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Abstract

In this paper we present a non-stationary 4-point ternary interpolatory subdivi-
sion scheme which provides the user with a tension parameter that, when increased
within its range of definition, can generate C2-continuous limit curves showing con-
siderable variations of shape.
As a generalization we additionally propose a locally-controlled C2-continuous

subdivision scheme, which allows a different tension value to be assigned to every
edge of the original control polygon.
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1 Introduction

Until a few years ago all the work in the area of univariate subdivision was limi-

ted to consider just binary scenarios (Dyn and Levin, 1992; Dyn, 2002; Warren

and Weimer, 2002). Recent proposals of ternary subdivisions (Hassan et al., 2002;

Hassan and Dodgson, 2003; Jeon et al., 2005; Wang and Qin, 2005; Zheng et al.,

2005) have introduced new interesting animals in the subdivision zoo, showing the

possibility of treating refinement schemes with arity other than two. A general in-

creasing interest to investigating for higher arities has emerged since Hassan et al.

(2002) showed that we can achieve higher smoothness and smaller support for the

so-called interpolating 4-point stationary scheme, by going from binary (Dyn et al.,
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1987) to ternary. But does this trend continue for the non-stationary schemes too?

In Beccari et al. (2007) it was described an interpolating 4-point C1 binary non-

stationary subdivision scheme with a global tension parameter. Aim of this paper

is introducing a tension controlled ternary proposal with higher smoothness and

smaller support than its binary counterpart.

An interpolating 4-point ternary subdivision scheme maps a polygon P j = {pji}i∈Z
to a refined polygon P j+1 = {pj+1

i }i∈Z by applying the following subdivision rules

pj+1
3i = pji ,

pj+1
3i+1 = aj0 pji−1 + aj1 pji + aj2 pji+1 + aj3 pji+2, (1)

pj+1
3i+2 = aj3 pji−1 + aj2 pji + aj1 pji+1 + aj0 pji+2,

where the coefficients {aji}i=0,1,2,3 are chosen to satisfy the relation

aj0 + aj1 + aj2 + aj3 = 1. (2)

The subdivision step (1) can be compactly written in a single equation of the form

pj+1
i =

∑
k∈Z

mj
3k−i p

j
k ∀j ∈ Z+

where

mj =
[
aj3, a

j
0, 0, a

j
2, a

j
1, 1, a

j
1, a

j
2, 0, a

j
0, a

j
3

]
(3)

is the so-called mask at the j-th level of refinement. From (2) it immediately follows

that ∑
k∈Z

mj
3k = 1,

∑
k∈Z

mj
3k+1 = 1,

∑
k∈Z

mj
3k+2 = 1.

Hassan et al. (2002) introduced a stationary interpolatory 4-point scheme of the

kind (1) with {aji}i=0,1,2,3 given by

aj0 ≡ a0 =− 1

18
− 1

6
µ

aj1 ≡ a1 =
13

18
+

1

2
µ (4)

aj2 ≡ a2 =
7

18
− 1

2
µ

aj3 ≡ a3 =− 1

18
+

1

6
µ.

In the coefficients set (4) µ is a global parameter independent of the refinement

level j which, when chosen in the span
]

1
15 ,

1
9

[
, allows us to generate C2-continuous
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limit curves. Unfortunately, when varying the value of µ inside such a tight span of

definition, it is very difficult to appreciate some significant alterations of the limiting

shape.

In this paper we present a ternary 4-point non-stationary interpolatory scheme pro-

viding the user with a tension parameter that, when increased within its range of

definition, can generate C2-continuous limit curves showing considerable variations

of shape.

In order to include also the possibility of applying a different tension in corre-

spondence of every edge of the original control polygon, we additionally propose a

generalization of such a scheme with local parameters.

