valid for ka; < 0.5.
If ny is the density of neutral impurity atoms then the mean free path between

collisions is equal to:
1

lr = 5.101
1= (5.101)
which gives a time between successive collision equal to [83]:

l] 1 m*
= == — 5.102
T v nroy hk ( )

m* 1

= — 5.103
h20a1 nr ( )

By using this relaxation time, the mobility of electrons is simply given by:

e 1
_hQOCI,]TL]

ur (5104)
which is inversely proportional to the neutral impurity atom concentration
nyr.

5.4.4 Semi-Empirical Relations for Carriers Mobility

The electrons and hales mobilities experimental data can be found in litera-
ture for different doping concentration, as a function of temperature [85].
Arora et al. [86] derived semi-empirical relations for the electrons and holes
mobilities by fitting experimental data. In the temperature interval where
acoustic phonon scattering dominates, they proposed the following fitting
curves for the lattice scattering mobilities:

pre = 8.56 x 1087723 200 — 500] K (5.105)
prn = 1.58 x 10°T~22* [150 — 400] K (5.106)

which are valid for electrons and holes respectively.
Using the Brooks-Herring formula (5.95) Arora derived the ionized scattering
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mobility for a n-type material as:

7.3 x 1017
e = WT?’/? (5.107)
§o
F = log(1+ &) — 5.108
(6o) og( £o) 1+¢ ( )
1.52 x 10'°
f = —:, T? (5.109)

n

n = n(?—ﬁd) (5.110)

where Ny is the donor concentration, and Ny is the ionized impurity one. A
similar expression of the ionized scattering mobility was given for a p-type
material:

5.6 x 1017
= =137 5.111
H = RGN, (5111)
2.5 x 1015
§ = ———T7 (5.112)
p
p = p(2—§> (5.113)

where N, is the acceptor atom concentration.
The total mobility could be obtained simply by applying the Matthiessen’s

rule: )
1 1\
= (— + —) (5.114)
B 1

but experimental data don’t follow this relation demonstrating that the two
scattering mechanisms are not fully independent. Arora gave the following
empirical relations for total electrons and holes mobilities as a function of
temperature and dopant concentration [86]:

7.4 x 108 7233

1+ [Ng/(1.26 x 1017 T24)]0.88 T, 0146
1.36 x 108 7223

1+ [N,/(2.35 x 1017 T24)]0.88 T, 0-146

Ue = 88 TO—O‘57 +

(5.115)

wn = 543 T, %57 + (5.116)

T

T, = —
300

These curves were derived from the fit of data in the temperature range
[250 — 500] K and for doping concentration up to 10%° cm™3.

133



An alternative empirical relation to model both scattering mechanisms,
was proposed by Caughey and Thomas for electron and hole mobilities [87]:

Hpho — Hmin
I+ (N/Nmf)7

where fip5, is the acoustic phonon scattering mobility, and the experimental
values for the fitting parameters can be find in [80]:

fmin e = (197.17 — 45.505 log(T")) ( )
Pomin = (110.90 — 25.597 log(T)) ( )
Nyef e = 112 x 107 722 (5.120)
Neepn = 223 x 107 T22 (5.121)

Ye = An=072T)% (5.122)

which are valid in the temperature range [4.2 — 300] K and for doping con-
centrations up to 10* em=3.

The computation of the mobility in presence of acoustic phonon scattering
as it was derived by equation (5.94), is quite difficult because the phonons
energies and the energies of the electrons inside the crystal have to be known.
A mathematical method to compute g5, was proposed by Sha [88], [80]:

-1
T T8
Hpho = ( = + i > (5123)

Hoa  Mob

where for electrons figee = 4195cm?/(V s), pope = 2153cm?/(V s), a, = 1.5,
B, = 3.13,and for holes pgan, = 2502cm?/(V's), popn, = 591cm?/(V s), oy =
1.5, B = 3.25.

5.5 The Hall Effect

When an electric fiend and a magnetic field are applied to a conductor in
perpendicular directions to each other, inside the material there is the gen-
eration of another electric field oriented in the third perpendicular direction.
This phenomena is called Hall effect and it is often used to measure the elec-
trical characteristics of a semiconductor. Under the assumption that (1) the
sample is infinitely long (2) the effective mass is isotropic, and (3) all elec-
trons have the same velocity and constant relaxation time, a qualitative idea
of the Hall effect can be given [90]. A n-type semiconductor is considered
first; for a p-type one the issue is analogous.
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Figure 5.7: Scheme of the Hall effect geometry for electrons moving carriers inside an
ideal infinite sample. Positive (+) and negative (-) signs refer to charge accumulation on
the y sample direction.

When an electric field is applied to a n-type sample, inside the material
flows a density of current J and the conductive electrons move with drift
velocity v. In addition when a magnetic field B is applied, electrons experi-

ence the Lorentz’s force F;, = —ev x B. If the current flows in the positive
x direction, and the magnetic field is in the z direction, electrons will be
accelerated by the Lorentz’s force Fy,,, = —e(—v,)B, in the -y direction, as

shown in figure 5.7. In this way electrons will move on the -y side of the
sample leaving in the +y side immobile positive charges (donors). Because
of this charge accumulation, an electric field E,, oriented in the -y direction,
will be induced. This electric field, called Hall Field, will prevent further
accumulation of negative charges on the -y side of the sample and, in the
steady state condition, it will balance the Lorentz’s force Fy, , + (—e)E, = 0.
The Hall Field is given by:

F B
E,=-1Y —y,B, = _J (5.124)
e ne
or equivalently:
E,= RyJ,B, (5.125)

where the proportionality term between the induced electric field £, and the
term J, B, is the Hall coefficient defined as:

Ry = ——. (5.126)
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With the appropriate signs convention it is possible to obtain the Hall coef-
ficient also for a p-type semiconduct as:

Ry = i (5.127)
pe
The Hall coefficient is inversely proportional to the carriers concentration
and indicates the type of conducting carriers by the sign.
This simplified description was derived with the hypothesis that the relax-
ation time does not depend on the particle energy. If the energy dependence
of the relaxation time is considered, then for a n-type sample the Hall coef-

ficient is equal to [90]:

Ry =12, (5.128)
ne

where rg is the Hall scattering factor which depends on the overall relaxation
time and as a consequence, depends on every scattering process. The rg
values are given in literature [82], [89], [94] for different temperatures and
ionized impurity concentration. It will be discussed in section 5.5.1.

Ry can be derived from experimental measurements. If w and ¢ are the
width and the thickness of the sample under test, then the current which flows
inside of it, is I, = Jywt. The Hall voltage, which is given by Vg = E,w
with E, expressed by the (5.125), is equal to:

R
Vir = THIsz. (5.129)

By measuring the Hall voltage, Ry is obtained. If with experimental tech-
niques the resistivity of the sample is measured too, then the (5.75) enables
one to obtain the Hall mobility which is define as:

R
= |—pH| = rygp. (5.130)

The hall mobility differs from the (drift) mobility p by the Hall scattering
factor.

5.5.1 The Hall Scattering Factor

Inside the material, the equation of motion of a single electron under the
influence of an electric and a magnetic field, is [79]:

d
m*d—:: + m*g = —e(E+v xB) (5.131)
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where the relaxation time 7 is considered to be constant so that (7) = 7
and the effective mass m* is supposed to be isotropic. In the steady state
condition, the particle velocity can be computed by:

eT
R

v = (E+v x B) (5.132)

m
In general, if the electric field is in the x direction and the magnetic field is
oriented along the z axis, the motion of the electron has a drift component
along the -x direction superimposed on an orbital motion which takes place
in the zy plane®. The angular frequency of the orbital motion is equal to the
cyclotron frequency defined as:

B,
we = 2, (5.133)
m*

However an electron inside the material will be continuously scattered by
the collision processes which deviates its trajectory. The relaxation time is
related to the electron mobility by (5.70) and so it is possible to obtain the
relation:

weT = uB, (5.134)

which enables to distinguish between high and low external magnetic file
conditions. If the electron is scattered with relaxation time shorter compared
to the time taken to complete the cyclotron orbit, then the orbital motion
will be disturbed and the trajectory will be more similar the one of a random
walk along the -z direction. On the contrary, if the relaxation time is long,
the electron completes many orbits before been scattered. These set the low
and high magnetic file conditions:

wr = puB, <1 (low B) (5.135)
wer = wB,>1 (high B) (5.136)

under which different values of the Hall coefficient are obtained®.
From the equation (5.132) it is possible to derive the components of the
velocity and since J = —env the ones of the current density are obtained

5The orbital motion is induced by the Lorentz’s force.
6The high B condition is achieved for magnetic fields grater than about 100 kGauss
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too, i.e. [79]:

m* | 14 w?r? 1+ w2r2™? (5.137)
ne? | w,r? T ]
J, = < _F, E 5.138
Y m* | 14 w?r? + 1+ w?r? Y ( )
2
J. = “7E, (5.139)
m

Equations (5.137) and (5.138) can be written in the more compacted form
as:
Jo = OBy + 0 Ey (5.140)
Jy = 0yEy+oy,E,. (5.141)
These last expression together with the (5.139) enable one to write the gen-

eralized Ohm’s low:
J=oFE (5.142)

where g is the conductivity tensor which is equal to [75] [79]:
Oze Ozy O

a=| 0pu oy 0 (5.143)
0 0 o0,

The components of the conductivity tensor are equal to [79]:

2

ne T
Oge — O'yy—m*m (5144)
ne®  w.r?
o T TS e (5.145)
2
0 = —7. (5.146)
m

With these expressions it is possible to obtain a relation between the Hall
coefficient and the conductivity tensor components. The condition to mea-
sure the Hall coefficient is to impose J, = 0. Using equations (5.140) and
(5.141) it is possible to get:

o +o?
J, = ——HEF, (5.147)
0-$J?
Oy
E, = —E, (5.148)
U:)::):
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which can be substituted in the (5.125) to obtain [79]:

Oy 1
2 2
Onp + 02, B,

Ry = (5.149)

The sign of Ry is defined by the o,, component of the conductivity tensor”

given by the equation (5.145).

This result is for one electron. Inside the material, however, there are
many conductive electrons which have different velocities and relaxation
times. If electrons are distributed according to a known distribution function
f, it is possible to derive an expression analogous to the (5.149) by the cal-
culation of the mean value of the velocity components. This enables to get
the expression for the Hall coefficient valid for an arbitrary magnetic field
strength oriented along the z axis:

(0ay) 1
Ry = — 5.150
" T+ (el B 150
where average ( ) is taken over carriers energy (see equation (5.69)).

Whit some manipulation, it is possible to obtain the general expression of
the Hall coefficient and of the scattering factor [79]:

Ry = -2 (5.151)
en

-2
)
= : . (5.152)
T 5 T2
<1+w372> +wc<1+w272>

In the limit of high magnetic field w.7 > 1, and so ry ~ 1. For a n-type
material, the Hall coefficient reduces to:
1

Ry ~ —— (hich B). 5.153
H — (high B) ( )

g

In the low magnetic field limit w.7 < 1, the Hall coefficient and the scattering
factor become:

Ry = —;—Z (low B) (5.154)
o~ AT (5.155)

"For a p-type material the result is analogous but the effective mass m* is the hole one
and the sign of o, is positive.
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where the average is computed by means of (5.69). An analogous expression
can be obtained for a p-type material. Since the relaxation time depends
on the effective mass of the particle, electrons end holes have different Hall
scattering factors.

To calculate g it is necessary to know the distribution function f of the
charges and the energy dependence of the relaxation time. If f is equal to
the Boltzmann distribution function (equation 5.4) and 7 = aE~*, then the
Hall scattering factor can be computed by [90] [79]:

(3 —29)I(5)
rH [F(g T (5.156)

where I is the gamma function defined as:

F(p):/ P Ye o dy (5.157)
0

with properties: I'(p + 1) = pI'(p); if p is an integer then I'(p 4+ 1) = p!, if
p=1/2 then T'(1/2) = /7.

If the scattering process is the acoustic phonon scattering, then s = 1/2 and
the ry expression given by the (5.156) is equal to:

3
ry = % =118 (5.158)

very close to 1 and so the Hall mobility is almost equal the drift mobility.
For ionized impurity scattering s = —3/2 and so the Hall scattering factors

is equal to:
_ 3lom

ST
In this case the Hall mobility is almost twice the drift one. For the non
ionizing scattering process the relaxation time is energy independent, so s = 0
gives rg = 1.

In general all scattering processes are contemporaneously present, as a
consequence the Hall scattering factor assumes an intermediate value which
will be closer to the dominant scattering mechanism and will vary with tem-
perature. The Hall scattering factor can be experimentally determined from
the ratio between the Ry measured in the low B condition and the one
obtained in the high B condition. In figures 5.8 and 5.9 are reported the
experimental and the theoretical ry values as a function of temperature and
of donors concentration for a n-type semiconductor.

For a degenerate semiconductor the relaxation time doesn’t have to be
mean over energy, (), because the term 0fy/0F in the distribution function

~1.93 . (5.159)
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Figure 5.9: Hall scattering factor (y) versus impurity concentration Np for n-type
silicon. Experimental data:e (T' = 77 K); o (T' = 300 K); A (T = 77 K, low mobility
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assumes a significant value only near the Fermi energy level (see equation
(5.84)). As a consequence the Hall scattering factor is almost equal to unity
(rg ~ 1) and the Hall mobility can be considered equal to the drift one. The
Hall factor is then simply given by Ry = —1/en or by Ry = 1/ep according
to the doping type. In addition, since the carriers concentration is equal to
the one of dopant atoms for all temperatures, the Hall coefficient is expected
to be almost constant with temperature.

5.5.2 Hall Coefficient in Compensated Semiconductors

For a compensated semiconductor the general expression for the Hall coeffi-
cient is given by [79] [75]:

(Tay)p + (Tay)n
[<U$x>p + <wa>n]2 + [<ny>p + <U:cy>N]QBz

Ry = (5.160)
where p and n indexes refer to electrons and holes which can be of majority

or of minority type according to the level of compensation. In the limit of
low magnetic field, the (5.160) reduces to [76]:

o pM%THh - nquHe (1

Ry = w B 5.161
" e(pun + npe)? ) ( )

where rgp, pp and rge, pe are the Hall scattering factors and mobilities
for holes and electrons respectively. The sign of the Hall coefficient depends
on the numerator term. According to the relative doping concentration of
donors and acceptors atoms, the sign may be positive or negative.
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Chapter 6

Experimental Results of the
Hall Effect Measurements

In this chapter experimental results of the Hall effect are reported [102].
We performed measurements on silicon bulk samples of different resistivi-
ties which are usually employed as substrates for the fabrication of devices
used during space missions. Measurements were performed before and after
irradiation with neutrons and carbon ions. Temperature scans from 300 K
down to 11 K of the Hall coefficient, the resistivity and the Hall mobility are
reported.

6.1 Samples Characteristics and
Irradiation Fluences

Our samples are silicon bulk of n-type doped with phosphorus (P) and of
p-type doped with boron (B) of different resistivities. They are squares with
a surface area of 1 cm? and they have a thickness of 400 pm.

The resistivities before irradiation can be classified in:

e very-low (0.01 2 c¢m)

e low (56 2 cm)

medium (157 Q cm)

high (2500 €2 cm)

very-high (7000 €2 cm)
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Type P Naopant Irradiated with
D 0.01 ~1x 10" Carbon ions
0.01 ~5x 10 Carbon ions
56 ~ 8 x 10" Neutrons
157 ~ 3 x 10" Neutrons
2500 ~ 2 x 102 Neutrons
7000 ~ 7 x 10"  Carbon ions

S 33 33

Table 6.1: Type, doping concentration and resistivity of the silicon bulk samples before
irradiation with the corresponding irradiation particles. The resistivity p is given in units

of Q cm; the doping concentration Ngopant is given in units of cm 3.

The corresponding doping concentrations N, and N, were calculated at T =
300 K by means of the relation (5.75):

1 1
Nd >~ ; Na >~
eppte eppn

(6.1)

where it was considered than at this temperature the carriers concentrations
are n ~ Ny and p ~ N, (see section 5.1.3). For this computation the elec-
trons and the holes mobilities were calculated by means of the semi-empirical
formulas of Arora et al. [86] which were reported in equations (5.115) and
(5.116). The resistivities and the doping concentrations before irradiation
are listen in table 6.1 with the corresponding particles of irradiation.