More precisely, the paper is structured as follows: in section 2 we briefly define

the non-stationary ternary interpolatory 4-point scheme with global tension; then

in section 3 we study its convergence and we prove that for every choice of the

initial tension parameter in the span [−2,+∞[ \ {−1} the resulting limit curve is

C2-continuous. Successively, in section 4 we analyze the properties of the basis func-

tion to underline the advantages of using the 4-point ternary scheme instead of its

binary counterpart (Beccari et al., 2007). Finally, in section 5 we present a general-

ization of this proposal which makes it possible to set a local tension parameter in

correspondence of each edge of the initial polyline.

2 Definition of the scheme

The novel interpolating 4-point ternary subdivision scheme is described by the re-

finement rules in (1), where the coefficients {aji}i=0,1,2,3 are given by

aj0 =
1

60
(−90γj+1 − 1)

aj1 =
1

60
(90γj+1 + 43) (5)

aj2 =
1

60
(90γj+1 + 17)

aj3 =
1

60
(−90γj+1 + 1)

with

γj+1 = − 1

3(1− (βj+1)2)(1 + βj+1)
(6)

and

βj+1 =
√
2 + βj , βj ≥ −2 (βj ̸= −1) ∀j ∈ Z+. (7)
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In this way, given an initial tension β0 ∈ [−2,+∞[ \ {−1}, the subdivision rules

(1), defining points at level j+1, are derived by first computing the parameter βj+1

through equation (7) and then substituting its value into equation (6) in order to

work out the coefficients {aji}i=0,1,2,3 for the j-th level of refinement.

Remark 1 Note that, starting from any initial parameter β0 ≥ −2, we have 2 +

βj ≥ 0 ∀j ∈ Z+, and so βj+1 is always well-defined. The initial value β0 = −1

has been discarded in order to avoid the denominator in (6) to vanish. As a result,

for each choice of β0 in [−2,+∞[ \ {−1}, the parameters γj+1 turn out to be well-

defined for any j. Such a wide range of definition allows us to get considerable

variations of shape in the limit curves (Fig. 1).

Remark 2 The discarded value β0 = −1 identifies an interesting property of the

proposed subdivision scheme: in fact, given a convex control polygon, for any β0 >

−1 the resulting limit curve lies completely outside of it. In addition, while for

β0 < −1 it is hard to get an intuition of the final shape from that of the initial

polyline, for increasing values of β0 in the range ] − 1,+∞[ it is evident that the

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 1. Interpolation of the vertices of a regular hexagon with increasing values of
the global tension parameter β0: (a) -1.9, (b) -1.5, (c) -1.3, (d) -1.15, (e) -0.9, (f)
-0.75, (g) 0, (h) 5, (i) 100.
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limit curve progressively tends to shrink to the initial control polygon, so becoming

tighter and tighter (Fig. 1).

3 Convergence analysis

Goal of this section is showing that, given an initial polygon P 0, the subdivision

scheme we have presented in section 2 allows us to define an increasingly dense

collection of polygons P j that converges to a C2-continuous limit curve for any

choice of the initial tension parameter β0 in the span [−2,+∞[ \{−1}. In order

to prove this, we analyze the smoothness properties of our scheme by exploiting

the well-known results by Dyn and Levin (1995), which relate the convergence of a

non-stationary scheme to its asymptotically equivalent counterpart. Hence we start

by observing that the parameter βj converges to 2 as j → ∞, i.e., in practice the

non-stationary subdivision scheme we have proposed converges to the stationary

one defined by coefficients in (4) with µ = 1
10 , which is known to be C2 (Hassan et

al., 2002). To this aim we recall the following property of monotonic sequences.

Proposition 3 A monotonic and bounded sequence is always convergent. In par-

ticular, given a monotonic sequence {βj}j∈N,

• if {βj}j∈N is non decreasing and upper bounded, then it converges to the upper

bound of the values it assumes;

• if {βj}j∈N is non increasing and lower bounded, then it converges to the lower

bound of the values it assumes.