Low, medium and high resistivities samples, in addition, contain an oxy-
gen concentration of 6.4x10'" em ™3, 4.7x10'7 cm™3 and 0.7x 10" cm ™3 re-
spectively. The oxygen enrichment should diminish the reduction of the
effective doping concentration Nz after irradiation, as was explained in sec-
tion 3.3. Very-low resistivities samples are degenerate semiconductors with
a doping concentration of about N, ~ 10 cm™ and Ny ~ 5 x 10'® ecm ™3
for p and n-type respectively. For these samples, as was explained in section
5.1.5, the carriers concentration is almost equal to the doping concentration
for all temperatures. Very-high resistivities samples have a doping concen-
tration of about N; ~ 7 x 10 ¢m™3 not far from the silicon intrinsic carriers
concentration ( as reported in section 5.1.2, n; = 1.45 x 10*° cm™3)

Low, medium and high resistivities samples were irradiated with fast
neutrons at the X¥-facility of Bucarest [100]. The neutrons energy range
was 10 keV - 18 MeV, and the mean energy value was about 0.827 MeV. The
irradiation flux was 3.385x 10° n cm~2 s~!. The obtained fluences were in
the range form 6.1x10'" n/cm? to 1.0x10'® n/cm?. The Frenkel-pairs (FP)
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concentration can be estimated by means of equation (3.21) i.e.:
§Eais

2Ty

where £ = 0.8, T} is the threshold displacement energy and E;; is the neutron
displacement energy density which is given in equation (3.31). By the use of
the ASTM standard, D(1MeV) = 95 x 1072" MeV cm?, and of the relation
(3.35), the displacement energy density can be computed by:

FP =

(6.2)

Ema.;v

Egs=N / D(E) ®(E)dE = ND(1MeV)dMeV (6.3)
Enmin

where N = 5.01 x 10?2 is the silicon atom density. The term ®MV is the 1

MeV neutron equivalent fluence which is related to the neutron fluence ®,,

of the ¥¥ reactor by means of the equation (3.32) i.e.:

QMY — ko, (6.4)

where k£ ~ 0.704 is the hardness parameter of the X3 reactor [100]. By
means of this last relation, the (6.3) can be written as:

Es = ND(MeV)x®, (6.5)

Substituting this last expression of Ey, in the FP equation (6.2) with a
displacement threshold energy T,; = 25 eV, it is possible to obtain:

FP~547®, [cm™] (6.6)

Very-low and very-high resistivities samples were irradiated by carbons
ions of energy 1.14 GeV (95 MeV /nucleon). This irradiation took place at
the GANIL facility near Caen. Six fluences were obtained in the range from
5.4 %10 to 1.0 x 10'3 ions/cm?. The concentration of FP for this irradiation
fluences were previously calculated by Codegoni et al. [101] by means of the
Monte Carlo simulation code TRIM [98]. Assuming a threshold energy of
Ty = 25 eV, they obtained:

FP~12x10° ®1c [cm™? (6.7)

where ®124 is the carbon irradiation fluence.

In addition, by means of the NIEL-Dose equation (3.22) and of the FP
one given by (6.2), it is also possible to calculated the absorbed NIEL-Dose
for theses FP concentrations i.e.:

FP x 2T,
DNIEL — G 6.8
621 x 109pg, ] (68)
where pg; = 2.33 g/cm? is the silicon density. Values of the neutrons and of

the carbons fluences together with the FP concentrations and the NIEL-Dose
are listed in table 6.2.
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Neutrons Carbon ions

o, rpP DNIEL D2 rpP DNIEL
n cm2 cm 3 Gy ion cm™? cm 3 Gy
6.1x10M  3.3x10%  0.142 | 54x10'°  6.4x10% 0.275
1.3x10% 7.1x10%  0.305 | 1.1x10% 1.3x10™" 0.559
3.0x10"2 1.6x10" 0.688 | 5.1x10" 6.3x10™ 2.71
1.1x10% 6.0x10™ 2.58 1.0x 10" 1.2x10' 5.16
4.5x10"  2.5x10% 10.8 | 5.0x10"? 6.2x10% 26.7
1.1x10" 6.0x10% 258 | 1.0x10%  1.2x10' 51.6
1.1x10%  5.5x10'6 236

Table 6.2: Fluences, FP concentrations and absorbed NIEL-Doses induced by neutrons
and carbon ions.

6.2 Experimental Setup and Method

The samples were mounted on a fiberglass base covered on both sides with
a copper layer. The electrical-insulation and the thermal conduction were
guarantied by a thermal-conducting glue suitable for low temperatures. Four
Ohmic contacts were made at the corners of the sample with ultrasonic
thermal-compression bonding by means of an Heavy Wire Bonder (Ortho-
dyne Model 20). An aluminium-silicon! wire, with a diameter of 100 pm,
was used.

All measurements were performed using a constant current source (DC
mode) with power supplied by a generator current (Keithley 220). An elec-
trometer was used to control the current which flows inside the sample (Keith-
ley 617). The potential difference between contacts was measured by means
of a digital multimeter with high input impedance (>10 G ohm) (Keith-
ley 196). All these instruments were connected with the sample by an Hall
Effect Card (Keithley 7065) that controlled all the contacts of the circuit.
The magnetic field, for the Hall coefficient measurements, was supplied by
an electromagnet (Oxford instrument) capable of generating 3000 Gauss, of
both polarities. The samples were mounted on the could-finger of a cryostat
(ADP) which is able to reach a minimum temperature of 11 K. The tem-
perature was kept constant by a temperature indicator-controller (Scientific
Instruments Model 5500). The experimental setup was connected to a data
acquisition system developed in the LabView 8.0 environment. Experimen-
tal setup and pictures of instruments are reported in figure 6.1.

1AL 99%, Si 1%.
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Figure 6.1: Top: schematic representation of the Hall effect setup. Bottom: Pictures of
instruments.
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Figure 6.2: Schematically representation of voltages and currents for resistivity and Hall
coefficient measurements.

The sample is schematically represented in figure 6.2 where the four con-
tacts are labeled as A, B, C'and D. To perform the resistivity measurements,
we used the Van der Pauw method [90] which enables one to compute the p

value as:
7t | Rpacp + Reo,pa f

T2 9

p (6.9)
where ¢ is the sample thickness, Rpacp and Rpcpa are the resistances
computed by:
Vep Vpa
Rpacp=—+—— ; Rpepa=-— (6.10)
Ipa Ipc
where Vop is the measured voltage between the contacts C'D when in the
other two, BA, it is applied the current Ig,. For the voltage Vp4 and the
current Igc the issue is the same. The term f is a geometrical factor which

depends on the measured resistances and it is computed by [90]:

with Q@ = Rpa.cp/Rpc,pa. The p measurement was performed with reversed
current too and the mean value was taken.

To perform the Hall coefficient measurements the sample is immerse in
a magnetic field which is perpendicular to the sample surface. We measure
the voltage which arises at one diagonal of the sample when a current flows
through the other diagonal as shown in figure 6.2.

The numerical value of the Hall coefficient is computed by:

Vact Vit

RHAC,DB = m 7 HDB,AC - m (612)
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where B is the magnetic field strength (3000 Gauss) and V¢ is the voltage
of the diagonal AC when the current Ipp flows along the other diagonal
(DB). For the Ry, . value the issue is the same. In addition the same
measurements were performed with reversed current and reversed polarity
of B. The final value of the Hall coefficient Ry is obtained by the mean of
these eight measurements.

The Hall mobility ug, is defined as the ratio of the absolute value of the
Hall coefficient and of the resistivity:

_ | B4

; (6.13)

125z4

From the condition (5.135) it is possible to see that our measures are per-
formed in the low magnetic field regime. Assuming the electrons mobility
calculated with Arora’s formula at T = 300 K, p. ~ 1330 ¢cm?/(Vs), and
B = 3000 x 107® Wh/cm?, we have:

feB ~1.33 x 10° x 3 x 107° ~ 0.04 < 1 (6.14)

As already said in section 5.5.1, for a n-type non-degenerate sample, in the
limit of low magnetic field, the Hall coeficient and the resistivity are [93]:
1
Ry=-", p= (6.15)

en eflen

where e is the electric charge, n is the concentration of majority carriers, p. is
the electron mobility and ry is the Hall-scattering factor. The Hall mobility
is ug = rupe which within a 20% due to the variation of ry, is equal to
the electron mobility. For a degenerate semiconductor, instead, the Hall
mobility can be considered equal to the drift mobility (ry ~ 1) as already
said in section 5.5.1.

6.3 Experimental Results of Non-Irradiated
Samples

Temperature scans of p, Ry, pug were performed from 300 K down to 11 K
for non-irradiated samples [102]. In addition we calculated the inverse of the
Hall coefficient which gives the carriers concentration over the Hall scattering

factor:
n 1

_— = 6.16
ry  e|Ryl| ( )
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Considering the values of rgy which were given in equations (5.158) and
(5.159) for acoustic and ionized impurity scattering respectively, we can es-
timat the carriers concentration at 7' = 300 K :

~ 824 x 10®¥cm™3

[0.01 Qcm] p
001 Qcem] n ~ 3.6x10"®cm™®
[56 Qecm] n = (46.5) x10%cm™
157 Qcecm] n = (2.64.2) x 10®%cm™
2500 Q cm] n = (2-3.3) x 10%cm ™3
(7000 2 cm] n (6.3-10) x 10" cm™®

where it is considered that rg ~ 1 for degenerate samples.

The experimental results of Ry, n/ry, p and pg are reported as a function
of 1000/T in figure 6.3. As expected (see sections 5.1.3) for non-degenerate
samples it is possible to identify two regions: the extrinsic region, where
n/ry is almost constant, and the freeze-out region where n/ry decreases for
increasing temperature. The Hall coefficient, which in the plot is reported
with its sign, follows the same behavior but, in this case, its absolute value
increases in the freeze-out region.

The Hall mobility increases with decreasing temperature from 300 K down
to about 25 K. This behavior indicates that the acoustic scattering process
dominates over the ionized impurity one (see sections 5.4.1 and 5.4.2). In
the temperature interval from 11 K to 20 K, instead, it is almost constant.

From the p = 1/(pene) measurements it is possible to obtain that the elec-
trons drift mobility follows a power low dependence on temperature which,
in the interval [300-100] K, can be expressed as:

fe 0 T (6.17)

where the exponent m is about 2, value in agreement with literature [95].

For very-low resistivity samples (which are degenerated) the freeze out
region is absent. The carriers concentration n - p (in this case ry ~ 1), Ry
and p values are almost constant in the entire energy range. The mobility for
both types of samples (p and n) depends on the ratio of the relaxation time,
which depends only on the Fermi energy level, and the effective mass (see
equation (5.86)). As can be seen from this results the ratio doesn’t change
much from 300 K down to 11 K. For the n-type p. varies from about 224
em?/(Vs) at T = 300 K to 91 ecm?/(Vs) at T = 11 K (42%), while for the
n-type py, varies from about 81 cm?/(Vs) at T = 300 K to 26 cm?/(Vs) at
T=11K (51%).
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Figure 6.3: Experimental results of non-irradiated samples for different resistivities. Top
left: Hall coefficient. Top right: carriers concentration over Hall scattering factor. Bottom
left: resistivity. Bottom right: Hall mobility [102].

6.4 Temperature Scan of Irradiated Samples

Temperature scans of p, R;, and py were also carried out on samples after ir-
radiation with neutrons and carbon ions [102]. As can be seen from figure 6.5
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for very-low resistivity samples (0.01 € cm), there are no relevant variations
of these quantities after irradiation, even for the largest fluence.

For non-degenerate samples, instead, p and |Ry| progressively increase
with increasing fluence while py decreases. In addition the Hall mobility
dependence on temperature changes slope. This behavior is achieved at a
lower absorbed NIEL-Dose with increasing sample resistivity i.e.:

[56 Q@ cm]  DM'PL >235Gy or FP>55x10"%cm™®
(157 Q em]  DN'EE > 958Gy or FP > 6.0 x 10" cm™
2500 Q em]  DMFE > 258Gy or FP>6.0x 10" cm™
[7000 Q cm]  DM'PL' > 028Gy or FP >6.4x 10 cm™

For low and medium resistivity samples (56 and 157 2 cm), there is a pro-
gressive reduction of the extrinsic region with increasing irradiation fluence.
This region is absent starting from a NIEL-Dose (or FP concentration) which
depends on the resistivity:

[56 Q@ cm]  DM'PL>258Gy or FP>6.0x 10%cm™
(157 Q em]  DN'EE >107Gy or FP>25x10%cm™

Also for high resistivity samples (2500 2 cm) there is a progressive reduc-
tion of the extrinsic region with increasing fluence. For the very-high ones
(7000 Qcm) it is already absent at the first irradiation fluence. For these
samples the extrinsic region is absent at a lower absorbed NIEL-Dose respect
to the previous samples, i.e

2500 Q cm]  DM'PL > 069Gy or FP>1.6x 10" cm™
[7000 @ cm]  DM'PL'> 028Gy or FP>6.4x 10 cm™

In addition, for these samples, the Hall coefficient changes sign starting from
a NIEL-Dose of :

2500 Q cm]  DM'EE > 258Gy or FP > 6.0 x 10" cm™
[7000 @ cm] DML >271Gy or FP>6.3x 10" cm™

It has to be noted that the change of the Hall coefficient sign, which was
observed after irradiation for high and very-high resistivity sample, is very
different from the one that can be observed in compensated semiconductors
(see section 5.1.4). The level of compensation, in facts, is achieved during the
fabrication process by adding the ”desired” doping atoms concentrations. In
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Figure 6.4: Temperature dependance of Hall coefficient [(I), (II), (III)], resistivity
[(IV), (V), (VI)] and Hall mobility [(VII), (VIII), (IX)] for irradiated samples with neu-
trons. The sample-resistivities before irradiation are n-type of 56 Qem [(I), (IV), (VI)],
n-type of 157 Qcm [(II), (V), (VIII)] and n-type of 2500 Q cm [(III), (VI), (IX)] [102].

153



T

0.01 Qcm - p 0.0l Qcm - n ﬁ 7000 Qcm
_10]
L
g
210 D o S S
1':4:
210 B
-107
TN
1
10 \\.
10" ) ‘ AR ik ‘
) 10’ 10 100 10 100 10 100
{0 W) )
1055 1F 1F é E
10% s 7 4
10% 1k I ™~ ]
510? 1k 1k ]
210" 1k 1k ]
10% 1k 1 1
107F as as 3
10_2' NM/M*—’_FM 1t W 1L ]
(VD
1073 1 1 1 1 1 1
10 100 10 100 10 100
10% —-—NoN-irmadiated  (VID || —«—NON-irradiated  (VIID ]| - (IX) 4
—o—5.4x10" ions/cm’ -~ —5.4x10" ions/em’ //
1.02x10" ions/em’ 1.02x10" ions/cm’
E - 5.11x10"" jons/cm’ - v--5.11x10" jons/em’ “/
10+ 1.01x10 fons/em? {E—+— 1.01x10" ions/cm’ 4 ;." J
g <-5.01x10" ions/cm’ < 5.01x10" ions/cm’ i
;" - 1.0x10" jons/cm’ -+ 1.0x10" ions/cm’ ;f
10% 13 F T 3
— »— NON-irradiated
—o--5.4x10" ions/cm’
) g, 1.02x10" ions/em”
102' 1F A S 1F — v 5.11x10" jons/cm’
r\_’ﬁ_’v -+ 1.01x10" jons/cm’
<--5.01x10" jons/cm’
. —»—1.0x10" ions/cm’
10 10 100 10 100 10 100
1000/T [K™] 1000/T [K™] 1000/T [K™]

Figure 6.5: Temperature dependance of Hall coefficient [(I), (II), (III)], resistivity
[(IV), (V), (VI)] and Hall mobility [(VII), (VIII), (IX)] for irradiated samples with carbon-
ions. The sample-resistivities before irradiation are: p-type of 0.01Qcm [(I), (IV), (VI)],
n-type of 0.01 Qcm [(II), (V), (VIII)] and n-type of 7000 Q2 cm [(III), (VI), (IX)] [102].
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Sample resistivity in €2 cm 0.01 56 157 2500 7000
Lack of extrinsic region - 258 10.7 0.69 0.28
Change of Hall mobility slope - 235 25.8 2.58 0.28
Reversed sign - - - 25.8 2.71

Table 6.3: The displacement NIEL-Doses, in units of Gy, above which extrinsic region is
absent, the slope of the Hall mobility changes and/or the Hall coefficient sign is reversed.

addition donors or acceptors, introduce shallow levels in the forbidden energy
gap while the irradiation process introduce deep levels which have different
characteristics. In irradiated samples free carriers are trapped in these deep
levels: both the lifetime and the relaxation time (mean free time) diminish
after irradiation. The lifetime diminishes because carriers are removed from
the conduction band or the valance band according to the sample type (see
section 3.3 on defect complexes). The relaxation time diminishes because
carriers are subjected to more scattering processes with impurities created
after irradiation (the ionized impurity scattering relaxation time is inversely
proportional to the impurities concentration as can be seen from equation
5.95). The |Ry| value increases because of carriers removal (n diminishes
because they are trapped). The mobility decreases because the impurity
scattering process increases. The resistivity increases because both . and n
decrease.