Lemma 4 For the sequence defined by


β0 ∈ [−2,+∞[ \ {−1}

βj+1 =
√
2 + βj

(8)

it holds:

• if β0 = 2, then βj = 2 ∀j > 0 and the sequence {βj}j∈N is stationary;

• if β0 ∈ [−2, 2[ \ {−1}, then βj ∈ [0, 2[ ∀j > 0 and the sequence {βj}j∈N is

strictly increasing;

• if β0 ∈ ]2,+∞[ , then βj ∈ ]2,+∞[ ∀j > 0 and the sequence {βj}j∈N is strictly

decreasing.

PROOF. Note that, if β0 = 2, then βj = 2 ∀j > 0. Moreover, for every β0 ∈
[−2,+∞[\{−1} , it always holds βj ∈ [0,+∞[ ∀j > 0. Thus, for any j > 0,

{βj}j∈N is strictly increasing if and only if βj ∈ [0, 2[ ∀j > 0 (that is, if and only
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if β0 ∈ [−2, 2[\{−1}). Analogously, for any j > 0, {βj}j∈N is strictly decreasing if

and only if βj > 2 ∀j > 0 (that is, if and only if β0 > 2). �

Proposition 5 Given the initial parameter β0 ∈ [−2,+∞[\{−1}, the recurrence

relation in (7) satisfies the property

lim
j→+∞

βj = 2.

PROOF. Since the sequence in (8) is

• monotonic non decreasing for β0 ∈ [−2, 2]\{−1},
• monotonic non increasing for β0 ∈ [2,+∞[,

by Proposition 3 we can conclude that in both cases {βj}j∈N is convergent and it

converges to 2. �

Proposition 6 The non-stationary subdivision scheme defined by coefficients in

(5) is asymptotically equivalent to the stationary scheme having coefficients in (4)

with µ = 1
10 . Moreover it generates C2-continuous limit curves.

PROOF. In order to prove that the proposed non-stationary scheme converges to

a C2-continuous limit curve, we compute its second divided difference mask and

we show that the associated limit curves are C0-continuous. Since the mask of the

scheme has the expression

mj =
1

60

[
−90γj+1 + 1, −90γj+1 − 1, 0, 90γj+1 + 17, 90γj+1 + 43, 60,

90γj+1 + 43, 90γj+1 + 17, 0, −90γj+1 − 1, −90γj+1 + 1
]
,

its related first divided differences are

dj(1) =
1

60

[
−90γj+1 + 1, −2, 90γj+1 + 1, 18, 24,

18, 90γj+1 + 1, −2, −90γj+1 + 1
]
.

Hence the second divided difference mask turns out to be

dj(2) =
1

20

[
−90γj+1 + 1, 90γj+1 − 3, 90γj+1 + 3, −180γj+1 + 18,

90γj+1 + 3, 90γj+1 − 3, −90γj+1 + 1
]
.

In this way, by applying Proposition 5, it follows that

d∞(2) = lim
j→+∞

dj(2) =
1

60
[−7, 1, 19, 34, 19, 1, −7 ] .
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This is the mask of the second divided differences of the stationary scheme having

coefficients in (4) with µ = 1
10 . Thus, since such a stationary refinement is C2 for

values of the parameter µ in
]

1
15 ,

1
9

[
, the scheme associated with d∞(2) will be C0.