For each resistivity sample the major effects which arise after irradiation
are listed in table 6.3 with the corresponding absorbed NIEL-Dose. In essence
higher resistivity samples degrades with a lower absorbed NIEL-Dose i.e they
are more affected by irradiation compared to the low resistivity ones.
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Conclusions

With this work we were able to reproduce the Messenger’s et al. [50] non-
relativistic NIEL values for all nuclei in the low energy range of the space
environment (1 keV -1 GeV) where screening effects are relevant. In addition
we gave new information on the Coulomb NIEL fraction for heavy nuclei of
the GCRs spectrum. We were able to modify the single scattering process
of the GEANT4 simulation program in order to extend the use of this code
to heavier nuclei. The modification essentially consists in the introduction of
the reduced mass in the differential cross section for energy transfer. The so-
modified code is able to properly reproduce the scattering probabilities. With
the modified GEANT4 code it is possible to get the Coulomb NIEL fraction in
agreement with those available in the non fully-relativistic regime for heavy
ions and in the relativistic regime for protons. Furthermore, it adds new
information about the heavy nuclei at relativistic energies. The simulation
results are analogous to those obtained by a computational integration that
we performed by the use of the Coulomb relativistic differential cross section
proposed by Starusziewicz and Zalewski [40] (SZ). The modification was
accepted by the GEANT4 team and it will be included in the GEANT4 9.3
release available from December 2009 [64].

In addition, we developed a code based on the ISO 15390 model for the
generation of particles distributed according to the GCR fluxes. The results
of the GEANT4 simulation well reproduce the expected values. This allows
one to have a particle generator which is able to approximately reproduce
the solar modulation effect for GCRs.

For instance, using the ISO model of GCRs fluxes and the NIEL for
all the nuclei, we estimated the expected NIEL-Dose absorbed by a silicon
sample during one year mission. The calculation was performed considering
two different periods of the Sun activity for GCRs in the energy range from
50 MeV /nucleon up to 10 GeV/nucleon. For protons and alpha particles
the NIEL-Dose computation includes both Coulomb and nuclear interactions
[35], [34], [36], [57]. For all the other nuclei, we used the Coulomb NIEL
fraction obtained from our computation. We estimated that the NIEL-Dose
contribution of all the nuclei, from alpha to nickel, is about 40% of the proton
one. For example, during a typical solar minimum period, the NIEL-Dose of
the nuclei is ~ 10 uGy/yr, while the protons one is ~ 27 uGy/yr. During a
maximum solar activity period, it is ~ 7 uGy/yr, and ~ 17 uGy/yr for nuclei
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and protons respectively. Relative contributions, however, strongly depend
on the ISO flux model which brings an uncertainty of about 27.5% for the
protons NIEL-Dose, while for all the nuclei it is about 14.5%.

In addition Hall effect measurements were performed in our laboratory, on
silicon samples of different resistivities which are usually used as substrates
for the fabrication of detectors and devices employed in space missions [102].
The samples were irradiated with fast neutrons and high energy carbon ions.
Temperature scans of the Hall coefficient, the resistivity and the Hall mobil-
ity were performed from 300 K down to 11 K. As expected, the resistivity
increases while the Hall mobility decreases after irradiation. The Hall coef-
ficient is inversely proportional to the effective number of majority carriers
concentration and its absolute value was found to increase with increasing
fluence. In addition, for high resistivity samples, it was observed a change
of the Hall coefficient sign, which indicates the type of effective majority
carries. To compare results of samples irradiated with different particles, it
is convenient to express these measured quantities as a function of the FP
concentration, which is directly related to the energy deposited by displace-
ment processes. The main result of this work is that high initial resistivity
samples are more affected by irradiation than the low resistivity ones. For
very low resistivities (0.01 €2 cm) no relevant variations were observed after
irradiation. For low resistivity (56 2 cm) it was observed a lack of the ex-
trinsic region starting from a FP concentration of 6 x 10> cm™. The same
phenomena occurs also for medium resistivity (157 € cm) but at a lower FP
concentration, that is 2.5 x 10 cm™3. For high (2500 2 cm) and very high
(7000 © cm) resistivity this is found at 1.6 x 10 cm™ and at 6.4 x 103
cm ™3 respectively. In addition for these last two types of samples the change
of the Hall coefficient signs occurs at a FP concentration of 6.0 x 10'° cm™3
for high resistivity, and at 6.3 x 10** cm™3 for very high resistivity.
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Appendix A

GEANT4 Coulomb NIEL

GEANT4 Coulomb NIEL fraction simulation results in units of MeV c¢cm? /g for
every nucleus from proton to nickel in silicon target. NIEL values calculated
by the use of the relativistic differential cross section SZ given by equation
(4.7) are also listed. The energy F is given in units of MeV /nucleon. The
threshold energy for displacement is Ty = 21 eV.

Proton (A,Z)=(1,1) || Alpha (A)Z)=(4,2)
E GEANT4 S7Z GEANT4 S7Z
20 3.70x1073 3.24x1073 1.40x1072 1.31x1072
50 1.42x107% 1.37x1073 5.72x1073 5.50x1073
100 7.73x107% 7.38x1074 2.95%1073 2.96x1073
200 4.55x107% 4.23x107% 1.68x1073 1.69x1073
500 2.43x107* 2.37x107* 90.83x107* 9.47x107*
1000 | 1.86x10~* 1.78x10~* 7.40x107* 7.12x107*
2000 | 1.62x10~* 1.52x10°* 6.49x107* 6.08x107*
5000 | 1.49%x10™% 1.40x10~4 6.00x10~* 5.60x107*
10000 | 1.47x10~* 1.38x10~* 5.93x107% 5.50x1074

Li (A,Z)=(73) || Be (A, Z)=(9,4)
FE GEANT4 S7Z GEANT4 S7Z
20 3.03x1072 2.95x102 5.44%x1072 5.25x1072
50 1.30x1072 1.24x1072 2.33x1072 2.20x1072
100 6.80x10™3 6.66x1073 1.19x1072 1.18x1072
200 3.91x10™3 3.81x1073 7.25x1073 6.78x1073
500 2.16x10™3 2.13x1073 3.86x10™3 3.79x1073
1000 | 1.67x10~% 1.60x1073 2.98x107% 2.85x1073
2000 | 1.41x1073 1.37x1073 2.50x1073 2.43x1073
5000 | 1.33x1073 1.26x1073 2.34x1073 2.24x1073
10000 | 1.31x1073 1.24x1073 2.32x1073 2.20x1073
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B (A,Z)=(115) || C (A,Z)=(12,6)
E GEANT4 SZ GEANT4 S7Z
20 8.67x107? 8.21x107? 1.25x107"  1.18x107!
50 3.56x1072 3.44x1072 5.18x1072 4.95x10~2
100 1.97x1072 1.85x1072 2.77x107% 2.66x10~2
200 1.09x1072 1.06x102 1.59%x1072 1.53x10°2
500 6.02x107% 5.92x1073 8.88x1073 8.53x1073
1000 | 4.61x107% 4.45x1073 6.49x107% 6.41x1073
2000 | 3.92x10~% 3.80x1073 5.75x107% 5.47x1073
5000 | 3.69x1073 3.50x10°3 5.35x107% 5.04x1073
10000 | 3.62x1073 3.44x1073 517x107%  4.95x1073

N (A,Z)=(14,7) [ O (A,Z)=(16,8)
E GEANT4 SZ GEANT4 SZ
20 1.65x107Y 1.61x107* 2.18x10~1 2.10x107!
50 7.12x1072 6.74x1072 9.42x1072 8.80x1072
100 3.67x107% 3.63x1072 4.85%107%2 4.74x1072
200 2.14x1072 2.08x1072 2.83x107%2 2.71x1072
500 1.17x107%2 1.16x10°2 1.55%1072 1.52x1072
1000 |9.19x1073 8.72x1073 1.20x1072 1.14x1072
2000 | 7.84x107% 7.44x1073 1.04x1072 9.72x1073
5000 | 7.30x10~% 6.86x1073 9.35x107% 8.96x10~3
10000 | 7.05x1073 6.74x1073 9.18x107% 8.80x10~3

F (A,2)=(19,9) || Ne (A,Z)=(20,10)
FE GEANT4 SZ GEANT4 SZ
20 2.77x10~ T 2.66x10~T 3.29x10~1 3.28x107!
50 1.16x107* 1.11x107* 1.45%107* 1.38x1071
100 6.42x1072 6.00x10~2 7.51x1072 7.40x1072
200 3.62x107% 3.43x1072 4.52x1072 4.24x1072
500 1.99x1072 1.92x1072 2.38x1072 2.37x1072
1000 | 1.53x1072 1.44x1072 1.91x1072 1.78x1072
2000 | 1.27x107%2 1.23x10°2 1.59%x1072 1.52x10°2
5000 | 1.18x107% 1.13x1072 1.45x1072 1.40x1072
10000 | 1.17x1072 1.11x1072 1.44x1072 1.38x1072
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Na (A,Z)=(23,11) || Mg (A)Z)=(24,12)
E GEANT4 S7Z GEANT4 S7Z
20 3.99x1071  3.97x107! 5.06x1071 4.73x107!
50 1.68x107Y 1.66x10°* 2.04x1071 1.98x107!
100 9.03x1072? 8.96x1072 1.11x1072 1.07x1072
200 5.25%x1072 5.13x1072 6.34x1072 6.10x1072
500 2.88x1072 2.87x1072 3.52x1072 3.41x1072
1000 | 2.27x1072 2.15x1072 2.69x1072 2.56x1072
2000 | 1.91x1072 1.84x1072 2.30x1072 2.19x1072
5000 | 1.75%x1072 1.69x1072 2.08x1072 2.02x1072
10000 | 1.73x1072 1.66x10~2 2.06x1072 1.98x1072

Al (A,Z)=(27,13) || Si (A,Z)=(28,14)
E GEANT4 S7Z GEANT4 S7Z
20 5.64x10~" 5.55%x107! 6.66x1071 6.43x107!
50 2.41x107Y  2.32x107! 2.79%1071  2.70x107!
100 1.35x107Y  1.25x107! 1.51x107Y 1.45x107!
200 7.46x1072 7.16x1072 8.43x1072? 8.30x1072
500 4.24x1072 4.00x1072 4.82x1072 4.64x1072
1000 | 3.10x1072 3.01x1072 3.64x1072 3.49x1072
2000 | 2.65x1072 2.57x1072 3.13x1072 2.98x1072
5000 |2.47x1072? 2.37x107?2 2.84x1072 2.74x1072
10000 | 2.43x1072 2.32x1072 2.82x1072 2.70x1072

P (A,Z)=(31,15) || S (A,Z)=(32,16)
E GEANT4 SZ GEANT4 SZ
20 7.64x107" 7.39x107! 8.54x10~1 8.40x10~!
50 3.25x107"  3.09x107! 3.78x1071 3.52x107!
100 1.68x1071 1.67x107! 2.03x107! 1.89x107!
200 9.61x1072? 9.53x1072 1.09x1071  1.08x107!
500 5.54x1072? 5.33x1072 6.29x1072 6.06x1072
1000 | 4.12x1072 4.00x107?2 4.73x1072 4.56x1072
2000 | 3.56x1072 3.42x1072 4.03x1072 3.89x107?
5000 | 3.24x1072 3.15x1072 3.68x1072 3.58x1072
10000 | 3.24x1072 3.09x1072 3.70x1072 3.52x1072
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Cl (A,Z)=(35,17) || Ar (A,Z)=(40,18)
FE GEANT4 SZ GEANT4 SZ
20 9.53x10~t 9.49x10~! 1.15 1.06
50 4.06x1071 3.97x107! 4.58%x1071  4.46x107!
100 2.24x1071 2.14x107! 2.56x1071  2.40x107!
200 1.21x1071 1.22x10°1 1.38x1071 1.37x1071!
500 7.07x107%2 6.84x1072 7.92x107%2 7.67x1072
1000 | 5.28x1072 5.14x1072 5.85x1072 5.77x1072
2000 | 4.49x1072? 4.40x1072 5.02x1072 4.92x1072
5000 | 4.20x1072 4.05x1072 4.68x1072 4.54x1072
10000 | 4.17x1072 3.98x1072 4.66x1072 4.46x1072
K (A,Z2)=(39,19) | Ca (A,Z)=(40,20)
FE GEANT4 SZ GEANT4 SZ
20 1.28 1.19 1.41 1.31
50 5.30x107"  4.96x107* 5.97x107" 5.50x 107!
100 2.76x107t 2.67x107! 3.22%x107t 2.96x107!
200 1.53x107! 1.53x107! 1.68x107' 1.69x10~!
500 8.84x1072 8.55%x1072 9.89x1072 9.47x1072
1000 | 6.53x1072 6.42x1072 7.26x1072 7.12x1072
2000 | 5.58%x1072 5.48x1072 6.25x1072 6.08x1072
5000 | 5.23x1072 5.05x1072 5.80x1072 5.60x1072
10000 | 5.18x1072 4.97x1072 5.76x1072 5.50x 1072
Sc (A,Z)=(45,21) || Ti (A,Z)=(48,22)
FE GEANT4 SZ GEANT4 SZ
20 1.49 1.45 1.61 1.59
50 6.42x107" 6.06x107 ! 6.75x107t  6.66x1071
100 3.28x107" 3.26x107! 3.62x1071 3.58x107!
200 1.88x107!1 1.87x107! 2.04x107" 2.05x107!
500 1.10x107!Y 1.04x107! 1.20x107' 1.15x107!
1000 | 8.02x1072 7.85x1072 8.74x1072 8.61x1072
2000 |6.81x1072 6.70x1072 7.52%x1072 7.35%x1072
5000 | 6.38x1072 6.17x102 6.97x1072 6.78x1072
10000 | 6.33x1072 6.07x1072 6.94x1072 6.66x1072
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\Y (A,Z)=(51,23) || Cr (A, Z)=(52,24)
E GEANT4 SZ GEANT4 SZ
20 1.80 1.74 1.91 1.89
50 7.22x1071 7.28x107! 8.58x107t 7.92x107!
100 3.77x107t 3.92x107! 4.25%x1071  4.26x107!
200 2.24x107t 2.24x107t 2.53x107t 2.44x107!
500 1.31x107" 1.25%x107! 1.40x107"  1.36x107!
1000 | 9.58x1072 9.41x1072 1.05x1071  1.02x107!
2000 |8.20x1072? 8.03x102 9.07x1072 8.75x1072
5000 7.61x1072 7.41x1072 8.29%x1072 8.10x1072
10000 | 7.59x1072 7.28x107?2 8.29%x1072 7.92x1072
Mn (A,Z)=(55,25) [| Fe (A,7)=(55,26)
E GEANT4 S7Z GEANT4 SZ
20 2.18 2.05 2.33 2.22
50 9.06x10~" 8.60x107! 9.46x10~' 9.30x107!
100 5.09%x1071 4.63x107! 5.11x107t 5.00x107*
200 2.68x107" 2.65x10~! 2.90x10~' 2.86x107!
500 1.54x107"  1.48x107*! 1.67x107' 1.60x107*
1000 1.14x1071 1.11x107! 1.23x107'  1.20x107*
2000 |9.73x1072 9.49x1072 1.0x1071 1.03x107!
5000 |9.00x1072 8.75x1072 9.74x1072 9.46x10~2
10000 | 8.97x1072 8.60x1072 9.69x1072 9.30x1072
Co (A,2)=(59,27) || Ni (A,Z)=(59,28)
FE GEANT4 SZ GEANT4 SZ
20 2.51 2.39 2.74 2.57
50 1.04 1.00 1.06 1.08
100 5.54x107"  5.40x107! 5.81x107" 5.80x107!
200 3.23x1071  3.09x107! 3.25x1071  3.32x10!
500 1.75%x107!  1.73x107! 1.93x107! 1.85x107!
1000 1.36x107!1 1.30x107! 1.42x107"  1.40x107*
2000 1.14x107' 1.11x107*! 1.21x107' 1.19x107*!
5000 | 1.05x10~!' 1.02x107! 1.13x107"  1.10x107!
10000 | 1.04x107' 1.00x107! 1.12x1071  1.08x107!
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Appendix B

The Silicon Structure

The fundamental structure of the silicon lattice crystal and an overview of
the bands theory are given in B.1 and B.2 respectively. In addition the
density of states is also reported in section B.5. The energy band structure
provides information about the allowed energy and momentum states which
are available to carriers inside the semiconductor. The motion of carriers
under the influence of an external force, can be visualized in a quasi classical
manner by the effective mass approximation given in section B.3.