Now, if

+∞∑
j=0

∥ dj(2) − d∞(2) ∥∞< +∞, (9)

the two difference schemes are asymptotically equivalent, and then we can conclude

that the scheme associated with dj(2) is C
0 too (Dyn and Levin, 1995). Since

∥ dj(2) − d∞(2) ∥∞=
1

20
max

{
2

∣∣∣∣−90γj+1 +
10

3

∣∣∣∣ , ∣∣∣∣90γj+1 − 10

3

∣∣∣∣} =
1

3

∣∣∣−27γj+1 + 1
∣∣∣ ,

verifying condition (9) reduces to prove the convergence of the series

+∞∑
j=0

| − 27γj+1 + 1|, (10)

which clearly depends on the parameter γj+1. Now, as γj+1 is expressed in terms

of the tension parameter βj+1 through relation (6), we will study the behavior of

(10) as βj+1 varies in the interval [0,+∞[. In particular, since

−27γj+1 + 1 = 0 ⇐⇒ γj+1 =
1

27
⇐⇒ βj+1 = 2,

−27γj+1 + 1 > 0 ⇐⇒ γj+1 <
1

27
⇐⇒ 0 ≤ βj+1 < 1 ∪ βj+1 > 2,

and

−27γj+1 + 1 < 0 ⇐⇒ γj+1 >
1

27
⇐⇒ 1 < βj+1 < 2,

we should study the convergence of (10) separating the analysis into the following

three cases:

1. βj+1 = 2 (i.e. β0 = 2)

2. 0 ≤ βj+1 < 1 ∪ βj+1 > 2 (i.e. −2 ≤ β0 < 1, β0 ̸= −1 ∪ β0 > 2)

3. 1 < βj+1 < 2 (i.e. 1 < β0 < 2).

1. Case 1: ∥ dj(2) − d∞(2) ∥∞= 0.

Convergence of (10) trivially follows.

2. Case 2: ∥ dj(2) − d∞(2) ∥∞= 1
3(−27γj+1 + 1).
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We have to prove that

+∞∑
j=0

(−27γj+1 + 1) =
+∞∑
j=0

9

(1− (βj+1)2)(1 + βj+1)
+ 1 < +∞.

To this aim we exploit the ratio test. Since 9
(1−(βj+1)2)(1+βj+1)

+ 1 > 0, then

9
(1−(βj+2)2)(1+βj+2)

+ 1

9
(1−(βj+1)2)(1+βj+1)

+ 1
< 1 ⇐⇒ (1 + βj+1)2

(1− βj+2)(1 + βj+2)2
<

1

(1− βj+1)
. (11)

At this point,

2.1. If 0 ≤ βj+1 < 1, from equation (11) we get

(1− (βj+1)2)(1 + βj+1)

(1− (βj+2)2)(1 + βj+2)
< 1.

Now, as βj+2 =
√
2 + βj+1, thus 1 − (βj+2)2 = −(1 + βj+1), from which it

follows
(βj+1)2 − 1

1 + βj+2
< 1

and, due to the fact that 1 + βj+2 > 0, we further obtain

(βj+1)2 − 1 < 1 + βj+2.

Again, as (βj+1)2 = 2 + βj , then βj < βj+2. Therefore, since whenever 0 ≤
βj+1 < 1 the sequence {βj}j∈N is strictly increasing, this last statement is

trivially verified and hence the ratio test allows us to prove the convergence of

(10).

2.2. If βj+1 > 2, from equation (11) we get

(1− (βj+1)2)(1 + βj+1)

(1− (βj+2)2)(1 + βj+2)
> 1.

Now, as βj+2 =
√
2 + βj+1, thus 1 − (βj+2)2 = −(1 + βj+1), from which it

follows
(βj+1)2 − 1

1 + βj+2
> 1

and, due to the fact that 1 + βj+2 > 0, we further obtain

(βj+1)2 − 1 > 1 + βj+2.

Again, as (βj+1)2 = 2 + βj , then βj > βj+2. Therefore, since whenever βj+1 >

2 the sequence {βj}j∈N is strictly decreasing, this last statement is trivially

verified and hence the ratio test allows us to prove the convergence of (10).
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3. Case 3: ∥ dj(2) − d∞(2) ∥∞= 1
3(27γ

j+1 − 1).

Thus we have to prove that

+∞∑
j=0

(27γj+1 − 1) =
+∞∑
j=0

9

((βj+1)2 − 1)(βj+1 + 1)
− 1 < +∞.

To this aim we exploit the ratio test. Since 9
((βj+1)2−1)(βj+1+1)

− 1 > 0, then

9
((βj+2)2−1)(βj+2+1)

− 1

9
((βj+1)2−1)(βj+1+1)

− 1
< 1 ⇐⇒ 1

(βj+2 − 1)(βj+2 + 1)2
<

1

(βj+1 − 1)(βj+1 + 1)2
.

At this point, from condition βj+1 ∈]1, 2[ it follows βj+1 − 1 > 0. Therefore

((βj+1)2 − 1)(βj+1 + 1)

((βj+2)2 − 1)(βj+2 + 1)
< 1.

Now, as βj+2 =
√
2 + βj+1, thus (βj+2)2 − 1 = βj+1 +1, from which it turns out

(βj+1)2 − 1

βj+2 + 1
< 1

and consequently

(βj+1)2 − 1 < βj+2 + 1.

Again, due to the fact that (βj+1)2 = 2 + βj , we get βj < βj+2. Therefore,

since whenever 1 < βj+1 < 2 the sequence {βj}j∈N is strictly increasing, this

last statement is trivially verified and hence the ratio test allows us to prove the

convergence of (10).

In this way, by unifying the three cases above, we can conclude that (9) is verified

for any choice of the initial tension parameter β0 ∈ [−2,+∞[\{−1}. Hence the

non-stationary subdivision scheme defined by coefficients in (5) is asymptotically

equivalent to the stationary scheme having coefficients in (4) with µ = 1
10 . �

4 Basis function

The basis function of a subdivision scheme is the limit function for the data

p0i =

{
1, if i = 0,

0, if i ̸= 0.
(12)
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By Proposition 6 it follows that the basis function defined by the scheme introduced

in section 2 belongs to C2(R). We show now that it is symmetric about the Y -axis

and it possesses a compact support over the interval [−5
2 ,

5
2 ] (Fig.2).

(a) (b)

(c) (d)

Fig. 2. Basis functions for increasing values of the global tension parameter β0: (a)
-1.5, (b) -0.5, (c) 0.5, (d) 10.

Proposition 7 The basis function F defined by the scheme introduced in section 2

is symmetric about the Y -axis.

PROOF. Let us define the set Dn := { i
3n | i ∈ Z} such that the restriction of the

basis function F to Dn satisfies F
(

i
3n

)
= pni for all i ∈ Z and prove the thesis by

induction on n.

First of all we observe that F (i) = p0i = p0−i = F (−i) ∀i ∈ Z, and thus F
(

i
3n

)
=

F
(
− i

3n

)
∀i ∈ Z, n = 0.

Now, assuming F
(

i
3n

)
= F

(
− i

3n

)
∀i ∈ Z, it follows that pni = F

(
i
3n

)
= F

(
− i

3n

)
=

pn−i ∀i ∈ Z, and consequently

F
(

3i
3n+1

)
= pn+1

3i = pn+1
−3i = F

(
− 3i

3n+1

)
,

F
(
3i+1
3n+1

)
= pn+1

3i+1 = an0 pni−1 + an1 pni + an2 pni+1 + an3 pni+2

= an3 pn−i−2 + an2 pn−i−1 + an1 pn−i + an0 pn−i+1 = pn+1
−3i−1 = F

(
− 3i+1

3n+1

)
,

F
(
3i+2
3n+1

)
= pn+1

3i+2 = an3 pni−1 + an2 pni + an1 pni+1 + an0 pni+2

= an0 pn−i−2 + an1 pn−i−1 + an2 pn−i + an3 pn−i+1 = pn+1
−3i−2 = F

(
− 3i+2

3n+1

)
.

Hence F
(

i
3n

)
= F

(
− i

3n

)
∀i ∈ Z and n ∈ Z+.