B.1 Covalent Bound and Crystal Structure

Silicon is a IV group element in the Mendeleeve periodic table. The nucleon is
made of Z = 14 protons and its atomic mass is A = 28.0855 express in atomic
mass unit (amu). The electronic configuration of the single atom is given by
15%2522p%3523p2. The 3s subshell has two allowed quantum states per atom
and it is filled by two electrons. The 3p subshell has six allowed quantum
states per atom and it is filled by two electrons. In the solid state, each silicon
atom has energetic advantages in forming covalent bound with each of the
four nearest silicon atoms, and so they arrange themselves in a tetrahedron
configuration. This occurs through the sp® hybridization mechanism where
one S-electron is brought in a p orbital. This configuration is favorite because
the bonding with four other electrons of opposite spins forms a octet that
fills the hybrid orbital.

To give a qualitatively understanding of the band formation, a monatomic
material totally composed by N silicon atoms is considered: when atoms
are far apart they don’t interact and the atomic energy levels are N-fold
degenerate (see fig B.1). As the N atoms are brought together to form a
solid, each of the external 3s and 3p sub-shells overlap and interact with
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Figure B.1: Formation of energy bands as a diamond lattice crystal is formed by bringing
N isolated silicon atoms together [77].

the others. The interaction consists in both attractive and repulsive forces
which cause a shift in the energy levels. The degenerate levels split in N
closely spaced levels and, if N is large, the result is a formation of an almost
continuous energy band.

Coulomb repulsive forces between nuclei, prevent further decreasing of the
atomic distances. At a certain distance, when attractive and repulsive forces
are balanced, the configuration is stable. At the equilibrium interatomic
distance the band energy will again spilt in two bands. Both the lower -
valence band- and the upper -conduction band have four quantum states per
atom. These two bands are separated by the forbidden bandgap energy which
is equal to 1.124 eV in silicon at room temperature.

Silicon, as all semiconductors, has a crystal structure. The periodic ar-
rangement of atoms in the crystal is called lattice. The lattice can be gener-
ated by three fundamentals translation vectors (a;, ag, az) which are defined
in order to reproduce the lattice periodicity. In this way every equivalent lat-
tice point can be represented by a vector R as a linear combination of the
translation vectors:

R = niay + ngas + nsas (Bl)

where n; are integer numbers.
However, for more complicated lattice structures, the periodicity of the atoms
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Figure B.2: Primitive cell of a diamond structure ; a is the lattice constant [76].

inside the crystal may not be simply reproduced by a translation. In these
cases it is necessary to define a base inside the lattice which gives the exact
position for all atoms. In silicon the base is given by two identical atoms
which are in the fundamental positions (0, 0,0) and (1/4,1/4,1/4)a where a is
the lattice constant which gives the lattice dimensions. For silicon a = 0.543
nm [75].

By reproducing the primitive cell plus this base many times the whole crystal
structure can be generated.

Silicon has the crystal diamond structure which is represented in fig B.2.
The diamond structure can be seen as two interpenetrating face-centered
cubes displaced one form the other by one quarter of a, along the diagonal
direction. The volume enclosed in the parallelepiped defined by the transla-
tion vectors is called primitive cell. Since the choice of a; is not unique the
primitive cell is not unique too. The typical choice for the primitive cell is
the Wigner-Seitz cell defined as the smallest volume around a point vector
R equally spaced from its neighbors.

By dissecting the silicon diamond structure with planes in various direc-
tions, it is possible to see that different planes contain a different number of
atoms. In fact, atoms are spaced one from the other at different distances de-
pending on the lattice orientation. As a consequence, the crystal properties
along various planes result to be different and the electrical characteristics
may also depend on the crystal orientation.

A convenient method to define different planes is to use Miller indices.
As an example, in fig B.3, three fundamental planes of a cubic crystal are
reported in a Cartesian coordinate system. The planes are indicated by the
notation (hkl) where the indexes h, k and [ can assume a multiple value of
the cube dimension (the fundamental value is one). The direction perpen-
dicular to a particular plane is denoted by [hkl] notation, for example [100]
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Figure B.3: Miller indices of some important planes in a cubic crystal [77].

denotes the z-axis direction. The notation (hkl) groups all set of equivalent
directions, for example (100) denotes six different directions: they are the
three positive directions of the Cartesian axes plus the three negative ones.

B.2 The Reciprocal Lattice and the Energy-
Band Structure

The reciprocal lattice is the quasi-Fourier transformation of the crystal direct
lattice. For each lattice vector R, given by (B.1), the reciprocal K can be
obtained by the condition:

exp(lK-R) =1 (B.2)

Similarly to the direct crystal lattice, the reciprocal one can be constructed
from a set of translation vectors b;. These vectors, that span the recip-
rocal lattice, have to fulfill the condition a;-b;=27d;; so that the (B.2) is
guaranteed. The simplest way of doing it, is to choose this set of vectors:

2m

b1 = vaag X ag <B3)
2m

b2 = vaag X ay <B4)
2

b3 = 77:31 X ag <B5)

where V, =a;-(agxag) is the volume of the unit cell spanned by a;. By the
definition of the set of vectors b, every point in the reciprocal lattice can be
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associated with a vector K which is defined by a linear combination of the
given base:
K = k1by + koby + ksbs (B.6)

where k; coefficients are integer numbers.

The reciprocal lattice is useful in the description of the energy momentum
relationship, when the coordinates of the wave vector k are given in the
reciprocal lattice space.

The E-k relation gives information about the band structure of the lattice.
It is obtained by the solution of the Schrodinger equation in the one-electron
problem approximation:

( _ gy v<r>)¢<r,k> — Bk (r,k) (B.7)

2m*

where m* is the effective mass of the electron, ¥ (r, k) is the eigenstate of
momentum k and V(r) is the potential.

If the potential V' (r) is periodic in the direct lattice then the Bloch theo-
rem states that the solution of the Schrodinger equation can be written as a
product of plane waves exp(ik - r), and lattice-periodic functions wu,(r), i.e:

Uk (r, k) = exp(ik - ), (r) (B.8)

where n is a quantum number and k is the wavevector. Since the Bloch
functions wu,k(r) are periodic, the wavefunctions are periodic as well in the
direct lattice, that is:

Uk (r, k) = Y (r + R, k) (B.9)

for all vectors R.
Another consequence of the Bloch theorem is that if F, (k) is an eigenvalue
then E,x(k + K) is an eigenvalue too for all vectors K of the reciprocal lat-
tice, that is the Energy-momentum relationship is periodic in the reciprocal
lattice:

E,.(k)=E,(k+K) (B.10)

The Energy-momentum relation gives the Energy-band structure and can be
displayed in various zone along different k-directions. Each zone represents a
different cell. The periodicity of the eigenvalues allows to deal only with one
cell instead of considering the whole reciprocal lattice space. The reciprocal
of the Wigner-Seitz cell which is called the first Brillouin zone is usually
chosen. The first Brillouin zone is reported in figure B.4 for a diamond
lattice structure, where some fundamental points and the k-directions are
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Figure B.4: (Left) Energy band structure of silicon where E, is the energy bandgap; plus
sign (+) indicates holes in the valance bands and minus sign (-) electron in the conduction
band. (Right) Brillouin zone of diamond lattice [76].

also given. The I" point always denotes the center zone, k = 0. The X points
denote the zone boundary in the (100) directions, located at a distance 7/a
from I'; K are in the (110) directions at a distance (3v/2/4)w/a; L are in the
(111) directions at a distance (/3/4)7/a.
The straight path from I" to X, K, L are denoted by A, 3, A respectively.
The energy-band diagram of silicon for the first Brillouin zone is shown
in fig B.4. E,. denotes the bottom of the conduction band located in the A
direction, while F, is the top of the valance band located at the I" point. Since
there is a separation in momentum between the maximum of the valance band
and the minimum of the conduction band, silicon is an indirect bandgap
semiconductor. As a consequence when carriers move from one energy band
to the other, there is also a change in momentum. The separation between
those two energies corresponds to the energy gap .