As a consequence, from the continuity of F it holds F (x) = F (−x) for all x ∈ R,
which completes the proof. �

Proposition 8 The basis function F defined by the scheme introduced in section 2

has support width s = 5, i.e. it vanishes outside the interval [−5
2 ,

5
2 ].

PROOF. Since the basis function F is the limit function of the scheme for the

data in (12), its support width s can be determined by computing how far the effect

10



of the non-zero vertex p00 will propagate along by. As the mask mj is an 11-long

sequence, by centering it on that vertex, the distance to the last of its non-zero

coefficients is equal to 5 on each side and, after each refinement, it is reduced by

the factor 1
3 . Therefore, at the first subdivision step, the influence of the non-zero

vertex p00 extends a distance 5
3 on each side; during the second step that last non-

zero coefficient itself causes a further effect of 5
32
, and successive iterations push it

out by 5
33
, · · · . Hence, after N subdivisions, the furthest non-zero vertex will be at

5
(
1
3 + 1

32
+ ...+ 1

3N

)
= 5

3

∑N−1
j=0

1
3j
. Since, being |13 | < 1, the geometric sequence

can be summed to give the extended distance on each side, we can conclude that,

in the limit, the total influence of the original non-zero vertex will propagate along

by s = 2 5
3

∑+∞
j=0

1
3j

= 10
3

1
1− 1

3

= 5. �

5 Local tensions

The uniform subdivision scheme described in section 2 allows the user to choose an

initial tension value β0 which is updated at each refinement step through relation

(7). The parameter β0 acts like a global tension, i.e. its choice affects the shape of

the whole limit curve (Fig.1).

In this section a generalization of that scheme is presented, which enables to set a

different parameter for each edge of the starting control polygon (Fig. 4). This means

that, assigning an initial tension value β0
i to every segment p0i p

0
i+1, after j iterations

a tension βj
i will be associated with pjip

j
i+1. Moreover, since after each refinement,

two new points are inserted between two old ones, it is possible to establish an ideal

correspondence between every edge of the coarse control polygon and the three new

ones of the refined polyline. Let βj
i be the tension parameter associated with the

segment pjip
j
i+1. Such an edge is split into the three new ones pj+1

3i pj+1
3i+1, p

j+1
3i+1p

j+1
3i+2,

pj+1
3i+2p

j+1
3(i+1). Thus, according to (7), we will make them inherit respectively the

tension values βj+1
3i = βj+1

3i+1 = βj+1
3i+2 =

√
2 + βj

i . To match up with this pattern, the

subdivision rules in (1) will be consequently modified in such a way the coefficients

ajk (k = 0, 1, 2, 3) would include a subscript i underlining their dependence on the

tension value βj
i . Hence they will be described by the following relations

pj+1
3i = pji

pj+1
3i+1 = aj0,i p

j
i−1 + aj1,i p

j
i + aj2,i p

j
i+1 + aj3,i p

j
i+2 (13)

pj+1
3i+2 = aj3,i p

j
i−1 + aj2,i p

j
i + aj1,i p

j
i+1 + aj0,i p

j
i+2

where

aj0,i =
1

60
(−90γj+1

i − 1)

aj1,i =
1

60
(90γj+1

i + 43) (14)
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aj2,i =
1

60
(90γj+1

i + 17)

aj3,i =
1

60
(−90γj+1

i + 1)

and

γj+1
i = − 1

3(1− (βj+1
i )2)(1 + βj+1

i )
.

Remark 9 Note that property (2) still holds for the definition of the coefficients in

(14).

The mask of the local scheme at the j-th refinement level thus becomes

mj
i =

[
aj3,i, a

j
0,i, 0, a

j
2,i, a

j
1,i, 1, a

j
1,i, a

j
2,i, 0, a

j
0,i, a

j
3,i

]
. (15)

From equation (15) it is evident that the tension value β0
i assigned to each edge

p0i p
0
i+1 influences the limit shape only in the restricted region confined between its

two endpoints (Fig. 3).