B.3 The Effective Mass Approximation

The energy-band structure gives the allowed energy and reduced momentum
states of an electron inside the crystal. Under the influence of an external
force, the equation of motion of the electron in the band structure is no
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longer given by the classical Newton’s second low. The external force might
arise for example, by an electric or a magnetic field, or even from the electric
potential of dopant and impurity atoms inside the crystal.

To describe the motion of the charges inside the crystal a superposition of
wavefunctions must be used. The velocity of the whole wavepacket is given
by the group velocity which, in the one dimensional case, has the form:

dv 1dE
Vg = — = ——. (B.11)
dk  hdk
This gives the dispersion relation which contains information about the crys-
tal periodic potential which influences the motion of charges.
An external force F' acting on a charge over a short distance dx will cause

an increase of its wavepacket energy quantified by:

1dE

= = = F——dt. 1
dE = Fdx = Fvydt Fh o dt (B.12)
The equation of motion is written as:
dk
h— = F. B.1
g (B.13)

Differentiating the group velocity (B.11) respect to time, it is possible to
obtain the charge acceleration:
dvy  dvgdk  1d°FE dk

dt — dk dt b dk® dt (B.14)

and making use of the (B.13), the acceleration of the charge can be expressed
by: ,
1B

h* dk?
By this last expression it is possible to write the equation of motion of a
charge inside the crystal in a quasi-classical manner i.e.:

a

(B.15)

F=m"a (B.16)

where m* is the effective mass defined as:

-1
. 1 d*F

which contains the information of the crystalline potential. The effective
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Figure B.5: Hole dispersion relation (dashed line) in relation to the electron one in the
valance band (solid line). The hole is represented by the filled circle (o) , the electron by
the empty one (o) [75].

mass is inversely proportional to the curvature of the bands in the E-k dia-
gram, and so it is positive (m* > 0) near the band energy minimum -bottom
of all bands- and negative (m* < 0) near the band energy maximum -top of
all bands.

With a negative effective mass the electron will accelerate in the oppo-
site direction under the influence of an external force as if it were a positive
charge. This can be explained considering that when an electron moves
from the valance to the conduction band, it leaves a non-occupied valance
bond which is called hole. Because of this free bond, all other valance elec-
trons, subjected to the external force, will be free to move to the nearest
non-occupied state: to an observer the hole seems to move in the opposite
electrons direction. To model this situation it is simpler to consider the mo-
tion of the positive quasi-particle hole, instead of considering the transitions
of all the valance electrons. The concept of holes is very useful to describe
the properties of charge carriers at the top of the valance band. The disper-
sion relation of the hole is schematically sown in fig B.5 in relation to the
dispersion of an electron in the valance band. The wavevector of the hole
is related to that of the missing electron by k;, = —k. and the energy is
larger for holes far from the top of the valance band E(k;,) = —FE(k.) (if
E, =0). The effective mass of the hole is positive at the top of the valance
band and negative at the bottom, i.e. equal but opposite to the electron one
mj = —m} in the valance band. In addition, since the band diagram depends
on the crystal orientation, the effective mass definition must be generalized
in the three dimensional space. In this case the equation of motion is a tensor
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Figure B.6: Ellipsoid of constant energy in the vicinity of the conduction band minima
for the six equivalent directions (100) in the first silicon Brillouin zone [75].

equation where the components of the force are given by F; = mja;. The
components of the effective mass tensor are then defined as:

-1
1 &°F
= = ) B.1
mz] <h2 d/{,‘zdkj> ( 8)

B.4 Constant Energy Surfaces

In a three dimensional space the E-k relation gives the allowed A-values which
are represented by the edge surfaces in the k-space. The geometrical shapes
associated with these surfaces are called constant energy surfaces. In prox-
imity of the band extreme points kg, the energy momentum relation can be
expanded in series as:

E(k) ~ E(ko) 4 a(k — ko)2 + o (k — ko)2 + v (k — ko)? (B.19)

where o, . are constants that can be fixed by equation (B.18). By an
appropriate choice of the coordinate system, it is possible to choose m;; # 0
only if i = j, and so the equation (B.19) becomes:

|l - A
E—Ey:—( 2Ly Z) (B.20)

* * *
2\m;  my  m;

where Fj is the energy value at the extreme point.
Since the silicon valance band is 3-folt degenerate in the I' point (ko=0)
(see figure B.4), the hole in the valance band can be characterized by one
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effective mass parameter with three different values according to the specific
sub-band. At the top of the band, these sub bands can be approximated by
spherical symmetrical constant energy surfaces and so the (B.20) reduces to:

h2k2

EF—-—F, ~ .
2my,

(B.21)

The three energy surfaces have different curvatures: the more bent is the
light hole band with effective mass denoted by mj,, while the less bent is
the heavy hole band with effective mass mj,. The third band is the split-off
band with effective mass m},. Since the split-off band is at only 0.044 eV
below E,, it is generally not considered.

The silicon conduction band minimum, instead, is located at ko ~ 0.8(27/a)
far apart from I" along the (100) direction. It is not degenerate but the dis-
persion relation gives different values according to the reciprocal lattice orien-
tation. In this case, the constant energy surface is not spherically symmetric
but, around the minimum, can be represented by an ellipsoid as reported in
fig B.6 where the six equivalent energy surfaces of the six equivalent direc-
tions A are represented. According to the ellipsoid orientation, the electron
effective mass assumes different values. In the longitudinal direction the
effective mass is denoted by m;. In the other two transversal directions,
the equivalent effective masses are denoted by mj. The energy momentum
relation can be expressed by:

A R o
E—Ec:—(—w*+y—* (B.22)
2 \mj my

Other minima in the conduction band are at much higher energies and are
generally not considered.

B.5 Density of States

The density of states enables one to calculate the concentration of the free
carriers inside the semiconductor. If it is integrated between two energy val-
ues it gives the number of allowed states in that energy range.

The complete calculation of the density of states is derived from the band
theory, but an excellent approximation near the band edges, which are gen-
erally populated by carriers, can be obtained by a simpler approach.

Since electrons, near the bottom of the conduction band, have energies rel-
ative to E, smaller than the surface barrier of the semiconductor, they can
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be thought to be enclosed in a box where the band itself forms the pseudo-
potential well. The density of states for a particle of mass m in a three-
dimensional box is given by [75] [78]:

mv2mE

2R
To obtain the conduction and the valance band density of states, m has to
be replace with the appropriate effective mass, and the energy E with £ — E.

when the conduction band is considered or E, — E for the valance band. The
density of states for the two cases become [75] [78]:

9(E) = (B.23)

maey/2mg, (B — Ee)

9.(E) = —ap? (B.24)
i) = M 2nEo = E) (5.25)

where mj, and mj, are electron (e) and hole (h) density of states effective
masses. Since carriers within a band are characterized by two or more effec-
tive masses, the effective mass which has to be used in the density of states
must be an appropriate combination of the band structure effective masses.

To obtain the m};,, expression, the silicon conduction band structure has
to be considered. The minimum of the conduction band is characterized by
the ellipsoidal energy surface given by expression (B.22) that can be rewritten
as:

€T

a2 + 62

The volume of the k-space enclosed by a single prolate spheroid is then equal
to (4/3)ma/3?. Since there are six ellipsoidal surfaces lying in the first Bril-
louin zone, the total volume is equal to 6(4/3)ra%. Instead of this volume
an equivalent one is considered which is the one enclosed by a spherical ef-

2kt k2
bo Ty TR (B.26)

fective energy surface of radius k.pr = \/ 2my, (E — E.)/h*. The volume of

this latter is then equal to (4/3)7k?;;. By equating these two volumes, it is
possible to obtain the electron density of state effective mass [78]:

m, = 6%3(mym;?)Y3, (B.28)

To obtain the m},; expression, the valance band structure has to be con-
sidered. It is characterized by the spherical constant energy surfaces given
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by equation (B.21), and has two degenerate sub-bands. The total valance
band density of state is then given by the sum of the two sub-bands density
of states characterized by the light an the heavy hole effective masses:

w2h3 w2h3

9u(E) =

Form this latter expression and the (B.25), the hole density of state effective
mass can be derived as:

mgn = [(mg)*2 + (i, )12, (B.30)

For silicon the density of state effective masses are equal to mj, = 1.06 mg
and m};, = 0.58 my, where my is the free electron mass.
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