Proposition 10 The non-stationary subdivision scheme defined by (14)-(15) is

asymptotically equivalent to the stationary scheme defined by (3)-(4) with µ = 1
10 .

Moreover it generates C2-continuous limit curves.

PROOF. In order to prove that the non-stationary subdivision scheme with mask

(14)-(15) converges to C2-continuous limit curves, we compute the associated first

divided difference mask

dji,(1) =
1

60

[
−90γj+1

i + 1, 90γj+1
i−1 − 90γj+1

i − 2, 90γj+1
i−1 + 1, 18, 24, 18,

90γj+1
i + 1, 90γj+1

i − 90γj+1
i−1 − 2, −90γj+1

i−1 + 1
]

(16)

p

i+1
β

β
β

p
3i+1

p
3i+2

3i+2
3i+1

3i

i+2

j+1 j+1

p   = pj

iβ

j+1
j+1

j+1

3(i+1)

jp
i−1

j

j+1

j

p      = p
3i

j+1 j
i

Fig. 3. Interpolation of the vertices of a given control polygon by using the ternary
subdivision scheme with local tensions.
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(a) (b) (c)

(d) (e) (f)

Fig. 4. Interpolation of the vertices of a regular hexagon by using the following local
tensions: (a) [−1.5, 5, −1.5, 5, −1.5, 5], (b) [100, −0.2, 100, −0.2, 100, −0.2],
(c) [0, 100, 0, 100, 100, 100], (d) [2, 2, 2, 2, 100, 2], (e) [2, 2, 2, 100, 100, 2],
(f) [2, 2, 100, 100, 100, 100].

and we derive from it the second divided difference mask

dji,(2) =
1

20

[
−90γj+1

i + 1, 180γj+1
i−1 − 90γj+1

i − 3, 180γj+1
i−1 − 90γj+1

i−2 + 3,

−90γj+1
i−2 − 90γj+1

i + 18, 180γj+1
i−1 − 90γj+1

i + 3, (17)

180γj+1
i−1 − 90γj+1

i−2 − 3, −90γj+1
i−2 + 1

]
.

Then we only need to show that the scheme defined by (17) is C0-continuous.

From Proposition 5 it can be easily seen that limj→+∞ dji,(2) = d∞(2), namely dji,(2)
converges to the second divided difference mask of the C2-continuous stationary

scheme (3)-(4) with µ = 1
10 . To conclude the proof it is therefore sufficient to check

whether the two subdivision schemes are asymptotically equivalent, i.e. they satisfy

+∞∑
j=0

∥ dji,(2) − d∞(2) ∥∞< +∞.

This last statement can be easily verified, since, as it was already shown in Propo-

sition 6,
∑+∞

j=0 | −27γj+1
i + 1 |< +∞, ∀i, j ∈ Z. �

Remark 11 By setting all initial tensions equal to the same value β0, we get the

uniform tension controlled interpolating 4-point non-stationary scheme defined in

section 2.
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6 Conclusions

In this paper we have introduced a novel non-stationary ternary 4-point interpola-

tory subdivision scheme which provides the user with a tension parameter that,

when increased within its range of definition, can generate C2-continuous limit

curves showing considerable variations of shape. Such a scheme repairs the draw-

backs of its stationary analogue (Hassan et al., 2002), which does not give the

possibility to appreciate significant shape modifications whenever C2-continuity is

enforced. Moreover, if we compare it with its non-stationary binary counterpart

(Beccari et al., 2007), we can see that it possesses higher smoothness (it is C2 in-

stead of C1) while having smaller support (whose length is 5 instead of 6).

In order to include also the capability of adjusting the limit shape only in restricted

regions, we have generalized our proposal to a C2-continuous locally-controlled in-

terpolatory 4-point ternary scheme.
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